Theory of Image Analysis and Recognition.
1983-01-24
Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures
Structural texture similarity metrics for image analysis and retrieval.
Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L
2013-07-01
We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.
Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas
2018-04-01
To evaluate whole-lesion volumetric texture analysis of apparent diffusion coefficient (ADC) maps for assessing treatment response in prostate cancer bone metastases. Texture analysis is performed in 12 treatment-naïve patients with 34 metastases before treatment and at one, two, and three months after the initiation of androgen deprivation therapy. Four first-order and 19 second-order statistical texture features are computed on the ADC maps in each lesion at every time point. Repeatability, inter-patient variability, and changes in the feature values under therapy are investigated. Spearman rank's correlation coefficients are calculated across time to demonstrate the relationship between the texture features and the serum prostate specific antigen (PSA) levels. With few exceptions, the texture features exhibited moderate to high precision. At the same time, Friedman's tests revealed that all first-order and second-order statistical texture features changed significantly in response to therapy. Thereby, the majority of texture features showed significant changes in their values at all post-treatment time points relative to baseline. Bivariate analysis detected significant correlations between the great majority of texture features and the serum PSA levels. Thereby, three first-order and six second-order statistical features showed strong correlations with the serum PSA levels across time. The findings in the present work indicate that whole-tumor volumetric texture analysis may be utilized for response assessment in prostate cancer bone metastases. The approach may be used as a complementary measure for treatment monitoring in conjunction with averaged ADC values. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Cascaded Amplitude Modulations in Sound Texture Perception.
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
Cascaded Amplitude Modulations in Sound Texture Perception
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191
Music Structure Analysis from Acoustic Signals
NASA Astrophysics Data System (ADS)
Dannenberg, Roger B.; Goto, Masataka
Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.
Collagen morphology and texture analysis: from statistics to classification
Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Xiang, Bo; Hewko, Mark; Tian, Ganghong; Major, Arkady; Shiomi, Masashi; Sowa, Michael G.
2013-01-01
In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage. PMID:23846580
Morphological texture assessment of oral bone as a screening tool for osteoporosis
NASA Astrophysics Data System (ADS)
Analoui, Mostafa; Eggertsson, Hafsteinn; Eckert, George
2001-07-01
Three classes of texture analysis approaches have been employed to assess the textural characteristic of oral bone. A set of linear structuring elements was used to compute granulometric features of trabecular bone. Multifractal analysis was also used to compute the fractal dimension of the corresponding tissues. In addition, some statistical features and histomorphometric parameters were computed. To assess the proposed approach we acquired digital intraoral radiographs of 47 subjects (14 males and 33 females). All radiographs were captured at 12 bits/pixel. Images were converted to binary form through a sliding locally adaptive thresholding approach. Each subject was scanned by DEXA for bone dosimetry. Subject were classified into one of the following three categories according World Health Organization (WHO) standard (1) healthy, (2) with osteopenia and (3) osteoporosis. In this study fractal dimension showed very low correlation with bone mineral density (BMD) measurements, which did not reach a level of statistical significance (p<0.5). However, entropy of pattern spectrum (EPS), along with statistical features and histomorphometric parameters, has shown correlation coefficients ranging from low to high, with statistical significance for both males and females. The results of this study indicate the utility of this approach for bone texture analysis. It is conjectured that designing a 2-D structuring element, specially tuned to trabecular bone texture, will increase the efficacy of the proposed method.
Texture analysis of pulmonary parenchyma in normal and emphysematous lung
NASA Astrophysics Data System (ADS)
Uppaluri, Renuka; Mitsa, Theophano; Hoffman, Eric A.; McLennan, Geoffrey; Sonka, Milan
1996-04-01
Tissue characterization using texture analysis is gaining increasing importance in medical imaging. We present a completely automated method for discriminating between normal and emphysematous regions from CT images. This method involves extracting seventeen features which are based on statistical, hybrid and fractal texture models. The best subset of features is derived from the training set using the divergence technique. A minimum distance classifier is used to classify the samples into one of the two classes--normal and emphysema. Sensitivity and specificity and accuracy values achieved were 80% or greater in most cases proving that texture analysis holds great promise in identifying emphysema.
Cortical mechanisms for the segregation and representation of acoustic textures.
Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D
2010-02-10
Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, M; Fan, T; Duan, J
2015-06-15
Purpose: Prospectively assess the potential utility of texture analysis for differentiation of central cancer from atelectasis. Methods: 0 consecutive central lung cancer patients who were referred for CT imaging and PET-CT were enrolled. Radiotherapy doctor delineate the tumor and atelectasis according to the fusion imaging based on CT image and PET-CT image. The texture parameters (such as energy, correlation, sum average, difference average, difference entropy), were obtained respectively to quantitatively discriminate tumor and atelectasis based on gray level co-occurrence matrix (GLCM) Results: The texture analysis results showed that the parameters of correlation and sum average had an obviously statistical significance(P<0.05).more » Conclusion: the results of this study indicate that texture analysis may be useful for the differentiation of central lung cancer and atelectasis.« less
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer.
Neofytou, Marios S; Tanos, Vasilis; Pattichis, Marios S; Pattichis, Constantinos S; Kyriacou, Efthyvoulos C; Koutsouris, Dimitris D
2007-11-29
In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 x 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images. Within the proposed protocol, for human ROIs, we have found that there is a large number of texture features that showed significant differences between normal and abnormal endometrium. This study provides a standardized protocol for avoiding any significant texture feature differences that may arise due to variability in the acquisition procedure or the lack of color correction. After applying the protocol, we have found that significant differences in texture features will only be due to the fact that the features were extracted from different types of tissue (normal vs abnormal).
Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan
2018-04-01
We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.
Low-level contrast statistics are diagnostic of invariance of natural textures
Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven
2012-01-01
Texture may provide important clues for real world object and scene perception. To be reliable, these clues should ideally be invariant to common viewing variations such as changes in illumination and orientation. In a large image database of natural materials, we found textures with low-level contrast statistics that varied substantially under viewing variations, as well as textures that remained relatively constant. This led us to ask whether textures with constant contrast statistics give rise to more invariant representations compared to other textures. To test this, we selected natural texture images with either high (HV) or low (LV) variance in contrast statistics and presented these to human observers. In two distinct behavioral categorization paradigms, participants more often judged HV textures as “different” compared to LV textures, showing that textures with constant contrast statistics are perceived as being more invariant. In a separate electroencephalogram (EEG) experiment, evoked responses to single texture images (single-image ERPs) were collected. The results show that differences in contrast statistics correlated with both early and late differences in occipital ERP amplitude between individual images. Importantly, ERP differences between images of HV textures were mainly driven by illumination angle, which was not the case for LV images: there, differences were completely driven by texture membership. These converging neural and behavioral results imply that some natural textures are surprisingly invariant to illumination changes and that low-level contrast statistics are diagnostic of the extent of this invariance. PMID:22701419
NASA Astrophysics Data System (ADS)
Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae
2012-09-01
This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.
Image statistics underlying natural texture selectivity of neurons in macaque V4
Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko
2015-01-01
Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Objective measurement of bread crumb texture
NASA Astrophysics Data System (ADS)
Wang, Jian; Coles, Graeme D.
1995-01-01
Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem
2016-01-01
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2017-03-01
We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p < 0.05). The open-access brain imaging data exchange (ABIDE) brain MRI dataset is used to evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.
2012-10-24
representative pdf’s via the Kullback - Leibler divergence (KL). Species turnover, or b diversity, is estimated using both this KL divergence and the...multiresolution analysis provides a means for estimating divergence between two textures, specifically the Kullback - Leibler divergence between the pair of ...and open challenges. Ecological Informatics 5: 318–329. 19. Ludovisi A, TaticchiM(2006) Investigating beta diversity by kullback - leibler information
Texture functions in image analysis: A computationally efficient solution
NASA Technical Reports Server (NTRS)
Cox, S. C.; Rose, J. F.
1983-01-01
A computationally efficient means for calculating texture measurements from digital images by use of the co-occurrence technique is presented. The calculation of the statistical descriptors of image texture and a solution that circumvents the need for calculating and storing a co-occurrence matrix are discussed. The results show that existing efficient algorithms for calculating sums, sums of squares, and cross products can be used to compute complex co-occurrence relationships directly from the digital image input.
1992-01-01
entropy , energy. variance, skewness, and object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as...statistic. The co-occurrence matrix method is used in this study to derive texture values of entropy . Limogeneity. energy (similar to the GLDV angular...from working with the co-occurrence matrix method. Seven convolution sizes were chosen to derive the texture values of entropy , local homogeneity, and
Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
McDermott, Josh H.; Simoncelli, Eero P.
2014-01-01
Rainstorms, insect swarms, and galloping horses produce “sound textures” – the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures. However, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation. PMID:21903084
Kinoshita, Manabu; Sakai, Mio; Arita, Hideyuki; Shofuda, Tomoko; Chiba, Yasuyoshi; Kagawa, Naoki; Watanabe, Yoshiyuki; Hashimoto, Naoya; Fujimoto, Yasunori; Yoshimine, Toshiki; Nakanishi, Katsuyuki; Kanemura, Yonehiro
2016-01-01
Reports have suggested that tumor textures presented on T2-weighted images correlate with the genetic status of glioma. Therefore, development of an image analyzing framework that is capable of objective and high throughput image texture analysis for large scale image data collection is needed. The current study aimed to address the development of such a framework by introducing two novel parameters for image textures on T2-weighted images, i.e., Shannon entropy and Prewitt filtering. Twenty-two WHO grade 2 and 28 grade 3 glioma patients were collected whose pre-surgical MRI and IDH1 mutation status were available. Heterogeneous lesions showed statistically higher Shannon entropy than homogenous lesions (p = 0.006) and ROC curve analysis proved that Shannon entropy on T2WI was a reliable indicator for discrimination of homogenous and heterogeneous lesions (p = 0.015, AUC = 0.73). Lesions with well-defined borders exhibited statistically higher Edge mean and Edge median values using Prewitt filtering than those with vague lesion borders (p = 0.0003 and p = 0.0005 respectively). ROC curve analysis also proved that both Edge mean and median values were promising indicators for discrimination of lesions with vague and well defined borders and both Edge mean and median values performed in a comparable manner (p = 0.0002, AUC = 0.81 and p < 0.0001, AUC = 0.83, respectively). Finally, IDH1 wild type gliomas showed statistically lower Shannon entropy on T2WI than IDH1 mutated gliomas (p = 0.007) but no difference was observed between IDH1 wild type and mutated gliomas in Edge median values using Prewitt filtering. The current study introduced two image metrics that reflect lesion texture described on T2WI. These two metrics were validated by readings of a neuro-radiologist who was blinded to the results. This observation will facilitate further use of this technique in future large scale image analysis of glioma.
Aural analysis of image texture via cepstral filtering and sonification
NASA Astrophysics Data System (ADS)
Rangayyan, Rangaraj M.; Martins, Antonio C. G.; Ruschioni, Ruggero A.
