Conducting Simulation Studies in the R Programming Environment.
Hallgren, Kevin A
2013-10-12
Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.
Further developments in cloud statistics for computer simulations
NASA Technical Reports Server (NTRS)
Chang, D. T.; Willand, J. H.
1972-01-01
This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.
Comparing Simulated and Theoretical Sampling Distributions of the U3 Person-Fit Statistic.
ERIC Educational Resources Information Center
Emons, Wilco H. M.; Meijer, Rob R.; Sijtsma, Klaas
2002-01-01
Studied whether the theoretical sampling distribution of the U3 person-fit statistic is in agreement with the simulated sampling distribution under different item response theory models and varying item and test characteristics. Simulation results suggest that the use of standard normal deviates for the standardized version of the U3 statistic may…
ERIC Educational Resources Information Center
Hldreth, Laura A.; Robison-Cox, Jim; Schmidt, Jade
2018-01-01
This study examines the transferability of results from previous studies of simulation-based curriculum in introductory statistics using data from 3,500 students enrolled in an introductory statistics course at Montana State University from fall 2013 through spring 2016. During this time, four different curricula, a traditional curriculum and…
Statistical evaluation of rainfall-simulator and erosion testing procedure : final report.
DOT National Transportation Integrated Search
1977-01-01
The specific aims of this study were (1) to supply documentation of statistical repeatability and precision of the rainfall-simulator and to document the statistical repeatabiity of the soil-loss data when using the previously recommended tentative l...
Studies in the use of cloud type statistics in mission simulation
NASA Technical Reports Server (NTRS)
Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.
1974-01-01
A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.
Statistical variances of diffusional properties from ab initio molecular dynamics simulations
NASA Astrophysics Data System (ADS)
He, Xingfeng; Zhu, Yizhou; Epstein, Alexander; Mo, Yifei
2018-12-01
Ab initio molecular dynamics (AIMD) simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials. However, AIMD simulations are often limited to a few hundred atoms and a short, sub-nanosecond physical timescale, which leads to models that include only a limited number of diffusion events. As a result, the diffusional properties obtained from AIMD simulations are often plagued by poor statistics. In this paper, we re-examine the process to estimate diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors. In addition, we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion events observed during the AIMD simulation. Since an adequate number of diffusion events must be sampled, AIMD simulations should be sufficiently long and can only be performed on materials with reasonably fast diffusion. We chart the ranges of materials and physical conditions that can be accessible by AIMD simulations in studying diffusional properties. Our work provides the foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing this powerful technique.
ERIC Educational Resources Information Center
Neumann, David L.; Neumann, Michelle M.; Hood, Michelle
2011-01-01
The discipline of statistics seems well suited to the integration of technology in a lecture as a means to enhance student learning and engagement. Technology can be used to simulate statistical concepts, create interactive learning exercises, and illustrate real world applications of statistics. The present study aimed to better understand the…
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
Teaching Classical Statistical Mechanics: A Simulation Approach.
ERIC Educational Resources Information Center
Sauer, G.
1981-01-01
Describes a one-dimensional model for an ideal gas to study development of disordered motion in Newtonian mechanics. A Monte Carlo procedure for simulation of the statistical ensemble of an ideal gas with fixed total energy is developed. Compares both approaches for a pseudoexperimental foundation of statistical mechanics. (Author/JN)
TinkerPlots™ Model Construction Approaches for Comparing Two Groups: Student Perspectives
ERIC Educational Resources Information Center
Noll, Jennifer; Kirin, Dana
2017-01-01
Teaching introductory statistics using curricula focused on modeling and simulation is becoming increasingly common in introductory statistics courses and touted as a more beneficial approach for fostering students' statistical thinking. Yet, surprisingly little research has been conducted to study the impact of modeling and simulation curricula…
Testing prediction methods: Earthquake clustering versus the Poisson model
Michael, A.J.
1997-01-01
Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.
Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois
2015-03-01
Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.
Acceleration techniques for dependability simulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Barnette, James David
1995-01-01
As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.
NASA Astrophysics Data System (ADS)
Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.
2007-09-01
Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
The Statistical Power of the Cluster Randomized Block Design with Matched Pairs--A Simulation Study
ERIC Educational Resources Information Center
Dong, Nianbo; Lipsey, Mark
2010-01-01
This study uses simulation techniques to examine the statistical power of the group- randomized design and the matched-pair (MP) randomized block design under various parameter combinations. Both nearest neighbor matching and random matching are used for the MP design. The power of each design for any parameter combination was calculated from…
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-06-01
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.
John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping
2018-06-01
Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.
A study of the feasibility of statistical analysis of airport performance simulation
NASA Technical Reports Server (NTRS)
Myers, R. H.
1982-01-01
The feasibility of conducting a statistical analysis of simulation experiments to study airport capacity is investigated. First, the form of the distribution of airport capacity is studied. Since the distribution is non-Gaussian, it is important to determine the effect of this distribution on standard analysis of variance techniques and power calculations. Next, power computations are made in order to determine how economic simulation experiments would be if they are designed to detect capacity changes from condition to condition. Many of the conclusions drawn are results of Monte-Carlo techniques.
Vanniyasingam, Thuva; Daly, Caitlin; Jin, Xuejing; Zhang, Yuan; Foster, Gary; Cunningham, Charles; Thabane, Lehana
2018-06-01
This study reviews simulation studies of discrete choice experiments to determine (i) how survey design features affect statistical efficiency, (ii) and to appraise their reporting quality. Statistical efficiency was measured using relative design (D-) efficiency, D-optimality, or D-error. For this systematic survey, we searched Journal Storage (JSTOR), Since Direct, PubMed, and OVID which included a search within EMBASE. Searches were conducted up to year 2016 for simulation studies investigating the impact of DCE design features on statistical efficiency. Studies were screened and data were extracted independently and in duplicate. Results for each included study were summarized by design characteristic. Previously developed criteria for reporting quality of simulation studies were also adapted and applied to each included study. Of 371 potentially relevant studies, 9 were found to be eligible, with several varying in study objectives. Statistical efficiency improved when increasing the number of choice tasks or alternatives; decreasing the number of attributes, attribute levels; using an unrestricted continuous "manipulator" attribute; using model-based approaches with covariates incorporating response behaviour; using sampling approaches that incorporate previous knowledge of response behaviour; incorporating heterogeneity in a model-based design; correctly specifying Bayesian priors; minimizing parameter prior variances; and using an appropriate method to create the DCE design for the research question. The simulation studies performed well in terms of reporting quality. Improvement is needed in regards to clearly specifying study objectives, number of failures, random number generators, starting seeds, and the software used. These results identify the best approaches to structure a DCE. An investigator can manipulate design characteristics to help reduce response burden and increase statistical efficiency. Since studies varied in their objectives, conclusions were made on several design characteristics, however, the validity of each conclusion was limited. Further research should be conducted to explore all conclusions in various design settings and scenarios. Additional reviews to explore other statistical efficiency outcomes and databases can also be performed to enhance the conclusions identified from this review.
Statistical modeling of software reliability
NASA Technical Reports Server (NTRS)
Miller, Douglas R.
1992-01-01
This working paper discusses the statistical simulation part of a controlled software development experiment being conducted under the direction of the System Validation Methods Branch, Information Systems Division, NASA Langley Research Center. The experiment uses guidance and control software (GCS) aboard a fictitious planetary landing spacecraft: real-time control software operating on a transient mission. Software execution is simulated to study the statistical aspects of reliability and other failure characteristics of the software during development, testing, and random usage. Quantification of software reliability is a major goal. Various reliability concepts are discussed. Experiments are described for performing simulations and collecting appropriate simulated software performance and failure data. This data is then used to make statistical inferences about the quality of the software development and verification processes as well as inferences about the reliability of software versions and reliability growth under random testing and debugging.
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
ERIC Educational Resources Information Center
Huang, Ching-Hsu
2014-01-01
The class quasi-experiment was conducted to determine whether using computer simulation teaching strategy enhanced student understanding of statistics concepts for students enrolled in an introductory course. One hundred and ninety-three sophomores in hospitality management department were invited as participants in this two-year longitudinal…
Kim, Jiyu; Jung, Inkyung
2017-01-01
Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters. PMID:28129368
A log-Weibull spatial scan statistic for time to event data.
Usman, Iram; Rosychuk, Rhonda J
2018-06-13
Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.
Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects
NASA Technical Reports Server (NTRS)
Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian;
2015-01-01
Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.
Patel, Ravi G.; Desjardins, Olivier; Kong, Bo; ...
2017-09-01
Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ravi G.; Desjardins, Olivier; Kong, Bo
Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less
Statistical Power in Meta-Analysis
ERIC Educational Resources Information Center
Liu, Jin
2015-01-01
Statistical power is important in a meta-analysis study, although few studies have examined the performance of simulated power in meta-analysis. The purpose of this study is to inform researchers about statistical power estimation on two sample mean difference test under different situations: (1) the discrepancy between the analytical power and…
NASA Astrophysics Data System (ADS)
Jalali, Mohammad; Ramazi, Hamidreza
2018-06-01
Earthquake catalogues are the main source of statistical seismology for the long term studies of earthquake occurrence. Therefore, studying the spatiotemporal problems is important to reduce the related uncertainties in statistical seismology studies. A statistical tool, time normalization method, has been determined to revise time-frequency relationship in one of the most active regions of Asia, Eastern Iran and West of Afghanistan, (a and b were calculated around 8.84 and 1.99 in the exponential scale, not logarithmic scale). Geostatistical simulation method has been further utilized to reduce the uncertainties in the spatial domain. A geostatistical simulation produces a representative, synthetic catalogue with 5361 events to reduce spatial uncertainties. The synthetic database is classified using a Geographical Information System, GIS, based on simulated magnitudes to reveal the underlying seismicity patterns. Although some regions with highly seismicity correspond to known faults, significantly, as far as seismic patterns are concerned, the new method highlights possible locations of interest that have not been previously identified. It also reveals some previously unrecognized lineation and clusters in likely future strain release.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
POLARIMETRIC STUDIES OF MAGNETIC TURBULENCE WITH AN INTERFEROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyeseung; Cho, Jungyeon; Lazarian, A.
2016-11-01
We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to the wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian and Pogosyan. We conclude that the spectrum of synchrotron polarization and its derivative can be very informative tools to obtain detailed information about the statistical properties ofmore » MHD turbulence from radio observations of diffuse synchrotron polarization. They are especially useful for recovering the statistics of a turbulent magnetic field as well as the turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telescope beam size, and demonstrate how we recover statistics of underlying MHD turbulence.« less
Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C
2015-01-01
Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175
Simulating Data for Clinical Research: A Tutorial
ERIC Educational Resources Information Center
Beaujean, A. Alexander
2018-01-01
Simulation studies use computer-generated data to examine questions of interest that have traditionally been used to study properties of statistics and estimating algorithms. With the recent advent of powerful processing capabilities in affordable computers along with readily usable software, it is now feasible to use a simulation study to aid in…
The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies
Cook, Alex R.; Teo, Shanice W. L.
2011-01-01
Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form. PMID:22132184
The communicability of graphical alternatives to tabular displays of statistical simulation studies.
Cook, Alex R; Teo, Shanice W L
2011-01-01
Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form.
Bolin, Jocelyn Holden; Finch, W Holmes
2014-01-01
Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.
Cluster mass inference via random field theory.
Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D
2009-01-01
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.
Weiler, Dustin T; Gibson, Andrea L; Saleem, Jason J
2018-04-01
Previous studies have evaluated the effectiveness of high fidelity patient simulators (HFPS) on nursing training; however, a gap exists on the effects of role assignment on critical thinking, self-efficacy, and situation awareness skills in team-based simulation scenarios. This study aims to determine if role assignment and the involvement level related to the roles yields significant effects and differences in critical thinking, situation awareness and self-efficacy scores in team-based high-fidelity simulation scenarios. A single factorial design with five levels and random assignment was utilized. A public university-sponsored simulation center in the United States of America. A convenience sample of 69 junior-level baccalaureate nursing students was recruited for participation. Participants were randomly assigned one of five possible roles and completed pre-simulation critical thinking and self-efficacy assessments prior to the simulation beginning. Playing within their assigned roles, participants experienced post-partum hemorrhaging scenario using an HFPS. After completing the simulation, participants completed a situation awareness assessment and a post-simulation critical thinking and self-efficacy assessment. Role assignment was found to have a statistically significant effect on critical thinking skills and a statistically significant difference in various areas of self-efficacy was also noted. However, no statistical significance in situation awareness abilities was found. Results support the notion that certain roles required the participant to be more involved with the simulation scenario, which may have yielded higher critical thinking and self-efficacy scores than roles that required a lesser level of involvement. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.
2017-03-01
Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.
NASA Astrophysics Data System (ADS)
WANG, P. T.
2015-12-01
Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.
Got power? A systematic review of sample size adequacy in health professions education research.
Cook, David A; Hatala, Rose
2015-03-01
Many education research studies employ small samples, which in turn lowers statistical power. We re-analyzed the results of a meta-analysis of simulation-based education to determine study power across a range of effect sizes, and the smallest effect that could be plausibly excluded. We systematically searched multiple databases through May 2011, and included all studies evaluating simulation-based education for health professionals in comparison with no intervention or another simulation intervention. Reviewers working in duplicate abstracted information to calculate standardized mean differences (SMD's). We included 897 original research studies. Among the 627 no-intervention-comparison studies the median sample size was 25. Only two studies (0.3%) had ≥80% power to detect a small difference (SMD > 0.2 standard deviations) and 136 (22%) had power to detect a large difference (SMD > 0.8). 110 no-intervention-comparison studies failed to find a statistically significant difference, but none excluded a small difference and only 47 (43%) excluded a large difference. Among 297 studies comparing alternate simulation approaches the median sample size was 30. Only one study (0.3%) had ≥80% power to detect a small difference and 79 (27%) had power to detect a large difference. Of the 128 studies that did not detect a statistically significant effect, 4 (3%) excluded a small difference and 91 (71%) excluded a large difference. In conclusion, most education research studies are powered only to detect effects of large magnitude. For most studies that do not reach statistical significance, the possibility of large and important differences still exists.
Power estimation using simulations for air pollution time-series studies
2012-01-01
Background Estimation of power to assess associations of interest can be challenging for time-series studies of the acute health effects of air pollution because there are two dimensions of sample size (time-series length and daily outcome counts), and because these studies often use generalized linear models to control for complex patterns of covariation between pollutants and time trends, meteorology and possibly other pollutants. In general, statistical software packages for power estimation rely on simplifying assumptions that may not adequately capture this complexity. Here we examine the impact of various factors affecting power using simulations, with comparison of power estimates obtained from simulations with those obtained using statistical software. Methods Power was estimated for various analyses within a time-series study of air pollution and emergency department visits using simulations for specified scenarios. Mean daily emergency department visit counts, model parameter value estimates and daily values for air pollution and meteorological variables from actual data (8/1/98 to 7/31/99 in Atlanta) were used to generate simulated daily outcome counts with specified temporal associations with air pollutants and randomly generated error based on a Poisson distribution. Power was estimated by conducting analyses of the association between simulated daily outcome counts and air pollution in 2000 data sets for each scenario. Power estimates from simulations and statistical software (G*Power and PASS) were compared. Results In the simulation results, increasing time-series length and average daily outcome counts both increased power to a similar extent. Our results also illustrate the low power that can result from using outcomes with low daily counts or short time series, and the reduction in power that can accompany use of multipollutant models. Power estimates obtained using standard statistical software were very similar to those from the simulations when properly implemented; implementation, however, was not straightforward. Conclusions These analyses demonstrate the similar impact on power of increasing time-series length versus increasing daily outcome counts, which has not previously been reported. Implementation of power software for these studies is discussed and guidance is provided. PMID:22995599
Power estimation using simulations for air pollution time-series studies.
Winquist, Andrea; Klein, Mitchel; Tolbert, Paige; Sarnat, Stefanie Ebelt
2012-09-20
Estimation of power to assess associations of interest can be challenging for time-series studies of the acute health effects of air pollution because there are two dimensions of sample size (time-series length and daily outcome counts), and because these studies often use generalized linear models to control for complex patterns of covariation between pollutants and time trends, meteorology and possibly other pollutants. In general, statistical software packages for power estimation rely on simplifying assumptions that may not adequately capture this complexity. Here we examine the impact of various factors affecting power using simulations, with comparison of power estimates obtained from simulations with those obtained using statistical software. Power was estimated for various analyses within a time-series study of air pollution and emergency department visits using simulations for specified scenarios. Mean daily emergency department visit counts, model parameter value estimates and daily values for air pollution and meteorological variables from actual data (8/1/98 to 7/31/99 in Atlanta) were used to generate simulated daily outcome counts with specified temporal associations with air pollutants and randomly generated error based on a Poisson distribution. Power was estimated by conducting analyses of the association between simulated daily outcome counts and air pollution in 2000 data sets for each scenario. Power estimates from simulations and statistical software (G*Power and PASS) were compared. In the simulation results, increasing time-series length and average daily outcome counts both increased power to a similar extent. Our results also illustrate the low power that can result from using outcomes with low daily counts or short time series, and the reduction in power that can accompany use of multipollutant models. Power estimates obtained using standard statistical software were very similar to those from the simulations when properly implemented; implementation, however, was not straightforward. These analyses demonstrate the similar impact on power of increasing time-series length versus increasing daily outcome counts, which has not previously been reported. Implementation of power software for these studies is discussed and guidance is provided.
A method for obtaining a statistically stationary turbulent free shear flow
NASA Technical Reports Server (NTRS)
Timson, Stephen F.; Lele, S. K.; Moser, R. D.
1994-01-01
The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Clarke, Lauren; Gillanders, Elizabeth; Feuer, Eric J.
2013-01-01
Summary: Many simulation methods and programs have been developed to simulate genetic data of the human genome. These data have been widely used, for example, to predict properties of populations retrospectively or prospectively according to mathematically intractable genetic models, and to assist the validation, statistical inference and power analysis of a variety of statistical models. However, owing to the differences in type of genetic data of interest, simulation methods, evolutionary features, input and output formats, terminologies and assumptions for different applications, choosing the right tool for a particular study can be a resource-intensive process that usually involves searching, downloading and testing many different simulation programs. Genetic Simulation Resources (GSR) is a website provided by the National Cancer Institute (NCI) that aims to help researchers compare and choose the appropriate simulation tools for their studies. This website allows authors of simulation software to register their applications and describe them with well-defined attributes, thus allowing site users to search and compare simulators according to specified features. Availability: http://popmodels.cancercontrol.cancer.gov/gsr. Contact: gsr@mail.nih.gov PMID:23435068
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-04-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-01-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided. PMID:24834325
RESTSIM: A Simulation Model That Highlights Decision Making under Conditions of Uncertainty.
ERIC Educational Resources Information Center
Zinkhan, George M.; Taylor, James R.
1983-01-01
Describes RESTSIM, an interactive computer simulation program for graduate and upper-level undergraduate management, marketing, and retailing courses, which introduces naive users to simulation as a decision support technique, and provides a vehicle for studying various statistical procedures for evaluating simulation output. (MBR)
ERIC Educational Resources Information Center
Neumann, David L.
2010-01-01
Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…
A Role for Chunk Formation in Statistical Learning of Second Language Syntax
ERIC Educational Resources Information Center
Hamrick, Phillip
2014-01-01
Humans are remarkably sensitive to the statistical structure of language. However, different mechanisms have been proposed to account for such statistical sensitivities. The present study compared adult learning of syntax and the ability of two models of statistical learning to simulate human performance: Simple Recurrent Networks, which learn by…
Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...
2015-06-12
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Effectiveness of an Online Simulation for Teacher Education
ERIC Educational Resources Information Center
Badiee, Farnaz; Kaufman, David
2014-01-01
This study evaluated the effectiveness of the "simSchool" (v.1) simulation as a tool for preparing student teachers for actual classroom teaching. Twenty-two student teachers used the simulation for a practice session and two test sessions; data included objective performance statistics generated by the simulation program, self-rated…
ERIC Educational Resources Information Center
Zheng, Yinggan; Gierl, Mark J.; Cui, Ying
2010-01-01
This study combined the kernel smoothing procedure and a nonparametric differential item functioning statistic--Cochran's Z--to statistically test the difference between the kernel-smoothed item response functions for reference and focal groups. Simulation studies were conducted to investigate the Type I error and power of the proposed…
Reproducibility-optimized test statistic for ranking genes in microarray studies.
Elo, Laura L; Filén, Sanna; Lahesmaa, Riitta; Aittokallio, Tero
2008-01-01
A principal goal of microarray studies is to identify the genes showing differential expression under distinct conditions. In such studies, the selection of an optimal test statistic is a crucial challenge, which depends on the type and amount of data under analysis. While previous studies on simulated or spike-in datasets do not provide practical guidance on how to choose the best method for a given real dataset, we introduce an enhanced reproducibility-optimization procedure, which enables the selection of a suitable gene- anking statistic directly from the data. In comparison with existing ranking methods, the reproducibilityoptimized statistic shows good performance consistently under various simulated conditions and on Affymetrix spike-in dataset. Further, the feasibility of the novel statistic is confirmed in a practical research setting using data from an in-house cDNA microarray study of asthma-related gene expression changes. These results suggest that the procedure facilitates the selection of an appropriate test statistic for a given dataset without relying on a priori assumptions, which may bias the findings and their interpretation. Moreover, the general reproducibilityoptimization procedure is not limited to detecting differential expression only but could be extended to a wide range of other applications as well.
Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows
NASA Astrophysics Data System (ADS)
Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.
2017-11-01
In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.
Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, Matthew; Horowitz, Charles; da Silva Schneider, Andre; Berry, Donald
2014-09-01
We simulate the decompression of cold dense nuclear matter, near the nuclear saturation density, in order to study the role of nuclear pasta in r-process nucleosynthesis in neutron star mergers. Our simulations are performed using a classical molecular dynamics model with 51 200 and 409 600 nucleons, and are run on GPUs. We expand our simulation region to decompress systems from initial densities of 0.080 fm-3 down to 0.00125 fm-3. We study proton fractions of YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at T = 0.5, 0.75, and 1 MeV. We calculate the composition of the resulting systems using a cluster algorithm. This composition is in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than YP = 0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
NASA Technical Reports Server (NTRS)
Shipman, D. L.
1972-01-01
The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.
Derivation and Applicability of Asymptotic Results for Multiple Subtests Person-Fit Statistics
Albers, Casper J.; Meijer, Rob R.; Tendeiro, Jorge N.
2016-01-01
In high-stakes testing, it is important to check the validity of individual test scores. Although a test may, in general, result in valid test scores for most test takers, for some test takers, test scores may not provide a good description of a test taker’s proficiency level. Person-fit statistics have been proposed to check the validity of individual test scores. In this study, the theoretical asymptotic sampling distribution of two person-fit statistics that can be used for tests that consist of multiple subtests is first discussed. Second, simulation study was conducted to investigate the applicability of this asymptotic theory for tests of finite length, in which the correlation between subtests and number of items in the subtests was varied. The authors showed that these distributions provide reasonable approximations, even for tests consisting of subtests of only 10 items each. These results have practical value because researchers do not have to rely on extensive simulation studies to simulate sampling distributions. PMID:29881053
2016-12-01
KS and AD Statistical Power via Monte Carlo Simulation Statistical power is the probability of correctly rejecting the null hypothesis when the...Select a caveat DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Determining the Statistical Power...real-world data to test the accuracy of the simulation. Statistical comparison of these metrics can be necessary when making such a determination
Egbewale, Bolaji E; Lewis, Martyn; Sim, Julius
2014-04-09
Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. 126 hypothetical trial scenarios were evaluated (126,000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power.
2014-01-01
Background Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. Methods 126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Results Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Conclusions Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power. PMID:24712304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Dai, Zhenxue; Gong, Huili
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Development of the AFRL Aircrew Perfomance and Protection Data Bank
2007-12-01
Growth model and statistical model of hypobaric chamber simulations. It offers a quick and readily accessible online DCS risk assessment tool for...are used for the DCS prediction instead of the original model. ADRAC is based on more than 20 years of hypobaric chamber studies using human...prediction based on the combined Bubble Growth model and statistical model of hypobaric chamber simulations was integrated into the Data Bank. It
Pilot Study: Impact of Computer Simulation on Students' Economic Policy Performance. Pilot Study.
ERIC Educational Resources Information Center
Domazlicky, Bruce; France, Judith
Fiscal and monetary policies taught in macroeconomic principles courses are concepts that might require both lecture and simulation methods. The simulation models, which apply the principles gleened from comparative statistics to a dynamic world, may give students an appreciation for the problems facing policy makers. This paper is a report of a…
A Monte Carlo study of Weibull reliability analysis for space shuttle main engine components
NASA Technical Reports Server (NTRS)
Abernethy, K.
1986-01-01
The incorporation of a number of additional capabilities into an existing Weibull analysis computer program and the results of Monte Carlo computer simulation study to evaluate the usefulness of the Weibull methods using samples with a very small number of failures and extensive censoring are discussed. Since the censoring mechanism inherent in the Space Shuttle Main Engine (SSME) data is hard to analyze, it was decided to use a random censoring model, generating censoring times from a uniform probability distribution. Some of the statistical techniques and computer programs that are used in the SSME Weibull analysis are described. The methods documented in were supplemented by adding computer calculations of approximate (using iteractive methods) confidence intervals for several parameters of interest. These calculations are based on a likelihood ratio statistic which is asymptotically a chisquared statistic with one degree of freedom. The assumptions built into the computer simulations are described. The simulation program and the techniques used in it are described there also. Simulation results are tabulated for various combinations of Weibull shape parameters and the numbers of failures in the samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromov, K. Yu.; Vaks, V. G., E-mail: vaks@mbslab.kiae.ru; Zhuravlev, I. A.
2013-02-15
The previously developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using an improved version of the previously suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependences of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM usually describes the precipitation kinetics in good agreement with the KMCM, and using the SSM in conjunction withmore » the KMCM allows extending the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of simulation results with experiments for some multicomponent Fe-Cu-based alloys allows making certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.« less
Leming, Matthew; Steiner, Rachel; Styner, Martin
2016-02-27
Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.
Schappals, Michael; Mecklenfeld, Andreas; Kröger, Leif; Botan, Vitalie; Köster, Andreas; Stephan, Simon; García, Edder J; Rutkai, Gabor; Raabe, Gabriele; Klein, Peter; Leonhard, Kai; Glass, Colin W; Lenhard, Johannes; Vrabec, Jadran; Hasse, Hans
2017-09-12
Thermodynamic properties are often modeled by classical force fields which describe the interactions on the atomistic scale. Molecular simulations are used for retrieving thermodynamic data from such models, and many simulation techniques and computer codes are available for that purpose. In the present round robin study, the following fundamental question is addressed: Will different user groups working with different simulation codes obtain coinciding results within the statistical uncertainty of their data? A set of 24 simple simulation tasks is defined and solved by five user groups working with eight molecular simulation codes: DL_POLY, GROMACS, IMC, LAMMPS, ms2, NAMD, Tinker, and TOWHEE. Each task consists of the definition of (1) a pure fluid that is described by a force field and (2) the conditions under which that property is to be determined. The fluids are four simple alkanes: ethane, propane, n-butane, and iso-butane. All force fields consider internal degrees of freedom: OPLS, TraPPE, and a modified OPLS version with bond stretching vibrations. Density and potential energy are determined as a function of temperature and pressure on a grid which is specified such that all states are liquid. The user groups worked independently and reported their results to a central instance. The full set of results was disclosed to all user groups only at the end of the study. During the study, the central instance gave only qualitative feedback. The results reveal the challenges of carrying out molecular simulations. Several iterations were needed to eliminate gross errors. For most simulation tasks, the remaining deviations between the results of the different groups are acceptable from a practical standpoint, but they are often outside of the statistical errors of the individual simulation data. However, there are also cases where the deviations are unacceptable. This study highlights similarities between computer experiments and laboratory experiments, which are both subject not only to statistical error but also to systematic error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A., E-mail: kaurov@uchicago.edu
The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less
NASA Astrophysics Data System (ADS)
Saputra, K. V. I.; Cahyadi, L.; Sembiring, U. A.