1996-03-01
Texture plays an important role in image analysis and understanding, with many applications in medical imaging and computer vision. However, analysis of texture by image processing is a rather difficult issue, with most techniques being oriented towards statistical analysis which may not have readily comprehensible perceptual correlates. We propose new methods for auditory display (AD) and sonification of (quasi-) periodic texture (where a basic texture element or `texton' is repeated over the image field) and random texture (which could be modeled as filtered or `spot' noise). Although the AD designed is not intended to be speech- like or musical, we draw analogies between the two types of texture mentioned above and voiced/unvoiced speech, and design a sonification algorithm which incorporates physical and perceptual concepts of texture and speech. More specifically, we present a method for AD of texture where the projections of the image at various angles (Radon transforms or integrals) are mapped to audible signals and played in sequence. In the case of random texture, the spectral envelopes of the projections are related to the filter spot characteristics, and convey the essential information for texture discrimination. In the case of periodic texture, the AD provides timber and pitch related to the texton and periodicity. In another procedure for sonification of periodic texture, we propose to first deconvolve the image using cepstral analysis to extract information about the texton and horizontal and vertical periodicities. The projections of individual textons at various angles are used to create a voiced-speech-like signal with each projection mapped to a basic wavelet, the horizontal period to pitch, and the vertical period to rhythm on a longer time scale. The sound pattern then consists of a serial, melody-like sonification of the patterns for each projection. We believe that our approaches provide the much-desired `natural' connection between the image data and the sounds generated. We have evaluated the sonification techniques with a number of synthetic textures. The sound patterns created have demonstrated the potential of the methods in distinguishing between different types of texture. We are investigating the application of these techniques to auditory analysis of texture in medical images such as magnetic resonance images.
NASA Astrophysics Data System (ADS)
Dennison, Andrew G.
Classification of the seafloor substrate can be done with a variety of methods. These methods include Visual (dives, drop cameras); mechanical (cores, grab samples); acoustic (statistical analysis of echosounder returns). Acoustic methods offer a more powerful and efficient means of collecting useful information about the bottom type. Due to the nature of an acoustic survey, larger areas can be sampled, and by combining the collected data with visual and mechanical survey methods provide greater confidence in the classification of a mapped region. During a multibeam sonar survey, both bathymetric and backscatter data is collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on bottom type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, i.e a muddy area from a rocky area, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing of high-resolution multibeam data can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. The development of a new classification method is described here. It is based upon the analysis of textural features in conjunction with ground truth sampling. The processing and classification result of two geologically distinct areas in nearshore regions of Lake Superior; off the Lester River,MN and Amnicon River, WI are presented here, using the Minnesota Supercomputer Institute's Mesabi computing cluster for initial processing. Processed data is then calibrated using ground truth samples to conduct an accuracy assessment of the surveyed areas. From analysis of high-resolution bathymetry data collected at both survey sites is was possible to successfully calculate a series of measures that describe textural information about the lake floor. Further processing suggests that the features calculated capture a significant amount of statistical information about the lake floor terrain as well. Two sources of error, an anomalous heave and refraction error significantly deteriorated the quality of the processed data and resulting validate results. Ground truth samples used to validate the classification methods utilized for both survey sites, however, resulted in accuracy values ranging from 5 -30 percent at the Amnicon River, and between 60-70 percent for the Lester River. The final results suggest that this new processing methodology does adequately capture textural information about the lake floor and does provide an acceptable classification in the absence of significant data quality issues.
Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund
2012-01-01
Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629
NASA Technical Reports Server (NTRS)
Key, J.
1990-01-01
The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.
Image segmentation using association rule features.
Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J
2002-01-01
A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Abazeed, M; Woody, N
Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less
Rolland, Y; Bézy-Wendling, J; Duvauferrier, R; Coatrieux, J L
1999-03-01
To demonstrate the usefulness of a model of the parenchymous vascularization to evaluate texture analysis methods. Slices with thickness varying from 1 to 4 mm were reformatted from a 3D vascular model corresponding to either normal tissue perfusion or local hypervascularization. Parameters of statistical methods were measured on 16128x128 regions of interest, and mean values and standard deviation were calculated. For each parameter, the performances (discrimination power and stability) were evaluated. Among 11 calculated statistical parameters, three (homogeneity, entropy, mean of gradients) were found to have a good discriminating power to differentiate normal perfusion from hypervascularization, but only the gradient mean was found to have a good stability with respect to the thickness. Five parameters (run percentage, run length distribution, long run emphasis, contrast, and gray level distribution) were found to have intermediate results. In the remaining three, curtosis and correlation was found to have little discrimination power, skewness none. This 3D vascular model, which allows the generation of various examples of vascular textures, is a powerful tool to assess the performance of texture analysis methods. This improves our knowledge of the methods and should contribute to their a priori choice when designing clinical studies.
Spatial prediction of soil texture in region Centre (France) from summary data
NASA Astrophysics Data System (ADS)
Dobarco, Mercedes Roman; Saby, Nicolas; Paroissien, Jean-Baptiste; Orton, Tom G.
2015-04-01
Soil texture is a key controlling factor of important soil functions like water and nutrient holding capacity, retention of pollutants, drainage, soil biodiversity, and C cycling. High resolution soil texture maps enhance our understanding of the spatial distribution of soil properties and provide valuable information for decision making and crop management, environmental protection, and hydrological planning. We predicted the soil texture of agricultural topsoils in the Region Centre (France) combining regression and area-to-point kriging. Soil texture data was collected from the French soil-test database (BDAT), which is populated with soil analysis performed by farmers' demand. To protect the anonymity of the farms the data was treated by commune. In a first step, summary statistics of environmental covariates by commune were used to develop prediction models with Cubist, boosted regression trees, and random forests. In a second step the residuals of each individual observation were summarized by commune and kriged following the method developed by Orton et al. (2012). This approach allowed to include non-linear relationships among covariates and soil texture while accounting for the uncertainty on areal means in the area-to-point kriging step. Independent validation of the models was done using data from the systematic soil monitoring network of French soils. Future work will compare the performance of these models with a non-stationary variance geostatistical model using the most important covariates and summary statistics of texture data. The results will inform on whether the later and statistically more-challenging approach improves significantly texture predictions or whether the more simple area-to-point regression kriging can offer satisfactory results. The application of area-to-point regression kriging at national level using BDAT data has the potential to improve soil texture predictions for agricultural topsoils, especially when combined with existing maps (i.e., model ensemble).
Effect of slice thickness on brain magnetic resonance image texture analysis
2010-01-01
Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567
Pantic, Igor; Pantic, Senka
2012-10-01
In this article, we present the results indicating that spleen germinal center (GC) texture entropy determined by gray-level co-occurrence matrix (GLCM) method is related to humoral immune response. Spleen tissue was obtained from eight outbred male short-haired guinea pigs previously immunized by sheep red blood cells (SRBC). A total of 312 images from 39 germinal centers (156 GC light zone images and 156 GC dark zone images) were acquired and analyzed by GLCM method. Angular second moment, contrast, correlation, entropy, and inverse difference moment were calculated for each image. Humoral immune response to SRBC was measured using T cell-dependent antibody response (TDAR) assay. Statistically highly significant negative correlation was detected between light zone entropy and the number of TDAR plaque-forming cells (r (s) = -0.86, p < 0.01). The entropy decreased as the plaque-forming cells increased and vice versa. A statistically significant negative correlation was also detected between dark zone entropy values and the number of plaque-forming cells (r (s) = -0.69, p < 0.05). Germinal center texture entropy may be a powerful indicator of humoral immune response. This study is one of the first to point out the potential scientific value of GLCM image texture analysis in lymphoid tissue cytoarchitecture evaluation. Lymphoid tissue texture analysis could become an important and affordable addition to the conventional immunophysiology techniques.
Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M
2017-02-01
The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rock classification based on resistivity patterns in electrical borehole wall images
NASA Astrophysics Data System (ADS)
Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph
2007-06-01
Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.
2015-06-01
Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
Laser surface texturing of polypropylene to increase adhesive bonding
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla
2018-05-01
In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.
Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S
2012-01-11
Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
The discrimination of sea ice types using SAR backscatter statistics
NASA Technical Reports Server (NTRS)
Shuchman, Robert A.; Wackerman, Christopher C.; Maffett, Andrew L.; Onstott, Robert G.; Sutherland, Laura L.
1989-01-01
X-band (HH) synthetic aperture radar (SAR) data of sea ice collected during the Marginal Ice Zone Experiment in March and April of 1987 was statistically analyzed with respect to discriminating open water, first-year ice, multiyear ice, and Odden. Odden are large expanses of nilas ice that rapidly form in the Greenland Sea and transform into pancake ice. A first-order statistical analysis indicated that mean versus variance can segment out open water and first-year ice, and skewness versus modified skewness can segment the Odden and multilayer categories. In additions to first-order statistics, a model has been generated for the distribution function of the SAR ice data. Segmentation of ice types was also attempted using textural measurements. In this case, the general co-occurency matrix was evaluated. The textural method did not generate better results than the first-order statistical approach.
Baldissin, Maurício Martins; Souza, Edna Marina de
2013-12-01
Refractory epilepsies are syndromes for which therapies that employ two or more antiepileptic drugs, separately or in association, do not result in control of crisis. Patients may present focal cortical dysplasia or diffuse dysplasia and/or hippocampal atrophic alterations that may not be detectable by a simple visual analysis in magnetic resonance imaging. The aim of this study was to evaluate MRI texture in regions of interest located in the hippocampi, limbic association cortex and prefrontal cortex of 20 patients with refractory epilepsy and to compare them with the same areas in 20 healthy individuals, in order to find out if the texture parameters could be related to the presence of the disease. Of the 11 texture parameters calculated, three indicated the existence of statistically significant differences between the studied groups. Such findings suggest the possibility of this technique contributing to studies of refractory epilepsies.
Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.
Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D
2018-01-01
Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.
Cloud field classification based on textural features
NASA Technical Reports Server (NTRS)
Sengupta, Sailes Kumar
1989-01-01
An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R
2014-02-01
The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.
Association between pathology and texture features of multi parametric MRI of the prostate
NASA Astrophysics Data System (ADS)
Kuess, Peter; Andrzejewski, Piotr; Nilsson, David; Georg, Petra; Knoth, Johannes; Susani, Martin; Trygg, Johan; Helbich, Thomas H.; Polanec, Stephan H.; Georg, Dietmar; Nyholm, Tufve
2017-10-01
The role of multi-parametric (mp)MRI in the diagnosis and treatment of prostate cancer has increased considerably. An alternative to visual inspection of mpMRI is the evaluation using histogram-based (first order statistics) parameters and textural features (second order statistics). The aims of the present work were to investigate the relationship between benign and malignant sub-volumes of the prostate and textures obtained from mpMR images. The performance of tumor prediction was investigated based on the combination of histogram-based and textural parameters. Subsequently, the relative importance of mpMR images was assessed and the benefit of additional imaging analyzed. Finally, sub-structures based on the PI-RADS classification were investigated as potential regions to automatically detect maligned lesions. Twenty-five patients who received mpMRI prior to radical prostatectomy were included in the study. The imaging protocol included T2, DWI, and DCE. Delineation of tumor regions was performed based on pathological information. First and second order statistics were derived from each structure and for all image modalities. The resulting data were processed with multivariate analysis, using PCA (principal component analysis) and OPLS-DA (orthogonal partial least squares discriminant analysis) for separation of malignant and healthy tissue. PCA showed a clear difference between tumor and healthy regions in the peripheral zone for all investigated images. The predictive ability of the OPLS-DA models increased for all image modalities when first and second order statistics were combined. The predictive value reached a plateau after adding ADC and T2, and did not increase further with the addition of other image information. The present study indicates a distinct difference in the signatures between malign and benign prostate tissue. This is an absolute prerequisite for automatic tumor segmentation, but only the first step in that direction. For the specific identified signature, DCE did not add complementary information to T2 and ADC maps.
Statistical Signal Models and Algorithms for Image Analysis
1984-10-25
In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.
Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the datamore » into a series of images which it compresses into an MPEG-2 video using the open source “avconv” utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.« less
Statistical analysis of texture in trunk images for biometric identification of tree species.
Bressane, Adriano; Roveda, José A F; Martins, Antônio C G
2015-04-01
The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.
Active contours on statistical manifolds and texture segmentation
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...
Active contours on statistical manifolds and texture segmentaiton
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...
Texture analysis of tissues in Gleason grading of prostate cancer
NASA Astrophysics Data System (ADS)
Alexandratou, Eleni; Yova, Dido; Gorpas, Dimitris; Maragos, Petros; Agrogiannis, George; Kavantzas, Nikolaos
2008-02-01
Prostate cancer is a common malignancy among maturing men and the second leading cause of cancer death in USA. Histopathological grading of prostate cancer is based on tissue structural abnormalities. Gleason grading system is the gold standard and is based on the organization features of prostatic glands. Although Gleason score has contributed on cancer prognosis and on treatment planning, its accuracy is about 58%, with this percentage to be lower in GG2, GG3 and GG5 grading. On the other hand it is strongly affected by "inter- and intra observer variations", making the whole process very subjective. Therefore, there is need for the development of grading tools based on imaging and computer vision techniques for a more accurate prostate cancer prognosis. The aim of this paper is the development of a novel method for objective grading of biopsy specimen in order to support histopathological prognosis of the tumor. This new method is based on texture analysis techniques, and particularly on Gray Level Co-occurrence Matrix (GLCM) that estimates image properties related to second order statistics. Histopathological images of prostate cancer, from Gleason grade2 to Gleason grade 5, were acquired and subjected to image texture analysis. Thirteen texture characteristics were calculated from this matrix as they were proposed by Haralick. Using stepwise variable selection, a subset of four characteristics were selected and used for the description and classification of each image field. The selected characteristics profile was used for grading the specimen with the multiparameter statistical method of multiple logistic discrimination analysis. The subset of these characteristics provided 87% correct grading of the specimens. The addition of any of the remaining characteristics did not improve significantly the diagnostic ability of the method. This study demonstrated that texture analysis techniques could provide valuable grading decision support to the pathologists, concerning prostate cancer prognosis.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Steganalysis based on reducing the differences of image statistical characteristics
NASA Astrophysics Data System (ADS)
Wang, Ran; Niu, Shaozhang; Ping, Xijian; Zhang, Tao
2018-04-01
Compared with the process of embedding, the image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger withinclass scatter distances and smaller between-class scatter distances. As a result, the steganalysis features will be inseparate caused by the differences of image statistical characteristics. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are segmented to several sub-images according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close texture complexity to build a classifier. The final steganalysis result is figured out through a weighted fusing process. The theoretical analysis and experimental results can demonstrate the validity of the framework.
NASA Astrophysics Data System (ADS)
Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong
2016-03-01
In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.
NASA Astrophysics Data System (ADS)
Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.
2012-01-01
Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.
Summary statistics in auditory perception.
McDermott, Josh H; Schemitsch, Michael; Simoncelli, Eero P
2013-04-01
Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We measured discrimination of 'sound textures' that were characterized by particular statistical properties, as normally result from the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, performance declined with duration, a paradoxical result given that the information available for discrimination grows with duration. These results indicate that once these sounds are of moderate length, the brain's representation is limited to time-averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration. Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.
Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N
2015-09-01
The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.
Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard
2017-02-01
To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.
MRI textures as outcome predictor for Gamma Knife radiosurgery on vestibular schwannoma
NASA Astrophysics Data System (ADS)
Langenhuizen, P. P. J. H.; Legters, M. J. W.; Zinger, S.; Verheul, H. B.; Leenstra, S.; de With, P. H. N.
2018-02-01
Vestibular schwannomas (VS) are benign brain tumors that can be treated with high-precision focused radiation with the Gamma Knife in order to stop tumor growth. Outcome prediction of Gamma Knife radiosurgery (GKRS) treatment can help in determining whether GKRS will be effective on an individual patient basis. However, at present, prognostic factors of tumor control after GKRS for VS are largely unknown, and only clinical factors, such as size of the tumor at treatment and pre-treatment growth rate of the tumor, have been considered thus far. This research aims at outcome prediction of GKRS by means of quantitative texture feature analysis on conventional MRI scans. We compute first-order statistics and features based on gray-level co- occurrence (GLCM) and run-length matrices (RLM), and employ support vector machines and decision trees for classification. In a clinical dataset, consisting of 20 tumors showing treatment failure and 20 tumors exhibiting treatment success, we have discovered that the second-order statistical metrics distilled from GLCM and RLM are suitable for describing texture, but are slightly outperformed by simple first-order statistics, like mean, standard deviation and median. The obtained prediction accuracy is about 85%, but a final choice of the best feature can only be made after performing more extensive analyses on larger datasets. In any case, this work provides suitable texture measures for successful prediction of GKRS treatment outcome for VS.
Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina
2015-04-01
An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.
Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2015-01-01
Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Characterization of PET/CT images using texture analysis: the past, the present… any future?
Hatt, Mathieu; Tixier, Florent; Pierce, Larry; Kinahan, Paul E; Le Rest, Catherine Cheze; Visvikis, Dimitris
2017-01-01
After seminal papers over the period 2009 - 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.
Staging Liver Fibrosis with Statistical Observers
NASA Astrophysics Data System (ADS)
Brand, Jonathan Frieman
Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.
Physicochemical and sensory properties of fresh potato-based pasta (gnocchi).
Alessandrini, Laura; Balestra, Federica; Romani, Santina; Rocculi, Pietro; Rosa, Marco Dalla
2010-01-01
This study dealt with the characterization and quality assessment of 3 kinds of potato-based pasta (gnocchi) made with steam-cooked, potato puree (water added to potato flakes), and reconstituted potatoes as main ingredients. The aim of the research was to evaluate the quality of the products in terms of physicochemical, textural, and sensory characteristics. Water content, water activity, color (L* and h°), and texture (texture profile analysis [TPA] and shearing test) were evaluated on both raw and cooked samples. In addition, on the recovered cooking water the loss of solid substances was determined and on the cooked gnocchi a sensory assessment was performed. Eight sensory attributes (yellowness, hardness, gumminess, adhesiveness, potato taste, sweet taste, flour taste, and sapidity) were investigated. Statistically significant differences among products were obtained, especially concerning textural properties. In fact, sample made with reconstituted potatoes and emulsifiers resulted the hardest (8.53 ± 1.22 N), the gummiest (2.90 ± 0.05 N), and the "chewiest" (2.90 ± 0.58 N) after cooking. Gnocchi made with potato puree or reconstituted potatoes significantly differed from the one produced with steam-cooked potatoes in terms of sensory properties (yellowness, hardness, flour taste, and sapidity). Pearson's correlation analysis between some textural instrumental and sensory parameters showed significant correlation coefficients (0.532 < r < 0.810). Score plot of principal component analysis (PCA) confirmed obtained results from physicochemical and sensory analyses, in terms of high discriminant capacity of colorimetric and textural characteristics. © 2010 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.
2007-03-01
Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
NASA Astrophysics Data System (ADS)
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-10-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83-91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.
2009-11-15
Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less
USDA-ARS?s Scientific Manuscript database
Weather and soil properties are known to affect soil nitrogen (N) availability and plant N uptake. Studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments...
Monitoring of bone regeneration process by means of texture analysis
NASA Astrophysics Data System (ADS)
Kokkinou, E.; Boniatis, I.; Costaridou, L.; Saridis, A.; Panagiotopoulos, E.; Panayiotakis, G.
2009-09-01
An image analysis method is proposed for the monitoring of the regeneration of the tibial bone. For this purpose, 130 digitized radiographs of 13 patients, who had undergone tibial lengthening by the Ilizarov method, were studied. For each patient, 10 radiographs, taken at an equal number of postoperative successive time moments, were available. Employing available software, 3 Regions Of Interest (ROIs), corresponding to the: (a) upper, (b) central, and (c) lower aspect of the gap, where bone regeneration was expected to occur, were determined on each radiograph. Employing custom developed algorithms: (i) a number of textural features were generated from each of the ROIs, and (ii) a texture-feature based regression model was designed for the quantitative monitoring of the bone regeneration process. Statistically significant differences (p < 0.05) were derived for the initial and the final textural features values, generated from the first and the last postoperatively obtained radiographs, respectively. A quadratic polynomial regression equation fitted data adequately (r2 = 0.9, p < 0.001). The suggested method may contribute to the monitoring of the tibial bone regeneration process.
Bahl, Gautam; Cruite, Irene; Wolfson, Tanya; Gamst, Anthony C.; Collins, Julie M.; Chavez, Alyssa D.; Barakat, Fatma; Hassanein, Tarek; Sirlin, Claude B.
2016-01-01
Purpose To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard. Materials and Methods A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort. Results Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively. Conclusion This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects. PMID:22851409
Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J
2017-07-11
Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.
Shu, Ting; Zhang, Bob; Yan Tang, Yuan
2017-04-01
Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kriete, A; Schäffer, R; Harms, H; Aus, H M
1987-06-01
Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.
Plaque echodensity and textural features are associated with histologic carotid plaque instability.