2018-01-01
Start in this paper, we assess our traditional elementary statistics education and also we introduce elementary statistics with simulation-based inference. To assess our statistical class, we adapt the well-known CAOS (Comprehensive Assessment of Outcomes in Statistics) test that serves as an external measure to assess the student’s basic statistical literacy. This test generally represents as an accepted measure of statistical literacy. We also introduce a new teaching method on elementary statistics class. Different from the traditional elementary statistics course, we will introduce a simulation-based inference method to conduct hypothesis testing. From the literature, it has shown that this new teaching method works very well in increasing student’s understanding of statistics.
Magnetic Reconnection during Turbulence: Statistics of X-Points and Heating
NASA Astrophysics Data System (ADS)
Shay, M. A.; Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Servidio, S.; Wan, M.
2017-12-01
Magnetic reconnection is a ubiquitous plasma phenomenon that has been observed in turbulent plasma systems. It is an important part of the turbulent dynamics and heating of space, laboratory and astrophysical plasmas. Recent simulation and observational studies have detailed how magnetic reconnection heats plasma and this work has developed to the point where it can be applied to larger and more complex plasma systems. In this context, we examine the statistics of magnetic reconnection in fully kinetic PIC simulations to quantify the role of magnetic reconnection on energy dissipation and plasma heating. Most notably, we study the time evolution of these x-line statistics in decaying turbulence. First, we examine the distribution of reconnection rates at the x-points found in the simulation and find that their distribution is broader than the MHD counterpart, and the average value is approximately 0.1. Second, we study the time evolution of the x-points to determine when reconnection is most active in the turbulence. Finally, using our findings on these statistics, reconnection heating predictions are applied to the regions surrounding the identified x-points and this is used to study the role of magnetic reconnection in turbulent heating of plasma. The ratio of ion to electron heating rates is found to be consistent with magnetic reconnection predictions.
Franc, Jeffrey Michael; Ingrassia, Pier Luigi; Verde, Manuela; Colombo, Davide; Della Corte, Francesco
2015-02-01
Surge capacity, or the ability to manage an extraordinary volume of patients, is fundamental for hospital management of mass-casualty incidents. However, quantification of surge capacity is difficult and no universal standard for its measurement has emerged, nor has a standardized statistical method been advocated. As mass-casualty incidents are rare, simulation may represent a viable alternative to measure surge capacity. Hypothesis/Problem The objective of the current study was to develop a statistical method for the quantification of surge capacity using a combination of computer simulation and simple process-control statistical tools. Length-of-stay (LOS) and patient volume (PV) were used as metrics. The use of this method was then demonstrated on a subsequent computer simulation of an emergency department (ED) response to a mass-casualty incident. In the derivation phase, 357 participants in five countries performed 62 computer simulations of an ED response to a mass-casualty incident. Benchmarks for ED response were derived from these simulations, including LOS and PV metrics for triage, bed assignment, physician assessment, and disposition. In the application phase, 13 students of the European Master in Disaster Medicine (EMDM) program completed the same simulation scenario, and the results were compared to the standards obtained in the derivation phase. Patient-volume metrics included number of patients to be triaged, assigned to rooms, assessed by a physician, and disposed. Length-of-stay metrics included median time to triage, room assignment, physician assessment, and disposition. Simple graphical methods were used to compare the application phase group to the derived benchmarks using process-control statistical tools. The group in the application phase failed to meet the indicated standard for LOS from admission to disposition decision. This study demonstrates how simulation software can be used to derive values for objective benchmarks of ED surge capacity using PV and LOS metrics. These objective metrics can then be applied to other simulation groups using simple graphical process-control tools to provide a numeric measure of surge capacity. Repeated use in simulations of actual EDs may represent a potential means of objectively quantifying disaster management surge capacity. It is hoped that the described statistical method, which is simple and reusable, will be useful for investigators in this field to apply to their own research.
Use of simulation-based learning in undergraduate nurse education: An umbrella systematic review.
Cant, Robyn P; Cooper, Simon J
2017-02-01
To conduct a systematic review to appraise and review evidence on the impact of simulation-based education for undergraduate/pre-licensure nursing students, using existing reviews of literature. An umbrella review (review of reviews). Cumulative Index of Nursing and Allied Health Literature (CINAHLPlus), PubMed, and Google Scholar. Reviews of literature conducted between 2010 and 2015 regarding simulation-based education for pre-licensure nursing students. The Joanna Briggs Institute methodology for conduct of an umbrella review was used to inform the review process. Twenty-five systematic reviews of literature were included, of which 14 were recent (2013-2015). Most described the level of evidence of component studies as a mix of experimental and quasi-experimental designs. The reviews measured around 14 different main outcome variables, thus limiting the number of primary studies that each individual review could pool to appraise. Many reviews agreed on the key learning outcome of knowledge acquisition, although no overall quantitative effect was derived. Three of four high-quality reviews found that simulation supported psychomotor development; a fourth found too few high quality studies to make a statistical comparison. Simulation statistically improved self-efficacy in pretest-posttest studies, and in experimental designs self-efficacy was superior to that of other teaching methods; lower level research designs limiting further comparison. The reviews commonly reported strong student satisfaction with simulation education and some reported improved confidence and/or critical thinking. This umbrella review took a global view of 25 reviews of simulation research in nursing education, comprising over 700 primary studies. To discern overall outcomes across reviews, statistical comparison of quantitative results (effect size) must be the key comparator. Simulation-based education contributes to students' learning in a number of ways when integrated into pre-licensure nursing curricula. Overall, use of a constellation of instruments and a lack of high quality study designs mean that there are still some gaps in evidence of effects that need to be addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
Reference aquaplanet climate in the Community Atmosphere Model, Version 5
Medeiros, Brian; Williamson, David L.; Olson, Jerry G.
2016-03-18
In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Costing Educational Wastage: A Pilot Simulation Study. Current Surveys and Research in Statistics.
ERIC Educational Resources Information Center
Berstecher, D.
This pilot simulation study examines the important methodological problems involved in costing educational wastage, focusing specifically on the cost implications of educational wastage in primary education. Purpose of the study is to provide a clearer picture of the underlying rationale and interrelated consequences of reducing educational…
Lubbers, Jaclynn; Rossman, Carol
2016-04-01
Simulation in nursing education is a means to transform student learning and respond to decreasing clinical site availability. This study proposed an innovative simulation experience where students completed community based clinical hours with simulation scenarios. The purpose of this study was to determine the effects of a pediatric community simulation experience on the self-confidence of nursing students. Bandura's (1977) Self-Efficacy Theory and Jeffries' (2005) Nursing Education Simulation Framework were used. This quasi-experimental study collected data using a pre-test and posttest tool. The setting was a private, liberal arts college in the Midwestern United States. Fifty-four baccalaureate nursing students in a convenience sample were the population of interest. The sample was predominantly female with very little exposure to simulation prior to this study. The participants completed a 16-item self-confidence instrument developed for this study which measured students' self-confidence in pediatric community nursing knowledge, skill, communication, and documentation. The overall study showed statistically significant results (t=20.70, p<0.001) and statistically significant results within each of the eight 4-item sub-scales (p<0.001). Students also reported a high level of satisfaction with their simulation experience. The data demonstrate that students who took the Pediatric Community Based Simulation course reported higher self-confidence after the course than before the course. Higher self-confidence scores for simulation participants have been shown to increase quality of care for patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D
2007-02-01
Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.
Ng'andu, N H
1997-03-30
In the analysis of survival data using the Cox proportional hazard (PH) model, it is important to verify that the explanatory variables analysed satisfy the proportional hazard assumption of the model. This paper presents results of a simulation study that compares five test statistics to check the proportional hazard assumption of Cox's model. The test statistics were evaluated under proportional hazards and the following types of departures from the proportional hazard assumption: increasing relative hazards; decreasing relative hazards; crossing hazards; diverging hazards, and non-monotonic hazards. The test statistics compared include those based on partitioning of failure time and those that do not require partitioning of failure time. The simulation results demonstrate that the time-dependent covariate test, the weighted residuals score test and the linear correlation test have equally good power for detection of non-proportionality in the varieties of non-proportional hazards studied. Using illustrative data from the literature, these test statistics performed similarly.
Statistics of Magnetic Reconnection X-Lines in Kinetic Turbulence
NASA Astrophysics Data System (ADS)
Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Shay, M. A.; Wan, M.; Servidio, S.; Wu, P.
2016-12-01
In this work we examine the statistics of magnetic reconnection (x-lines) and their associated reconnection rates in intermittent current sheets generated in turbulent plasmas. Although such statistics have been studied previously for fluid simulations (e.g. [1]), they have not yet been generalized to fully kinetic particle-in-cell (PIC) simulations. A significant problem with PIC simulations, however, is electrostatic fluctuations generated due to numerical particle counting statistics. We find that analyzing gradients of the magnetic vector potential from the raw PIC field data identifies numerous artificial (or non-physical) x-points. Using small Orszag-Tang vortex PIC simulations, we analyze x-line identification and show that these artificial x-lines can be removed using sub-Debye length filtering of the data. We examine how turbulent properties such as the magnetic spectrum and scale dependent kurtosis are affected by particle noise and sub-Debye length filtering. We subsequently apply these analysis methods to a large scale kinetic PIC turbulent simulation. Consistent with previous fluid models, we find a range of normalized reconnection rates as large as ½ but with the bulk of the rates being approximately less than to 0.1. [1] Servidio, S., W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk (2009), Magnetic reconnection and two-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 102, 115003.
Quality control analysis : part IV : field simulation of asphaltic concrete specifications.
DOT National Transportation Integrated Search
1969-02-01
The report present some of the major findings, from a simulated study of statistical specifications, on three asphaltic concrete projects representing a total of approximately 30, 000 tons of hot mix. The major emphasis of the study has been on the a...
Simulation Study of Evacuation Control Center Operations Analysis
2011-06-01
28 4.3 Baseline Manning (Runs 1, 2, & 3) . . . . . . . . . . . . 30 4.3.1 Baseline Statistics Interpretation...46 Appendix B. Key Statistic Matrix: Runs 1-12 . . . . . . . . . . . . . 48 Appendix C. Blue Dart...Completion Time . . . 33 11. Paired T result - Run 5 v. Run 6: ECC Completion Time . . . 35 12. Key Statistics : Run 3 vs. Run 9
Effectiveness of Simulation in a Hybrid and Online Networking Course.
ERIC Educational Resources Information Center
Cameron, Brian H.
2003-01-01
Reports on a study that compares the performance of students enrolled in two sections of a Web-based computer networking course: one utilizing a simulation package and the second utilizing a static, graphical software package. Analysis shows statistically significant improvements in performance in the simulation group compared to the…
USDA-ARS?s Scientific Manuscript database
Experimental and simulation uncertainties have not been included in many of the statistics used in assessing agricultural model performance. The objectives of this study were to develop an F-test that can be used to evaluate model performance considering experimental and simulation uncertainties, an...
NASA Astrophysics Data System (ADS)
Sundberg, R.; Moberg, A.; Hind, A.
2012-08-01
A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.
ERIC Educational Resources Information Center
Romeu, Jorge Luis
2008-01-01
This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…
Results of a joint NOAA/NASA sounder simulation study
NASA Technical Reports Server (NTRS)
Phillips, N.; Susskind, Joel; Mcmillin, L.
1988-01-01
This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.
Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria
2008-01-01
This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.
Adams, K M; Brown, G G; Grant, I
1985-08-01
Analysis of Covariance (ANCOVA) is often used in neuropsychological studies to effect ex-post-facto adjustment of performance variables amongst groups of subjects mismatched on some relevant demographic variable. This paper reviews some of the statistical assumptions underlying this usage. In an attempt to illustrate the complexities of this statistical technique, three sham studies using actual patient data are presented. These staged simulations have varying relationships between group test performance differences and levels of covariate discrepancy. The results were robust and consistent in their nature, and were held to support the wisdom of previous cautions by statisticians concerning the employment of ANCOVA to justify comparisons between incomparable groups. ANCOVA should not be used in neuropsychological research to equate groups unequal on variables such as age and education or to exert statistical control whose objective is to eliminate consideration of the covariate as an explanation for results. Finally, the report advocates by example the use of simulation to further our understanding of neuropsychological variables.
A novel approach to simulate gene-environment interactions in complex diseases.
Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio
2010-01-05
Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
Selected-node stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Duso, Lorenzo; Zechner, Christoph
2018-04-01
Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.
Statistics for X-chromosome associations.
Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor
2018-06-13
In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.
Wehner, Michael F.; Bala, G.; Duffy, Phillip; ...
2010-01-01
We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less
NASA Technical Reports Server (NTRS)
Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz
1992-01-01
For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.
Performances on simulator and da Vinci robot on subjects with and without surgical background.
Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca
2017-08-17
To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p < .05). The quality of the suturing based on the unedited videos of the test run was similar for the intermediate (7 (4, 10)) and expert group (6.5 (4.5, 10)), and poor for the untrained groups (5 (3.5, 9)), without statistically significant difference (p < .05). This study showed, for subjects new to laparoscopy and robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.
Jeffrey P. Prestemon
2009-01-01
Timber product markets are subject to large shocks deriving from natural disturbances and policy shifts. Statistical modeling of shocks is often done to assess their economic importance. In this article, I simulate the statistical power of univariate and bivariate methods of shock detection using time series intervention models. Simulations show that bivariate methods...
Physics-based statistical model and simulation method of RF propagation in urban environments
Pao, Hsueh-Yuan; Dvorak, Steven L.
2010-09-14
A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.
ERIC Educational Resources Information Center
Song, Yanjie; Kong, Siu-Cheung
2017-01-01
The study aims at investigating university students' acceptance of a statistics learning platform to support the learning of statistics in a blended learning context. Three kinds of digital resources, which are simulations, online videos, and online quizzes, were provided on the platform. Premised on the technology acceptance model, we adopted a…
ERIC Educational Resources Information Center
Mount, Robert E.; Schumacker, Randall E.
1998-01-01
A Monte Carlo study was conducted using simulated dichotomous data to determine the effects of guessing on Rasch item fit statistics and the Logit Residual Index. Results indicate that no significant differences were found between the mean Rasch item fit statistics for each distribution type as the probability of guessing the correct answer…
Advances in Testing the Statistical Significance of Mediation Effects
ERIC Educational Resources Information Center
Mallinckrodt, Brent; Abraham, W. Todd; Wei, Meifen; Russell, Daniel W.
2006-01-01
P. A. Frazier, A. P. Tix, and K. E. Barron (2004) highlighted a normal theory method popularized by R. M. Baron and D. A. Kenny (1986) for testing the statistical significance of indirect effects (i.e., mediator variables) in multiple regression contexts. However, simulation studies suggest that this method lacks statistical power relative to some…
Martin, Kevin D; Amendola, Annunziato; Phisitkul, Phinit
2016-01-01
Abstract Purpose Orthopedic education continues to move towards evidence-based curriculum in order to comply with new residency accreditation mandates. There are currently three high fidelity arthroscopic virtual reality (VR) simulators available, each with multiple instructional modules and simulated arthroscopic procedures. The aim of the current study is to assess face validity, defined as the degree to which a procedure appears effective in terms of its stated aims, of three available VR simulators. Methods Thirty subjects were recruited from a single orthopedic residency training program. Each subject completed one training session on each of the three leading VR arthroscopic simulators (ARTHRO mentor-Symbionix, ArthroS-Virtamed, and ArthroSim-Toltech). Each arthroscopic session involved simulator-specific modules. After training sessions, subjects completed a previously validated simulator questionnaire for face validity. Results The median external appearances for the ARTHRO Mentor (9.3, range 6.7-10.0; p=0.0036) and ArthroS (9.3, range 7.3-10.0; p=0.0003) were statistically higher than for Arthro- Sim (6.7, range 3.3-9.7). There was no statistical difference in intraarticular appearance, instrument appearance, or user friendliness between the three groups. Most simulators reached an appropriate level of proportion of sufficient scores for each categor y (≥70%), except for ARTHRO Mentor (intraarticular appearance-50%; instrument appearance- 61.1%) and ArthroSim (external appearance- 50%; user friendliness-68.8%). Conclusion These results demonstrate that ArthroS has the highest overall face validity of the three current arthroscopic VR simulators. However, only external appearance for ArthroS reached statistical significance when compared to the other simulators. Additionally, each simulator had satisfactory intraarticular quality. This study helps further the understanding of VR simulation and necessary features for accurate arthroscopic representation. This data also provides objective data for educators when selecting equipment that will best facilitate residency training. PMID:27528830
Paddock, Michael T; Bailitz, John; Horowitz, Russ; Khishfe, Basem; Cosby, Karen; Sergel, Michelle J
2015-03-01
Pre-hospital focused assessment with sonography in trauma (FAST) has been effectively used to improve patient care in multiple mass casualty events throughout the world. Although requisite FAST knowledge may now be learned remotely by disaster response team members, traditional live instructor and model hands-on FAST skills training remains logistically challenging. The objective of this pilot study was to compare the effectiveness of a novel portable ultrasound (US) simulator with traditional FAST skills training for a deployed mixed provider disaster response team. We randomized participants into one of three training groups stratified by provider role: Group A. Traditional Skills Training, Group B. US Simulator Skills Training, and Group C. Traditional Skills Training Plus US Simulator Skills Training. After skills training, we measured participants' FAST image acquisition and interpretation skills using a standardized direct observation tool (SDOT) with healthy models and review of FAST patient images. Pre- and post-course US and FAST knowledge were also assessed using a previously validated multiple-choice evaluation. We used the ANOVA procedure to determine the statistical significance of differences between the means of each group's skills scores. Paired sample t-tests were used to determine the statistical significance of pre- and post-course mean knowledge scores within groups. We enrolled 36 participants, 12 randomized to each training group. Randomization resulted in similar distribution of participants between training groups with respect to provider role, age, sex, and prior US training. For the FAST SDOT image acquisition and interpretation mean skills scores, there was no statistically significant difference between training groups. For US and FAST mean knowledge scores, there was a statistically significant improvement between pre- and post-course scores within each group, but again there was not a statistically significant difference between training groups. This pilot study of a deployed mixed-provider disaster response team suggests that a novel portable US simulator may provide equivalent skills training in comparison to traditional live instructor and model training. Further studies with a larger sample size and other measures of short- and long-term clinical performance are warranted.
Play It Again: Teaching Statistics with Monte Carlo Simulation
ERIC Educational Resources Information Center
Sigal, Matthew J.; Chalmers, R. Philip
2016-01-01
Monte Carlo simulations (MCSs) provide important information about statistical phenomena that would be impossible to assess otherwise. This article introduces MCS methods and their applications to research and statistical pedagogy using a novel software package for the R Project for Statistical Computing constructed to lessen the often steep…
Reproducible detection of disease-associated markers from gene expression data.
Omae, Katsuhiro; Komori, Osamu; Eguchi, Shinto
2016-08-18
Detection of disease-associated markers plays a crucial role in gene screening for biological studies. Two-sample test statistics, such as the t-statistic, are widely used to rank genes based on gene expression data. However, the resultant gene ranking is often not reproducible among different data sets. Such irreproducibility may be caused by disease heterogeneity. When we divided data into two subsets, we found that the signs of the two t-statistics were often reversed. Focusing on such instability, we proposed a sign-sum statistic that counts the signs of the t-statistics for all possible subsets. The proposed method excludes genes affected by heterogeneity, thereby improving the reproducibility of gene ranking. We compared the sign-sum statistic with the t-statistic by a theoretical evaluation of the upper confidence limit. Through simulations and applications to real data sets, we show that the sign-sum statistic exhibits superior performance. We derive the sign-sum statistic for getting a robust gene ranking. The sign-sum statistic gives more reproducible ranking than the t-statistic. Using simulated data sets we show that the sign-sum statistic excludes hetero-type genes well. Also for the real data sets, the sign-sum statistic performs well in a viewpoint of ranking reproducibility.
A comparison of the accuracy of intraoral scanners using an intraoral environment simulator.
Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin; Han, Jung-Suk; Lee, Seung-Pyo
2018-02-01
The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. The differences in intraoral environments were not statistically significant ( P >.05). Between intraoral scanners, statistically significant differences ( P <.05) were revealed by the Kruskal-Wallis test with regard to D3 and D6. No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future.
Martin, Daniel R; Matyushov, Dmitry V
2012-08-30
We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.
Evaluation of a Local Anesthesia Simulation Model with Dental Students as Novice Clinicians.
Lee, Jessica S; Graham, Roseanna; Bassiur, Jennifer P; Lichtenthal, Richard M
2015-12-01
The aim of this study was to evaluate the use of a local anesthesia (LA) simulation model in a facilitated small group setting before dental students administered an inferior alveolar nerve block (IANB) for the first time. For this pilot study, 60 dental students transitioning from preclinical to clinical education were randomly assigned to either an experimental group (N=30) that participated in a small group session using the simulation model or a control group (N=30). After administering local anesthesia for the first time, students in both groups were given questionnaires regarding levels of preparedness and confidence when administering an IANB and level of anesthesia effectiveness and pain when receiving an IANB. Students in the experimental group exhibited a positive difference on all six questions regarding preparedness and confidence when administering LA to another student. One of these six questions ("I was prepared in administering local anesthesia for the first time") showed a statistically significant difference (p<0.05). Students who received LA from students who practiced on the simulation model also experienced fewer post-injection complications one day after receiving the IANB, including a statistically significant reduction in trismus. No statistically significant difference was found in level of effectiveness of the IANB or perceived levels of pain between the two groups. The results of this pilot study suggest that using a local anesthesia simulation model may be beneficial in increasing a dental student's level of comfort prior to administering local anesthesia for the first time.
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
Statistical error in simulations of Poisson processes: Example of diffusion in solids
NASA Astrophysics Data System (ADS)
Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.
2016-08-01
Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.
Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Brunett, Acacia
2015-04-26
The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it ismore » difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.« less
ERIC Educational Resources Information Center
Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan
2017-01-01
Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD…
NASA Astrophysics Data System (ADS)
Farmer, W. H.; Kiang, J. E.
2017-12-01
The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.
Perspective: chemical dynamics simulations of non-statistical reaction dynamics
Ma, Xinyou; Hase, William L.
2017-01-01
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320906
Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.
Malloy, T E; Jensen, G C
2001-05-01
The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.
Studies of Fault Interactions and Regional Seismicity Using Numerical Simulations
NASA Astrophysics Data System (ADS)
Yikilmaz, Mehmet Burak
Numerical simulations are routinely used for weather and climate forecasting. It is desirable to simulate regional seismicity for seismic hazard analysis. One such simulation tool is the Virtual California earthquake simulator. We have used Virtual California (VC) to study various aspects of fault interaction and analyzed the statistics of earthquake recurrence times and magnitudes generated synthetically. The first chapter of this dissertation investigates the behavior of seismology simulations using three relatively simple models involving a straight strike-slip fault. We show that a series of historical earthquakes observed along the Nankai Trough in Japan exhibit similar patterns to those obtained in our model II. In the second chapter we utilize Virtual California to study regional seismicity in northern California. We generate synthetic catalogs of seismicity using a composite simulation. We use these catalogs to analyze frequency-magnitude and recurrence interval statistics on both a regional and fault specific level and compare our modeled rates of seismicity and spatial variability with observations. The final chapter explores the jump distance for a propagating rupture over a stepping strike-slip fault. Our study indicates that between 2.5 and 5.5 km of the separation distance, the percentage of events that jump from one fault to the next decreases significantly. We find that these step-over distance values are in good agreement with geologically observed values.
Performance of the general circulation models in simulating temperature and precipitation over Iran
NASA Astrophysics Data System (ADS)
Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad
2018-03-01
General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.
Two Paradoxes in Linear Regression Analysis.
Feng, Ge; Peng, Jing; Tu, Dongke; Zheng, Julia Z; Feng, Changyong
2016-12-25
Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection.
Comparison of two fractal interpolation methods
NASA Astrophysics Data System (ADS)
Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo
2017-03-01
As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has strong periodicity, which is suitable for simulating periodic surface.
Detecting Answer Copying Using Alternate Test Forms and Seat Locations in Small-Scale Examinations
ERIC Educational Resources Information Center
van der Ark, L. Andries; Emons, Wilco H. M.; Sijtsma, Klaas
2008-01-01
Two types of answer-copying statistics for detecting copiers in small-scale examinations are proposed. One statistic identifies the "copier-source" pair, and the other in addition suggests who is copier and who is source. Both types of statistics can be used when the examination has alternate test forms. A simulation study shows that the…
Auffermann, William F; Henry, Travis S; Little, Brent P; Tigges, Stefan; Tridandapani, Srini
2015-11-01
Simulation has been used as an educational and assessment tool in several fields, generally involving training of physical skills. To date, simulation has found limited application in teaching and assessment of skills related to image perception and interpretation. The goal of this pilot study was to evaluate the feasibility of simulation as a tool for teaching and assessment of skills related to perception of nodules on chest radiography. This study received an exemption from the institutional review board. Subjects consisted of nonradiology health care trainees. Subjects underwent training and assessment of pulmonary nodule identification skills on chest radiographs at simulated radiology workstations. Subject performance was quantified by changes in area under the localization receiver operating characteristic curve. At the conclusion of the study, all subjects were given a questionnaire with five questions comparing learning at a simulated workstation with training using conventional materials. Statistical significance for questionnaire responses was tested using the Wilcoxon signed rank test. Subjects demonstrated statistically significant improvement in nodule identification after training at a simulated radiology workstation (change in area under the curve, 0.1079; P = .015). Subjects indicated that training on simulated radiology workstations was preferable to conventional training methods for all questions; P values for all questions were less than .01. Simulation may be a useful tool for teaching and assessment of skills related to medical image perception and interpretation. Further study is needed to determine which skills and trainee populations may be most amenable to training and assessment using simulation. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
Generating survival times to simulate Cox proportional hazards models with time-varying covariates.
Austin, Peter C
2012-12-20
Simulations and Monte Carlo methods serve an important role in modern statistical research. They allow for an examination of the performance of statistical procedures in settings in which analytic and mathematical derivations may not be feasible. A key element in any statistical simulation is the existence of an appropriate data-generating process: one must be able to simulate data from a specified statistical model. We describe data-generating processes for the Cox proportional hazards model with time-varying covariates when event times follow an exponential, Weibull, or Gompertz distribution. We consider three types of time-varying covariates: first, a dichotomous time-varying covariate that can change at most once from untreated to treated (e.g., organ transplant); second, a continuous time-varying covariate such as cumulative exposure at a constant dose to radiation or to a pharmaceutical agent used for a chronic condition; third, a dichotomous time-varying covariate with a subject being able to move repeatedly between treatment states (e.g., current compliance or use of a medication). In each setting, we derive closed-form expressions that allow one to simulate survival times so that survival times are related to a vector of fixed or time-invariant covariates and to a single time-varying covariate. We illustrate the utility of our closed-form expressions for simulating event times by using Monte Carlo simulations to estimate the statistical power to detect as statistically significant the effect of different types of binary time-varying covariates. This is compared with the statistical power to detect as statistically significant a binary time-invariant covariate. Copyright © 2012 John Wiley & Sons, Ltd.
Control Theory and Statistical Generalizations.
ERIC Educational Resources Information Center
Powers, William T.
1990-01-01
Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Rollins, Derrick K; Teh, Ailing
2010-12-17
Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.
Signals of dynamical and statistical process from IMF-IMF correlation function
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.
2017-11-01
In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.
Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Woods, Jorden
1992-01-01
The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.
2015-03-30
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Sepiani, M.
2015-03-01
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
NASA Astrophysics Data System (ADS)
Moron, Vincent; Navarra, Antonio
2000-05-01
This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.
Simulation of parametric model towards the fixed covariate of right censored lung cancer data
NASA Astrophysics Data System (ADS)
Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila
2017-09-01
In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.
Use of High-resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, William E.; LaCasse, K.; Goodman, S. J.
2006-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
Helsel, Dennis R.; Gilliom, Robert J.
1986-01-01
Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.
A note on the kappa statistic for clustered dichotomous data.
Zhou, Ming; Yang, Zhao
2014-06-30
The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.
Simulation Study Using a New Type of Sample Variance
NASA Technical Reports Server (NTRS)
Howe, D. A.; Lainson, K. J.
1996-01-01
We evaluate with simulated data a new type of sample variance for the characterization of frequency stability. The new statistic (referred to as TOTALVAR and its square root TOTALDEV) is a better predictor of long-term frequency variations than the present sample Allan deviation. The statistical model uses the assumption that a time series of phase or frequency differences is wrapped (periodic) with overall frequency difference removed. We find that the variability at long averaging times is reduced considerably for the five models of power-law noise commonly encountered with frequency standards and oscillators.
ERIC Educational Resources Information Center
Pant, Mohan Dev
2011-01-01
The Burr families (Type III and Type XII) of distributions are traditionally used in the context of statistical modeling and for simulating non-normal distributions with moment-based parameters (e.g., Skew and Kurtosis). In educational and psychological studies, the Burr families of distributions can be used to simulate extremely asymmetrical and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less
On Using Simulations to Inform Decision Making during Instrument Development
ERIC Educational Resources Information Center
Morgan, Grant B.; Moore, Courtney A.; Floyd, Harlee S.
2018-01-01
Although content validity--how well each item of an instrument represents the construct being measured--is foundational in the development of an instrument, statistical validity is also important to the decisions that are made based on the instrument. The primary purpose of this study is to demonstrate how simulation studies can be used to assist…
Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K
2016-08-01
Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.
NASA Astrophysics Data System (ADS)
Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.
2005-01-01
The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)
NASA Astrophysics Data System (ADS)
Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.
2013-12-01
We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.
NASA Astrophysics Data System (ADS)
Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.
2013-12-01
Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as a test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis model types studied fail to preserve extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.
NASA Astrophysics Data System (ADS)
Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.
2013-06-01
Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis type of models studied fail in preserving extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.
Snell, Kym Ie; Ensor, Joie; Debray, Thomas Pa; Moons, Karel Gm; Riley, Richard D
2017-01-01
If individual participant data are available from multiple studies or clusters, then a prediction model can be externally validated multiple times. This allows the model's discrimination and calibration performance to be examined across different settings. Random-effects meta-analysis can then be used to quantify overall (average) performance and heterogeneity in performance. This typically assumes a normal distribution of 'true' performance across studies. We conducted a simulation study to examine this normality assumption for various performance measures relating to a logistic regression prediction model. We simulated data across multiple studies with varying degrees of variability in baseline risk or predictor effects and then evaluated the shape of the between-study distribution in the C-statistic, calibration slope, calibration-in-the-large, and E/O statistic, and possible transformations thereof. We found that a normal between-study distribution was usually reasonable for the calibration slope and calibration-in-the-large; however, the distributions of the C-statistic and E/O were often skewed across studies, particularly in settings with large variability in the predictor effects. Normality was vastly improved when using the logit transformation for the C-statistic and the log transformation for E/O, and therefore we recommend these scales to be used for meta-analysis. An illustrated example is given using a random-effects meta-analysis of the performance of QRISK2 across 25 general practices.
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data. (3... statistical analysis, computer simulation or modeling, and other analytic evaluation of performance data on.... (ii) If requested by the Department, the manufacturer shall conduct simulations to predict the...
Air Combat Training: Good Stick Index Validation. Final Report for Period 3 April 1978-1 April 1979.
ERIC Educational Resources Information Center
Moore, Samuel B.; And Others
A study was conducted to investigate and statistically validate a performance measuring system (the Good Stick Index) in the Tactical Air Command Combat Engagement Simulator I (TAC ACES I) Air Combat Maneuvering (ACM) training program. The study utilized a twelve-week sample of eighty-nine student pilots to statistically validate the Good Stick…
ERIC Educational Resources Information Center
Novak, Elena
2012-01-01
The study explored instructional benefits of a storyline gaming characteristic (GC) on learning effectiveness, efficiency, and engagement with the use of an online instructional simulation for graduate students in an introductory statistics course. In addition, the study focused on examining the effects of a storyline GC on specific learning…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özel, Gamze
Bivariate Kumaraswamy (BK) distribution whose marginals are Kumaraswamy distributions has been recently introduced. However, its statistical properties are not studied in detail. In this study, statistical properties of the BK distribution are investigated. We suggest that the BK could provide suitable description for the earthquakes characteristics of Turkey. We support this argument using earthquakesoccurred in Turkey between 1900 and 2009. We also find that the BK distribution simulates earthquakes well.
A comparison of the accuracy of intraoral scanners using an intraoral environment simulator
Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin
2018-01-01
PURPOSE The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. MATERIALS AND METHODS A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. RESULTS The differences in intraoral environments were not statistically significant (P>.05). Between intraoral scanners, statistically significant differences (P<.05) were revealed by the Kruskal-Wallis test with regard to D3 and D6. CONCLUSION No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future. PMID:29503715
NASA Astrophysics Data System (ADS)
Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas
2015-04-01
The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.
PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, J. Berian, E-mail: berian@berkeley.edu
2012-05-20
We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity thatmore » appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.« less
Statistical analysis of large simulated yield datasets for studying climate effects
USDA-ARS?s Scientific Manuscript database
Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.
Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum
ERIC Educational Resources Information Center
Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan
2017-01-01
Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…
Statistical power calculations for mixed pharmacokinetic study designs using a population approach.
Kloprogge, Frank; Simpson, Julie A; Day, Nicholas P J; White, Nicholas J; Tarning, Joel
2014-09-01
Simultaneous modelling of dense and sparse pharmacokinetic data is possible with a population approach. To determine the number of individuals required to detect the effect of a covariate, simulation-based power calculation methodologies can be employed. The Monte Carlo Mapped Power method (a simulation-based power calculation methodology using the likelihood ratio test) was extended in the current study to perform sample size calculations for mixed pharmacokinetic studies (i.e. both sparse and dense data collection). A workflow guiding an easy and straightforward pharmacokinetic study design, considering also the cost-effectiveness of alternative study designs, was used in this analysis. Initially, data were simulated for a hypothetical drug and then for the anti-malarial drug, dihydroartemisinin. Two datasets (sampling design A: dense; sampling design B: sparse) were simulated using a pharmacokinetic model that included a binary covariate effect and subsequently re-estimated using (1) the same model and (2) a model not including the covariate effect in NONMEM 7.2. Power calculations were performed for varying numbers of patients with sampling designs A and B. Study designs with statistical power >80% were selected and further evaluated for cost-effectiveness. The simulation studies of the hypothetical drug and the anti-malarial drug dihydroartemisinin demonstrated that the simulation-based power calculation methodology, based on the Monte Carlo Mapped Power method, can be utilised to evaluate and determine the sample size of mixed (part sparsely and part densely sampled) study designs. The developed method can contribute to the design of robust and efficient pharmacokinetic studies.
2009-12-01
events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate
Cluster detection methods applied to the Upper Cape Cod cancer data.
Ozonoff, Al; Webster, Thomas; Vieira, Veronica; Weinberg, Janice; Ozonoff, David; Aschengrau, Ann
2005-09-15
A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM) method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.
Simulation methods to estimate design power: an overview for applied research.
Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E
2011-06-20
Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.
Simulation methods to estimate design power: an overview for applied research
2011-01-01
Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447
Visualizing and Understanding Probability and Statistics: Graphical Simulations Using Excel
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2009-01-01
The authors describe a collection of dynamic interactive simulations for teaching and learning most of the important ideas and techniques of introductory statistics and probability. The modules cover such topics as randomness, simulations of probability experiments such as coin flipping, dice rolling and general binomial experiments, a simulation…
Statistically Modeling I-V Characteristics of CNT-FET with LASSO
NASA Astrophysics Data System (ADS)
Ma, Dongsheng; Ye, Zuochang; Wang, Yan
2017-08-01
With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.
Validation of ground-motion simulations for historical events using SDoF systems
Galasso, C.; Zareian, F.; Iervolino, I.; Graves, R.W.
2012-01-01
The study presented in this paper is among the first in a series of studies toward the engineering validation of the hybrid broadband ground‐motion simulation methodology by Graves and Pitarka (2010). This paper provides a statistical comparison between seismic demands of single degree of freedom (SDoF) systems subjected to past events using simulations and actual recordings. A number of SDoF systems are selected considering the following: (1) 16 oscillation periods between 0.1 and 6 s; (2) elastic case and four nonlinearity levels, from mildly inelastic to severely inelastic systems; and (3) two hysteretic behaviors, in particular, nondegrading–nonevolutionary and degrading–evolutionary. Demand spectra are derived in terms of peak and cyclic response, as well as their statistics for four historical earthquakes: 1979 Mw 6.5 Imperial Valley, 1989 Mw 6.8 Loma Prieta, 1992 Mw 7.2 Landers, and 1994 Mw 6.7 Northridge.
ERIC Educational Resources Information Center
Sweet, Shauna J.; Rupp, Andre A.
2012-01-01
The "evidence-centered design" (ECD) framework is a powerful tool that supports careful and critical thinking about the identification and accumulation of evidence in assessment contexts. In this paper, we demonstrate how the ECD framework provides critical support for designing simulation studies to investigate statistical methods…
1994-03-01
optimize, and perform "what-if" analysis on a complicated simulation model of the greenhouse effect . Regression metamodels were applied to several modules of...the large integrated assessment model of the greenhouse effect . In this study, the metamodels gave "acceptable forecast errors" and were shown to
ERIC Educational Resources Information Center
Thissen, David; Wainer, Howard
Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…
Genetic data simulators and their applications: an overview
Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J.
2016-01-01
Computer simulations have played an indispensable role in the development and application of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the Genetic Simulation Resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286
ERIC Educational Resources Information Center
Pustejovsky, James E.; Runyon, Christopher
2014-01-01
Direct observation recording procedures produce reductive summary measurements of an underlying stream of behavior. Previous methodological studies of these recording procedures have employed simulation methods for generating random behavior streams, many of which amount to special cases of a statistical model known as the alternating renewal…
This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...
A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.
ERIC Educational Resources Information Center
Griebling, John L.; Adams, William S.
1981-01-01
Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)
Computer Simulation of Classic Studies in Psychology.
ERIC Educational Resources Information Center
Bradley, Drake R.
This paper describes DATASIM, a comprehensive software package which generates simulated data for actual or hypothetical research designs. DATASIM is primarily intended for use in statistics and research methods courses, where it is used to generate "individualized" datasets for students to analyze, and later to correct their answers.…
AGR-1 Thermocouple Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Einerson
2012-05-01
This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods tomore » further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of simulation results (Chapter 3). The statistics-based simulation-aided experimental control procedure described for the future AGR tests is developed and demonstrated in Chapter 4. The procedure for controlling the target fuel temperature (capsule peak or average) is based on regression functions of thermocouple readings and other relevant parameters and accounting for possible changes in both physical and thermal conditions and in instrument performance.« less
Statistical Engineering in Air Traffic Management Research
NASA Technical Reports Server (NTRS)
Wilson, Sara R.
2015-01-01
NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
Multiplicative Modeling of Children's Growth and Its Statistical Properties
NASA Astrophysics Data System (ADS)
Kuninaka, Hiroto; Matsushita, Mitsugu
2014-03-01
We develop a numerical growth model that can predict the statistical properties of the height distribution of Japanese children. Our previous studies have clarified that the height distribution of schoolchildren shows a transition from the lognormal distribution to the normal distribution during puberty. In this study, we demonstrate by simulation that the transition occurs owing to the variability of the onset of puberty.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.
2007-12-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.
Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2014-04-14
To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less
Improving Statistics Education through Simulations: The Case of the Sampling Distribution.
ERIC Educational Resources Information Center
Earley, Mark A.
This paper presents a summary of action research investigating statistics students' understandings of the sampling distribution of the mean. With four sections of an introductory Statistics in Education course (n=98 students), a computer simulation activity (R. delMas, J. Garfield, and B. Chance, 1999) was implemented and evaluated to show…
An accurate test for homogeneity of odds ratios based on Cochran's Q-statistic.
Kulinskaya, Elena; Dollinger, Michael B
2015-06-10
A frequently used statistic for testing homogeneity in a meta-analysis of K independent studies is Cochran's Q. For a standard test of homogeneity the Q statistic is referred to a chi-square distribution with K-1 degrees of freedom. For the situation in which the effects of the studies are logarithms of odds ratios, the chi-square distribution is much too conservative for moderate size studies, although it may be asymptotically correct as the individual studies become large. Using a mixture of theoretical results and simulations, we provide formulas to estimate the shape and scale parameters of a gamma distribution to fit the distribution of Q. Simulation studies show that the gamma distribution is a good approximation to the distribution for Q. Use of the gamma distribution instead of the chi-square distribution for Q should eliminate inaccurate inferences in assessing homogeneity in a meta-analysis. (A computer program for implementing this test is provided.) This hypothesis test is competitive with the Breslow-Day test both in accuracy of level and in power.
Performance of the S - [chi][squared] Statistic for Full-Information Bifactor Models
ERIC Educational Resources Information Center
Li, Ying; Rupp, Andre A.
2011-01-01
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
ERIC Educational Resources Information Center
Veldkamp, Bernard P.
2008-01-01
Integrity[TM], an online application for testing both the statistical integrity of the test and the academic integrity of the examinees, was evaluated for this review. Program features and the program output are described. An overview of the statistics in Integrity[TM] is provided, and the application is illustrated with a small simulation study.…
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-09-01
Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.
el Galta, Rachid; Uitte de Willige, Shirley; de Visser, Marieke C H; Helmer, Quinta; Hsu, Li; Houwing-Duistermaat, Jeanine J
2007-09-24
In this paper, we propose a one degree of freedom test for association between a candidate gene and a binary trait. This method is a generalization of Terwilliger's likelihood ratio statistic and is especially powerful for the situation of one associated haplotype. As an alternative to the likelihood ratio statistic, we derive a score statistic, which has a tractable expression. For haplotype analysis, we assume that phase is known. By means of a simulation study, we compare the performance of the score statistic to Pearson's chi-square statistic and the likelihood ratio statistic proposed by Terwilliger. We illustrate the method on three candidate genes studied in the Leiden Thrombophilia Study. We conclude that the statistic follows a chi square distribution under the null hypothesis and that the score statistic is more powerful than Terwilliger's likelihood ratio statistic when the associated haplotype has frequency between 0.1 and 0.4 and has a small impact on the studied disorder. With regard to Pearson's chi-square statistic, the score statistic has more power when the associated haplotype has frequency above 0.2 and the number of variants is above five.
Effect of simulation on the ability of first year nursing students to learn vital signs.
Eyikara, Evrim; Baykara, Zehra Göçmen
2018-01-01
The acquisition of cognitive, affective and psychomotor knowledge and skills are required in nursing, made possible via an interactive teaching method, such as simulation. This study conducted to identify the impact of simulation on first-year nursing students' ability to learn vital signs. A convenience sample of 90 first-year nursing students enrolled at a University, Ankara, in 2014-2015. Ninety students enrolled for lessons on the "Fundamentals of Nursing" were identified using a simple random sampling method. The students were taught vital signs theory via traditional methods. They were grouped into experimental 1, experimental 2 and control group, of 30 students each. Students in the experimental 1 group attended sessions on simulation and those in the experimental 2 group sessions on laboratory work, followed by simulation. The control group were taught via traditional methods and only attended the laboratory work sessions. The students' cognitive knowledge acquisition was evaluated using a knowledge test before and after the lessons. The ability to measure vital signs in adults (healthy ones and patients) was evaluated using a skill control list. A statistically significant difference was not observed between the groups in terms of the average pre-test scores on knowledge (p>0.050). Groups exposed to simulation obtained statistically significantly higher scores than the control group in post-test knowledge (p<0.050). The ability of the groups exposed to simulation to measure vital signs in healthy adults and patients was more successful than that the control group (p<0.050). This was statistically significant. Simulation had a positive effect on the ability of nursing students to measure vital signs. Thus, simulation should be included in the mainstream curriculum in order to effectively impart nursing knowledge and skills. Copyright © 2017 Elsevier Ltd. All rights reserved.
An entropy-based statistic for genomewide association studies.
Zhao, Jinying; Boerwinkle, Eric; Xiong, Momiao
2005-07-01
Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.
Fordyce, James A
2010-07-23
Phylogenetic hypotheses are increasingly being used to elucidate historical patterns of diversification rate-variation. Hypothesis testing is often conducted by comparing the observed vector of branching times to a null, pure-birth expectation. A popular method for inferring a decrease in speciation rate, which might suggest an early burst of diversification followed by a decrease in diversification rate is the gamma statistic. Using simulations under varying conditions, I examine the sensitivity of gamma to the distribution of the most recent branching times. Using an exploratory data analysis tool for lineages through time plots, tree deviation, I identified trees with a significant gamma statistic that do not appear to have the characteristic early accumulation of lineages consistent with an early, rapid rate of cladogenesis. I further investigated the sensitivity of the gamma statistic to recent diversification by examining the consequences of failing to simulate the full time interval following the most recent cladogenic event. The power of gamma to detect rate decrease at varying times was assessed for simulated trees with an initial high rate of diversification followed by a relatively low rate. The gamma statistic is extraordinarily sensitive to recent diversification rates, and does not necessarily detect early bursts of diversification. This was true for trees of various sizes and completeness of taxon sampling. The gamma statistic had greater power to detect recent diversification rate decreases compared to early bursts of diversification. Caution should be exercised when interpreting the gamma statistic as an indication of early, rapid diversification.
Low-Cost Simulation to Teach Anesthetists' Non-Technical Skills in Rwanda.
Skelton, Teresa; Nshimyumuremyi, Isaac; Mukwesi, Christian; Whynot, Sara; Zolpys, Lauren; Livingston, Patricia
2016-08-01
Safe anesthesia care is challenging in developing countries where there are shortages of personnel, drugs, equipment, and training. Anesthetists' Non-technical Skills (ANTS)-task management, team working, situation awareness, and decision making-are difficult to practice well in this context. Cesarean delivery is the most common surgical procedure in sub-Saharan Africa. This pilot study investigates whether a low-cost simulation model, with good psychological fidelity, can be used effectively to teach ANTS during cesarean delivery in Rwanda. Study participants were anesthesia providers working in a tertiary referral hospital in Rwanda. Baseline observations were conducted for 20 anesthesia providers during cesarean delivery using the established ANTS framework. After the first observation set was complete, participants were randomly assigned to either simulation intervention or control groups. The simulation intervention group underwent ANTS training using low-cost high psychological fidelity simulation with debriefing. No training was offered to the control group. Postintervention observations were then conducted in the same manner as the baseline observations. The primary outcome was the overall ANTS score (maximum, 16). The median (range) ANTS score of the simulation group was 13.5 (11-16). The ANTS score of the control group was 8 (8-9), with a statistically significant difference (P = .002). Simulation participants showed statistically significant improvement in subcategories and in the overall ANTS score compared with ANTS score before simulation exposure. Rwandan anesthesia providers show improvement in ANTS practice during cesarean delivery after 1 teaching session using a low-cost high psychological fidelity simulation model with debriefing.
Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan
2017-11-01
Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD (N = 7) with regards to the number of turning-related driving errors (p < 0.01). Study 2 shows that both the performance-based feedback group (N = 9) and combined performance- and gaze-sensitive feedback group (N = 8) achieved statistically significant reductions in driving errors following training (p < 0.05). These studies are the first to present results of fine-grained measures of visual attention of drivers and an adaptive driving intervention for individuals with ASD.
Seago, Scott T; Bergeron, Brian E; Kirkpatrick, Timothy C; Roberts, Mark D; Roberts, Howard W; Himel, Van T; Sabey, Kent A
2015-05-01
Recent nickel-titanium manufacturing processes have resulted in an alloy that remains in a twinned martensitic phase at operating temperature. This alloy has been shown to have increased flexibility with added tolerance to cyclic and torsional fatigue. The aim of this study was to assess the effect of repeated simulated clinical use and sterilization on cutting efficiency and flexibility of Hyflex CM rotary files. Cutting efficiency was determined by measuring the load required to maintain a constant feed rate while instrumenting simulated canals. Flexibility was determined by using a 3-point bending test. Files were autoclaved after each use according to the manufacturer's recommendations. Files were tested through 10 simulated clinical uses. For cutting efficiency, mean data were analyzed by using multiple factor analysis of variance and the Dunnett post hoc test (P < .05). For flexibility, mean data were analyzed by using Levene's Test of Equality of Error and a general linear model (P < .05). No statistically significant decrease in cutting efficiency was noted in groups 2, 5, 6, and 7. A statistically significant decrease in cutting efficiency was noted in groups 3, 4, 8, 9, and 10. No statistically significant decrease in flexibility was noted in groups 2, 3, and 7. A statistically significant decrease in flexibility was noted in groups 4, 5, 6, 8, 9, 10, and 11. Repeated simulated clinical use and sterilization showed no effect on cutting efficiency through 1 use and no effect on flexibility through 2 uses. Published by Elsevier Inc.
Roggemann, M C; Welsh, B M; Montera, D; Rhoadarmer, T A
1995-07-10
Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for understanding the statistics of estimators used to reconstruct intensity distributions from turbulence-corrupted image measurements. Current methods of simulating the performance of these systems typically make use of random phase screens placed in the system pupil. Methods exist for making random draws of phase screens that have the correct spatial statistics. However, simulating temporal effects and anisoplanatism requires one or more phase screens at different distances from the aperture, possibly moving with different velocities. We describe and demonstrate a method for creating random draws of phase screens with the correct space-time statistics for a bitrary turbulence and wind-velocity profiles, which can be placed in the telescope pupil in simulations. Results are provided for both the von Kármán and the Kolmogorov turbulence spectra. We also show how to simulate anisoplanatic effects with this technique.
NASA Astrophysics Data System (ADS)
Lue, L.
2005-01-01
The collision statistics of hard hyperspheres are investigated. An exact, analytical formula is developed for the distribution of speeds of a sphere on collision, which is shown to be related to the average time between collisions for a sphere with a particular velocity. In addition, the relationship between the collision rate and the compressibility factor is generalized to arbitrary dimensions. Molecular dynamics simulations are performed for d=3, 4, and 5 dimensional hard-hypersphere fluids. From these simulations, the equation of state of these systems, the self-diffusion coefficient, the shear viscosity, and the thermal conductivity are determined as a function of density. Various aspects of the collision statistics and their dependence on the density and dimensionality of the system are also studied.
Fonseca, Luciana Mara Monti; Aredes, Natália Del' Angelo; Fernandes, Ananda Maria; Batalha, Luís Manuel da Cunha; Apóstolo, Jorge Manuel Amado; Martins, José Carlos Amado; Rodrigues, Manuel Alves
2016-01-01
ABSTRACT Objectives: to evaluate the cognitive learning of nursing students in neonatal clinical evaluation from a blended course with the use of computer and laboratory simulation; to compare the cognitive learning of students in a control and experimental group testing the laboratory simulation; and to assess the extracurricular blended course offered on the clinical assessment of preterm infants, according to the students. Method: a quasi-experimental study with 14 Portuguese students, containing pretest, midterm test and post-test. The technologies offered in the course were serious game e-Baby, instructional software of semiology and semiotechnique, and laboratory simulation. Data collection tools developed for this study were used for the course evaluation and characterization of the students. Nonparametric statistics were used: Mann-Whitney and Wilcoxon. Results: the use of validated digital technologies and laboratory simulation demonstrated a statistically significant difference (p = 0.001) in the learning of the participants. The course was evaluated as very satisfactory for them. The laboratory simulation alone did not represent a significant difference in the learning. Conclusions: the cognitive learning of participants increased significantly. The use of technology can be partly responsible for the course success, showing it to be an important teaching tool for innovation and motivation of learning in healthcare. PMID:27737376
A Statistical Comparison of PSC Model Simulations and POAM Observations
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)
2002-01-01
A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe
2015-08-01
The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Rong; Li, Yongdong; Liu, Chunliang
2016-07-15
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less
I Can't Make Heads or Tails out of What You Are Saying, So Let's Just Agree to Be Fair
ERIC Educational Resources Information Center
Carter, Rickey E.