Doonan, Robert J; Gorgui, Jessica; Veinot, Jean P; Lai, Chi; Kyriacou, Efthyvoulos; Corriveau, Marc M; Steinmetz, Oren K; Daskalopoulou, Stella S
2016-09-01
Carotid plaque echodensity and texture features predict cerebrovascular symptomatology. Our purpose was to determine the association of echodensity and textural features obtained from a digital image analysis (DIA) program with histologic features of plaque instability as well as to identify the specific morphologic characteristics of unstable plaques. Patients scheduled to undergo carotid endarterectomy were recruited and underwent carotid ultrasound imaging. DIA was performed to extract echodensity and textural features using Plaque Texture Analysis software (LifeQ Medical Ltd, Nicosia, Cyprus). Carotid plaque surgical specimens were obtained and analyzed histologically. Principal component analysis (PCA) was performed to reduce imaging variables. Logistic regression models were used to determine if PCA variables and individual imaging variables predicted histologic features of plaque instability. Image analysis data from 160 patients were analyzed. Individual imaging features of plaque echolucency and homogeneity were associated with a more unstable plaque phenotype on histology. These results were independent of age, sex, and degree of carotid stenosis. PCA reduced 39 individual imaging variables to five PCA variables. PCA1 and PCA2 were significantly associated with overall plaque instability on histology (both P = .02), whereas PCA3 did not achieve statistical significance (P = .07). DIA features of carotid plaques are associated with histologic plaque instability as assessed by multiple histologic features. Importantly, unstable plaques on histology appear more echolucent and homogeneous on ultrasound imaging. These results are independent of stenosis, suggesting that image analysis may have a role in refining the selection of patients who undergo carotid endarterectomy. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Daidu; Tu, Junbiao; Cai, Guofu; Shang, Shuai
2015-06-01
Grain-size analysis is a basic routine in sedimentology and related fields, but diverse methods of sample collection, processing and statistical analysis often make direct comparisons and interpretations difficult or even impossible. In this paper, 586 published grain-size datasets from the Qiantang Estuary (East China Sea) sampled and analyzed by the same procedures were merged and their textural parameters calculated by a percentile and two moment methods. The aim was to explore which of the statistical procedures performed best in the discrimination of three distinct sedimentary units on the tidal flats of the middle Qiantang Estuary. A Gaussian curve-fitting method served to simulate mixtures of two normal populations having different modal sizes, sorting values and size distributions, enabling a better understanding of the impact of finer tail components on textural parameters, as well as the proposal of a unifying descriptive nomenclature. The results show that percentile and moment procedures yield almost identical results for mean grain size, and that sorting values are also highly correlated. However, more complex relationships exist between percentile and moment skewness (kurtosis), changing from positive to negative correlations when the proportions of the finer populations decrease below 35% (10%). This change results from the overweighting of tail components in moment statistics, which stands in sharp contrast to the underweighting or complete amputation of small tail components by the percentile procedure. Intercomparisons of bivariate plots suggest an advantage of the Friedman & Johnson moment procedure over the McManus moment method in terms of the description of grain-size distributions, and over the percentile method by virtue of a greater sensitivity to small variations in tail components. The textural parameter scalings of Folk & Ward were translated into their Friedman & Johnson moment counterparts by application of mathematical functions derived by regression analysis of measured and modeled grain-size data, or by determining the abscissa values of intersections between auxiliary lines running parallel to the x-axis and vertical lines corresponding to the descriptive percentile limits along the ordinate of representative bivariate plots. Twofold limits were extrapolated for the moment statistics in relation to single descriptive terms in the cases of skewness and kurtosis by considering both positive and negative correlations between percentile and moment statistics. The extrapolated descriptive scalings were further validated by examining entire size-frequency distributions simulated by mixing two normal populations of designated modal size and sorting values, but varying in mixing ratios. These were found to match well in most of the proposed scalings, although platykurtic and very platykurtic categories were questionable when the proportion of the finer population was below 5%. Irrespective of the statistical procedure, descriptive nomenclatures should therefore be cautiously used when tail components contribute less than 5% to grain-size distributions.
Characterising the disintegration properties of tablets in opaque media using texture analysis.
Scheuerle, Rebekah L; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H; Mahbubani, Krishnaa T
2015-01-01
Tablet disintegration characterisation is used in pharmaceutical research, development, and quality control. Standard methods used to characterise tablet disintegration are often dependent on visual observation in measurement of disintegration times. This presents a challenge for disintegration studies of tablets in opaque, physiologically relevant media that could be useful for tablet formulation optimisation. This study has explored an application of texture analysis disintegration testing, a non-visual, quantitative means of determining tablet disintegration end point, by analysing the disintegration behaviour of two tablet formulations in opaque media. In this study, the disintegration behaviour of one tablet formulation manufactured in-house, and Sybedia Flashtab placebo tablets in water, bovine, and human milk were characterised. A novel method is presented to characterise the disintegration process and to quantify the disintegration end points of the tablets in various media using load data generated by a texture analyser probe. The disintegration times in the different media were found to be statistically different (P<0.0001) from one another for both tablet formulations using one-way ANOVA. Using the Tukey post-hoc test, the Sybedia Flashtab placebo tablets were found not to have statistically significant disintegration times from each other in human versus bovine milk (adjusted P value 0.1685). Copyright © 2015 Elsevier B.V. All rights reserved.
Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana
2014-01-01
Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.
NASA Astrophysics Data System (ADS)
Zhang, L.; Hao, T.; Zhao, B.
2009-12-01
Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.
USDA-ARS?s Scientific Manuscript database
Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...
Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan
2016-07-27
This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.
Brownian motion curve-based textural classification and its application in cancer diagnosis.
Mookiah, Muthu Rama Krishnan; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K
2011-06-01
To develop an automated diagnostic methodology based on textural features of the oral mucosal epithelium to discriminate normal and oral submucous fibrosis (OSF). A total of 83 normal and 29 OSF images from histopathologic sections of the oral mucosa are considered. The proposed diagnostic mechanism consists of two parts: feature extraction using Brownian motion curve (BMC) and design ofa suitable classifier. The discrimination ability of the features has been substantiated by statistical tests. An error back-propagation neural network (BPNN) is used to classify OSF vs. normal. In development of an automated oral cancer diagnostic module, BMC has played an important role in characterizing textural features of the oral images. Fisher's linear discriminant analysis yields 100% sensitivity and 85% specificity, whereas BPNN leads to 92.31% sensitivity and 100% specificity, respectively. In addition to intensity and morphology-based features, textural features are also very important, especially in histopathologic diagnosis of oral cancer. In view of this, a set of textural features are extracted using the BMC for the diagnosis of OSF. Finally, a textural classifier is designed using BPNN, which leads to a diagnostic performance with 96.43% accuracy. (Anal Quant
Texture analysis of MR images of patients with Mild Traumatic Brain Injury
2010-01-01
Background Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA). Methods We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the TA results of the control group comparing the amount of statistically significantly differing TA parameters between the left and right sides of the cerebral tissue and comparing the most discriminative parameters. Results There were statistically significant differences especially in several co-occurrence and run-length matrix based parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls. Conclusions TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in cerebral tissue in MTBI and help the clinicians to make an early diagnosis. PMID:20462439
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Pollom, E; Loo, B
Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less
Influence of flavor solvent on flavor release and perception in sugar-free chewing gum.
Potineni, Rajesh V; Peterson, Devin G
2008-05-14
The influence of flavor solvent [triacetin (TA), propylene glycol (PG), medium chained triglycerides (MCT), or no flavor solvent (NFS)] on the flavor release profile, the textural properties, and the sensory perception of a sugar-free chewing gum was investigated. Time course analysis of the exhaled breath and saliva during chewing gum mastication indicated that flavor solvent addition or type did not influence the aroma release profile; however, the sorbitol release rate was statistically lower for the TA formulated sample in comparison to those with PG, MCT, or NFS. Sensory time-intensity analysis also indicated that the TA formulated sample was statistically lower in perceived sweetness intensity, in comparison with the other chewing gum samples, and also had lower cinnamon-like aroma intensity, presumably due to an interaction between sweetness intensity on aroma perception. Measurement of the chewing gum macroscopic texture by compression analysis during consumption was not correlated to the unique flavor release properties of the TA-chewing gum. However, a relationship between gum base plasticity and retention of sugar alcohol during mastication was proposed to explain the different flavor properties of the TA sample.
Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.
Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J
2017-10-20
This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.
A cosmic microwave background feature consistent with a cosmic texture.
Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M
2007-12-07
The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.
Ultrasound image texture processing for evaluating fatty liver in peripartal dairy cows
NASA Astrophysics Data System (ADS)
Amin, Viren R.; Bobe, Gerd; Young, Jerry; Ametaj, Burim; Beitz, Donald
2001-07-01
The objective of this work is to characterize the liver ultrasound texture as it changes in diffuse disease of fatty liver. This technology could allow non-invasive diagnosis of fatty liver, a major metabolic disorder in early lactation dairy cows. More than 100 liver biopsies were taken from fourteen dairy cows, as a part of the USDA-funded study for effects of glucagon on prevention and treatment of fatty liver. Up to nine liver biopsies were taken from each cow during peripartal period of seven weeks and total lipid content was determined chemically. Just before each liver biopsy was taken, ultrasonic B-mode images were digitally captured using a 3.5 or 5 MHz transducer. Effort was made to capture images that were non-blurred, void of large blood vessels and multiple echoes, and of consistent texture. From each image, a region-of-interest of size 100-by-100 pixels was processed. Texture parameters were calculated using algorithms such as first and second order statistics, 2D Fourier transformation, co-occurrence matrix, and gradient analysis. Many cows had normal liver (3% to 6% total lipid) and a few had developed fatty liver with total lipid up to 15%. The selected texture parameters showed consistent change with changing lipid content and could potentially be used to diagnose early fatty liver non-invasively. The approach of texture analysis algorithms and initial results on their potential in evaluating total lipid percentage is presented here.
Presotto, L; Bettinardi, V; De Bernardi, E; Belli, M L; Cattaneo, G M; Broggi, S; Fiorino, C
2018-06-01
The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated. The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η 2 (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η 2 < 20% and 20% < η 2 < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions. We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η 2 > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η 2 < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3). For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A Study of Feature Extraction Using Divergence Analysis of Texture Features
NASA Technical Reports Server (NTRS)
Hallada, W. A.; Bly, B. G.; Boyd, R. K.; Cox, S.
1982-01-01
An empirical study of texture analysis for feature extraction and classification of high spatial resolution remotely sensed imagery (10 meters) is presented in terms of specific land cover types. The principal method examined is the use of spatial gray tone dependence (SGTD). The SGTD method reduces the gray levels within a moving window into a two-dimensional spatial gray tone dependence matrix which can be interpreted as a probability matrix of gray tone pairs. Haralick et al (1973) used a number of information theory measures to extract texture features from these matrices, including angular second moment (inertia), correlation, entropy, homogeneity, and energy. The derivation of the SGTD matrix is a function of: (1) the number of gray tones in an image; (2) the angle along which the frequency of SGTD is calculated; (3) the size of the moving window; and (4) the distance between gray tone pairs. The first three parameters were varied and tested on a 10 meter resolution panchromatic image of Maryville, Tennessee using the five SGTD measures. A transformed divergence measure was used to determine the statistical separability between four land cover categories forest, new residential, old residential, and industrial for each variation in texture parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Wang, Qinfen; Li, H
Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contourmore » structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity differences between primary and lymphoma tumor by multi-scale image texture analysis. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening
Rupp, Andre; Celikel, Tansu
2018-01-01
Abstract Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration. PMID:29662943
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard
2018-01-01
Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.
Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M
2018-01-01
Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.
Gawel, Richard; Francis, Leigh; Waters, Elizabeth J
2007-04-04
The relationships between the levels of polyphenols, acidity, and red pigments in Shiraz wines and their perceived textural profiles as quantified by a trained sensory descriptive analysis panel were explored. A "chamois-like" feeling when the wine was held in the mouth appeared to be related to an absence of polyphenols. The in-mouth "chalk-like" texture was strongly associated with anthocyanin concentration and was negatively associated with alcohol level and acidity. The astringent subqualities of "velvet-like" and "emery-like" roughing were mostly related to polyphenol levels, but these attributes could not be adequately differentiated by the compositional variables under study. Wines that elicited a "puckery" sensation were characterized by relatively low anthocyanin levels, high acidity, and high pigmented polymer and tannin concentrations. The results of the study suggest that the in-mouth textural properties of Shiraz red wine are associated not only with their tannin composition and concentration but also with their acidity and anthocyanin and alcohol concentrations.
Building damage assessment from PolSAR data using texture parameters of statistical model
NASA Astrophysics Data System (ADS)
Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai
2018-04-01
Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of buildings is 73.39% and 68.45%, respectively.
Corn response to nitrogen is influenced by soil texture and weather
USDA-ARS?s Scientific Manuscript database
Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a se...
Texture classification using autoregressive filtering
NASA Technical Reports Server (NTRS)
Lawton, W. M.; Lee, M.
1984-01-01
A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.