2013-01-01
Assuming a coin is fair is common place in introductory statistical education. This article offers three approaches to test if a coin is fair. The approaches lend themselves to straightforward simulation studies that can enrich student understanding of joint probability and sample size requirements. Simulation studies comparing the relative merits…
Finch, S J; Chen, C H; Gordon, D; Mendell, N R
2001-12-01
This study compared the performance of the maximum lod (MLOD), maximum heterogeneity lod (MHLOD), maximum non-parametric linkage score (MNPL), maximum Kong and Cox linear extension (MKC(lin)) of NPL, and maximum Kong and Cox exponential extension (MKC(exp)) of NPL as calculated in Genehunter 1.2 and Genehunter-Plus. Our performance measure was the distance between the marker with maximum value for each linkage statistic and the trait locus. We performed a simulation study considering: 1) four modes of transmission, 2) 100 replicates for each model, 3) 58 pedigrees (with 592 subjects) per replicate, 4) three linked marker loci each having three equally frequent alleles, and 5) either 0% unlinked families (linkage homogeneity) or 50% unlinked families (linkage heterogeneity). For each replicate, we obtained the Haldane map position of the location at which each of the five statistics is maximized. The MLOD and MHLOD were obtained by maximizing over penetrances, phenocopy rate, and risk-allele frequencies. For the models simulated, MHLOD appeared to be the best statistic both in terms of identifying a marker locus having the smallest mean distance from the trait locus and in terms of the strongest negative correlation between maximum linkage statistic and distance of the identified position and the trait locus. The marker loci with maximum value of the Kong and Cox extensions of the NPL statistic also were closer to the trait locus than the marker locus with maximum value of the NPL statistic. Copyright 2001 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Syam, Nur Syamsi; Maeng, Seongjin; Kim, Myo Gwang; Lim, Soo Yeon; Lee, Sang Hoon
2018-05-01
A large dead time of a Geiger Mueller (GM) detector may cause a large count loss in radiation measurements and consequently may cause distortion of the Poisson statistic of radiation events into a new distribution. The new distribution will have different statistical parameters compared to the original distribution. Therefore, the variance, skewness, and excess kurtosis in association with the observed count rate of the time interval distribution for well-known nonparalyzable, paralyzable, and nonparalyzable-paralyzable hybrid dead time models of a Geiger Mueller detector were studied using Monte Carlo simulation (GMSIM). These parameters were then compared with the statistical parameters of a perfect detector to observe the change in the distribution. The results show that the behaviors of the statistical parameters for the three dead time models were different. The values of the skewness and the excess kurtosis of the nonparalyzable model are equal or very close to those of the perfect detector, which are ≅2 for skewness, and ≅6 for excess kurtosis, while the statistical parameters in the paralyzable and hybrid model obtain minimum values that occur around the maximum observed count rates. The different trends of the three models resulting from the GMSIM simulation can be used to distinguish the dead time behavior of a GM counter; i.e. whether the GM counter can be described best by using the nonparalyzable, paralyzable, or hybrid model. In a future study, these statistical parameters need to be analyzed further to determine the possibility of using them to determine a dead time for each model, particularly for paralyzable and hybrid models.
NASA Astrophysics Data System (ADS)
Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4.5 and RCP8.5 scenarios show large areas with significant changes. For the RCP2.6 scenario, projected results present a predominance of very moderate decreases in rainfall, although significant in some models. Keywords: climate change projections, precipitation, Tropical America, statistical downscaling. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Velocity statistics of the Nagel-Schreckenberg model
NASA Astrophysics Data System (ADS)
Bain, Nicolas; Emig, Thorsten; Ulm, Franz-Josef; Schreckenberg, Michael
2016-02-01
The statistics of velocities in the cellular automaton model of Nagel and Schreckenberg for traffic are studied. From numerical simulations, we obtain the probability distribution function (PDF) for vehicle velocities and the velocity-velocity (vv) covariance function. We identify the probability to find a standing vehicle as a potential order parameter that signals nicely the transition between free congested flow for a sufficiently large number of velocity states. Our results for the vv covariance function resemble features of a second-order phase transition. We develop a 3-body approximation that allows us to relate the PDFs for velocities and headways. Using this relation, an approximation to the velocity PDF is obtained from the headway PDF observed in simulations. We find a remarkable agreement between this approximation and the velocity PDF obtained from simulations.
Velocity statistics of the Nagel-Schreckenberg model.
Bain, Nicolas; Emig, Thorsten; Ulm, Franz-Josef; Schreckenberg, Michael
2016-02-01
The statistics of velocities in the cellular automaton model of Nagel and Schreckenberg for traffic are studied. From numerical simulations, we obtain the probability distribution function (PDF) for vehicle velocities and the velocity-velocity (vv) covariance function. We identify the probability to find a standing vehicle as a potential order parameter that signals nicely the transition between free congested flow for a sufficiently large number of velocity states. Our results for the vv covariance function resemble features of a second-order phase transition. We develop a 3-body approximation that allows us to relate the PDFs for velocities and headways. Using this relation, an approximation to the velocity PDF is obtained from the headway PDF observed in simulations. We find a remarkable agreement between this approximation and the velocity PDF obtained from simulations.
ERIC Educational Resources Information Center
de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez
2008-01-01
This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…
Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments
ERIC Educational Resources Information Center
Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert
2016-01-01
This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…
It's a Girl! Random Numbers, Simulations, and the Law of Large Numbers
ERIC Educational Resources Information Center
Goodwin, Chris; Ortiz, Enrique
2015-01-01
Modeling using mathematics and making inferences about mathematical situations are becoming more prevalent in most fields of study. Descriptive statistics cannot be used to generalize about a population or make predictions of what can occur. Instead, inference must be used. Simulation and sampling are essential in building a foundation for…
NASA Astrophysics Data System (ADS)
Skitka, J.; Marston, B.; Fox-Kemper, B.
2016-02-01
Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.
Observability of ionospheric space-time structure with ISR: A simulation study
NASA Astrophysics Data System (ADS)
Swoboda, John; Semeter, Joshua; Zettergren, Matthew; Erickson, Philip J.
2017-02-01
The sources of error from electronically steerable array (ESA) incoherent scatter radar (ISR) systems are investigated both theoretically and with use of an open-source ISR simulator, developed by the authors, called Simulator for ISR (SimISR). The main sources of error incorporated in the simulator include statistical uncertainty, which arises due to nature of the measurement mechanism and the inherent space-time ambiguity from the sensor. SimISR can take a field of plasma parameters, parameterized by time and space, and create simulated ISR data at the scattered electric field (i.e., complex receiver voltage) level, subsequently processing these data to show possible reconstructions of the original parameter field. To demonstrate general utility, we show a number of simulation examples, with two cases using data from a self-consistent multifluid transport model. Results highlight the significant influence of the forward model of the ISR process and the resulting statistical uncertainty on plasma parameter measurements and the core experiment design trade-offs that must be made when planning observations. These conclusions further underscore the utility of this class of measurement simulator as a design tool for more optimal experiment design efforts using flexible ESA class ISR systems.
NASA Astrophysics Data System (ADS)
Rakesh, V.; Kantharao, B.
2017-03-01
Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events
Kappa statistic for the clustered dichotomous responses from physicians and patients
Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L.; Cai, Jianwen
2013-01-01
The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared to the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. An example of an application to a coronary heart disease prevention study is presented. PMID:23533082
Towards Principled Experimental Study of Autonomous Mobile Robots
NASA Technical Reports Server (NTRS)
Gat, Erann
1995-01-01
We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.
The Probability of Obtaining Two Statistically Different Test Scores as a Test Index
ERIC Educational Resources Information Center
Muller, Jorg M.
2006-01-01
A new test index is defined as the probability of obtaining two randomly selected test scores (PDTS) as statistically different. After giving a concept definition of the test index, two simulation studies are presented. The first analyzes the influence of the distribution of test scores, test reliability, and sample size on PDTS within classical…
The Adequacy of Different Robust Statistical Tests in Comparing Two Independent Groups
ERIC Educational Resources Information Center
Pero-Cebollero, Maribel; Guardia-Olmos, Joan
2013-01-01
In the current study, we evaluated various robust statistical methods for comparing two independent groups. Two scenarios for simulation were generated: one of equality and another of population mean differences. In each of the scenarios, 33 experimental conditions were used as a function of sample size, standard deviation and asymmetry. For each…
Johnston, Sandra; Parker, Christina N; Fox, Amanda
2017-09-01
Use of high fidelity simulation has become increasingly popular in nursing education to the extent that it is now an integral component of most nursing programs. Anecdotal evidence suggests that students have difficulty engaging with simulation manikins due to their unrealistic appearance. Introduction of the manikin as a 'real patient' with the use of an audio-visual narrative may engage students in the simulated learning experience and impact on their learning. A paucity of literature currently exists on the use of audio-visual narratives to enhance simulated learning experiences. This study aimed to determine if viewing an audio-visual narrative during a simulation pre-brief altered undergraduate nursing student perceptions of the learning experience. A quasi-experimental post-test design was utilised. A convenience sample of final year baccalaureate nursing students at a large metropolitan university. Participants completed a modified version of the Student Satisfaction with Simulation Experiences survey. This 12-item questionnaire contained questions relating to the ability to transfer skills learned in simulation to the real clinical world, the realism of the simulation and the overall value of the learning experience. Descriptive statistics were used to summarise demographic information. Two tailed, independent group t-tests were used to determine statistical differences within the categories. Findings indicated that students reported high levels of value, realism and transferability in relation to the viewing of an audio-visual narrative. Statistically significant results (t=2.38, p<0.02) were evident in the subscale of transferability of learning from simulation to clinical practice. The subgroups of age and gender although not significant indicated some interesting results. High satisfaction with simulation was indicated by all students in relation to value and realism. There was a significant finding in relation to transferability on knowledge and this is vital to quality educational outcomes. Copyright © 2017. Published by Elsevier Ltd.
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
Adams, Dean C
2014-09-01
Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona
2018-01-01
Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.
Realistic finite temperature simulations of magnetic systems using quantum statistics
NASA Astrophysics Data System (ADS)
Bergqvist, Lars; Bergman, Anders
2018-01-01
We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.
Testing independence of bivariate interval-censored data using modified Kendall's tau statistic.
Kim, Yuneung; Lim, Johan; Park, DoHwan
2015-11-01
In this paper, we study a nonparametric procedure to test independence of bivariate interval censored data; for both current status data (case 1 interval-censored data) and case 2 interval-censored data. To do it, we propose a score-based modification of the Kendall's tau statistic for bivariate interval-censored data. Our modification defines the Kendall's tau statistic with expected numbers of concordant and disconcordant pairs of data. The performance of the modified approach is illustrated by simulation studies and application to the AIDS study. We compare our method to alternative approaches such as the two-stage estimation method by Sun et al. (Scandinavian Journal of Statistics, 2006) and the multiple imputation method by Betensky and Finkelstein (Statistics in Medicine, 1999b). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.
2016-01-01
Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753
Assessing Discriminative Performance at External Validation of Clinical Prediction Models.
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W
2016-01-01
External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.
NASA Astrophysics Data System (ADS)
Posselt, D.; L'Ecuyer, T.; Matsui, T.
2009-05-01
Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, B.; Erni, W.; Krusche, B.
Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less
Singh, B.; Erni, W.; Krusche, B.; ...
2016-10-28
Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less
O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe
2015-02-01
Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined "no inhibition" and "complete inhibition" plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic.
O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe
2015-01-01
Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined “no inhibition” and “complete inhibition” plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic. PMID:25692007
Angeler, David G; Viedma, Olga; Moreno, José M
2009-11-01
Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
NASA Astrophysics Data System (ADS)
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
NASA Astrophysics Data System (ADS)
Bernstein, V.; Kolodney, E.
2017-10-01
We have recently observed, both experimentally and computationally, the phenomenon of postcollision multifragmentation in sub-keV surface collisions of a C60 projectile. Namely, delayed multiparticle breakup of a strongly impact deformed and vibrationally excited large cluster collider into several large fragments, after leaving the surface. Molecular dynamics simulations with extensive statistics revealed a nearly simultaneous event, within a sub-psec time window. Here we study, computationally, additional essential aspects of this new delayed collisional fragmentation which were not addressed before. Specifically, we study here the delayed (binary) fission channel for different impact energies both by calculating mass distributions over all fission events and by calculating and analyzing lifetime distributions of the scattered projectile. We observe an asymmetric fission resulting in a most probable fission channel and we find an activated exponential (statistical) decay. Finally, we also calculate and discuss the fragment mass distribution in (triple) multifragmentation over different time windows, in terms of most abundant fragments.
Statistical Methods for Assessments in Simulations and Serious Games. Research Report. ETS RR-14-12
ERIC Educational Resources Information Center
Fu, Jianbin; Zapata, Diego; Mavronikolas, Elia
2014-01-01
Simulation or game-based assessments produce outcome data and process data. In this article, some statistical models that can potentially be used to analyze data from simulation or game-based assessments are introduced. Specifically, cognitive diagnostic models that can be used to estimate latent skills from outcome data so as to scale these…
NASA Astrophysics Data System (ADS)
Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri
2017-07-01
We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced by generating even larger extended phase screens and translating this block of screens in front of the propagation area. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. Thus, we think this tool can be used effectively to study optical anisoplanatic turbulence and to aid in the development of image restoration methods.
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.
2017-12-01
Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.
NASA Astrophysics Data System (ADS)
Berg, Jacob; Patton, Edward G.; Sullivan, Peter S.
2017-11-01
The effect of mesh resolution and size on shear driven atmospheric boundary layers in a stable stratified environment is investigated with the NCAR pseudo-spectral LES model (J. Atmos. Sci. v68, p2395, 2011 and J. Atmos. Sci. v73, p1815, 2016). The model applies FFT in the two horizontal directions and finite differencing in the vertical direction. With vanishing heat flux at the surface and a capping inversion entraining potential temperature into the boundary layer the situation is often called the conditional neutral atmospheric boundary layer (ABL). Due to its relevance in high wind applications such as wind power meteorology, we emphasize on second order statistics important for wind turbines including spectral information. The simulations range from mesh sizes of 643 to 10243 grid points. Due to the non-stationarity of the problem, different simulations are compared at equal eddy-turnover times. Whereas grid convergence is mostly achieved in the middle portion of the ABL, statistics close to the surface of the ABL, where the presence of the ground limits the growth of the energy containing eddies, second order statistics are not converged on the studies meshes. Higher order structure functions also reveal non-Gaussian statistics highly dependent on the resolution.
Record statistics of financial time series and geometric random walks
NASA Astrophysics Data System (ADS)
Sabir, Behlool; Santhanam, M. S.
2014-09-01
The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.
The l z ( p ) * Person-Fit Statistic in an Unfolding Model Context.
Tendeiro, Jorge N
2017-01-01
Although person-fit analysis has a long-standing tradition within item response theory, it has been applied in combination with dominance response models almost exclusively. In this article, a popular log likelihood-based parametric person-fit statistic under the framework of the generalized graded unfolding model is used. Results from a simulation study indicate that the person-fit statistic performed relatively well in detecting midpoint response style patterns and not so well in detecting extreme response style patterns.
NASA Astrophysics Data System (ADS)
Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen
2016-07-01
The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...
2014-12-11
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
A broken promise: microbiome differential abundance methods do not control the false discovery rate.
Hawinkel, Stijn; Mattiello, Federico; Bijnens, Luc; Thas, Olivier
2017-08-22
High-throughput sequencing technologies allow easy characterization of the human microbiome, but the statistical methods to analyze microbiome data are still in their infancy. Differential abundance methods aim at detecting associations between the abundances of bacterial species and subject grouping factors. The results of such methods are important to identify the microbiome as a prognostic or diagnostic biomarker or to demonstrate efficacy of prodrug or antibiotic drugs. Because of a lack of benchmarking studies in the microbiome field, no consensus exists on the performance of the statistical methods. We have compared a large number of popular methods through extensive parametric and nonparametric simulation as well as real data shuffling algorithms. The results are consistent over the different approaches and all point to an alarming excess of false discoveries. This raises great doubts about the reliability of discoveries in past studies and imperils reproducibility of microbiome experiments. To further improve method benchmarking, we introduce a new simulation tool that allows to generate correlated count data following any univariate count distribution; the correlation structure may be inferred from real data. Most simulation studies discard the correlation between species, but our results indicate that this correlation can negatively affect the performance of statistical methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Landsgesell, Jonas; Holm, Christian; Smiatek, Jens
2017-02-14
We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.
Evaluation of the flame propagation within an SI engine using flame imaging and LES
NASA Astrophysics Data System (ADS)
He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes
2017-11-01
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
Computation of large-scale statistics in decaying isotropic turbulence
NASA Technical Reports Server (NTRS)
Chasnov, Jeffrey R.
1993-01-01
We have performed large-eddy simulations of decaying isotropic turbulence to test the prediction of self-similar decay of the energy spectrum and to compute the decay exponents of the kinetic energy. In general, good agreement between the simulation results and the assumption of self-similarity were obtained. However, the statistics of the simulations were insufficient to compute the value of gamma which corrects the decay exponent when the spectrum follows a k(exp 4) wave number behavior near k = 0. To obtain good statistics, it was found necessary to average over a large ensemble of turbulent flows.
NASA Astrophysics Data System (ADS)
Spampinato, A.; Axinte, D. A.
2017-12-01
The mechanisms of interaction between bodies with statistically arranged features present characteristics common to different abrasive processes, such as dressing of abrasive tools. In contrast with the current empirical approach used to estimate the results of operations based on attritive interactions, the method we present in this paper allows us to predict the output forces and the topography of a simulated grinding wheel for a set of specific operational parameters (speed ratio and radial feed-rate), providing a thorough understanding of the complex mechanisms regulating these processes. In modelling the dressing mechanisms, the abrasive characteristics of both bodies (grain size, geometry, inter-space and protrusion) are first simulated; thus, their interaction is simulated in terms of grain collisions. Exploiting a specifically designed contact/impact evaluation algorithm, the model simulates the collisional effects of the dresser abrasives on the grinding wheel topography (grain fracture/break-out). The method has been tested for the case of a diamond rotary dresser, predicting output forces within less than 10% error and obtaining experimentally validated grinding wheel topographies. The study provides a fundamental understanding of the dressing operation, enabling the improvement of its performance in an industrial scenario, while being of general interest in modelling collision-based processes involving statistically distributed elements.
ERIC Educational Resources Information Center
Novak, Elena; Johnson, Tristan E.; Tenenbaum, Gershon; Shute, Valerie J.
2016-01-01
The study explored instructional benefits of a storyline gaming characteristic (GC) on learning effectiveness, efficiency, and engagement with the use of an online instructional simulation for graduate students in an introductory statistics course. A storyline is a game-design element that connects scenes with the educational content. In order to…
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
Blanc, Élodie
2017-01-26
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Élodie
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA
Kelly, Brendan J.; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D.; Collman, Ronald G.; Bushman, Frederic D.; Li, Hongzhe
2015-01-01
Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. Results: We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. Availability and implementation: http://github.com/brendankelly/micropower. Contact: brendank@mail.med.upenn.edu or hongzhe@upenn.edu PMID:25819674
Improved Statistics for Genome-Wide Interaction Analysis
Ueki, Masao; Cordell, Heather J.
2012-01-01
Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al.'s originally-proposed statistics, on account of the inflated error rate that can result. PMID:22496670
TORABIPOUR, Amin; ZERAATI, Hojjat; ARAB, Mohammad; RASHIDIAN, Arash; AKBARI SARI, Ali; SARZAIEM, Mahmuod Reza
2016-01-01
Background: To determine the hospital required beds using stochastic simulation approach in cardiac surgery departments. Methods: This study was performed from Mar 2011 to Jul 2012 in three phases: First, collection data from 649 patients in cardiac surgery departments of two large teaching hospitals (in Tehran, Iran). Second, statistical analysis and formulate a multivariate linier regression model to determine factors that affect patient's length of stay. Third, develop a stochastic simulation system (from admission to discharge) based on key parameters to estimate required bed capacity. Results: Current cardiac surgery department with 33 beds can only admit patients in 90.7% of days. (4535 d) and will be required to over the 33 beds only in 9.3% of days (efficient cut off point). According to simulation method, studied cardiac surgery department will requires 41–52 beds for admission of all patients in the 12 next years. Finally, one-day reduction of length of stay lead to decrease need for two hospital beds annually. Conclusion: Variation of length of stay and its affecting factors can affect required beds. Statistic and stochastic simulation model are applied and useful methods to estimate and manage hospital beds based on key hospital parameters. PMID:27957466
Fried, Ronna; Surman, Craig; Hammerness, Paul; Petty, Carter; Faraone, Stephen; Hyder, Laran; Westerberg, Diana; Small, Jacqueline; Corkum, Lyndsey; Claudat, Kim; Biederman, Joseph
2012-12-30
Despite an extant literature documenting that adults with attention-deficit/hyperactivity disorder (ADHD) are at increased risk for significant difficulties in the workplace, there is little documentation of the underlying factors associated with these impairments. The main aim of this study was to examine specific deficiencies associated with ADHD on workplace performance in a simulated workplace laboratory relative to controls. Participants were 56 non-medicated young adults with DSM-IV ADHD and 63 age- and sex-matched controls without ADHD. Participants spent 10h in a workplace simulation laboratory. Areas assessed included: (1) simulated tasks documented in a government report (SCANS) often required in workplace settings (taxing vigilance; planning; cooperation; attention to detail), (2) observer ratings, and (3) self-reports. Robust findings were found in the statistically significant differences on self-report of ADHD symptoms found between participants with ADHD and controls during all workplace tasks and periods of the workday. Task performance was found to be deficient in a small number of areas, and there were a few statistically significant differences identified by observer ratings. Symptoms reported by participants with ADHD in the simulation including internal restlessness, intolerance of boredom and difficulty maintaining vigilance were significant and could adversely impact workplace performance over the long-term. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Statistical Emulator for Expensive Classification Simulators
NASA Technical Reports Server (NTRS)
Ross, Jerret; Samareh, Jamshid A.
2016-01-01
Expensive simulators prevent any kind of meaningful analysis to be performed on the phenomena they model. To get around this problem the concept of using a statistical emulator as a surrogate representation of the simulator was introduced in the 1980's. Presently, simulators have become more and more complex and as a result running a single example on these simulators is very expensive and can take days to weeks or even months. Many new techniques have been introduced, termed criteria, which sequentially select the next best (most informative to the emulator) point that should be run on the simulator. These criteria methods allow for the creation of an emulator with only a small number of simulator runs. We follow and extend this framework to expensive classification simulators.
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Zeqin; Jhoja, Jaspreet; Klein, Jackson; Wang, Xu; Liu, Amy; Flueckiger, Jonas; Pond, James; Chrostowski, Lukas
2017-05-01
This work develops an enhanced Monte Carlo (MC) simulation methodology to predict the impacts of layout-dependent correlated manufacturing variations on the performance of photonics integrated circuits (PICs). First, to enable such performance prediction, we demonstrate a simple method with sub-nanometer accuracy to characterize photonics manufacturing variations, where the width and height for a fabricated waveguide can be extracted from the spectral response of a racetrack resonator. By measuring the spectral responses for a large number of identical resonators spread over a wafer, statistical results for the variations of waveguide width and height can be obtained. Second, we develop models for the layout-dependent enhanced MC simulation. Our models use netlist extraction to transfer physical layouts into circuit simulators. Spatially correlated physical variations across the PICs are simulated on a discrete grid and are mapped to each circuit component, so that the performance for each component can be updated according to its obtained variations, and therefore, circuit simulations take the correlated variations between components into account. The simulation flow and theoretical models for our layout-dependent enhanced MC simulation are detailed in this paper. As examples, several ring-resonator filter circuits are studied using the developed enhanced MC simulation, and statistical results from the simulations can predict both common-mode and differential-mode variations of the circuit performance.
Properties of different selection signature statistics and a new strategy for combining them.
Ma, Y; Ding, X; Qanbari, S; Weigend, S; Zhang, Q; Simianer, H
2015-11-01
Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
NASA Astrophysics Data System (ADS)
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.
Constraining the noise-free distribution of halo spin parameters
NASA Astrophysics Data System (ADS)
Benson, Andrew J.
2017-11-01
Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.
Kappa statistic for clustered dichotomous responses from physicians and patients.
Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L; Cai, Jianwen
2013-09-20
The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared with the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. We present an example of an application to a coronary heart disease prevention study. Copyright © 2013 John Wiley & Sons, Ltd.
Minică, Camelia C; Dolan, Conor V; Hottenga, Jouke-Jan; Willemsen, Gonneke; Vink, Jacqueline M; Boomsma, Dorret I
2013-05-01
When phenotypic, but no genotypic data are available for relatives of participants in genetic association studies, previous research has shown that family-based imputed genotypes can boost the statistical power when included in such studies. Here, using simulations, we compared the performance of two statistical approaches suitable to model imputed genotype data: the mixture approach, which involves the full distribution of the imputed genotypes and the dosage approach, where the mean of the conditional distribution features as the imputed genotype. Simulations were run by varying sibship size, size of the phenotypic correlations among siblings, imputation accuracy and minor allele frequency of the causal SNP. Furthermore, as imputing sibling data and extending the model to include sibships of size two or greater requires modeling the familial covariance matrix, we inquired whether model misspecification affects power. Finally, the results obtained via simulations were empirically verified in two datasets with continuous phenotype data (height) and with a dichotomous phenotype (smoking initiation). Across the settings considered, the mixture and the dosage approach are equally powerful and both produce unbiased parameter estimates. In addition, the likelihood-ratio test in the linear mixed model appears to be robust to the considered misspecification in the background covariance structure, given low to moderate phenotypic correlations among siblings. Empirical results show that the inclusion in association analysis of imputed sibling genotypes does not always result in larger test statistic. The actual test statistic may drop in value due to small effect sizes. That is, if the power benefit is small, that the change in distribution of the test statistic under the alternative is relatively small, the probability is greater of obtaining a smaller test statistic. As the genetic effects are typically hypothesized to be small, in practice, the decision on whether family-based imputation could be used as a means to increase power should be informed by prior power calculations and by the consideration of the background correlation.
Pattern statistics on Markov chains and sensitivity to parameter estimation
Nuel, Grégory
2006-01-01
Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916
Pattern statistics on Markov chains and sensitivity to parameter estimation.
Nuel, Grégory
2006-10-17
In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
New heterogeneous test statistics for the unbalanced fixed-effect nested design.
Guo, Jiin-Huarng; Billard, L; Luh, Wei-Ming
2011-05-01
When the underlying variances are unknown or/and unequal, using the conventional F test is problematic in the two-factor hierarchical data structure. Prompted by the approximate test statistics (Welch and Alexander-Govern methods), the authors develop four new heterogeneous test statistics to test factor A and factor B nested within A for the unbalanced fixed-effect two-stage nested design under variance heterogeneity. The actual significance levels and statistical power of the test statistics were compared in a simulation study. The results show that the proposed procedures maintain better Type I error rate control and have greater statistical power than those obtained by the conventional F test in various conditions. Therefore, the proposed test statistics are recommended in terms of robustness and easy implementation. ©2010 The British Psychological Society.
Mapping the spatial distribution of Aedes aegypti and Aedes albopictus.
Ding, Fangyu; Fu, Jingying; Jiang, Dong; Hao, Mengmeng; Lin, Gang
2018-02-01
Mosquito-borne infectious diseases, such as Rift Valley fever, Dengue, Chikungunya and Zika, have caused mass human death with the transnational expansion fueled by economic globalization. Simulating the distribution of the disease vectors is of great importance in formulating public health planning and disease control strategies. In the present study, we simulated the global distribution of Aedes aegypti and Aedes albopictus at a 5×5km spatial resolution with high-dimensional multidisciplinary datasets and machine learning methods Three relatively popular and robust machine learning models, including support vector machine (SVM), gradient boosting machine (GBM) and random forest (RF), were used. During the fine-tuning process based on training datasets of A. aegypti and A. albopictus, RF models achieved the highest performance with an area under the curve (AUC) of 0.973 and 0.974, respectively, followed by GBM (AUC of 0.971 and 0.972, respectively) and SVM (AUC of 0.963 and 0.964, respectively) models. The simulation difference between RF and GBM models was not statistically significant (p>0.05) based on the validation datasets, whereas statistically significant differences (p<0.05) were observed for RF and GBM simulations compared with SVM simulations. From the simulated maps derived from RF models, we observed that the distribution of A. albopictus was wider than that of A. aegypti along a latitudinal gradient. The discriminatory power of each factor in simulating the global distribution of the two species was also analyzed. Our results provided fundamental information for further study on disease transmission simulation and risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.
Libiger, Ondrej; Schork, Nicholas J.
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061
Statistical inference involving binomial and negative binomial parameters.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2009-05-01
Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.
Simulation and assimilation of satellite altimeter data at the oceanic mesoscale
NASA Technical Reports Server (NTRS)
Demay, P.; Robinson, A. R.
1984-01-01
An improved "objective analysis' technique is used along with an altimeter signal statistical model, an altimeter noise statistical model, an orbital model, and synoptic surface current maps in the POLYMODE-SDE area, to evaluate the performance of various observational strategies in catching the mesoscale variability at mid-latitudes. In particular, simulated repetitive nominal orbits of ERS-1, TOPEX, and SPOT/POSEIDON are examined. Results show the critical importance of existence of a subcycle, scanning in either direction. Moreover, long repeat cycles ( 20 days) and short cross-track distances ( 300 km) seem preferable, since they match mesoscale statistics. Another goal of the study is to prepare and discuss sea-surface height (SSH) assimilation in quasigeostrophic models. Restored SSH maps are shown to meet that purpose, if an efficient extrapolation method or deep in-situ data (floats) are used on the vertical to start and update the model.
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809
Numerical study of axial turbulent flow over long cylinders
NASA Technical Reports Server (NTRS)
Neves, J. C.; Moin, P.; Moser, R. D.
1991-01-01
The effects of transverse curvature are investigated by means of direct numerical simulations of turbulent axial flow over cylinders. Two cases of Reynolds number of about 3400 and layer-thickness-to-cylinder-radius ratios of 5 and 11 were simulated. All essential turbulence scales were resolved in both calculations, and a large number of turbulence statistics were computed. The results are compared with the plane channel results of Kim et al. (1987) and with experiments. With transverse curvature the skin friction coefficient increases and the turbulence statistics, when scaled with wall units, are lower than in the plane channel. The momentum equation provides a scaling that collapses the cylinder statistics, and allows the results to be interpreted in light of the plane channel flow. The azimuthal and radial length scales of the structures in the flow are of the order of the cylinder diameter. Boomerang-shaped structures with large spanwise length scales were observed in the flow.
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.
Velocity bias in the distribution of dark matter halos
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Desjacques, Vincent; Seljak, Uroš
2015-12-01
The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc., the coupling in the momentum conservation equation for the biased tracers must be modified. Our new formulation predicts the constancy in time of any statistical halo velocity bias present in the initial conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved halo population in N -body simulations. We establish that the initial simulated halo density and velocity statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias. We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay expected in the standard approach.
Assessment of six dissimilarity metrics for climate analogues
NASA Astrophysics Data System (ADS)
Grenier, Patrick; Parent, Annie-Claude; Huard, David; Anctil, François; Chaumont, Diane
2013-04-01
Spatial analogue techniques consist in identifying locations whose recent-past climate is similar in some aspects to the future climate anticipated at a reference location. When identifying analogues, one key step is the quantification of the dissimilarity between two climates separated in time and space, which involves the choice of a metric. In this communication, spatial analogues and their usefulness are briefly discussed. Next, six metrics are presented (the standardized Euclidean distance, the Kolmogorov-Smirnov statistic, the nearest-neighbor distance, the Zech-Aslan energy statistic, the Friedman-Rafsky runs statistic and the Kullback-Leibler divergence), along with a set of criteria used for their assessment. The related case study involves the use of numerical simulations performed with the Canadian Regional Climate Model (CRCM-v4.2.3), from which three annual indicators (total precipitation, heating degree-days and cooling degree-days) are calculated over 30-year periods (1971-2000 and 2041-2070). Results indicate that the six metrics identify comparable analogue regions at a relatively large scale, but best analogues may differ substantially. For best analogues, it is also shown that the uncertainty stemming from the metric choice does generally not exceed that stemming from the simulation or model choice. A synthesis of the advantages and drawbacks of each metric is finally presented, in which the Zech-Aslan energy statistic stands out as the most recommended metric for analogue studies, whereas the Friedman-Rafsky runs statistic is the least recommended, based on this case study.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
Forest-stressing climate factors on the US West Coast as simulated by CMIP5
NASA Astrophysics Data System (ADS)
Rupp, D. E.; Buotte, P.; Hicke, J. A.; Law, B. E.; Mote, P.; Sharp, D.; Zhenlin, Y.
2013-12-01
The rate of forest mortality has increased significantly in western North America since the 1970s. Causes include insect attacks, fire, and soil water deficit, all of which are interdependent. We first identify climate factors that stress forests by reducing photosynthesis and hydraulic conductance, and by promoting bark beetle infestation and wildfire. Examples of such factors may be two consecutive years of extreme summer precipitation deficit, or prolonged vapor pressure deficit exceeding some threshold. Second, we quantify the frequency and magnitude of these climate factors in 20th and 21st century climates, as simulated by global climate models (GCMs) in Coupled Model Intercomparison Project phase 5 (CMIP5), of Washington, Oregon, and California in the western US. Both ';raw' (i.e., original spatial resolution) and statistically downscaled simulations are considered, the latter generated using the Multivariate Adaptive Constructed Analogs (MACA) method. CMIP5 models that most faithfully reproduce the observed historical statistics of these climate factors are identified. Furthermore, significant changes in the statistics between the 20th and 21st centuries are reported. A subsequent task will be to use a selected subset of MACA-downscaled CMIP5 simulations to force the Community Land Model, version 4.5 (CLM 4.5). CLM 4.5 will be modified to better simulate forest mortality and to couple CLM with an economic model. The ultimate goal of this study is to understand the interactions and the feedbacks by which the market and the forest ecosystem influence each other.
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh
2013-01-01
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.
Simulation and study of small numbers of random events
NASA Technical Reports Server (NTRS)
Shelton, R. D.
1986-01-01
Random events were simulated by computer and subjected to various statistical methods to extract important parameters. Various forms of curve fitting were explored, such as least squares, least distance from a line, maximum likelihood. Problems considered were dead time, exponential decay, and spectrum extraction from cosmic ray data using binned data and data from individual events. Computer programs, mostly of an iterative nature, were developed to do these simulations and extractions and are partially listed as appendices. The mathematical basis for the compuer programs is given.
Granato, Gregory E.; Jones, Susan C.
2015-01-01
Results of this study indicate the potential benefits of the multi-decade simulations that SELDM provides because these simulations quantify risks and uncertainties that affect decisions made with available data and statistics. Results of the SELDM simulations indicate that the WQABI criteria concentrations may be too stringent for evaluating the stormwater quality in receiving streams, highway runoff, and BMP discharges; especially with the substantial uncertainties inherent in selecting representative data.
User's manual for the Simulated Life Analysis of Vehicle Elements (SLAVE) model
NASA Technical Reports Server (NTRS)
Paul, D. D., Jr.
1972-01-01
The simulated life analysis of vehicle elements model was designed to perform statistical simulation studies for any constant loss rate. The outputs of the model consist of the total number of stages required, stages successfully completing their lifetime, and average stage flight life. This report contains a complete description of the model. Users' instructions and interpretation of input and output data are presented such that a user with little or no prior programming knowledge can successfully implement the program.
Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics
Dowding, Irene; Haufe, Stefan
2018-01-01
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. PMID:29615885
ERIC Educational Resources Information Center
Tay, Louis; Drasgow, Fritz
2012-01-01
Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…
Data Mining and Complex Problems: Case Study in Composite Materials
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Marin, Mario
2009-01-01
Data mining is defined as the discovery of useful, possibly unexpected, patterns and relationships in data using statistical and non-statistical techniques in order to develop schemes for decision and policy making. Data mining can be used to discover the sources and causes of problems in complex systems. In addition, data mining can support simulation strategies by finding the different constants and parameters to be used in the development of simulation models. This paper introduces a framework for data mining and its application to complex problems. To further explain some of the concepts outlined in this paper, the potential application to the NASA Shuttle Reinforced Carbon-Carbon structures and genetic programming is used as an illustration.
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.
Simulation of Medical Imaging Systems: Emission and Transmission Tomography
NASA Astrophysics Data System (ADS)
Harrison, Robert L.
Simulation is an important tool in medical imaging research. In patient scans the true underlying anatomy and physiology is unknown. We have no way of knowing in a given scan how various factors are confounding the data: statistical noise; biological variability; patient motion; scattered radiation, dead time, and other data contaminants. Simulation allows us to isolate a single factor of interest, for instance when researchers perform multiple simulations of the same imaging situation to determine the effect of statistical noise or biological variability. Simulations are also increasingly used as a design optimization tool for tomographic scanners. This article gives an overview of the mechanics of emission and transmission tomography simulation, reviews some of the publicly available simulation tools, and discusses trade-offs between the accuracy and efficiency of simulations.
AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.
2016-12-20
All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less
Stawarczyk, Bogna; Ozcan, Mutlu; Roos, Malgorzata; Trottmann, Albert; Hämmerle, Christoph H F
2011-01-01
This study determined the fracture load of zirconia crowns veneered with four overpressed and four layered ceramics after chewing simulation. The veneered zirconia crowns were cemented and subjected to chewing cycling. Subsequently, the specimens were loaded at an angle of 45° in a Universal Testing Machine to determine the fracture load. One-way ANOVA, followed by a post-hoc Scheffé test, t-test and Weibull statistic were performed. Overpressed crowns showed significantly lower fracture load (543-577 N) compared to layered ones (805-1067 N). No statistical difference was found between the fracture loads within the overpressed group. Within the layered groups, LV (1067 N) presented significantly higher results compared to LC (805 N). The mean values of all other groups were not significantly different. Single zirconia crowns veneered with overpressed ceramics exhibited lower fracture load than those of the layered ones after chewing simulation.
Statistics of backscatter radar return from vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Chen, K. S.; Fung, A. K.
1992-01-01
The statistical characteristics of radar return from vegetation targets are investigated through a simulation study based upon the first-order scattered field. For simulation purposes, the vegetation targets are modeled as a layer of randomly oriented and spaced finite cylinders, needles, or discs, or a combination of them. The finite cylinder is used to represent a branch or a trunk, the needle for a stem or a coniferous leaf, and the disc for a decidous leaf. For a plane wave illuminating a vegetation canopy, simulation results show that the signal returned from a layer of disc- or needle-shaped leaves follows the Gamma distribution, and that the signal returned from a layer of branches resembles the log normal distribution. The Gamma distribution also represents the signal returned from a layer of a mixture of branches and leaves regardless of the leaf shapes. Results also indicate that the polarization state does not have a significant impact on signal distribution.
Comparison of Actual Surgical Outcomes and 3D Surgical Simulations
Tucker, Scott; Cevidanes, Lucia; Styner, Martin; Kim, Hyungmin; Reyes, Mauricio; Proffit, William; Turvey, Timothy
2009-01-01
Purpose The advent of imaging software programs have proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3D surgical simulation still needs to be tested. This study was conducted to determine if the virtual surgery performed on 3D models constructed from Cone-beam CT (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. Methods Construction of pre- and post-surgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had one-piece maxillary advancement surgery was performed. The post-surgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling T-test were used to assess the differences between simulated and actual surgical outcomes. Results For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing two- and one-jaw surgeries. Conclusions Virtual surgical methods were reliably reproduced, oral surgery residents could benefit from virtual surgical training, and computer simulation has the potential to increase predictability in the operating room. PMID:20591553
A Monte Carlo Simulation Study of the Reliability of Intraindividual Variability
Estabrook, Ryne; Grimm, Kevin J.; Bowles, Ryan P.
2012-01-01
Recent research has seen intraindividual variability (IIV) become a useful technique to incorporate trial-to-trial variability into many types of psychological studies. IIV as measured by individual standard deviations (ISDs) has shown unique prediction to several types of positive and negative outcomes (Ram, Rabbit, Stollery, & Nesselroade, 2005). One unanswered question regarding measuring intraindividual variability is its reliability and the conditions under which optimal reliability is achieved. Monte Carlo simulation studies were conducted to determine the reliability of the ISD compared to the intraindividual mean. The results indicate that ISDs generally have poor reliability and are sensitive to insufficient measurement occasions, poor test reliability, and unfavorable amounts and distributions of variability in the population. Secondary analysis of psychological data shows that use of individual standard deviations in unfavorable conditions leads to a marked reduction in statistical power, although careful adherence to underlying statistical assumptions allows their use as a basic research tool. PMID:22268793
Comments of statistical issue in numerical modeling for underground nuclear test monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, W.L.; Anderson, K.K.
1993-03-01
The Symposium concluded with prepared summaries by four experts in the involved disciplines. These experts made no mention of statistics and/or the statistical content of issues. The first author contributed an extemporaneous statement at the Symposium because there are important issues associated with conducting and evaluating numerical modeling that are familiar to statisticians and often treated successfully by them. This note expands upon these extemporaneous remarks. Statistical ideas may be helpful in resolving some numerical modeling issues. Specifically, we comment first on the role of statistical design/analysis in the quantification process to answer the question ``what do we know aboutmore » the numerical modeling of underground nuclear tests?`` and second on the peculiar nature of uncertainty analysis for situations involving numerical modeling. The simulations described in the workshop, though associated with topic areas, were basically sets of examples. Each simulation was tuned towards agreeing with either empirical evidence or an expert`s opinion of what empirical evidence would be. While the discussions were reasonable, whether the embellishments were correct or a forced fitting of reality is unclear and illustrates that ``simulation is easy.`` We also suggest that these examples of simulation are typical and the questions concerning the legitimacy and the role of knowing the reality are fair, in general, with respect to simulation. The answers will help us understand why ``prediction is difficult.``« less
Statistical representation of a spray as a point process
NASA Astrophysics Data System (ADS)
Subramaniam, S.
2000-10-01
The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.
NASA Astrophysics Data System (ADS)
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh<1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles' motion underneath plasma membranes is not purely random, but biased towards the membrane.
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane. PMID:26675312
Comparative testing of pulse oximeter probes.
van Oostrom, Johannes H; Melker, Richard J
2004-05-01
The testing of pulse oximeter probes is generally limited to the integrity of the electrical circuit and does not include the optical properties of the probes. Few pulse oximeter testers evaluate the accuracy of both the monitor and the probe. We designed a study to compare the accuracy of nonproprietary probes (OSS Medical) designed for use with Nellcor, Datex-Ohmeda, and Criticare pulse oximeter monitors with that of their corresponding proprietary probes by using a commercial off-the-shelf pulse oximeter tester (Index). The Index pulse oximeter tester does include testing of the optical properties of the pulse oximeter probes. The pulse oximeter tester was given a controlled input that simulated acute apnea. Desaturation curves were automatically recorded from the pulse oximeter monitors with a data-collection computer. Comparisons between equivalent proprietary and nonproprietary probes were performed. Data were analyzed by using univariate and multivariate general linear model analysis. Five OSS Medical probe models were statistically better than the equivalent proprietary probes. The remainder of the probes were statistically similar. Comparative and simulation studies can have significant advantages over human studies because they are cost-effective, evaluate equipment in a clinically relevant scenario, and pose no risk to patients, but they are limited by the realism of the simulation. We studied the performance of pulse oximeter probes in a simulated environment. Our results show significant differences between some probes that affect the accuracy of measurement.
Statistical Compression for Climate Model Output
NASA Astrophysics Data System (ADS)
Hammerling, D.; Guinness, J.; Soh, Y. J.
2017-12-01
Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.
Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.
2005-06-01
Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-03-01
This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.
1988-12-01
a computer simulation for a small value of r .................................... 25 Figure 5. A typical pulse shape for r = 8192...26 Figure 6. Pulse duration as function of r from the statistical simulations , assuming a spontaneous lifetime of 1 s...scaling factor from the statistical simulations ................. 29 Figure 10. Basic pulse characteristics and associated Bloch vector angles for the
A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations
NASA Technical Reports Server (NTRS)
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2017-01-01
We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.
The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic
NASA Technical Reports Server (NTRS)
Armstrong, Curtis D.; Humphreys, William M.
2003-01-01
We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.
NASA Astrophysics Data System (ADS)
Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad
2016-09-01
Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Yixing; Adams, Brian M.; Witkowski, Walter R.
2011-04-01
The CASL Level 2 Milestone VUQ.Y1.03, 'Enable statistical sensitivity and UQ demonstrations for VERA,' was successfully completed in March 2011. The VUQ focus area led this effort, in close partnership with AMA, and with support from VRI. DAKOTA was coupled to VIPRE-W thermal-hydraulics simulations representing reactors of interest to address crud-related challenge problems in order to understand the sensitivity and uncertainty in simulation outputs with respect to uncertain operating and model form parameters. This report summarizes work coupling the software tools, characterizing uncertainties, selecting sensitivity and uncertainty quantification algorithms, and analyzing the results of iterative studies. These demonstration studies focusedmore » on sensitivity and uncertainty of mass evaporation rate calculated by VIPRE-W, a key predictor for crud-induced power shift (CIPS).« less
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Li, Zheng; Levin, Deborah A.
2011-05-01
In this work, we propose a new heat accommodation model to simulate freely expanding homogeneous condensation flows of gaseous carbon dioxide using a new approach, the statistical Bhatnagar-Gross-Krook method. The motivation for the present work comes from the earlier work of Li et al. [J. Phys. Chem. 114, 5276 (2010)] in which condensation models were proposed and used in the direct simulation Monte Carlo method to simulate the flow of carbon dioxide from supersonic expansions of small nozzles into near-vacuum conditions. Simulations conducted for stagnation pressures of one and three bar were compared with the measurements of gas and cluster number densities, cluster size, and carbon dioxide rotational temperature obtained by Ramos et al. [Phys. Rev. A 72, 3204 (2005)]. Due to the high computational cost of direct simulation Monte Carlo method, comparison between simulations and data could only be performed for these stagnation pressures, with good agreement obtained beyond the condensation onset point, in the farfield. As the stagnation pressure increases, the degree of condensation also increases; therefore, to improve the modeling of condensation onset, one must be able to simulate higher stagnation pressures. In simulations of an expanding flow of argon through a nozzle, Kumar et al. [AIAA J. 48, 1531 (2010)] found that the statistical Bhatnagar-Gross-Krook method provides the same accuracy as direct simulation Monte Carlo method, but, at one half of the computational cost. In this work, the statistical Bhatnagar-Gross-Krook method was modified to account for internal degrees of freedom for multi-species polyatomic gases. With the computational approach in hand, we developed and tested a new heat accommodation model for a polyatomic system to properly account for the heat release of condensation. We then developed condensation models in the framework of the statistical Bhatnagar-Gross-Krook method. Simulations were found to agree well with the experiment for all stagnation pressure cases (1-5 bar), validating the accuracy of the Bhatnagar-Gross-Krook based condensation model in capturing the physics of condensation.
ERIC Educational Resources Information Center
Carr, Maxine; Manning, Patricia
This experiment investigated two problems: Can attitudes be affected as a result of simulation games in a classroom setting? Can these attitudinal changes, or lack thereof, be statistically assessed. The two purposes of the study were: (1) Exposure and involvement of under-graduate education students to basic options and decisions presented to…
A New Approach to Monte Carlo Simulations in Statistical Physics
NASA Astrophysics Data System (ADS)
Landau, David P.
2002-08-01
Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
1993-08-01
subtitled "Simulation Data," consists of detailed infonrnation on the design parmneter variations tested, subsequent statistical analyses conducted...used with confidence during the design process. The data quality can be examined in various forms such as statistical analyses of measure of merit data...merit, such as time to capture or nmaximurn pitch rate, can be calculated from the simulation time history data. Statistical techniques are then used
Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.
2009-01-01
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.
Capillary fluctuations of surface steps: An atomistic simulation study for the model Cu(111) system
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
2017-10-01
Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of steps on the surface of a model metal system. The fluctuation spectrum, characterized by the wave number (k ) dependence of the mean squared capillary-wave amplitudes and associated relaxation times, is calculated for 〈110 〉 and 〈112 〉 steps on the {111 } surface of elemental copper near the melting temperature of the classical potential model considered. Step stiffnesses are derived from the MD results, yielding values from the largest system sizes of (37 ±1 ) meV/A ˚ for the different line orientations, implying that the stiffness is isotropic within the statistical precision of the calculations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over the range of wave numbers investigated, displaying a k dependence consistent with kinetics governed by step-edge mediated diffusion. The values for step stiffness derived from these simulations are compared to step free energies for the same system and temperature obtained in a recent MD-based thermodynamic-integration (TI) study [Freitas, Frolov, and Asta, Phys. Rev. B 95, 155444 (2017), 10.1103/PhysRevB.95.155444]. Results from the capillary-fluctuation analysis and TI calculations yield statistically significant differences that are discussed within the framework of statistical-mechanical theories for configurational contributions to step free energies.
4P: fast computing of population genetics statistics from large DNA polymorphism panels
Benazzo, Andrea; Panziera, Alex; Bertorelle, Giorgio
2015-01-01
Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand-alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations. PMID:25628874
NASA Astrophysics Data System (ADS)
Protassov, R.; van Dyk, D.; Connors, A.; Kashyap, V.; Siemiginowska, A.
2000-12-01
We examine the x-ray spectrum of the afterglow of GRB 970508, analyzed for Fe line emission by Piro et al (1999, ApJL, 514, L73). This is a difficult and extremely important measurement: the detection of x-ray afterglows from γ -ray bursts is at best a tricky business, relying on near-real satellite time response to unpredictable events; and a great deal of luck in catching a burst bright enough for a useful spectral analysis. Detecting a clear atomic (or cyclotron) line in the generally smooth and featureless afterglow (or burst) emission not only gives one of the few very specific keys to the physics local to the emission region, but also provides clues or confirmation of its distance (via redshift). Unfortunately, neither the likelihood ratio test or the related F-statistic commonly used to detect spectral lines adhere to their nominal Chi square and F-distributions. Thus we begin by calibrating the F-statistic used in Piro et al (1999, ApJL, 514, L73) via a simulation study. The simulation study relies on a completely specified source model, i.e. we do Monte Carlo simulations with all model parameters fixed (so--called ``parametric bootstrapping''). Second, we employ the method of posterior predictive p-values to calibrate a LRT statistic while accounting for the uncertainty in the parameters of the source model. Our analysis reveals evidence for the Fe K line.
Simulation for emergency nurses (SIREN): A quasi-experimental study.
Boyde, Mary; Cooper, Emily; Putland, Hannah; Stanton, Rikki; Harding, Christie; Learmont, Ben; Thomas, Clare; Porter, Jade; Thompson, Andrea; Nicholls, Louise
2018-06-05
Within nursing education, simulation has been recognised as an effective learning strategy. Embedding simulation within clinical units has the potential to enhance patient safety and improve clinical outcomes. However it is important to evaluate the effectiveness of this educational technique to support the actual value and effectiveness. This study aimed to implement and evaluate an innovative simulation experience for registered nurses. A high-fidelity simulation focusing on nursing assessment was conducted with 50 Registered Nurses in an Emergency Department (ED) at a large tertiary referral hospital. Two questionnaires were completed pre and post simulation to assess anxiety related to participating in the simulation, and self-efficacy in patient assessment. Participant satisfaction and self-confidence in learning was assessed post simulation. Additionally a documentation audit from the patient's electronic chart was completed to review documentation entries before and after participation in the simulation. Anxiety scores decreased significantly from pre (M = 38.56, SD = 9.87) to post (M = 33.54, SD = 8.99), t(49) = 4.273, p < 0.001. There was a statistically significant increase in self-efficacy scores from pre (M = 195.16, SD = 28.09) to post (M = 214.12, SD =25.77), t(49) = 5.072, p < 0.001. ED nurses were highly satisfied with their simulation training and they were in agreement with the statements about self-confidence in learning. There was a statistically significant increase in two components of the documentation scores; initial clinical handover increased from pre (M = 7.88, SD = 1.76) to post (M = 8.79, SD =1.22), t(41) = 3.41, p < 0.001 and indicators of urgent illness increased from pre (M = 7.33, SD = 1.95) to post (M = 8.10, SD = 1.45), t(41) =2.27, p = 0.028. This study has demonstrated that a high fidelity simulation decreased participants' anxiety, increased self-efficiency in patient assessment, and improved documentation in patient records. Additionally ED nurses were highly satisfied with the simulation training. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.
Atabi, Farideh; Jafarigol, Farzaneh; Moattar, Faramarz; Nouri, Jafar
2016-09-01
In this study, concentration of SO2 from a gas refinery located in complex terrain was calculated by the steady-state, AERMOD model, and nonsteady-state CALPUFF model. First, in four seasons, SO2 concentrations emitted from 16 refinery stacks, in nine receptors, were obtained by field measurements, and then the performance of both models was evaluated. Then, the simulated results for SO2 ambient concentrations made by each model were compared with the results of the observed concentrations, and model results were compared among themselves. The evaluation of the two models to simulate SO2 concentrations was based on the statistical analysis and Q-Q plots. Review of statistical parameters and Q-Q plots has shown that, according to the evaluation of estimations made, performance of both models to simulate the concentration of SO2 in the region can be considered acceptable. The results showed the AERMOD composite ratio between simulated values made by models and the observed values in various receptors for all four average times is 0.72, whereas CALPUFF's ratio is 0.89. However, in the complex conditions of topography, CALPUFF offers better agreement with the observed concentrations.
Modelling Agent-Environment Interaction in Multi-Agent Simulations with Affordances
2010-04-01
allow operations analysts to conduct statistical studies comparing the effectiveness of different systems or tactics in different scenarios. 11 Instead of...in a Monte-Carlo batch mode, producing statistical outcomes for particular measures of effectiveness. They typically also run at many times faster...Combined with annotated signs, the affordances allowed the traveller agents to find their way around the virtual airport and to conduct their business
Jelacic, Srdjan; Bowdle, Andrew; Togashi, Kei; VonHomeyer, Peter
2013-08-01
The authors evaluated the educational benefits of using a first-generation HeartWorks simulator to teach senior anesthesiology residents basic echocardiography skills. Prospective observational study. A single academic medical center (teaching hospital). Thirty-seven senior (fourth-year) anesthesiology residents participated in this study. Groups of 3 senior anesthesiology residents participated in a single 3-hour tutorial in the simulation laboratory in the authors' institution during their cardiothoracic anesthesiology rotation. A cardiothoracic anesthesiology faculty member demonstrated the use of the transesophageal echocardiography (TEE) simulator and instructed the residents on obtaining standard TEE views of normal anatomy. Prior to the laboratory session, the residents took an online multiple-choice pretest with 25 questions related to safety, probe manipulation, clinical application, and pathology, which was accompanied by echo images of normal cardiac anatomy and video clips of pathology. Three to four weeks after the TEE tutorial, the residents completed an online post-test and evaluation of the teaching session. There was a statistically significant increase in knowledge of normal echocardiographic anatomy (p = 0.04), with an average improvement in normal echocardiographic anatomy scores of 15%. Virtual reality TEE simulation technology was endorsed strongly by residents, produced a statistically significant improvement in knowledge of normal echocardiographic anatomy, and could be effective for teaching basic echocardiography to anesthesiology residents. Copyright © 2013 Elsevier Inc. All rights reserved.