Muthu Rama Krishnan, M; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K
2012-04-01
The objective of this paper is to provide an improved technique, which can assist oncopathologists in correct screening of oral precancerous conditions specially oral submucous fibrosis (OSF) with significant accuracy on the basis of collagen fibres in the sub-epithelial connective tissue. The proposed scheme is composed of collagen fibres segmentation, its textural feature extraction and selection, screening perfomance enhancement under Gaussian transformation and finally classification. In this study, collagen fibres are segmented on R,G,B color channels using back-probagation neural network from 60 normal and 59 OSF histological images followed by histogram specification for reducing the stain intensity variation. Henceforth, textural features of collgen area are extracted using fractal approaches viz., differential box counting and brownian motion curve . Feature selection is done using Kullback-Leibler (KL) divergence criterion and the screening performance is evaluated based on various statistical tests to conform Gaussian nature. Here, the screening performance is enhanced under Gaussian transformation of the non-Gaussian features using hybrid distribution. Moreover, the routine screening is designed based on two statistical classifiers viz., Bayesian classification and support vector machines (SVM) to classify normal and OSF. It is observed that SVM with linear kernel function provides better classification accuracy (91.64%) as compared to Bayesian classifier. The addition of fractal features of collagen under Gaussian transformation improves Bayesian classifier's performance from 80.69% to 90.75%. Results are here studied and discussed.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
NASA Astrophysics Data System (ADS)
Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.
2005-05-01
A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.
Peng, Fei; Li, Jiao-ting; Long, Min
2015-03-01
To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
Buscombe, Daniel; Wheaton, Joseph M.
2018-01-01
Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar. PMID:29538449
Extracting built-up areas from TerraSAR-X data using object-oriented classification method
NASA Astrophysics Data System (ADS)
Wang, SuYun; Sun, Z. C.
2017-02-01
Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.
Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease
NASA Astrophysics Data System (ADS)
Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi
2009-02-01
Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2014-06-01
Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters weremore » derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.« less
Analyzing and improving surface texture by dual-rotation magnetorheological finishing
NASA Astrophysics Data System (ADS)
Wang, Yuyue; Zhang, Yun; Feng, Zhijing
2016-01-01
The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.
Atlan, Michael; Bigerelle, Maxence; Larreta-garde, Véronique; Hindié, Mathilde; Hedén, Per
2016-02-01
Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers. Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer. Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (p < 0.01). Our work pointed out differences in the Biocell® texture in comparison with older studies. The 3D analysis showed significant shape differences between the anatomically shaped implants of the 3 companies, despite similar dimensions. Implant stiffness was comparable among the 3 brands. Each texture had its specific topography, and this work is the first description of Sebbin anatomic breast implant texturation. Moreover, major discrepancies were found in the analysis of the Biocell® texture when comparing our results with previous reports. These differences may have clinical implications and are discussed. This study also highlighted major shape differences among breast implants from different manufacturers, which is quite counterintuitive. The clinical impact of these differences however needs further investigation. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P
2016-11-01
Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P < 0.007) except entropy (P > 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang
2016-11-01
To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.
Mammographic texture synthesis using genetic programming and clustered lumpy background
NASA Astrophysics Data System (ADS)
Castella, Cyril; Kinkel, Karen; Descombes, François; Eckstein, Miguel P.; Sottas, Pierre-Edouard; Verdun, Francis R.; Bochud, François O.
2006-03-01
In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such images could be produced in an unlimited number with tunable statistical properties in order to study human performance and model observer performance in perception experiments. We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, and fiber crossings. Results show that CLB images found via optimization with GA are significantly closer to real mammograms than previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures mimicking mammograms with traceable statistical properties.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
A procedure for classifying textural facies in gravel‐bed rivers
Buffington, John M.; Montgomery, David R.
1999-01-01
Textural patches (i.e., grain‐size facies) are commonly observed in gravel‐bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two‐tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain‐size measurement is used. A field test of our classification indicates that it affords reasonable statistical discrimination of median grain size and variance of bed‐surface textures. We also explore the compromise between classification simplicity and accuracy. We find that statistically meaningful textural discrimination requires use of both tiers of our classification. Furthermore, we find that simplified variants of the two‐tier scheme are less accurate but may be more practical for field studies which do not require a high level of textural discrimination or detailed description of grain‐size distributions. Facies maps provide a natural template for stratifying other physical and biological measurements and produce a retrievable and versatile database that can be used as a component of channel monitoring efforts.
Fattori, Bruno; Siciliano, Gabriele; Mancini, Valentina; Bastiani, Luca; Bongioanni, Paolo; Caldarazzo Ienco, Elena; Barillari, Maria R; Romeo, Salvatore O; Nacci, Andrea
2017-06-01
Our aim was to evaluate the relationship between the disease severity of Amyotrophic Lateral Sclerosis (ALS) and the following parameters of Fiberoptic Endoscopic Evaluation of Swallowing (FEES): premature spillage, post-swallowing residue and aspiration. We studied 202 patients (95 women and 107 men) with ALS; of these, 136 had spinal and 66 had bulbar onset. They were analyzed according to the Amyotrophic Lateral Sclerosis Functioning Rating Scale (ALSFRS) and the b-ALSFRS subscale (bulbar scale). All subjects underwent FEES. Post-swallowing residue was classified into four classes (0-3); premature spillage and aspiration were considered either present or absent. Spearman's correlation test showed a highly significant correlation (p<0.0001) between the value of ALSFRS and b-ALSFRS and the FEES parameters as the following: disease severity and dysphagia severity are closely related, both in spinal and bulbar onset, no matter what bolus texture was used. Spearman's Rho was more significant for post-swallowing residue, ≤-0.500 with all three consistencies (p<0.0001) in spinal onset and -0.520 only with liquid bolus (p<0.0001) in bulbar onset. Independent T-Test revealed a significant difference (p<0.0001) between the mean ALSFRS and b-ALSFRS scores and the presence/absence of aspiration. For the premature spillage in spinal onset (ALSFRS), we found a statistically significant difference for all three bolus textures (p<0.0001). Analysis of variance for the post-swallowing residue in spinal onset (ALSFRS) revealed a statistically significant difference (p<0.0001) for most of the comparisons between groups for all three textures. For the premature spillage in bulbar onset (b-ALSFRS), we found a statistically significant difference for all three textures (p<0.0001). Analysis of variance for the post-swallowing residue in bulbar onset (b-ALSFRS) showed a statistically significant difference (p<0.0001) for most of the comparisons between groups for all three textures. Kruskal-Wallis test showed a highly significant association between the classes of severity in bulbar forms and all the FEES parameters, no matter what type of bolus was administered (p<0.0001), whereas a significant correlation in spinal forms only for post-swallowing residue with solid (p=0.026) and semisolid (p=0.031) boluses. There is a highly significant relationship as the following between the FEES parameters and the disease severity assessed via ALSFRS and b-ALSFRS: classes of greater severity entail a greater deterioration of FEES parameters. FEES can be considered a good indicator of the dysphagia severity and a useful test for the follow-up of dysphagia in patients with ALS, whether of spinal or bulbar onset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lakhman, Yulia; Veeraraghavan, Harini; Chaim, Joshua; Feier, Diana; Goldman, Debra A; Moskowitz, Chaya S; Nougaret, Stephanie; Sosa, Ramon E; Vargas, Hebert Alberto; Soslow, Robert A; Abu-Rustum, Nadeem R; Hricak, Hedvig; Sala, Evis
2017-07-01
To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA). This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM. Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79). Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible. • Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.
Pérez-Hernández, Oscar; Giesler, Loren J.
2014-01-01
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160
Temporal observations of bright soil exposures at Gusev crater, Mars
Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.
2011-01-01
The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition.
Temporal observations of bright soil exposures at Gusev crater, Mars
Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wray, J.J.; Herkenhoff, K. E.; Sullivan, R.; Johnson, J. R.; Anderson, R.B.
2011-01-01
The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition. Copyright 2011 by the American Geophysical Union.
Reliable Classification of Geologic Surfaces Using Texture Analysis
NASA Astrophysics Data System (ADS)
Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.
2012-12-01
Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the algorithm was expanded to perform robust texture classification across a wide range of lighting conditions. We characterize both the increase in precision achieved using different input data representations as well as the range of conditions under which reliable performance can be achieved. An ensemble learning approach is used to increase performance by leveraging the illumination-dependent statistics of an image. Our results show that the three algorithmic modifications lead to a significant increase in classification performance as well as an increase in precision using an adjustable and human-understandable metric of confidence.
NASA Astrophysics Data System (ADS)
Jeter, G. W.; Carter, G. A.
2013-12-01
Guy (Will) Wilburn Jeter Jr., Gregory A. Carter University of Southern Mississippi Geography and Geology Gulf Coast Geospatial Center The over-arching goal of this research is to assess habitat change over a seventy year period to better understand the combined effects of global sea level rise and storm impacts on the stability of Horn Island, MS habitats. Historical aerial photography is often overlooked as a resource for use in determining habitat change. However, the spatial information provided even by black and white imagery can give insight into past habitat composition via textural analysis. This research will evaluate characteristic dimensions; most notably patch size of habitat types using simple geo-statistics and textures of brightness values of historical aerial imagery. It is assumed that each cover type has an identifiable patch size that can be used as a unique classifier of each habitat type. Analytical methods applied to the 1940 imagery were developed using 2010 field data and USDA aerial imagery. Textural moving window methods and basic geo-statistics were used to estimate characteristic dimensions of each cover type in 1940 aerial photography. The moving window texture analysis was configured with multiple window sizes to capture the characteristic dimensions of six habitat types; water, bare sand , dune herb land, estuarine shrub land, marsh land and slash pine woodland. Coefficient of variation (CV), contrast, and entropy texture filters were used to analyze the spatial variability of the 1940 and 2010 imagery. (CV) was used to depict the horizontal variability of each habitat characteristic dimension. Contrast was used to represent the variability of bright versus dark pixel values; entropy was used to show the variation in the slash pine woodland habitat type. Results indicate a substantial increase in marshland habitat relative to other habitat types since 1940. Results also reveal each habitat-type, such as dune herb-land, marsh-land, estuarine shrub-land, bare sand, slash pine woodland, and water exhibit a characteristic dimension that may be estimated from horizontal variability in image brightness values. These characteristic dimensions are estimated at less than one 1 meter for marsh-land bare sand and water, 3 meters for estuarine shrub-land and dune herb-land, and 5 to 7 meters for slash pine woodland.
1991-12-01
9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be
Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images
NASA Astrophysics Data System (ADS)
Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan
2017-08-01
Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.
Texture Classification by Texton: Statistical versus Binary
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu
2015-01-01
The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Content analysis to detect high stress in oral interviews and text documents
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar (Inventor); Jorgensen, Charles C. (Inventor)
2012-01-01
A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.
Lee, Jack; Zee, Benny Chung Ying; Li, Qing
2013-01-01
Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA), high order spectrum analysis (HOS), fractal analysis (FA), and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC) are obtained. They are 96.3%, 99.1% and 98.5% (99.3%), respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.