Finite-data-size study on practical universal blind quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Li, Qiong
2018-07-01
The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.
Kwon, Deukwoo; Reis, Isildinha M
2015-08-12
When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.
Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.
Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji
2016-07-01
The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.
Counts-in-cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations
NASA Astrophysics Data System (ADS)
Berrier, Heather D.; Barton, Elizabeth J.; Berrier, Joel C.; Bullock, James S.; Zentner, Andrew R.; Wechsler, Risa H.
2011-01-01
Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek
2012-01-01
As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek
2013-01-01
As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495
Direct Numerical Simulation of turbulent heat transfer up to Reτ = 2000
NASA Astrophysics Data System (ADS)
Hoyas, Sergio; Pérez-Quiles, Jezabel; Lluesma-Rodríguez, Federico
2017-11-01
We present a new set of direct numerical simulations of turbulent heat transfer in a channel flow for a Prandtl number of 0.71 and a friction Reynolds number of 2000. Mixed boundary conditions, i.e., wall temperature is time independent and varies linearly along streamwise component, have been used as boundary conditions for the thermal field. The effect of the size of the box in the one point statistics of the thermal field, and the kinetic energy, dissipation and turbulent budgets has been studied, showing that a domain with streamwise and spanwise sizes of 4 πh and 2 πh, where h is the channel half-height, is large enough to reproduce the one point statistics of larger boxes. The scaling of the previous quantities with respect to the Reynolds number has been also studied using a new dataset of simulations at smaller Reynolds number, finding two different scales for the inner and outer layers of the flow. Funded by project ENE2015-71333-R of the Spanish Ministerio de Economía y Competitividad.
Statistical modelling as an aid to the design of retail sampling plans for mycotoxins in food.
MacArthur, Roy; MacDonald, Susan; Brereton, Paul; Murray, Alistair
2006-01-01
A study has been carried out to assess appropriate statistical models for use in evaluating retail sampling plans for the determination of mycotoxins in food. A compound gamma model was found to be a suitable fit. A simulation model based on the compound gamma model was used to produce operating characteristic curves for a range of parameters relevant to retail sampling. The model was also used to estimate the minimum number of increments necessary to minimize the overall measurement uncertainty. Simulation results showed that measurements based on retail samples (for which the maximum number of increments is constrained by cost) may produce fit-for-purpose results for the measurement of ochratoxin A in dried fruit, but are unlikely to do so for the measurement of aflatoxin B1 in pistachio nuts. In order to produce a more accurate simulation, further work is required to determine the degree of heterogeneity associated with batches of food products. With appropriate parameterization in terms of physical and biological characteristics, the systems developed in this study could be applied to other analyte/matrix combinations.
Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar
2016-03-01
Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.
2000-01-01
In this paper we use the Density Gradient (DG) simulation approach to study, in 3-D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs on a statistical scale. The random 2-D surfaces used to represent the interface are constructed using the standard assumptions for the auto-correlation function of the interface. The importance of the Quantum Mechanical effects when studying oxide thickness fluctuations are illustrated in several simulation examples.
Illustrating the practice of statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Christina A; Hamada, Michael S
2009-01-01
The practice of statistics involves analyzing data and planning data collection schemes to answer scientific questions. Issues often arise with the data that must be dealt with and can lead to new procedures. In analyzing data, these issues can sometimes be addressed through the statistical models that are developed. Simulation can also be helpful in evaluating a new procedure. Moreover, simulation coupled with optimization can be used to plan a data collection scheme. The practice of statistics as just described is much more than just using a statistical package. In analyzing the data, it involves understanding the scientific problem andmore » incorporating the scientist's knowledge. In modeling the data, it involves understanding how the data were collected and accounting for limitations of the data where possible. Moreover, the modeling is likely to be iterative by considering a series of models and evaluating the fit of these models. Designing a data collection scheme involves understanding the scientist's goal and staying within hislher budget in terms of time and the available resources. Consequently, a practicing statistician is faced with such tasks and requires skills and tools to do them quickly. We have written this article for students to provide a glimpse of the practice of statistics. To illustrate the practice of statistics, we consider a problem motivated by some precipitation data that our relative, Masaru Hamada, collected some years ago. We describe his rain gauge observational study in Section 2. We describe modeling and an initial analysis of the precipitation data in Section 3. In Section 4, we consider alternative analyses that address potential issues with the precipitation data. In Section 5, we consider the impact of incorporating additional infonnation. We design a data collection scheme to illustrate the use of simulation and optimization in Section 6. We conclude this article in Section 7 with a discussion.« less
Mathematical inference in one point microrheology
NASA Astrophysics Data System (ADS)
Hohenegger, Christel; McKinley, Scott
2016-11-01
Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.
Macro scale models for freight railroad terminals.
DOT National Transportation Integrated Search
2016-03-02
The project has developed a yard capacity model for macro-level analysis. The study considers the detailed sequence and scheduling in classification yards and their impacts on yard capacities simulate typical freight railroad terminals, and statistic...
Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.
Schorghofer, Norbert; Gille, Sarah T
2002-02-01
Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.
Kierepka, E M; Latch, E K
2016-01-01
Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136
Effects of the magnetic field direction on the Tsallis statistic
NASA Astrophysics Data System (ADS)
González-Casanova, Diego F.; Lazarian, A.; Cho, J.
2018-04-01
We extend the use of the Tsallis statistic to measure the differences in gas dynamics relative to the mean magnetic field present from natural eddy-type motions existing in magnetohydrodynamical (MHD) turbulence. The variation in gas dynamics was estimated using the Tsallis parameters on the incremental probability distribution function of the observables (intensity and velocity centroid) obtained from compressible MHD simulations. We find that the Tsallis statistic is susceptible to the anisotropy produced by the magnetic field, even when anisotropy is present the Tsallis statistic can be used to determine MHD parameters such as the Sonic Mach number. We quantize the goodness of the Tsallis parameters using the coefficient of determination to measure the differences in the gas dynamics. These parameters also determine the level of magnetization and compressibility of the medium. To further simulate realistic spectroscopic observational data, we introduced smoothing, noise, and cloud boundaries to the MHD simulations.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-07-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
Detecting trends in raptor counts: power and type I error rates of various statistical tests
Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.
1996-01-01
We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.
Measuring the Sensitivity of Single-locus “Neutrality Tests” Using a Direct Perturbation Approach
Garrigan, Daniel; Lewontin, Richard; Wakeley, John
2010-01-01
A large number of statistical tests have been proposed to detect natural selection based on a sample of variation at a single genetic locus. These tests measure the deviation of the allelic frequency distribution observed within populations from the distribution expected under a set of assumptions that includes both neutral evolution and equilibrium population demography. The present study considers a new way to assess the statistical properties of these tests of selection, by their behavior in response to direct perturbations of the steady-state allelic frequency distribution, unconstrained by any particular nonequilibrium demographic scenario. Results from Monte Carlo computer simulations indicate that most tests of selection are more sensitive to perturbations of the allele frequency distribution that increase the variance in allele frequencies than to perturbations that decrease the variance. Simulations also demonstrate that it requires, on average, 4N generations (N is the diploid effective population size) for tests of selection to relax to their theoretical, steady-state distributions following different perturbations of the allele frequency distribution to its extremes. This relatively long relaxation time highlights the fact that these tests are not robust to violations of the other assumptions of the null model besides neutrality. Lastly, genetic variation arising under an example of a regularly cycling demographic scenario is simulated. Tests of selection performed on this last set of simulated data confirm the confounding nature of these tests for the inference of natural selection, under a demographic scenario that likely holds for many species. The utility of using empirical, genomic distributions of test statistics, instead of the theoretical steady-state distribution, is discussed as an alternative for improving the statistical inference of natural selection. PMID:19744997
Optimization of space system development resources
NASA Astrophysics Data System (ADS)
Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas
2013-06-01
NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource reallocation has never been tried in a spacecraft development, no historical results exist, and a simulation of using that approach must be developed. The instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource reallocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource reallocation will result in lower expected cost growth.
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.
2011-01-01
Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252
Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T
2016-05-01
Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
2017-05-17
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
How many molecules are required to measure a cyclic voltammogram?
NASA Astrophysics Data System (ADS)
Cutress, Ian J.; Compton, Richard G.
2011-05-01
The stochastic limit at which fully-reversible cyclic voltammetry can accurately be measured is investigated. Specifically, Monte Carlo GPU simulation is used to study low concentration cyclic voltammetry at a microdisk electrode over a range of scan rates and concentrations, and the results compared to the statistical limit as predicted by finite difference simulation based on Fick's Laws of Diffusion. Both Butler-Volmer and Marcus-Hush electrode kinetics are considered, simulated via random-walk methods, and shown to give identical results in the fast kinetic limit.
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1974-01-01
A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.
Trend estimates of AERONET-observed and model-simulated AOT percentiles between 1993 and 2013
NASA Astrophysics Data System (ADS)
Yoon, Jongmin; Pozzer, Andrea; Chang, Dong Yeong; Lelieveld, Jos
2016-04-01
Recent Aerosol Optical thickness (AOT) trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires.
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
NASA Astrophysics Data System (ADS)
Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.
In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.
Detecting rater bias using a person-fit statistic: a Monte Carlo simulation study.
Aubin, André-Sébastien; St-Onge, Christina; Renaud, Jean-Sébastien
2018-04-01
With the Standards voicing concern for the appropriateness of response processes, we need to explore strategies that would allow us to identify inappropriate rater response processes. Although certain statistics can be used to help detect rater bias, their use is complicated by either a lack of data about their actual power to detect rater bias or the difficulty related to their application in the context of health professions education. This exploratory study aimed to establish the worthiness of pursuing the use of l z to detect rater bias. We conducted a Monte Carlo simulation study to investigate the power of a specific detection statistic, that is: the standardized likelihood l z person-fit statistics (PFS). Our primary outcome was the detection rate of biased raters, namely: raters whom we manipulated into being either stringent (giving lower scores) or lenient (giving higher scores), using the l z statistic while controlling for the number of biased raters in a sample (6 levels) and the rate of bias per rater (6 levels). Overall, stringent raters (M = 0.84, SD = 0.23) were easier to detect than lenient raters (M = 0.31, SD = 0.28). More biased raters were easier to detect then less biased raters (60% bias: 62, SD = 0.37; 10% bias: 43, SD = 0.36). The PFS l z seems to offer an interesting potential to identify biased raters. We observed detection rates as high as 90% for stringent raters, for whom we manipulated more than half their checklist. Although we observed very interesting results, we cannot generalize these results to the use of PFS with estimated item/station parameters or real data. Such studies should be conducted to assess the feasibility of using PFS to identify rater bias.
Pearce, Marcus T
2018-05-11
Music perception depends on internal psychological models derived through exposure to a musical culture. It is hypothesized that this musical enculturation depends on two cognitive processes: (1) statistical learning, in which listeners acquire internal cognitive models of statistical regularities present in the music to which they are exposed; and (2) probabilistic prediction based on these learned models that enables listeners to organize and process their mental representations of music. To corroborate these hypotheses, I review research that uses a computational model of probabilistic prediction based on statistical learning (the information dynamics of music (IDyOM) model) to simulate data from empirical studies of human listeners. The results show that a broad range of psychological processes involved in music perception-expectation, emotion, memory, similarity, segmentation, and meter-can be understood in terms of a single, underlying process of probabilistic prediction using learned statistical models. Furthermore, IDyOM simulations of listeners from different musical cultures demonstrate that statistical learning can plausibly predict causal effects of differential cultural exposure to musical styles, providing a quantitative model of cultural distance. Understanding the neural basis of musical enculturation will benefit from close coordination between empirical neuroimaging and computational modeling of underlying mechanisms, as outlined here. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tae; Romanelli, M.; Yuan, X.; Kaye, S.; Sips, A. C. C.; Frassinetti, L.; Buchanan, J.; Contributors, JET
2017-06-01
This paper presents for the first time a statistical validation of predictive TRANSP simulations of plasma temperature using two transport models, GLF23 and TGLF, over a database of 80 baseline H-mode discharges in JET-ILW. While the accuracy of the predicted T e with TRANSP-GLF23 is affected by plasma collisionality, the dependency of predictions on collisionality is less significant when using TRANSP-TGLF, indicating that the latter model has a broader applicability across plasma regimes. TRANSP-TGLF also shows a good matching of predicted T i with experimental measurements allowing for a more accurate prediction of the neutron yields. The impact of input data and assumptions prescribed in the simulations are also investigated in this paper. The statistical validation and the assessment of uncertainty level in predictive TRANSP simulations for JET-ILW-DD will constitute the basis for the extrapolation to JET-ILW-DT experiments.
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Large-Eddy Simulation in Planetary Boundary-Layer Research
NASA Technical Reports Server (NTRS)
Wyngaard, J. C.
1985-01-01
The structure and dynamics of the convective boundary layer are discussed. The vertical transport of a conservative, passive scalar was simulated. Also studied were the statistics by top-down and bottom-up scalar fields. Substantial differences were found between them due, presumably, to the asymmetry in the convective boundary layer. A generalization of mixed-layer scaling was developed which allows one to include the effects of top-down diffusion.
ERIC Educational Resources Information Center
Kramer, John Francis
A simulation of Cincinnati mass media system predicts frequency and reach of flow of messages from known facts taken from census statistics, newspaper and radio audience studies, and a content analysis of the press relevant to attitudes and opinions measured by NORC survey of the effects of a public information campaign on the United Nations made…
ERIC Educational Resources Information Center
Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce
2014-01-01
In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining
2017-11-01
Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.
Variability-aware compact modeling and statistical circuit validation on SRAM test array
NASA Astrophysics Data System (ADS)
Qiao, Ying; Spanos, Costas J.
2016-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.
Research on cloud background infrared radiation simulation based on fractal and statistical data
NASA Astrophysics Data System (ADS)
Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing
2018-02-01
Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
From medium heterogeneity to flow and transport: A time-domain random walk approach
NASA Astrophysics Data System (ADS)
Hakoun, V.; Comolli, A.; Dentz, M.
2017-12-01
The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.
Kuss, O
2015-03-30
Meta-analyses with rare events, especially those that include studies with no event in one ('single-zero') or even both ('double-zero') treatment arms, are still a statistical challenge. In the case of double-zero studies, researchers in general delete these studies or use continuity corrections to avoid them. A number of arguments against both options has been given, and statistical methods that use the information from double-zero studies without using continuity corrections have been proposed. In this paper, we collect them and compare them by simulation. This simulation study tries to mirror real-life situations as completely as possible by deriving true underlying parameters from empirical data on actually performed meta-analyses. It is shown that for each of the commonly encountered effect estimators valid statistical methods are available that use the information from double-zero studies without using continuity corrections. Interestingly, all of them are truly random effects models, and so also the current standard method for very sparse data as recommended from the Cochrane collaboration, the Yusuf-Peto odds ratio, can be improved on. For actual analysis, we recommend to use beta-binomial regression methods to arrive at summary estimates for the odds ratio, the relative risk, or the risk difference. Methods that ignore information from double-zero studies or use continuity corrections should no longer be used. We illustrate the situation with an example where the original analysis ignores 35 double-zero studies, and a superior analysis discovers a clinically relevant advantage of off-pump surgery in coronary artery bypass grafting. Copyright © 2014 John Wiley & Sons, Ltd.
Mathur, Sunil; Sadana, Ajit
2015-12-01
We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.
A general statistical test for correlations in a finite-length time series.
Hanson, Jeffery A; Yang, Haw
2008-06-07
The statistical properties of the autocorrelation function from a time series composed of independently and identically distributed stochastic variables has been studied. Analytical expressions for the autocorrelation function's variance have been derived. It has been found that two common ways of calculating the autocorrelation, moving-average and Fourier transform, exhibit different uncertainty characteristics. For periodic time series, the Fourier transform method is preferred because it gives smaller uncertainties that are uniform through all time lags. Based on these analytical results, a statistically robust method has been proposed to test the existence of correlations in a time series. The statistical test is verified by computer simulations and an application to single-molecule fluorescence spectroscopy is discussed.
Zhang, Fanghong; Miyaoka, Etsuo; Huang, Fuping; Tanaka, Yutaka
2015-01-01
The problem for establishing noninferiority is discussed between a new treatment and a standard (control) treatment with ordinal categorical data. A measure of treatment effect is used and a method of specifying noninferiority margin for the measure is provided. Two Z-type test statistics are proposed where the estimation of variance is constructed under the shifted null hypothesis using U-statistics. Furthermore, the confidence interval and the sample size formula are given based on the proposed test statistics. The proposed procedure is applied to a dataset from a clinical trial. A simulation study is conducted to compare the performance of the proposed test statistics with that of the existing ones, and the results show that the proposed test statistics are better in terms of the deviation from nominal level and the power.
Statistics, Computation, and Modeling in Cosmology
NASA Astrophysics Data System (ADS)
Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology
2017-01-01
Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and computationally efficiently explore the Galacticus parameter space. The group will also use the Galacticus simulations to study the relationship between the topological and physical structure of the halo merger trees and the properties of the resulting galaxies.
Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.
2018-01-01
The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.
NASA Astrophysics Data System (ADS)
Chodera, John D.; Noé, Frank
2010-09-01
Discrete-state Markov (or master equation) models provide a useful simplified representation for characterizing the long-time statistical evolution of biomolecules in a manner that allows direct comparison with experiments as well as the elucidation of mechanistic pathways for an inherently stochastic process. A vital part of meaningful comparison with experiment is the characterization of the statistical uncertainty in the predicted experimental measurement, which may take the form of an equilibrium measurement of some spectroscopic signal, the time-evolution of this signal following a perturbation, or the observation of some statistic (such as the correlation function) of the equilibrium dynamics of a single molecule. Without meaningful error bars (which arise from both approximation and statistical error), there is no way to determine whether the deviations between model and experiment are statistically meaningful. Previous work has demonstrated that a Bayesian method that enforces microscopic reversibility can be used to characterize the statistical component of correlated uncertainties in state-to-state transition probabilities (and functions thereof) for a model inferred from molecular simulation data. Here, we extend this approach to include the uncertainty in observables that are functions of molecular conformation (such as surrogate spectroscopic signals) characterizing each state, permitting the full statistical uncertainty in computed spectroscopic experiments to be assessed. We test the approach in a simple model system to demonstrate that the computed uncertainties provide a useful indicator of statistical variation, and then apply it to the computation of the fluorescence autocorrelation function measured for a dye-labeled peptide previously studied by both experiment and simulation.
Rossler, Kelly L; Kimble, Laura P
2016-01-01
Didactic lecture does not lend itself to teaching interprofessional collaboration. High-fidelity human patient simulation with a focus on clinical situations/scenarios is highly conducive to interprofessional education. Consequently, a need for research supporting the incorporation of interprofessional education with high-fidelity patient simulation based technology exists. The purpose of this study was to explore readiness for interprofessional learning and collaboration among pre-licensure health professions students participating in an interprofessional education human patient simulation experience. Using a mixed methods convergent parallel design, a sample of 53 pre-licensure health professions students enrolled in nursing, respiratory therapy, health administration, and physical therapy programs within a college of health professions participated in high-fidelity human patient simulation experiences. Perceptions of interprofessional learning and collaboration were measured with the revised Readiness for Interprofessional Learning Scale (RIPLS) and the Health Professional Collaboration Scale (HPCS). Focus groups were conducted during the simulation post-briefing to obtain qualitative data. Statistical analysis included non-parametric, inferential statistics. Qualitative data were analyzed using a phenomenological approach. Pre- and post-RIPLS demonstrated pre-licensure health professions students reported significantly more positive attitudes about readiness for interprofessional learning post-simulation in the areas of team work and collaboration, negative professional identity, and positive professional identity. Post-simulation HPCS revealed pre-licensure nursing and health administration groups reported greater health collaboration during simulation than physical therapy students. Qualitative analysis yielded three themes: "exposure to experiential learning," "acquisition of interactional relationships," and "presence of chronology in role preparation." Quantitative and qualitative data converged around the finding that physical therapy students had less positive perceptions of the experience because they viewed physical therapy practice as occurring one-on-one rather than in groups. Findings support that pre-licensure students are ready to engage in interprofessional education through exposure to an experiential format such as high-fidelity human patient simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Buu, Anne; Williams, L Keoki; Yang, James J
2018-03-01
We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.
Testing manifest monotonicity using order-constrained statistical inference.
Tijmstra, Jesper; Hessen, David J; van der Heijden, Peter G M; Sijtsma, Klaas
2013-01-01
Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores, such as the restscore, a single item score, and in some cases the total score. In this study, we show that manifest monotonicity can be tested by means of the order-constrained statistical inference framework. We propose a procedure that uses this framework to determine whether manifest monotonicity should be rejected for specific items. This approach provides a likelihood ratio test for which the p-value can be approximated through simulation. A simulation study is presented that evaluates the Type I error rate and power of the test, and the procedure is applied to empirical data.
A Backscatter-Lidar Forward-Operator
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland
2015-04-01
We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.
Shallow cloud statistics over Tropical Western Pacific: CAM5 versus ARM Comparison
NASA Astrophysics Data System (ADS)
Chandra, A.; Zhang, C.; Klein, S. A.; Ma, H. Y.; Kollias, P.; Xie, S.
2014-12-01
The role of shallow convection in the tropical convective cloud life cycle has received increasing interest because of its sensitivity to simulate large-scale tropical disturbances such as MJO. Though previous studies have proposed several hypotheses to explain the role of shallow clouds in the convective life cycle, our understanding on the role of shallow clouds is still premature. There are more questions needs to be addressed related to the role of different cloud population, conditions favorable for shallow to deep convection transitions, and their characteristics at different stages of the convective cloud life. The present study aims to improve the understanding of the shallow clouds by documenting the role of different shallow cloud population for the Year of Tropical Convection period using Atmospheric Radiation Measurement observations at the Tropical Western Pacific Manus site. The performance of the CAM5 model to simulate shallow clouds are tested using observed cloud statistics.
System Analysis for the Huntsville Operation Support Center, Distributed Computer System
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Massey, D.
1985-01-01
HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.
A spatial scan statistic for survival data based on Weibull distribution.
Bhatt, Vijaya; Tiwari, Neeraj
2014-05-20
The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.
An alternative approach to confidence interval estimation for the win ratio statistic.
Luo, Xiaodong; Tian, Hong; Mohanty, Surya; Tsai, Wei Yann
2015-03-01
Pocock et al. (2012, European Heart Journal 33, 176-182) proposed a win ratio approach to analyzing composite endpoints comprised of outcomes with different clinical priorities. In this article, we establish a statistical framework for this approach. We derive the null hypothesis and propose a closed-form variance estimator for the win ratio statistic in all pairwise matching situation. Our simulation study shows that the proposed variance estimator performs well regardless of the magnitude of treatment effect size and the type of the joint distribution of the outcomes. © 2014, The International Biometric Society.
Teaching the Meaning of Statistical Techniques with Microcomputer Simulation.
ERIC Educational Resources Information Center
Lee, Motoko Y.; And Others
Students in an introductory statistics course are often preoccupied with learning the computational routines of specific summary statistics and thereby fail to develop an understanding of the meaning of those statistics or their conceptual basis. To help students develop a better understanding of the meaning of three frequently used statistics,…
skelesim: an extensible, general framework for population genetic simulation in R.
Parobek, Christian M; Archer, Frederick I; DePrenger-Levin, Michelle E; Hoban, Sean M; Liggins, Libby; Strand, Allan E
2017-01-01
Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares' complex capabilities, composing code and input files, a daunting bioinformatics barrier and a steep conceptual learning curve. skelesim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics and organizing data output, in a reproducible pipeline within the R environment. skelesim is designed to be an extensible framework that can 'wrap' around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skelesim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skelesim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skelesim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). © 2016 John Wiley & Sons Ltd.
skeleSim: an extensible, general framework for population genetic simulation in R
Parobek, Christian M.; Archer, Frederick I.; DePrenger-Levin, Michelle E.; Hoban, Sean M.; Liggins, Libby; Strand, Allan E.
2016-01-01
Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares’ complex capabilities, composing code and input files, a daunting bioinformatics barrier, and a steep conceptual learning curve. skeleSim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics, and organizing data output, in a reproducible pipeline within the R environment. skeleSim is designed to be an extensible framework that can ‘wrap’ around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skeleSim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skeleSim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skeleSim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny). PMID:27736016
How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?
Hagos, Samson; Ruby Leung, L.; Zhao, Chun; ...
2018-02-10
Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less
Statistical inference to advance network models in epidemiology.
Welch, David; Bansal, Shweta; Hunter, David R
2011-03-01
Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.
How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Ruby Leung, L.; Zhao, Chun
Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less
A study of two statistical methods as applied to shuttle solid rocket booster expenditures
NASA Technical Reports Server (NTRS)
Perlmutter, M.; Huang, Y.; Graves, M.
1974-01-01
The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.
Lopez Ortiz, Juan Ignacio; Torres, Paola; Quiroga, Evelina; Narambuena, Claudio F; Ramirez-Pastor, Antonio J
2017-11-29
In the present work, the adsorption of three-domain antifreeze proteins on ice is studied by combining a statistical thermodynamics based theory and Monte Carlo simulations. The three-domain protein is modeled by a trimer, and the ice surface is represented by a lattice of adsorption sites. The statistical theory, obtained from the exact partition function of non-interacting trimers adsorbed in one dimension and its extension to two dimensions, includes the configuration of the molecule in the adsorbed state, and allows the existence of multiple adsorption states for the protein. We called this theory "lattice-gas model of molecules with multiple adsorption states" (LGMMAS). The main thermodynamics functions (partial and total adsorption isotherms, Helmholtz free energy and configurational entropy) are obtained by solving a non-linear system of j equations, where j is the total number of possible adsorption states of the protein. The theoretical results are contrasted with Monte Carlo simulations, and a modified Langmuir model (MLM) where the arrangement of the adsorption sites in space is immaterial. The formalism introduced here provides exact results in one-dimensional lattices, and offers a very accurate description in two dimensions (2D). In addition, the scheme is capable of predicting the proportion between coverage degrees corresponding to different conformations in the same energetic state. In contrast, the MLM does not distinguish between different adsorption states, and shows severe discrepancies with the 2D simulation results. These findings indicate that the adsorbate structure and the lattice geometry play fundamental roles in determining the statistics of multistate adsorbed molecules, and consequently, must be included in the theory.
Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis
NASA Astrophysics Data System (ADS)
Yip, Sidney
35 years ago Berni J. Alder showed the Boltzmann-Enskog kinetic theory failed to adequately account for the viscosity of fluids near solid density as determined by molecular dynamics simulation. This work, along with other notable simulation findings, provided great stimulus to the statistical mechanical studies of transport phenomena, particularly in dealing with collective effects in the time correlation functions of liquids. An extended theoretical challenge that remains partially resolved at best is the shear viscosity of supercooled liquids. How can one give a unified explanation of the so-called fragile and strong characteristic temperature behavior, with implications for the dynamics of glass transition? In this tribute on the occasion of his 90th birthday symposium, we recount a recent study where simulation, combined with heuristic (transition-state) and first principles (linear response) theories, identifies the molecular mechanisms governing glassy-state relaxation. Such an interplay between simulation and theory is progress from the early days; instead of simulation challenging theory, now simulation and theory complement each other.
Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia
NASA Astrophysics Data System (ADS)
Kumar, Anikender; Rojas, Nestor
2015-04-01
Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.
Button, C; Dicks, M; Haines, R; Barker, R; Davids, K
2011-08-01
Previous research on gaze behaviour in sport has typically reported summary fixation statistics thereby largely ignoring the temporal sequencing of gaze. In the present study on penalty kicking in soccer, our aim was to apply a Markov chain modelling method to eye movement data obtained from goalkeepers. Building on the discrete analysis of gaze employed by Dicks et al. (Atten Percept Psychophys 72(3):706-720, 2010b), we wanted to statistically model the relative probabilities of the goalkeeper's gaze being directed to different locations throughout the penalty taker's approach (Dicks et al. in Atten Percept Psychophys 72(3):706-720, 2010b). Examination of gaze behaviours under in situ and video-simulation task constraints reveals differences in information pickup for perception and action (Attention, Perception and Psychophysics 72(3), 706-720). The probabilities of fixating anatomical locations of the penalty taker were high under simulated movement response conditions. In contrast, when actually required to intercept kicks, the goalkeepers initially favoured watching the penalty taker's head but then rapidly shifted focus directly to the ball for approximately the final second prior to foot-ball contact. The increased spatio-temporal demands of in situ interceptive actions over laboratory-based simulated actions lead to different visual search strategies being used. When eye movement data are modelled as time series, it is possible to discern subtle but important behavioural characteristics that are less apparent with discrete summary statistics alone.
Khan, Asaduzzaman; Chien, Chi-Wen; Bagraith, Karl S
2015-04-01
To investigate whether using a parametric statistic in comparing groups leads to different conclusions when using summative scores from rating scales compared with using their corresponding Rasch-based measures. A Monte Carlo simulation study was designed to examine between-group differences in the change scores derived from summative scores from rating scales, and those derived from their corresponding Rasch-based measures, using 1-way analysis of variance. The degree of inconsistency between the 2 scoring approaches (i.e. summative and Rasch-based) was examined, using varying sample sizes, scale difficulties and person ability conditions. This simulation study revealed scaling artefacts that could arise from using summative scores rather than Rasch-based measures for determining the changes between groups. The group differences in the change scores were statistically significant for summative scores under all test conditions and sample size scenarios. However, none of the group differences in the change scores were significant when using the corresponding Rasch-based measures. This study raises questions about the validity of the inference on group differences of summative score changes in parametric analyses. Moreover, it provides a rationale for the use of Rasch-based measures, which can allow valid parametric analyses of rating scale data.
Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J
2017-12-01
It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
Acharyya, Muktish
2017-07-01
The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.
Population models and simulation methods: The case of the Spearman rank correlation.
Astivia, Oscar L Olvera; Zumbo, Bruno D
2017-11-01
The purpose of this paper is to highlight the importance of a population model in guiding the design and interpretation of simulation studies used to investigate the Spearman rank correlation. The Spearman rank correlation has been known for over a hundred years to applied researchers and methodologists alike and is one of the most widely used non-parametric statistics. Still, certain misconceptions can be found, either explicitly or implicitly, in the published literature because a population definition for this statistic is rarely discussed within the social and behavioural sciences. By relying on copula distribution theory, a population model is presented for the Spearman rank correlation, and its properties are explored both theoretically and in a simulation study. Through the use of the Iman-Conover algorithm (which allows the user to specify the rank correlation as a population parameter), simulation studies from previously published articles are explored, and it is found that many of the conclusions purported in them regarding the nature of the Spearman correlation would change if the data-generation mechanism better matched the simulation design. More specifically, issues such as small sample bias and lack of power of the t-test and r-to-z Fisher transformation disappear when the rank correlation is calculated from data sampled where the rank correlation is the population parameter. A proof for the consistency of the sample estimate of the rank correlation is shown as well as the flexibility of the copula model to encompass results previously published in the mathematical literature. © 2017 The British Psychological Society.
Martin, Derek; Cockell, Charles S
2015-02-01
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
NASA Astrophysics Data System (ADS)
Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.
2017-11-01
We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.
An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process
NASA Technical Reports Server (NTRS)
Carter, M. C.; Madison, M. W.
1973-01-01
The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.
NASA Astrophysics Data System (ADS)
Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah
2014-11-01
A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.
Validating the simulation of large-scale parallel applications using statistical characteristics
Zhang, Deli; Wilke, Jeremiah; Hendry, Gilbert; ...
2016-03-01
Simulation is a widely adopted method to analyze and predict the performance of large-scale parallel applications. Validating the hardware model is highly important for complex simulations with a large number of parameters. Common practice involves calculating the percent error between the projected and the real execution time of a benchmark program. However, in a high-dimensional parameter space, this coarse-grained approach often suffers from parameter insensitivity, which may not be known a priori. Moreover, the traditional approach cannot be applied to the validation of software models, such as application skeletons used in online simulations. In this work, we present a methodologymore » and a toolset for validating both hardware and software models by quantitatively comparing fine-grained statistical characteristics obtained from execution traces. Although statistical information has been used in tasks like performance optimization, this is the first attempt to apply it to simulation validation. Lastly, our experimental results show that the proposed evaluation approach offers significant improvement in fidelity when compared to evaluation using total execution time, and the proposed metrics serve as reliable criteria that progress toward automating the simulation tuning process.« less
NASA Astrophysics Data System (ADS)
Lawler, Samantha M.; Kavelaars, J. J.; Alexandersen, Mike; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Shankman, Cory
2018-05-01
All surveys include observational biases, which makes it impossible to directly compare properties of discovered trans-Neptunian Objects (TNOs) with dynamical models. However, by carefully keeping track of survey pointings on the sky, detection limits, tracking fractions, and rate cuts, the biases from a survey can be modelled in Survey Simulator software. A Survey Simulator takes an intrinsic orbital model (from, for example, the output of a dynamical Kuiper belt emplacement simulation) and applies the survey biases, so that the biased simulated objects can be directly compared with real discoveries. This methodology has been used with great success in the Outer Solar System Origins Survey (OSSOS) and its predecessor surveys. In this chapter, we give four examples of ways to use the OSSOS Survey Simulator to gain knowledge about the true structure of the Kuiper Belt. We demonstrate how to statistically compare different dynamical model outputs with real TNO discoveries, how to quantify detection biases within a TNO population, how to measure intrinsic population sizes, and how to use upper limits from non-detections. We hope this will provide a framework for dynamical modellers to statistically test the validity of their models.
Research study demonstrates computer simulation can predict warpage and assist in its elimination
NASA Astrophysics Data System (ADS)
Glozer, G.; Post, S.; Ishii, K.
1994-10-01
Programs for predicting warpage in injection molded parts are relatively new. Commercial software for simulating the flow and cooling stages of injection molding have steadily gained acceptance; however, warpage software is not yet as readily accepted. This study focused on gaining an understanding of the predictive capabilities of the warpage software. The following aspects of this study were unique. (1) Quantitative results were found using a statistically designed set of experiments. (2) Comparisons between experimental and simulation results were made with parts produced in a well-instrumented and controlled injection molding machine. (3) The experimental parts were accurately measured on a coordinate measuring machine with a non-contact laser probe. (4) The effect of part geometry on warpage was investigated.
A generic approach for examining the effectiveness of traffic control devices in school zones.
Zhao, Xiaohua; Li, Jiahui; Ding, Han; Zhang, Guohui; Rong, Jian
2015-09-01
The effectiveness and performance of traffic control devices in school zones have been impacted significantly by many factors, such as driver behavioral attributes, roadway geometric features, environmental characteristics, weather and visibility conditions, region-wide traffic regulations and policies, control modes, etc. When deploying traffic control devices in school zones, efforts are needed to clarify: (1) whether traffic control device installation is warranted; and (2) whether other device effectively complements this traffic control device and strengthens its effectiveness. In this study, a generic approach is developed to examine and evaluate the effectiveness of various traffic control devices deployed in school zones through driving simulator-based experiments. A Traffic Control Device Selection Model (TCDSM) is developed and two representative school zones are selected as the testbed in Beijing for driving simulation implementation to enhance its applicability. Statistical analyses are conducted to extract the knowledge from test data recorded by a driving simulator. Multiple measures of effectiveness (MOEs) are developed and adopted including average speed, relative speed difference, and standard deviation of acceleration for traffic control device performance quantification. The experimental tests and analysis results reveal that the appropriateness of the installation of certain traffic control devices can be statistically verified by TCDSM. The proposed approach provides a generic framework to assess traffic control device performance in school zones including experiment design, statistical formulation, data analysis, simulation model implementation, data interpretation, and recommendation development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pilot points method for conditioning multiple-point statistical facies simulation on flow data
NASA Astrophysics Data System (ADS)
Ma, Wei; Jafarpour, Behnam
2018-05-01
We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.
Biomechanical analysis of tension band fixation for olecranon fracture treatment.
Kozin, S H; Berglund, L J; Cooney, W P; Morrey, B F; An, K N
1996-01-01
This study assessed the strength of various tension band fixation methods with wire and cable applied to simulated olecranon fractures to compare stability and potential failure or complications between the two. Transverse olecranon fractures were simulated by osteotomy. The fracture was anatomically reduced, and various tension band fixation techniques were applied with monofilament wire or multifilament cable. With a material testing machine load displacement curves were obtained and statistical relevance determined by analysis of variance. Two loading modes were tested: loading on the posterior surface of olecranon to simulate triceps pull and loading on the anterior olecranon tip to recreate a potential compressive loading on the fragment during the resistive flexion. All fixation methods were more resistant to posterior loading than to an anterior load. Individual comparative analysis for various loading conditions concluded that tension band fixation is more resilient to tensile forces exerted by the triceps than compressive forces on the anterior olecranon tip. Neither wire passage anterior to the K-wires nor the multifilament cable provided statistically significant increased stability.
Comparison of Time-to-First Event and Recurrent Event Methods in Randomized Clinical Trials.
Claggett, Brian; Pocock, Stuart; Wei, L J; Pfeffer, Marc A; McMurray, John J V; Solomon, Scott D
2018-03-27
Background -Most Phase-3 trials feature time-to-first event endpoints for their primary and/or secondary analyses. In chronic diseases where a clinical event can occur more than once, recurrent-event methods have been proposed to more fully capture disease burden and have been assumed to improve statistical precision and power compared to conventional "time-to-first" methods. Methods -To better characterize factors that influence statistical properties of recurrent-events and time-to-first methods in the evaluation of randomized therapy, we repeatedly simulated trials with 1:1 randomization of 4000 patients to active vs control therapy, with true patient-level risk reduction of 20% (i.e. RR=0.80). For patients who discontinued active therapy after a first event, we assumed their risk reverted subsequently to their original placebo-level risk. Through simulation, we varied a) the degree of between-patient heterogeneity of risk and b) the extent of treatment discontinuation. Findings were compared with those from actual randomized clinical trials. Results -As the degree of between-patient heterogeneity of risk was increased, both time-to-first and recurrent-events methods lost statistical power to detect a true risk reduction and confidence intervals widened. The recurrent-events analyses continued to estimate the true RR=0.80 as heterogeneity increased, while the Cox model produced estimates that were attenuated. The power of recurrent-events methods declined as the rate of study drug discontinuation post-event increased. Recurrent-events methods provided greater power than time-to-first methods in scenarios where drug discontinuation was ≤30% following a first event, lesser power with drug discontinuation rates of ≥60%, and comparable power otherwise. We confirmed in several actual trials in chronic heart failure that treatment effect estimates were attenuated when estimated via the Cox model and that increased statistical power from recurrent-events methods was most pronounced in trials with lower treatment discontinuation rates. Conclusions -We find that the statistical power of both recurrent-events and time-to-first methods are reduced by increasing heterogeneity of patient risk, a parameter not included in conventional power and sample size formulas. Data from real clinical trials are consistent with simulation studies, confirming that the greatest statistical gains from use of recurrent-events methods occur in the presence of high patient heterogeneity and low rates of study drug discontinuation.
Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.
2012-01-01
Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562
First experiences of high-fidelity simulation training in junior nursing students in Korea.
Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi
2015-07-01
This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.
Two Applications of Simulation in the Educational Environment. Tech Memo.
ERIC Educational Resources Information Center
Thomas, David B.
Two educational computer simulations are described in this paper. One of the simulations is STATSIM, a series of exercises applicable to statistical instruction. The content of the other simulation is comprised of mathematical learning models. Student involvement, the interactive nature of the simulations, and terminal display of materials are…
NASA Astrophysics Data System (ADS)
Alekseenko, M. A.; Gendrina, I. Yu.
2017-11-01
Recently, due to the abundance of various types of observational data in the systems of vision through the atmosphere and the need for their processing, the use of various methods of statistical research in the study of such systems as correlation-regression analysis, dynamic series, variance analysis, etc. is actual. We have attempted to apply elements of correlation-regression analysis for the study and subsequent prediction of the patterns of radiation transfer in these systems same as in the construction of radiation models of the atmosphere. In this paper, we present some results of statistical processing of the results of numerical simulation of the characteristics of vision systems through the atmosphere obtained with the help of a special software package.1
Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit
2008-02-01
Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.
Le Strat, Yann
2017-01-01
The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489
Austin, Peter C; Schuster, Tibor; Platt, Robert W
2015-10-15
Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.
Recent progress in simulating galaxy formation from the largest to the smallest scales
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-05-01
Galaxy formation simulations are an essential part of the modern toolkit of astrophysicists and cosmologists alike. Astrophysicists use the simulations to study the emergence of galaxy populations from the Big Bang, as well as the formation of stars and supermassive black holes. For cosmologists, galaxy formation simulations are needed to understand how baryonic processes affect measurements of dark matter and dark energy. Owing to the extreme dynamic range of galaxy formation, advances are driven by novel approaches using simulations with different tradeoffs between volume and resolution. Large-volume but low-resolution simulations provide the best statistics, while higher-resolution simulations of smaller cosmic volumes can be evolved with self-consistent physics and reveal important emergent phenomena. I summarize recent progress in galaxy formation simulations, including major developments in the past five years, and highlight some key areas likely to drive further advances over the next decade.
HYPOTHESIS SETTING AND ORDER STATISTIC FOR ROBUST GENOMIC META-ANALYSIS.
Song, Chi; Tseng, George C
2014-01-01
Meta-analysis techniques have been widely developed and applied in genomic applications, especially for combining multiple transcriptomic studies. In this paper, we propose an order statistic of p-values ( r th ordered p-value, rOP) across combined studies as the test statistic. We illustrate different hypothesis settings that detect gene markers differentially expressed (DE) "in all studies", "in the majority of studies", or "in one or more studies", and specify rOP as a suitable method for detecting DE genes "in the majority of studies". We develop methods to estimate the parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and a one-sided testing correction for detecting markers of concordant expression changes are explored. Power calculation and simulation show better performance of rOP compared to classical Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote counting method and can be viewed as a generalized form of vote counting with better statistical properties. The method is applied to three microarray meta-analysis examples including major depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more generalizable, robust and sensitive statistical framework to detect disease-related markers.
NASA Astrophysics Data System (ADS)
Parker, Jeffrey B.
2018-05-01
Zonal flows have been observed to appear spontaneously from turbulence in a number of physical settings. A complete theory for their behavior is still lacking. Recently, a number of studies have investigated the dynamics of zonal flows using quasilinear (QL) theories and the statistical framework of a second-order cumulant expansion (CE2). A geometrical-optics (GO) reduction of CE2, derived under an assumption of separation of scales between the fluctuations and the zonal flow, is studied here numerically. The reduced model, CE2-GO, has a similar phase-space mathematical structure to the traditional wave-kinetic equation, but that wave-kinetic equation has been shown to fail to preserve enstrophy conservation and to exhibit an ultraviolet catastrophe. CE2-GO, in contrast, preserves nonlinear conservation of both energy and enstrophy. We show here how to retain these conservation properties in a pseudospectral simulation of CE2-GO. We then present nonlinear simulations of CE2-GO and compare with direct simulations of quasilinear (QL) dynamics. We find that CE2-GO retains some similarities to QL. The partitioning of energy that resides in the zonal flow is in good quantitative agreement between CE2-GO and QL. On the other hand, the length scale of the zonal flow does not follow the same qualitative trend in the two models. Overall, these simulations indicate that CE2-GO provides a simpler and more tractable statistical paradigm than CE2, but CE2-GO is missing important physics.
ERIC Educational Resources Information Center
Sinharay, Sandip
2017-01-01
Karabatsos compared the power of 36 person-fit statistics using receiver operating characteristics curves and found the "H[superscript T]" statistic to be the most powerful in identifying aberrant examinees. He found three statistics, "C", "MCI", and "U3", to be the next most powerful. These four statistics,…
Evaluation of The Operational Benefits Versus Costs of An Automated Cargo Mover
2016-12-01
logistics footprint and life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically...life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically significant differences...Error of Estimation. Source: Eskew and Lawler (1994). ...........................75 Figure 24. Load Results (100 Runs per Scenario
Lloyd-Jones, Luke R; Robinson, Matthew R; Yang, Jian; Visscher, Peter M
2018-04-01
Genome-wide association studies (GWAS) have identified thousands of loci that are robustly associated with complex diseases. The use of linear mixed model (LMM) methodology for GWAS is becoming more prevalent due to its ability to control for population structure and cryptic relatedness and to increase power. The odds ratio (OR) is a common measure of the association of a disease with an exposure ( e.g. , a genetic variant) and is readably available from logistic regression. However, when the LMM is applied to all-or-none traits it provides estimates of genetic effects on the observed 0-1 scale, a different scale to that in logistic regression. This limits the comparability of results across studies, for example in a meta-analysis, and makes the interpretation of the magnitude of an effect from an LMM GWAS difficult. In this study, we derived transformations from the genetic effects estimated under the LMM to the OR that only rely on summary statistics. To test the proposed transformations, we used real genotypes from two large, publicly available data sets to simulate all-or-none phenotypes for a set of scenarios that differ in underlying model, disease prevalence, and heritability. Furthermore, we applied these transformations to GWAS summary statistics for type 2 diabetes generated from 108,042 individuals in the UK Biobank. In both simulation and real-data application, we observed very high concordance between the transformed OR from the LMM and either the simulated truth or estimates from logistic regression. The transformations derived and validated in this study improve the comparability of results from prospective and already performed LMM GWAS on complex diseases by providing a reliable transformation to a common comparative scale for the genetic effects. Copyright © 2018 by the Genetics Society of America.
Statistical downscaling of GCM simulations to streamflow using relevance vector machine
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Mujumdar, P. P.
2008-01-01
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.
Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment
NASA Astrophysics Data System (ADS)
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
MOLSIM: A modular molecular simulation software
Jurij, Reščič
2015-01-01
The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597
New Approaches to Robust Confidence Intervals for Location: A Simulation Study.
1984-06-01
obtain a denominator for the test statistic. Those statistics based on location estimates derived from Hampel’s redescending influence function or v...defined an influence function for a test in terms of the behavior of its P-values when the data are sampled from a model distribution modified by point...proposal could be used for interval estimation as well as hypothesis testing, the extension is immediate. Once an influence function has been defined
Re-Evaluation of Event Correlations in Virtual California Using Statistical Analysis
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Heflin, M. B.; Granat, R. A.; Yikilmaz, M. B.; Heien, E.; Rundle, J.; Donnellan, A.
2010-12-01
Fusing the results of simulation tools with statistical analysis methods has contributed to our better understanding of the earthquake process. In a previous study, we used a statistical method to investigate emergent phenomena in data produced by the Virtual California earthquake simulator. The analysis indicated that there were some interesting fault interactions and possible triggering and quiescence relationships between events. We have converted the original code from Matlab to python/C++ and are now evaluating data from the most recent version of Virtual California in order to analyze and compare any new behavior exhibited by the model. The Virtual California earthquake simulator can be used to study fault and stress interaction scenarios for realistic California earthquakes. The simulation generates a synthetic earthquake catalog of events with a minimum size of ~M 5.8 that can be evaluated using statistical analysis methods. Virtual California utilizes realistic fault geometries and a simple Amontons - Coulomb stick and slip friction law in order to drive the earthquake process by means of a back-slip model where loading of each segment occurs due to the accumulation of a slip deficit at the prescribed slip rate of the segment. Like any complex system, Virtual California may generate emergent phenomena unexpected even by its designers. In order to investigate this, we have developed a statistical method that analyzes the interaction between Virtual California fault elements and thereby determine whether events on any given fault elements show correlated behavior. Our method examines events on one fault element and then determines whether there is an associated event within a specified time window on a second fault element. Note that an event in our analysis is defined as any time an element slips, rather than any particular “earthquake” along the entire fault length. Results are then tabulated and then differenced with an expected correlation, calculated by assuming a uniform distribution of events in time. We generate a correlation score matrix, which indicates how weakly or strongly correlated each fault element is to every other in the course of the VC simulation. We calculate correlation scores by summing the difference between the actual and expected correlations over all time window lengths and normalizing by the time window size. The correlation score matrix can focus attention on the most interesting areas for more in-depth analysis of event correlation vs. time. The previous study included 59 faults (639 elements) in the model, which included all the faults save the creeping section of the San Andreas. The analysis spanned 40,000 yrs of Virtual California-generated earthquake data. The newly revised VC model includes 70 faults, 8720 fault elements, and spans 110,000 years. Due to computational considerations, we will evaluate the elements comprising the southern California region, which our previous study indicated showed interesting fault interaction and event triggering/quiescence relationships.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Reducing statistical uncertainties in simulated organ doses of phantoms immersed in water
Hiller, Mauritius M.; Veinot, Kenneth G.; Easterly, Clay E.; ...
2016-08-13
In this study, methods are addressed to reduce the computational time to compute organ-dose rate coefficients using Monte Carlo techniques. Several variance reduction techniques are compared including the reciprocity method, importance sampling, weight windows and the use of the ADVANTG software package. For low-energy photons, the runtime was reduced by a factor of 10 5 when using the reciprocity method for kerma computation for immersion of a phantom in contaminated water. This is particularly significant since impractically long simulation times are required to achieve reasonable statistical uncertainties in organ dose for low-energy photons in this source medium and geometry. Althoughmore » the MCNP Monte Carlo code is used in this paper, the reciprocity technique can be used equally well with other Monte Carlo codes.« less
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W; Xia, Yinglin; Zhu, Liang; Tu, Xin M
2011-09-10
The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Lee, Ju-Young; Lee, Soon Hee; Kim, Jung-Hee
2018-05-01
Despite the increase in simulators at nursing schools and the high expectations regarding simulation for nursing education, the unique features of integrating simulation-based education into the curriculum are unclear. The purpose of this study was to assess the curriculum development process of simulation-based educational interventions in nursing in Korea. Integrative review of literature used. Korean Studies Information Services System (KISS), Korean Medical Database (KMbase), KoreaMed, Research Information Sharing Service (RISS), and National Digital Library (NDL). Comprehensive databases were searched for records without a time limit (until December 2016), using terms such as "nursing," "simulation," and "education." A total of 1006 studies were screened. According to the model for simulation-based curriculum development (Khamis et al., 2016), the quality of reporting on the curriculum development was reviewed. A total of 125 papers were included in this review. In three studies, simulation scenarios were made from easy to difficulty levels, and none of the studies presented the level of learners' proficiency. Only 17.6% of the studies reported faculty development or preparation. The inter-rater reliability was presented in performance test by 24 studies and two studies evaluated the long-term effects of simulation education although there was no statistically significant change in terms of publication years. These findings suggest that educators and researchers should pay more attention to the educational strategies to integrate simulation into nursing education. It could contribute to guiding educators and researchers to develop a simulation-based curriculum and improve the quality of nursing education research. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Larwin, Karen H.; Larwin, David A.
2011-01-01
Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…
Reynolds, Richard J; Fenster, Charles B
2008-05-01
Pollinator importance, the product of visitation rate and pollinator effectiveness, is a descriptive parameter of the ecology and evolution of plant-pollinator interactions. Naturally, sources of its variation should be investigated, but the SE of pollinator importance has never been properly reported. Here, a Monte Carlo simulation study and a result from mathematical statistics on the variance of the product of two random variables are used to estimate the mean and confidence limits of pollinator importance for three visitor species of the wildflower, Silene caroliniana. Both methods provided similar estimates of mean pollinator importance and its interval if the sample size of the visitation and effectiveness datasets were comparatively large. These approaches allowed us to determine that bumblebee importance was significantly greater than clearwing hawkmoth, which was significantly greater than beefly. The methods could be used to statistically quantify temporal and spatial variation in pollinator importance of particular visitor species. The approaches may be extended for estimating the variance of more than two random variables. However, unless the distribution function of the resulting statistic is known, the simulation approach is preferable for calculating the parameter's confidence limits.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.
1990-01-01
Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurgaliev, D.; McDonald, M.; Benson, B. A.
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
Nurgaliev, D.; McDonald, M.; Benson, B. A.; ...
2017-05-16
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
NASA Astrophysics Data System (ADS)
Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner
2018-06-01
The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.
A Numerical Simulation and Statistical Modeling of High Intensity Radiated Fields Experiment Data
NASA Technical Reports Server (NTRS)
Smith, Laura J.
2004-01-01
Tests are conducted on a quad-redundant fault tolerant flight control computer to establish upset characteristics of an avionics system in an electromagnetic field. A numerical simulation and statistical model are described in this work to analyze the open loop experiment data collected in the reverberation chamber at NASA LaRC as a part of an effort to examine the effects of electromagnetic interference on fly-by-wire aircraft control systems. By comparing thousands of simulation and model outputs, the models that best describe the data are first identified and then a systematic statistical analysis is performed on the data. All of these efforts are combined which culminate in an extrapolation of values that are in turn used to support previous efforts used in evaluating the data.
Duma, Gian Marco; Mento, Giovanni; Manari, Tommaso; Martinelli, Massimiliano
2017-01-01
The study of neural pre-stimulus or “anticipatory” activity opened a new window for understanding how the brain actively constructs the forthcoming reality. Usually, experimental paradigms designed to study anticipatory activity make use of stimuli. The purpose of the present study is to expand the study of neural anticipatory activity upon the temporal occurrence of dichotomic, statistically unpredictable (random) stimuli within an ecological experimental paradigm. To this purpose, we used a simplified driving simulation including two possible, randomly-presented trial types: a car crash end trial and a no car crash end trial. Event Related Potentials (ERP) were extracted -3,000 ms before stimulus onset. We identified a fronto-central negativity starting around 1,000 ms before car crash presentation. By contrast, a whole-scalp distributed positivity characterized the anticipatory activity observed before the end of the trial in the no car crash end condition. The present data are in line with the hypothesis that the brain may also anticipate dichotomic, statistically unpredictable stimuli, relaying onto different pre-stimulus ERP activity. Possible integration with car-smart-systems is also suggested. PMID:28103303
Bambini, Deborah; Emery, Matthew; de Voest, Margaret; Meny, Lisa; Shoemaker, Michael J.