Longhi, Sara; Moretto, Marco; Viola, Roberto; Velasco, Riccardo; Costa, Fabrizio
2012-02-01
Fruit ripening is a complex physiological process in plants whereby cell wall programmed changes occur mainly to promote seed dispersal. Cell wall modification also directly regulates the textural properties, a fundamental aspect of fruit quality. In this study, two full-sib populations of apple, with 'Fuji' as the common maternal parent, crossed with 'Delearly' and 'Pink Lady', were used to understand the control of fruit texture by QTL mapping and in silico gene mining. Texture was dissected with a novel high resolution phenomics strategy, simultaneously profiling both mechanical and acoustic fruit texture components. In 'Fuji × Delearly' nine linkage groups were associated with QTLs accounting from 15.6% to 49% of the total variance, and a highly significant QTL cluster for both textural components was mapped on chromosome 10 and co-located with Md-PG1, a polygalacturonase gene that, in apple, is known to be involved in cell wall metabolism processes. In addition, other candidate genes related to Md-NOR and Md-RIN transcription factors, Md-Pel (pectate lyase), and Md-ACS1 were mapped within statistical intervals. In 'Fuji × Pink Lady', a smaller set of linkage groups associated with the QTLs identified for fruit texture (15.9-34.6% variance) was observed. The analysis of the phenotypic variance over a two-dimensional PCA plot highlighted a transgressive segregation for this progeny, revealing two QTL sets distinctively related to both mechanical and acoustic texture components. The mining of the apple genome allowed the discovery of the gene inventory underlying each QTL, and functional profile assessment unravelled specific gene expression patterns of these candidate genes.
NASA Astrophysics Data System (ADS)
Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma
2018-04-01
Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.
Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I
To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel
2015-03-01
Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.
Pet fur color and texture classification
NASA Astrophysics Data System (ADS)
Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel
2007-01-01
Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.
Statistical ultrasonics: the influence of Robert F. Wagner
NASA Astrophysics Data System (ADS)
Insana, Michael F.
2009-02-01
An important ongoing question for higher education is how to successfully mentor the next generation of scientists and engineers. It has been my privilege to have been mentored by one of the best, Dr Robert F. Wagner and his colleagues at the CDRH/FDA during the mid 1980s. Bob introduced many of us in medical ultrasonics to statistical imaging techniques. These ideas continue to broadly influence studies on adaptive aperture management (beamforming, speckle suppression, compounding), tissue characterization (texture features, Rayleigh/Rician statistics, scatterer size and number density estimators), and fundamental questions about how limitations of the human eye-brain system for extracting information from textured images can motivate image processing. He adapted the classical techniques of signal detection theory to coherent imaging systems that, for the first time in ultrasonics, related common engineering metrics for image quality to task-based clinical performance. This talk summarizes my wonderfully-exciting three years with Bob as I watched him explore topics in statistical image analysis that formed a rational basis for many of the signal processing techniques used in commercial systems today. It is a story of an exciting time in medical ultrasonics, and of how a sparkling personality guided and motivated the development of junior scientists who flocked around him in admiration and amazement.
Automatic brain tumor detection in MRI: methodology and statistical validation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert
2005-04-01
Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Fujita, A; Buch, K
Purpose: To investigate the correlation between texture analysis-based model observer and human observer in the task of diagnosis of ischemic infarct in non-contrast head CT of adults. Methods: Non-contrast head CTs of five patients (2 M, 3 F; 58–83 y) with ischemic infarcts were retro-reconstructed using FBP and Adaptive Statistical Iterative Reconstruction (ASIR) of various levels (10–100%). Six neuro -radiologists reviewed each image and scored image quality for diagnosing acute infarcts by a 9-point Likert scale in a blinded test. These scores were averaged across the observers to produce the average human observer responses. The chief neuro-radiologist placed multiple ROIsmore » over the infarcts. These ROIs were entered into a texture analysis software package. Forty-two features per image, including 11 GLRL, 5 GLCM, 4 GLGM, 9 Laws, and 13 2-D features, were computed and averaged over the images per dataset. The Fisher-coefficient (ratio of between-class variance to in-class variance) was calculated for each feature to identify the most discriminating features from each matrix that separate the different confidence scores most efficiently. The 15 features with the highest Fisher -coefficient were entered into linear multivariate regression for iterative modeling. Results: Multivariate regression analysis resulted in the best prediction model of the confidence scores after three iterations (df=11, F=11.7, p-value<0.0001). The model predicted scores and human observers were highly correlated (R=0.88, R-sq=0.77). The root-mean-square and maximal residual were 0.21 and 0.44, respectively. The residual scatter plot appeared random, symmetric, and unbiased. Conclusion: For diagnosis of ischemic infarct in non-contrast head CT in adults, the predicted image quality scores from texture analysis-based model observer was highly correlated with that of human observers for various noise levels. Texture-based model observer can characterize image quality of low contrast, subtle texture changes in addition to human observers.« less
Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming
2017-11-09
The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Wavelet-based image analysis system for soil texture analysis
NASA Astrophysics Data System (ADS)
Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John
2003-05-01
Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.
NASA Astrophysics Data System (ADS)
Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita; Nicolae, Mariana Carmen
2011-12-01
Co-occurrence matrix has been applied successfully for echographic images characterization because it contains information about spatial distribution of grey-scale levels in an image. The paper deals with the analysis of pixels in selected regions of interest of an US image of the liver. The useful information obtained refers to texture features such as entropy, contrast, dissimilarity and correlation extract with co-occurrence matrix. The analyzed US images were grouped in two distinct sets: healthy liver and steatosis (or fatty) liver. These two sets of echographic images of the liver build a database that includes only histological confirmed cases: 10 images of healthy liver and 10 images of steatosis liver. The healthy subjects help to compute four textural indices and as well as control dataset. We chose to study these diseases because the steatosis is the abnormal retention of lipids in cells. The texture features are statistical measures and they can be used to characterize irregularity of tissues. The goal is to extract the information using the Nearest Neighbor classification algorithm. The K-NN algorithm is a powerful tool to classify features textures by means of grouping in a training set using healthy liver, on the one hand, and in a holdout set using the features textures of steatosis liver, on the other hand. The results could be used to quantify the texture information and will allow a clear detection between health and steatosis liver.
Zheng, Yuanjie; Keller, Brad M; Ray, Shonket; Wang, Yan; Conant, Emily F; Gee, James C; Kontos, Despina
2015-07-01
Mammographic percent density (PD%) is known to be a strong risk factor for breast cancer. Recent studies also suggest that parenchymal texture features, which are more granular descriptors of the parenchymal pattern, can provide additional information about breast cancer risk. To date, most studies have measured mammographic texture within selected regions of interest (ROIs) in the breast, which cannot adequately capture the complexity of the parenchymal pattern throughout the whole breast. To better characterize patterns of the parenchymal tissue, the authors have developed a fully automated software pipeline based on a novel lattice-based strategy to extract a range of parenchymal texture features from the entire breast region. Digital mammograms from 106 cases with 318 age-matched controls were retrospectively analyzed. The lattice-based approach is based on a regular grid virtually overlaid on each mammographic image. Texture features are computed from the intersection (i.e., lattice) points of the grid lines within the breast, using a local window centered at each lattice point. Using this strategy, a range of statistical (gray-level histogram, co-occurrence, and run-length) and structural (edge-enhancing, local binary pattern, and fractal dimension) features are extracted. To cover the entire breast, the size of the local window for feature extraction is set equal to the lattice grid spacing and optimized experimentally by evaluating different windows sizes. The association between their lattice-based texture features and breast cancer was evaluated using logistic regression with leave-one-out cross validation and further compared to that of breast PD% and commonly used single-ROI texture features extracted from the retroareolar or the central breast region. Classification performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC). DeLong's test was used to compare the different ROCs in terms of AUC performance. The average univariate performance of the lattice-based features is higher when extracted from smaller than larger window sizes. While not every individual texture feature is superior to breast PD% (AUC: 0.59, STD: 0.03), their combination in multivariate analysis has significantly better performance (AUC: 0.85, STD: 0.02, p < 0.001). The lattice-based texture features also outperform the single-ROI texture features when extracted from the retroareolar or the central breast region (AUC: 0.60-0.74, STD: 0.03). Adding breast PD% does not make a significant performance improvement to the lattice-based texture features or the single-ROI features (p > 0.05). The proposed lattice-based strategy for mammographic texture analysis enables to characterize the parenchymal pattern over the entire breast. As such, these features provide richer information compared to currently used descriptors and may ultimately improve breast cancer risk assessment. Larger studies are warranted to validate these findings and also compare to standard demographic and reproductive risk factors.
Texture analysis with statistical methods for wheat ear extraction
NASA Astrophysics Data System (ADS)
Bakhouche, M.; Cointault, F.; Gouton, P.
2007-01-01
In agronomic domain, the simplification of crop counting, necessary for yield prediction and agronomic studies, is an important project for technical institutes such as Arvalis. Although the main objective of our global project is to conceive a mobile robot for natural image acquisition directly in a field, Arvalis has proposed us first to detect by image processing the number of wheat ears in images before to count them, which will allow to obtain the first component of the yield. In this paper we compare different texture image segmentation techniques based on feature extraction by first and higher order statistical methods which have been applied on our images. The extracted features are used for unsupervised pixel classification to obtain the different classes in the image. So, the K-means algorithm is implemented before the choice of a threshold to highlight the ears. Three methods have been tested in this feasibility study with very average error of 6%. Although the evaluation of the quality of the detection is visually done, automatic evaluation algorithms are currently implementing. Moreover, other statistical methods of higher order will be implemented in the future jointly with methods based on spatio-frequential transforms and specific filtering.
Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel; Park, Jong Min
2014-11-01
Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman's rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the rs values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the rs values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MISPORT showed the highest correlations among the conventional modulation indices. For global passing rates, rs values of MISPORT were -0.420, -0.330, and -0.632, respectively, and those for local passing rates were -0.455, -0.490 and -0.502. The values of rs of contrast, variance, and MISPORT with the MLC errors were -0.863, -0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
Automated texture-based identification of ovarian cancer in confocal microendoscope images
NASA Astrophysics Data System (ADS)
Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.
2005-03-01
The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.
Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza
2018-06-01
There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.
Texture metric that predicts target detection performance
NASA Astrophysics Data System (ADS)
Culpepper, Joanne B.
2015-12-01
Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.
NASA Astrophysics Data System (ADS)
Welch, R. M.; Sengupta, S. K.; Kuo, K. S.
1988-04-01
Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus fields are examined using the Spatial Gray Level Co-Occurrence Matrix method. The co-occurrence statistics are computed for pixel separations ranging from 57 m to 29 km and at angles of 0°, 45°, 90° and 135°. Nine different textual measures are used to define the cloud field spatial relationships. However, the measures of contrast and correlation appear to be most useful in distinguishing cloud structure.Cloud field macrotexture describes general cloud field characteristics at distances greater than the size of typical cloud elements. It is determined from the spatial asymptotic values of the texture measures. The slope of the texture curves at small distances provides a measure of the microtexture of individual cloud cells. Cloud fields composed primarily of small cells have very steep slopes and reach their asymptotic values at short distances from the origin. As the cells composing the cloud field grow larger, the slope becomes more gradual and the asymptotic distance increases accordingly. Low asymptotic values of correlation show that stratocumulus cloud fields have no large scale organized structure.Besides the ability to distinguish cloud field structure, texture appears to be a potentially valuable tool in cloud classification. Stratocumulus clouds are characterized by low values of angular second moment and large values of entropy. Cirrus clouds appear to have extremely low values of contrast, low values of entropy, and very large values of correlation.Finally, we propose that sampled high spatial resolution satellite data be used in conjunction with coarser resolution operational satellite data to detect and identify cloud field structure and directionality and to locate regions of subresolution scale cloud contamination.
RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.
2015-12-01
High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science Experiment DTMs. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial geohazards.
Effects of long-term stimulation of textured insoles on postural control in health elderly.
Annino, Giuseppe; Palazzo, Francesco; Alwardat, Mohammad S; Manzi, Vincenzo; Lebone, Pietro; Tancredi, Virginia; Sinibaldi Salimei, Paola; Caronti, Alfio; Panzarino, Michele; Padua, Elvira
2018-04-01
The aim of this study was to confirm the effects of long term (chronic) stimulating surface (textured insole) on body balance of elderly people. Twenty-four healthy elderly individuals were randomly distributed in two groups: control and experimental (67.75±6.04 years, 74.55±12.14 kg, 163.7±8.55 cm, 27.75±3.04 kg/m2). Over one month, control group (CG) used smooth insoles and the experimental group (ExG) used textured insoles every day. Velocity net (Vnet), anteroposterior (VA/P), mediolateral (VM/L) and sway path of CoP were assessed in different eye conditions before and after the experimental procedure. A mixed between-within subject ANOVA was conducted to assess the impact of soft and textured insoles and two visual conditions (vision vs. no vision) across two time periods (α≤0.05). The results showed any statistical difference between groups in each parameter assessed in this study. CoP, Vnet and VM/L in the experimental group showed a statistically significant effect of textured insoles only without vision (CoP: P=0.002; η2=0.35), Vnet P=0.02; η2=0.24, VM/L P=0.04; η2=0.177) whereas VA/P showed no statistically significant effect in the same group and condition. There was no significant effect in Vnet, VA/P, VM/L and COP in control group that used smooth insole for both eye conditions. The results confirm that postural stability improved in healthy elderly individuals, increasing somatosensory information's from feet plantar mechanoreceptors. Long term stimulation with textured insoles decreased CoP, Vnet and VM/L with eyes closed.
Miyagi, Atsushi
2017-09-01
Detailed exploration of sensory perception as well as preference across gender and age for a certain food is very useful for developing a vendible food commodity related to physiological and psychological motivation for food preference. Sensory tests including color, sweetness, bitterness, fried peanut aroma, textural preference and overall liking of deep-fried peanuts with varying frying time (2, 4, 6, 9, 12 and 15 min) at 150 °C were carried out using 417 healthy Japanese consumers. To determine the influence of gender and age on sensory evaluation, systematic statistical analysis including one-way analysis of variance, polynomial regression analysis and multiple regression analysis was conducted using the collected data. The results indicated that females were more sensitive to bitterness than males. This may affect sensory preference; female subjects favored peanuts prepared with a shorter frying time more than male subjects did. With advancing age, textural preference played a more important role in overall preference. Older subjects liked deeper-fried peanuts, which are more brittle, more than younger subjects did. In the present study, systematic statistical analysis based on collected sensory evaluation data using deep-fried peanuts was conducted and the tendency of sensory perception and preference across gender and age was clarified. These results may be useful for engineering optimal strategies to target specific segments to gain greater acceptance in the market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Cloud and surface textural features in polar regions
NASA Technical Reports Server (NTRS)
Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.
1990-01-01
The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.
Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.
1981-01-01
Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.
Bongoni, R; Verkerk, R; Dekker, M; Steenbekkers, L P A
2015-06-01
Preferences for sensory properties (e.g. taste and texture) are assumed to control cooking behaviour with respect to vegetables. Conditions such as the cooking method, amount of water used and the time-temperature profile determine the nutritional quality (e.g. vitamins and phytochemicals) of cooked vegetables. Information on domestic processing and any underlying motives can be used to inform consumers about cooking vegetables that are equally liked and are nutrient-rich. Two online self-reporting questionnaires were used to identify domestic processing conditions of broccoli and carrots by Dutch households. Questions on various aspects of domestic processing and consumer motives were included. Descriptive data analysis and hierarchical cluster analysis were performed for both vegetables, separately, to group consumers with similar motives and behaviour towards vegetables. Approximately 70% of consumers boiled vegetables, 8-9% steamed vegetables, 10-15% stir fried raw vegetables and 8-10% stir fried boiled vegetables. Mainly texture was used as a way to decide the 'doneness' of the vegetables. For both vegetables, three clusters of consumers were identified: texture-orientated, health-orientated, or taste-orientated. The texture-orientated consumers are identified as the most prevalent (56-59%) group in the present study. Statistically significant associations are found between domestic processing conditions and clusters, whereas no such association are found between demographic details and clusters. A wide variation in domestic processing of broccoli and carrots is found in the present study. Mainly sensory properties (i.e. texture and taste) determined the domestic processing conditions. The findings of the present study can be used to optimise cooking to yield vegetables that meet consumer's specific sensory preference and are higher in nutrients, and as well as to communicate with target consumer groups. © 2014 The British Dietetic Association Ltd.
NASA Astrophysics Data System (ADS)
Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina
2016-03-01
This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.
High-resolution land cover classification using low resolution global data
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.
2013-05-01
A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.
Mullan, F; Bartlett, D; Austin, R S
2017-06-01
To investigate the measurement performance of a chromatic confocal profilometer for quantification of surface texture of natural human enamel in vitro. Contributions to the measurement uncertainty from all potential sources of measurement error using a chromatic confocal profilometer and surface metrology software were quantified using a series of surface metrology calibration artifacts and pre-worn enamel samples. The 3D surface texture analysis protocol was optimized across 0.04mm 2 of natural and unpolished enamel undergoing dietary acid erosion (pH 3.2, titratable acidity 41.3mmolOH/L). Flatness deviations due to the x, y stage mechanical movement were the major contribution to the measurement uncertainty; with maximum Sz flatness errors of 0.49μm. Whereas measurement noise; non-linearity's in x, y, z and enamel sample dimensional instability contributed minimal errors. The measurement errors were propagated into an uncertainty budget following a Type B uncertainty evaluation in order to calculate the Standard Combined Uncertainty (u c ), which was ±0.28μm. Statistically significant increases in the median (IQR) roughness (Sa) of the polished samples occurred after 15 (+0.17 (0.13)μm), 30 (+0.12 (0.09)μm) and 45 (+0.18 (0.15)μm) min of erosion (P<0.001 vs. baseline). In contrast, natural unpolished enamel samples revealed a statistically significant decrease in Sa roughness of -0.14 (0.34) μm only after 45min erosion (P<0.05s vs. baseline). The main contribution to measurement uncertainty using chromatic confocal profilometry was from flatness deviations however by optimizing measurement protocols the profilometer successfully characterized surface texture changes in enamel from erosive wear in vitro. Copyright © 2017 The Academy of Dental Materials. All rights reserved.
IDH mutation assessment of glioma using texture features of multimodal MR images
NASA Astrophysics Data System (ADS)
Zhang, Xi; Tian, Qiang; Wu, Yu-Xia; Xu, Xiao-Pan; Li, Bao-Juan; Liu, Yi-Xiong; Liu, Yang; Lu, Hong-Bing
2017-03-01
Purpose: To 1) find effective texture features from multimodal MRI that can distinguish IDH mutant and wild status, and 2) propose a radiomic strategy for preoperatively detecting IDH mutation patients with glioma. Materials and Methods: 152 patients with glioma were retrospectively included from the Cancer Genome Atlas. Corresponding T1-weighted image before- and post-contrast, T2-weighted image and fluid-attenuation inversion recovery image from the Cancer Imaging Archive were analyzed. Specific statistical tests were applied to analyze the different kind of baseline information of LrGG patients. Finally, 168 texture features were derived from multimodal MRI per patient. Then the support vector machine-based recursive feature elimination (SVM-RFE) and classification strategy was adopted to find the optimal feature subset and build the identification models for detecting the IDH mutation. Results: Among 152 patients, 92 and 60 were confirmed to be IDH-wild and mutant, respectively. Statistical analysis showed that the patients without IDH mutation was significant older than patients with IDH mutation (p<0.01), and the distribution of some histological subtypes was significant different between IDH wild and mutant groups (p<0.01). After SVM-RFE, 15 optimal features were determined for IDH mutation detection. The accuracy, sensitivity, specificity, and AUC after SVM-RFE and parameter optimization were 82.2%, 85.0%, 78.3%, and 0.841, respectively. Conclusion: This study presented a radiomic strategy for noninvasively discriminating IDH mutation of patients with glioma. It effectively incorporated kinds of texture features from multimodal MRI, and SVM-based classification strategy. Results suggested that features selected from SVM-RFE were more potential to identifying IDH mutation. The proposed radiomics strategy could facilitate the clinical decision making in patients with glioma.
Semantic attributes based texture generation
NASA Astrophysics Data System (ADS)
Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa
2018-04-01
Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.
Texture analysis based on the Hermite transform for image classification and segmentation
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus
2012-06-01
Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.
Longhi, Sara; Hamblin, Martha T; Trainotti, Livio; Peace, Cameron P; Velasco, Riccardo; Costa, Fabrizio
2013-03-04
Apple is a widely cultivated fruit crop for its quality properties and extended storability. Among the several quality factors, texture is the most important and appreciated, and within the apple variety panorama the cortex texture shows a broad range of variability. Anatomically these variations depend on degradation events occurring in both fruit primary cell wall and middle lamella. This physiological process is regulated by an enzymatic network generally encoded by large gene families, among which polygalacturonase is devoted to the depolymerization of pectin. In apple, Md-PG1, a key gene belonging to the polygalacturonase gene family, was mapped on chromosome 10 and co-localized within the statistical interval of a major hot spot QTL associated to several fruit texture sub-phenotypes. In this work, a QTL corresponding to the position of Md-PG1 was validated and new functional alleles associated to the fruit texture properties in 77 apple cultivars were discovered. 38 SNPs genotyped by gene full length resequencing and 2 SSR markers ad hoc targeted in the gene metacontig were employed. Out of this SNP set, eleven were used to define three significant haplotypes statistically associated to several texture components. The impact of Md-PG1 in the fruit cell wall disassembly was further confirmed by the cortex structure electron microscope scanning in two apple varieties characterized by opposite texture performance, such as 'Golden Delicious' and 'Granny Smith'. The results here presented step forward into the genetic dissection of fruit texture in apple. This new set of haplotypes, and microsatellite alleles, can represent a valuable toolbox for a more efficient parental selection as well as the identification of new apple accessions distinguished by superior fruit quality features.
Coupled crystal orientation-size effects on the strength of nano crystals
Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi
2016-01-01
We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364
NASA Astrophysics Data System (ADS)
Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine
2014-10-01
The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.
Description of textures by a structural analysis.
Tomita, F; Shirai, Y; Tsuji, S
1982-02-01
A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.