2016-01-01
There are significant limitations among the few prior studies that have examined the development and implementation of interprofessional education (IPE) experiences to accommodate a high volume of students from several disciplines and from different institutions. The present study addressed these gaps by seeking to determine the extent to which a single, large, inter-institutional, and IPE simulation event improves student perceptions of the importance and relevance of IPE and simulation as a learning modality, whether there is a difference in students’ perceptions among disciplines, and whether the results are reproducible. A total of 290 medical, nursing, pharmacy, and physical therapy students participated in one of two large, inter-institutional, IPE simulation events. Measurements included student perceptions about their simulation experience using the Attitude Towards Teamwork in Training Undergoing Designed Educational Simulation (ATTITUDES) Questionnaire and open-ended questions related to teamwork and communication. Results demonstrated a statistically significant improvement across all ATTITUDES subscales, while time management, role confusion, collaboration, and mutual support emerged as significant themes. Results of the present study indicate that a single IPE simulation event can reproducibly result in significant and educationally meaningful improvements in student perceptions towards teamwork, IPE, and simulation as a learning modality. PMID:28970407
NASA Astrophysics Data System (ADS)
Vrac, Mathieu
2018-06-01
Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.
Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines
NASA Astrophysics Data System (ADS)
Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.
2016-12-01
Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.
Gore, Teresa
2017-06-15
The purpose of this study was to explore the relationship of baccalaureate nursing students' (BSN) perceived learning effectiveness using the Clinical Learning Environments Comparison Survey of different levels of fidelity simulation and traditional clinical experiences. A convenience sample of 103 first semester BSN enrolled in a fundamental/assessment clinical course and 155 fifth semester BSN enrolled in a leadership clinical course participated in this study. A descriptive correlational design was used for this cross-sectional study to evaluate students' perceptions after a simulation experience and the completion of the traditional clinical experiences. The subscales measured were communication, nursing leadership, and teaching-learning dyad. No statistical differences were noted based on the learning objectives. The communication subscale showed a tendency toward preference for traditional clinical experiences in meeting students perceived learning for communication. For student perceived learning effectiveness, faculty should determine the appropriate level of fidelity in simulation based on the learning objectives.
An optimization model to agroindustrial sector in antioquia (Colombia, South America)
NASA Astrophysics Data System (ADS)
Fernandez, J.
2015-06-01
This paper develops a proposal of a general optimization model for the flower industry, which is defined by using discrete simulation and nonlinear optimization, whose mathematical models have been solved by using ProModel simulation tools and Gams optimization. It defines the operations that constitute the production and marketing of the sector, statistically validated data taken directly from each operation through field work, the discrete simulation model of the operations and the linear optimization model of the entire industry chain are raised. The model is solved with the tools described above and presents the results validated in a case study.
Compressible homogeneous shear: Simulation and modeling
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.
1992-01-01
Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.
Compressible homogeneous shear - Simulation and modeling
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.
1991-01-01
Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.
NASA Astrophysics Data System (ADS)
Simatos, N.; Perivolaropoulos, L.
2001-01-01
We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.
Allawala, Altan; Marston, J B
2016-11-01
We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion with hyperdiffusion. We also access the low-order statistics of the system by a perturbative expansion in equal-time cumulants. A comparison is made to statistics obtained by the standard approach of accumulation via direct numerical simulation. Theoretical and computational aspects of the Fokker-Planck and cumulant expansion methods are discussed.
Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin
2014-06-05
In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Time independent summary statistics may aid the understanding of drugs' action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies.
2014-01-01
Background In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. Results First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Conclusion Time independent summary statistics may aid the understanding of drugs’ action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies. PMID:24902483
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores
Edmonds, Jason; Lindquist, H. D. Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter
2016-01-01
The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
Strauch, Kellan R.; Linard, Joshua I.
2009-01-01
The U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, used the Soil and Water Assessment Tool to simulate streamflow and estimate percolation in north-central Nebraska to aid development of long-term strategies for management of hydrologically connected ground and surface water. Although groundwater models adequately simulate subsurface hydrologic processes, they often are not designed to simulate the hydrologically complex processes occurring at or near the land surface. The use of watershed models such as the Soil and Water Assessment Tool, which are designed specifically to simulate surface and near-subsurface processes, can provide helpful insight into the effects of surface-water hydrology on the groundwater system. The Soil and Water Assessment Tool was calibrated for five stream basins in the Elkhorn-Loup Groundwater Model study area in north-central Nebraska to obtain spatially variable estimates of percolation. Six watershed models were calibrated to recorded streamflow in each subbasin by modifying the adjustment parameters. The calibrated parameter sets were then used to simulate a validation period; the validation period was half of the total streamflow period of record with a minimum requirement of 10 years. If the statistical and water-balance results for the validation period were similar to those for the calibration period, a model was considered satisfactory. Statistical measures of each watershed model's performance were variable. These objective measures included the Nash-Sutcliffe measure of efficiency, the ratio of the root-mean-square error to the standard deviation of the measured data, and an estimate of bias. The model met performance criteria for the bias statistic, but failed to meet statistical adequacy criteria for the other two performance measures when evaluated at a monthly time step. A primary cause of the poor model validation results was the inability of the model to reproduce the sustained base flow and streamflow response to precipitation that was observed in the Sand Hills region. The watershed models also were evaluated based on how well they conformed to the annual mass balance (precipitation equals the sum of evapotranspiration, streamflow/runoff, and deep percolation). The model was able to adequately simulate annual values of evapotranspiration, runoff, and precipitation in comparison to reported values, which indicates the model may provide reasonable estimates of annual percolation. Mean annual percolation estimated by the model as basin averages varied within the study area from a maximum of 12.9 inches in the Loup River Basin to a minimum of 1.5 inches in the Shell Creek Basin. Percolation also varied within the studied basins; basin headwaters tended to have greater percolation rates than downstream areas. This variance in percolation rates was mainly was because of the predominance of sandy, highly permeable soils in the upstream areas of the modeled basins.
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.
2010-01-01
In this study, extended -range (30 -day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30 -day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time -varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e.g., a lead time of up to 22 days) as the 4th AEW is realistically simulated.
Mesoscale acid deposition modeling studies
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.
1989-01-01
The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.
In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations.
Dutta, Soumya; Chen, Chun-Ming; Heinlein, Gregory; Shen, Han-Wei; Chen, Jen-Ping
2017-01-01
Study of flow instability in turbine engine compressors is crucial to understand the inception and evolution of engine stall. Aerodynamics experts have been working on detecting the early signs of stall in order to devise novel stall suppression technologies. A state-of-the-art Navier-Stokes based, time-accurate computational fluid dynamics simulator, TURBO, has been developed in NASA to enhance the understanding of flow phenomena undergoing rotating stall. Despite the proven high modeling accuracy of TURBO, the excessive simulation data prohibits post-hoc analysis in both storage and I/O time. To address these issues and allow the expert to perform scalable stall analysis, we have designed an in situ distribution guided stall analysis technique. Our method summarizes statistics of important properties of the simulation data in situ using a probabilistic data modeling scheme. This data summarization enables statistical anomaly detection for flow instability in post analysis, which reveals the spatiotemporal trends of rotating stall for the expert to conceive new hypotheses. Furthermore, the verification of the hypotheses and exploratory visualization using the summarized data are realized using probabilistic visualization techniques such as uncertain isocontouring. Positive feedback from the domain scientist has indicated the efficacy of our system in exploratory stall analysis.
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less
PRANAS: A New Platform for Retinal Analysis and Simulation.
Cessac, Bruno; Kornprobst, Pierre; Kraria, Selim; Nasser, Hassan; Pamplona, Daniela; Portelli, Geoffrey; Viéville, Thierry
2017-01-01
The retina encodes visual scenes by trains of action potentials that are sent to the brain via the optic nerve. In this paper, we describe a new free access user-end software allowing to better understand this coding. It is called PRANAS (https://pranas.inria.fr), standing for Platform for Retinal ANalysis And Simulation. PRANAS targets neuroscientists and modelers by providing a unique set of retina-related tools. PRANAS integrates a retina simulator allowing large scale simulations while keeping a strong biological plausibility and a toolbox for the analysis of spike train population statistics. The statistical method (entropy maximization under constraints) takes into account both spatial and temporal correlations as constraints, allowing to analyze the effects of memory on statistics. PRANAS also integrates a tool computing and representing in 3D (time-space) receptive fields. All these tools are accessible through a friendly graphical user interface. The most CPU-costly of them have been implemented to run in parallel.
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Hyer, E. J.; Ichoku, C. M.
2012-12-01
A fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem), is used to simulate the transport of smoke aerosol over the Central Africa during February 2008. Smoke emission used in this study is specified from the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance is evaluated using MODIS true color images, measured Aerosol Optical Depth (AOD) from space-borne MODIS (550 nm) and ground-based AERONET (500 nm), and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) level 1 and 2 products. The simulated smoke transport is in good agreement with the validation data. Analyzing from three smoke events, smoke is constrained in a narrow belt between the Equator and 10°N near the surface, with the interplay of trade winds, subtropical high, and ITCZ. At the 700 hpa level, smoke expands farther meridionally. Topography blocks the smoke transport to the southeast of study area, because of high mountains located near the Great Rift Valley region. The simulation with injection height of 650 m is consistent with CALIOP measurements. The particular phenomenon, aerosol above cloud, is studied statistically from CALIOP observations. The total percentage of aerosol above cloud is about 5%.
The impact of vertical resolution in mesoscale model AROME forecasting of radiation fog
NASA Astrophysics Data System (ADS)
Philip, Alexandre; Bergot, Thierry; Bouteloup, Yves; Bouyssel, François
2015-04-01
Airports short-term forecasting of fog has a security and economic impact. Numerical simulations have been performed with the mesoscale model AROME (Application of Research to Operations at Mesoscale) (Seity et al. 2011). Three vertical resolutions (60, 90 and 156 levels) are used to show the impact of radiation fog on numerical forecasting. Observations at Roissy Charles De Gaulle airport are compared to simulations. Significant differences in the onset, evolution and dissipation of fog were found. The high resolution simulation is in better agreement with observations than a coarser one. The surface boundary layer and incoming long-wave radiations are better represented. A more realistic behaviour of liquid water content evolution allows a better anticipation of low visibility procedures (ceiling < 60m and/or visibility < 600m). The case study of radiation fog shows that it is necessary to have a well defined vertical grid to better represent local phenomena. A statistical study over 6 months (October 2011 - March 2012 ) using different configurations was carried out. Statistically, results were the same as in the case study of radiation fog. Seity Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, 2011: The AROME-France convective scale operational model. Mon.Wea.Rev., 139, 976-991.
Multibaseline gravitational wave radiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-03-15
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise.more » Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.« less
Mahmood, Iftekhar
2004-01-01
The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Mckissick, B. T.; Steinmetz, G. G.
1979-01-01
A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Ploutz-Snyder, Robert; Fiedler, James
2011-01-01
In their 2009 Annals of Statistics paper, Gavrilov, Benjamini, and Sarkar report the results of a simulation assessing the robustness of their adaptive step-down procedure (GBS) for controlling the false discovery rate (FDR) when normally distributed test statistics are serially correlated. In this study we extend the investigation to the case of multiple comparisons involving correlated non-central t-statistics, in particular when several treatments or time periods are being compared to a control in a repeated-measures design with many dependent outcome measures. In addition, we consider several dependence structures other than serial correlation and illustrate how the FDR depends on the interaction between effect size and the type of correlation structure as indexed by Foerstner s distance metric from an identity. The relationship between the correlation matrix R of the original dependent variables and R, the correlation matrix of associated t-statistics is also studied. In general R depends not only on R, but also on sample size and the signed effect sizes for the multiple comparisons.
Hinde, Theresa; Gale, Thomas; Anderson, Ian; Roberts, Martin; Sice, Paul
2016-01-01
Interprofessional point of care or in situ simulation is used as a training tool in our operating theatre directorate with the aim of improving crisis behaviours. This study aimed to assess the impact of interprofessional point of care simulation on the safety culture of operating theatres. A validated Safety Attitude Questionnaire was administered to staff members before each simulation scenario and then re-administered to the same staff members after 6-12 months. Pre- and post-training Safety Attitude Questionnaire-Operating Room (SAQ-OR) scores were compared using paired sample t-tests. Analysis revealed a statistically significant perceived improvement in both safety (p < 0.001) and teamwork (p = 0.013) climate scores (components of safety culture) 6-12 months after interprofessional simulation training. A growing body of literature suggests that a positive safety culture is associated with improved patient outcomes. Our study supports the implementation of point of care simulation as a useful intervention to improve safety culture in theatres.
Wu, Hao
2018-05-01
In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.
Estimating procedure times for surgeries by determining location parameters for the lognormal model.
Spangler, William E; Strum, David P; Vargas, Luis G; May, Jerrold H
2004-05-01
We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations.
Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power
Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.; Vaughn, Sharon
2016-01-01
An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%–155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%–71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power. PMID:28479943
Designing Intervention Studies: Selected Populations, Range Restrictions, and Statistical Power.
Miciak, Jeremy; Taylor, W Pat; Stuebing, Karla K; Fletcher, Jack M; Vaughn, Sharon
2016-01-01
An appropriate estimate of statistical power is critical for the design of intervention studies. Although the inclusion of a pretest covariate in the test of the primary outcome can increase statistical power, samples selected on the basis of pretest performance may demonstrate range restriction on the selection measure and other correlated measures. This can result in attenuated pretest-posttest correlations, reducing the variance explained by the pretest covariate. We investigated the implications of two potential range restriction scenarios: direct truncation on a selection measure and indirect range restriction on correlated measures. Empirical and simulated data indicated direct range restriction on the pretest covariate greatly reduced statistical power and necessitated sample size increases of 82%-155% (dependent on selection criteria) to achieve equivalent statistical power to parameters with unrestricted samples. However, measures demonstrating indirect range restriction required much smaller sample size increases (32%-71%) under equivalent scenarios. Additional analyses manipulated the correlations between measures and pretest-posttest correlations to guide planning experiments. Results highlight the need to differentiate between selection measures and potential covariates and to investigate range restriction as a factor impacting statistical power.
Funkenbusch, Paul D; Rotella, Mario; Chochlidakis, Konstantinos; Ercoli, Carlo
2016-10-01
Laboratory studies of tooth preparation often involve single values for all variables other than the one being tested. In contrast, in clinical settings, not all variables can be adequately controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but, in clinical practice, the instrument must make different cuts with individual dentists applying different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies difficult. The purpose of this in vitro study was to examine the effects of 9 process variables on the dental cutting of rotary cutting instruments used with an electric handpiece and compare them with those of a previous study that used an air-turbine handpiece. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using an electric handpiece in a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures with Macor blocks as the cutting substrate. Analysis of variance (ANOVA) was used to assess the statistical significance (α=.05). Four variables (targeted applied load, cut length, diamond grit size, and cut type) consistently produced large, statistically significant effects, whereas 5 variables (rotation per minute, number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate) produced relatively small, statistically insignificant effects. These results are generally similar to those previously found for an air-turbine handpiece. Regardless of whether an electric or air-turbine handpiece was used, the control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also significantly affected by factors simulating patient/clinical circumstances and hardware choices. These results highlight the greater importance of local clinical conditions (procedure, dentist) in understanding dental cutting as opposed to other hardware-related factors. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Funkenbusch, Paul D; Rotella, Mario; Ercoli, Carlo
2015-04-01
Laboratory studies of tooth preparation are often performed under a limited range of conditions involving single values for all variables other than the 1 being tested. In contrast, in clinical settings not all variables can be tightly controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but in clinical practice, the instrument must make different cuts with individual dentists applying a range of different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies is difficult. The purpose of this study was to examine the effect of 9 process variables on dental cutting in a single experiment, allowing each variable to be robustly tested over a range of values for the other 8 and permitting a direct comparison of the relative importance of each on the cutting process. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures and Macor blocks as the cutting substrate. Analysis of Variance (ANOVA) was used to judge the statistical significance (α=.05). Five variables consistently produced large, statistically significant effects (target applied load, cut length, starting rpm, diamond grit size, and cut type), while 4 variables produced relatively small, statistically insignificant effects (number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate). The control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also significantly affected by factors simulating patient/clinical circumstances as well as hardware choices. These results highlight the importance of local clinical conditions (procedure, dentist) in understanding dental cutting procedures and in designing adequate experimental methodologies for future studies. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Improving the performance of a filling line based on simulation
NASA Astrophysics Data System (ADS)
Jasiulewicz-Kaczmarek, M.; Bartkowiak, T.
2016-08-01
The paper describes the method of improving performance of a filling line based on simulation. This study concerns a production line that is located in a manufacturing centre of a FMCG company. A discrete event simulation model was built using data provided by maintenance data acquisition system. Two types of failures were identified in the system and were approximated using continuous statistical distributions. The model was validated taking into consideration line performance measures. A brief Pareto analysis of line failures was conducted to identify potential areas of improvement. Two improvements scenarios were proposed and tested via simulation. The outcome of the simulations were the bases of financial analysis. NPV and ROI values were calculated taking into account depreciation, profits, losses, current CIT rate and inflation. A validated simulation model can be a useful tool in maintenance decision-making process.
Multiple point statistical simulation using uncertain (soft) conditional data
NASA Astrophysics Data System (ADS)
Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou
2018-05-01
Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.
Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S
2012-11-01
Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.
2000-01-01
We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.
Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2016-01-01
The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.
Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST.
Futter, M N; Whitehead, P G; Sarkar, S; Rodda, H; Crossman, J
2015-06-01
There are ongoing discussions about the appropriate level of complexity and sources of uncertainty in rainfall runoff models. Simulations for operational hydrology, flood forecasting or nutrient transport all warrant different levels of complexity in the modelling approach. More complex model structures are appropriate for simulations of land-cover dependent nutrient transport while more parsimonious model structures may be adequate for runoff simulation. The appropriate level of complexity is also dependent on data availability. Here, we use PERSiST; a simple, semi-distributed dynamic rainfall-runoff modelling toolkit to simulate flows in the Upper Ganges and Brahmaputra rivers. We present two sets of simulations driven by single time series of daily precipitation and temperature using simple (A) and complex (B) model structures based on uniform and hydrochemically relevant land covers respectively. Models were compared based on ensembles of Bayesian Information Criterion (BIC) statistics. Equifinality was observed for parameters but not for model structures. Model performance was better for the more complex (B) structural representations than for parsimonious model structures. The results show that structural uncertainty is more important than parameter uncertainty. The ensembles of BIC statistics suggested that neither structural representation was preferable in a statistical sense. Simulations presented here confirm that relatively simple models with limited data requirements can be used to credibly simulate flows and water balance components needed for nutrient flux modelling in large, data-poor basins.
Post Hoc Analyses of ApoE Genotype-Defined Subgroups in Clinical Trials.
Kennedy, Richard E; Cutter, Gary R; Wang, Guoqiao; Schneider, Lon S
2016-01-01
Many post hoc analyses of clinical trials in Alzheimer's disease (AD) and mild cognitive impairment (MCI) are in small Phase 2 trials. Subject heterogeneity may lead to statistically significant post hoc results that cannot be replicated in larger follow-up studies. We investigated the extent of this problem using simulation studies mimicking current trial methods with post hoc analyses based on ApoE4 carrier status. We used a meta-database of 24 studies, including 3,574 subjects with mild AD and 1,171 subjects with MCI/prodromal AD, to simulate clinical trial scenarios. Post hoc analyses examined if rates of progression on the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) differed between ApoE4 carriers and non-carriers. Across studies, ApoE4 carriers were younger and had lower baseline scores, greater rates of progression, and greater variability on the ADAS-cog. Up to 18% of post hoc analyses for 18-month trials in AD showed greater rates of progression for ApoE4 non-carriers that were statistically significant but unlikely to be confirmed in follow-up studies. The frequency of erroneous conclusions dropped below 3% with trials of 100 subjects per arm. In MCI, rates of statistically significant differences with greater progression in ApoE4 non-carriers remained below 3% unless sample sizes were below 25 subjects per arm. Statistically significant differences for ApoE4 in post hoc analyses often reflect heterogeneity among small samples rather than true differential effect among ApoE4 subtypes. Such analyses must be viewed cautiously. ApoE genotype should be incorporated into the design stage to minimize erroneous conclusions.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
The control of manual entry accuracy in management/engineering information systems, phase 1
NASA Technical Reports Server (NTRS)
Hays, Daniel; Nocke, Henry; Wilson, Harold; Woo, John, Jr.; Woo, June
1987-01-01
It was shown that clerical personnel can be tested for proofreading performance under simulated industrial conditions. A statistical study showed that errors in proofreading follow an extreme value probability theory. The study showed that innovative man/machine interfaces can be developed to improve and control accuracy during data entry.
The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the co...
ERIC Educational Resources Information Center
de Oliveira Souza, Leandro; Lopes, Celi Espasandin; de Oliveira Mendonça, Luzinete
2014-01-01
The inclusion of statistics and probability in the mathematics curriculum has always generated challenges to mathematics teachers of elementary schools. This article discusses activities that promote the professional development of such teachers. We present part of a doctoral research study of 16 teachers in which we discuss two case studies of…
Technology Tips: Sample Too Small? Probably Not!
ERIC Educational Resources Information Center
Strayer, Jeremy F.
2013-01-01
Statistical studies are referenced in the news every day, so frequently that people are sometimes skeptical of reported results. Often, no matter how large a sample size researchers use in their studies, people believe that the sample size is too small to make broad generalizations. The tasks presented in this article use simulations of repeated…
On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources
NASA Astrophysics Data System (ADS)
Kosmann, William J.
NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource re-allocation has never been tried in a spacecraft development, no historical results exist, and an inference on the means test is not possible. A simulation of using barter-based resource re-allocation should be developed. The NetLogo instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource re-allocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource re-allocation will result in lower expected cost growth.
Intermediate quantum maps for quantum computation
NASA Astrophysics Data System (ADS)
Giraud, O.; Georgeot, B.
2005-10-01
We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically and yields pseudorandom operators with original properties, enabling, for example, one to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.
1980-01-01
NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.
1996-01-01
The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.
Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan
2015-01-01
Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.
Fade durations in satellite-path mobile radio propagation
NASA Technical Reports Server (NTRS)
Schmier, Robert G.; Bostian, Charles W.
1986-01-01
Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.
NASA Astrophysics Data System (ADS)
Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz
We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.
TU-A-17A-02: In Memoriam of Ben Galkin: Virtual Tools for Validation of X-Ray Breast Imaging Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, K; Bakic, P; Abbey, C
2014-06-15
This symposium will explore simulation methods for the preclinical evaluation of novel 3D and 4D x-ray breast imaging systems – the subject of AAPM taskgroup TG234. Given the complex design of modern imaging systems, simulations offer significant advantages over long and costly clinical studies in terms of reproducibility, reduced radiation exposures, a known reference standard, and the capability for studying patient and disease subpopulations through appropriate choice of simulation parameters. Our focus will be on testing the realism of software anthropomorphic phantoms and virtual clinical trials tools developed for the optimization and validation of breast imaging systems. The symposium willmore » review the stateof- the-science, as well as the advantages and limitations of various approaches to testing realism of phantoms and simulated breast images. Approaches based upon the visual assessment of synthetic breast images by expert observers will be contrasted with approaches based upon comparing statistical properties between synthetic and clinical images. The role of observer models in the assessment of realism will be considered. Finally, an industry perspective will be presented, summarizing the role and importance of virtual tools and simulation methods in product development. The challenges and conditions that must be satisfied in order for computational modeling and simulation to play a significantly increased role in the design and evaluation of novel breast imaging systems will be addressed. Learning Objectives: Review the state-of-the science in testing realism of software anthropomorphic phantoms and virtual clinical trials tools; Compare approaches based upon the visual assessment by expert observers vs. the analysis of statistical properties of synthetic images; Discuss the role of observer models in the assessment of realism; Summarize the industry perspective to virtual methods for breast imaging.« less
General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong
2013-01-01
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Motion Factors in Flight Simulation. Final Report.
ERIC Educational Resources Information Center
Klier, Sol; Gage, Howard
The effect of different simulator motion conditions on pilot performance was investigated, and the cuing function of simulator motion was explored. Subjects were required to perform a simulated air-to-air gunnery task under four conditions of motion. While treatment effects did not meet the predetermined level of statistical significance,…
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Orphan therapies: making best use of postmarket data.
Maro, Judith C; Brown, Jeffrey S; Dal Pan, Gerald J; Li, Lingling
2014-08-01
Postmarket surveillance of the comparative safety and efficacy of orphan therapeutics is challenging, particularly when multiple therapeutics are licensed for the same orphan indication. To make best use of product-specific registry data collected to fulfill regulatory requirements, we propose the creation of a distributed electronic health data network among registries. Such a network could support sequential statistical analyses designed to detect early warnings of excess risks. We use a simulated example to explore the circumstances under which a distributed network may prove advantageous. We perform sample size calculations for sequential and non-sequential statistical studies aimed at comparing the incidence of hepatotoxicity following initiation of two newly licensed therapies for homozygous familial hypercholesterolemia. We calculate the sample size savings ratio, or the proportion of sample size saved if one conducted a sequential study as compared to a non-sequential study. Then, using models to describe the adoption and utilization of these therapies, we simulate when these sample sizes are attainable in calendar years. We then calculate the analytic calendar time savings ratio, analogous to the sample size savings ratio. We repeat these analyses for numerous scenarios. Sequential analyses detect effect sizes earlier or at the same time as non-sequential analyses. The most substantial potential savings occur when the market share is more imbalanced (i.e., 90% for therapy A) and the effect size is closest to the null hypothesis. However, due to low exposure prevalence, these savings are difficult to realize within the 30-year time frame of this simulation for scenarios in which the outcome of interest occurs at or more frequently than one event/100 person-years. We illustrate a process to assess whether sequential statistical analyses of registry data performed via distributed networks may prove a worthwhile infrastructure investment for pharmacovigilance.
Bremer, Peer-Timo; Weber, Gunther; Tierny, Julien; Pascucci, Valerio; Day, Marcus S; Bell, John B
2011-09-01
Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process.
NASA Astrophysics Data System (ADS)
Wang, W. L.; Tsui, K. L.; Lo, S. M.; Liu, S. B.
2018-01-01
Crowded transportation hubs such as metro stations are thought as ideal places for the development and spread of epidemics. However, for the special features of complex spatial layout, confined environment with a large number of highly mobile individuals, it is difficult to quantify human contacts in such environments, wherein disease spreading dynamics were less explored in the previous studies. Due to the heterogeneity and dynamic nature of human interactions, increasing studies proved the importance of contact distance and length of contact in transmission probabilities. In this study, we show how detailed information on contact and exposure patterns can be obtained by statistical analyses on microscopic crowd simulation data. To be specific, a pedestrian simulation model-CityFlow was employed to reproduce individuals' movements in a metro station based on site survey data, values and distributions of individual contact rate and exposure in different simulation cases were obtained and analyzed. It is interesting that Weibull distribution fitted the histogram values of individual-based exposure in each case very well. Moreover, we found both individual contact rate and exposure had linear relationship with the average crowd densities of the environments. The results obtained in this paper can provide reference to epidemic study in complex and confined transportation hubs and refine the existing disease spreading models.
Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; ...
2014-12-04
Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratihar, Subha; Barnes, George L.; Laskin, Julia
In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both themore » experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.« less