NASA Astrophysics Data System (ADS)
Abdolmanafi, Atefeh; Prasad, Arpan Suravi; Duong, Luc; Dahdah, Nagib
2016-03-01
Intravascular imaging modalities, such as Optical Coherence Tomography (OCT) allow nowadays improving diagnosis, treatment, follow-up, and even prevention of coronary artery disease in the adult. OCT has been recently used in children following Kawasaki disease (KD), the most prevalent acquired coronary artery disease during childhood with devastating complications. The assessment of coronary artery layers with OCT and early detection of coronary sequelae secondary to KD is a promising tool for preventing myocardial infarction in this population. More importantly, OCT is promising for tissue quantification of the inner vessel wall, including neo intima luminal myofibroblast proliferation, calcification, and fibrous scar deposits. The goal of this study is to classify the coronary artery layers of OCT imaging obtained from a series of KD patients. Our approach is focused on developing a robust Random Forest classifier built on the idea of randomly selecting a subset of features at each node and based on second- and higher-order statistical texture analysis which estimates the gray-level spatial distribution of images by specifying the local features of each pixel and extracting the statistics from their distribution. The average classification accuracy for intima and media are 76.36% and 73.72% respectively. Random forest classifier with texture analysis promises for classification of coronary artery tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, So-Yeon; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744; Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744
Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantrymore » angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r{sub s} values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the r{sub s} values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the r{sub s} values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MI{sub SPORT} showed the highest correlations among the conventional modulation indices. For global passing rates, r{sub s} values of MI{sub SPORT} were −0.420, −0.330, and −0.632, respectively, and those for local passing rates were −0.455, −0.490 and −0.502. The values of r{sub s} of contrast, variance, and MI{sub SPORT} with the MLC errors were −0.863, −0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. Conclusions: The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.« less
Automatic extraction of tree crowns from aerial imagery in urban environment
NASA Astrophysics Data System (ADS)
Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng
2006-10-01
Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.
Tahir, Fahima; Fahiem, Muhammad Abuzar
2014-01-01
The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
Seeing the mean: ensemble coding for sets of faces.
Haberman, Jason; Whitney, David
2009-06-01
We frequently encounter groups of similar objects in our visual environment: a bed of flowers, a basket of oranges, a crowd of people. How does the visual system process such redundancy? Research shows that rather than code every element in a texture, the visual system favors a summary statistical representation of all the elements. The authors demonstrate that although it may facilitate texture perception, ensemble coding also occurs for faces-a level of processing well beyond that of textures. Observers viewed sets of faces varying in emotionality (e.g., happy to sad) and assessed the mean emotion of each set. Although observers retained little information about the individual set members, they had a remarkably precise representation of the mean emotion. Observers continued to discriminate the mean emotion accurately even when they viewed sets of 16 faces for 500 ms or less. Modeling revealed that perceiving the average facial expression in groups of faces was not due to noisy representation or noisy discrimination. These findings support the hypothesis that ensemble coding occurs extremely fast at multiple levels of visual analysis. (c) 2009 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J; Gong, G; Cui, Y
Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitativemore » Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.« less
NASA Astrophysics Data System (ADS)
Beketskaya, Olga
2010-05-01
In Russia quality standards of contaminated substances values in environment consist of ecological and sanitary rate-setting. The sanitary risk assessment base on potential risk that contaminants pose to protect human beings. The main purpose of the ecological risk assessment is to protect ecosystem. To determine negative influence on living organisms in the sanitary risk assessment in Russia we use MPC. This value of contaminants show how substances affected on different part of environment, biological activity and soil processes. The ecological risk assessment based on comparison compounds concentration with background concentration for definite territories. Taking into account high interval of microelements value in soils, we suggest using statistic method for determination of concentration levels of chemical elements concentration in soils of Russia. This method is based on determination middle levels of elements content in natural condition. The top limit of middle chemical elements concentration in soils is value, which exceed middle regional background level in three times standard deviation. The top limit of natural concentration excess we can explain as anthropogenic impact. At first we study changing in the middle content value of microelements in soils of geographic regions in European part of Russia on the basis of cartographical analysis. Cartographical analysis showed that the soil of mountainous and mountain surrounding regions is enriched with microelements. On the plain territory of European part of Russia for most of microelements was noticed general direction of increasing their concentration in soils from north to south, also in the same direction soil clay content rise for majority of soils. For all other territories a clear connection has been noticed between the distribution of sand sediment. By our own investigation and data from scientific literature data base was created. This data base consist of following soil properties: texture, organic matter content, concentration of microelements and pH value. On the basis of this data base massive of data for Forest-steppe and Steppe regions was create, which was divided by texture. For all data statistics method was done and was calculated maximum level natural microelements content for soils with different texture (?+3*δ). As a result of our statistic calculation we got middle and the top limit of background concentration of microelements in sandy and clay soils (conditional border - sandy loam) of two regions. We showed, that for all territory of European part of Russia and for Forest-steppe and Steppe regions separately middle content and maximum level natural microelements concentrations (?+3*σ) are higher in clay soils, rather then in sandy soils. Data characterizing soils, in different regions, of similar texture differs less than the data collected for sandy and clay soils of the same region. After all this calculation we can notice, that data of middle and top limit of background microelements concentration in soils, based on statistic method, can be used in the aim of ecological risk assessment. Using offered method allow to calculate top limit of background concentration for sandy and clay soils for large-scale geographic regions, exceeding which will be evidence of anthropogenic contamination of soil.
Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces
NASA Astrophysics Data System (ADS)
Polzleitner, Wolfgang; Schwingshakl, Gert
2004-10-01
We describe a scanning system developed for the classification and grading of surfaces of wooden tiles. The system uses color imaging sensors to analyse the surfaces of either hard- or softwood material in terms of the texture formed by grain lines (orientation, spatial frequency, and color), various types of colorization, and other defects like knots, heart wood, cracks, holes, etc. The analysis requires two major tracks: the assignment of a tile to its texture class (like A, B, C, 1, 2, 3, Waste), and the detection of defects that decrease the commercial value of the tile (heart wood, knots, etc.). The system was initially developed under the international IMS program (Intelligent Manufacturing Systems) by an industry consortium. During the last two years it has been further developed, and several industrial systems have been installed, and are presently used in production of hardwood flooring. The methods implemented reflect some of the latest developments in the field of pattern recognition: genetic feature selection, two-dimensional second order statistics, special color space transforms, and classification by neural networks. In the industrial scenario we describe, many of the features defining a class cannot be described mathematically. Consequently a focus was the design of a learning architecture, where prototype texture samples are presented to the system, which then automatically finds the internal representation necessary for classification. The methods used in this approach have a wide applicability to problems of inspection, sorting, and optimization of high-value material typically used in the furniture, flooring, and related wood manufacturing industries.
Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.
2009-01-01
Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357
Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.
Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J
2016-09-01
Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.
Bates, Anthony; Miles, Kenneth
2017-12-01
To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.
NASA Astrophysics Data System (ADS)
Arifin, Mukh; Ni'matullah Al-Baarri, Ahmad; Etza Setiani, Bhakti; Fazriyati Siregar, Risa
2018-02-01
This study was done for analysing the texture profile and colour performance in local and imported meat in Semarang, Indonesia. Two types of available meat were compared in the hardness, cohesiveness, springiness, adhesiveness and the colour L*a*b* performance. Five fresh beef cut of round meats from local and imported meat were used in this experiments. Data were analysed statistically using T-test. The results showed that local beef exhibit higher in the springiness than imported beef resulting in the remarkable differences. The colour analysis showed that imported beef provided remarkable higher in L* value than local beef. Resulting significant differences among two types of beef. As conclusion, these value might provide the notable of differences among local and imported meat and may give preferences status to the user for further application in meat processing.
Fruehwald-Pallamar, J; Hesselink, J R; Mafee, M F; Holzer-Fruehwald, L; Czerny, C; Mayerhoefer, M E
2016-02-01
To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2 D and 3 D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2 D, and on contrast-enhanced T1-TSE with fat saturation for 3 D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data. 2 D/3 D texture-based analysis can be performed in head and neck tumors. Texture-based analysis can differentiate between benign and malignant masses. Analyzed MR images should originate from one scanner with an identical protocol. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.
2016-06-01
This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated "LOD-2.5" CityGML objects for GIS applications.
Independent Component Analysis of Textures
NASA Technical Reports Server (NTRS)
Manduchi, Roberto; Portilla, Javier
2000-01-01
A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.
2013-01-01
Background Apple is a widely cultivated fruit crop for its quality properties and extended storability. Among the several quality factors, texture is the most important and appreciated, and within the apple variety panorama the cortex texture shows a broad range of variability. Anatomically these variations depend on degradation events occurring in both fruit primary cell wall and middle lamella. This physiological process is regulated by an enzymatic network generally encoded by large gene families, among which polygalacturonase is devoted to the depolymerization of pectin. In apple, Md-PG1, a key gene belonging to the polygalacturonase gene family, was mapped on chromosome 10 and co-localized within the statistical interval of a major hot spot QTL associated to several fruit texture sub-phenotypes. Results In this work, a QTL corresponding to the position of Md-PG1 was validated and new functional alleles associated to the fruit texture properties in 77 apple cultivars were discovered. 38 SNPs genotyped by gene full length resequencing and 2 SSR markers ad hoc targeted in the gene metacontig were employed. Out of this SNP set, eleven were used to define three significant haplotypes statistically associated to several texture components. The impact of Md-PG1 in the fruit cell wall disassembly was further confirmed by the cortex structure electron microscope scanning in two apple varieties characterized by opposite texture performance, such as ‘Golden Delicious’ and ‘Granny Smith’. Conclusions The results here presented step forward into the genetic dissection of fruit texture in apple. This new set of haplotypes, and microsatellite alleles, can represent a valuable toolbox for a more efficient parental selection as well as the identification of new apple accessions distinguished by superior fruit quality features. PMID:23496960
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
USDA-ARS?s Scientific Manuscript database
The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...
Chemometric approach to texture profile analysis of kombucha fermented milk products.
Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja
2015-09-01
In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.
Kansas environmental and resource study: A Great Plains model, tasks 1-6
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.
1972-01-01
There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.
NASA Astrophysics Data System (ADS)
Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.
2017-06-01
The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.
NASA Astrophysics Data System (ADS)
Bhatta, H.; Goldys, E. M.; Ma, J.
2006-02-01
We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.
PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization
NASA Astrophysics Data System (ADS)
Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh
2017-05-01
Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.
PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)
NASA Astrophysics Data System (ADS)
Skrotzki, Werner; Oertel, Carl-Georg
2015-04-01
The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture related research on microstructures 9. Texture-induced anisotropy 10. Insight through new experimental methods 11. Technological applications of texture studies 12. Other new developments and future trends related to the field While there was large interest in the topics 2, 3 and 8, contributions to topic 7 were much less than expected. ICOTOM 17 attracted 266 scientists from 34 countries with about one third of the participants being students. This is a very good ratio showing that we could attract the young generation. There have been 216 oral and 76 poster presentations, three of which received a poster award. It is our pleasure to thank the members of the International ICOTOM Committee for their valuable help, especially for proposing and choosing the 15 plenary speakers as well as the distinguished scientist of the texture community for the "Bunge Award". 130 papers were submitted for publication in the proceedings, 116 were accepted after reviewing. We would like to express our thanks to all referees for their efficient and prompt efforts. We acknowledge particularly support from the German Research Society (DFG) and the City of Dresden. We are also grateful for industrial support from Bruker Nano GmbH, Oxford Instruments GmbH, Ametek GmbH / EDAX, Labosoft S.C., PANalytical GmbH and IOP Publishing. Finally we thank all members of the National Organizing Committee, Intercom Dresden and Conwerk / Laboratory Ten for the excellent organization of ICOTOM 17 and the very pleasant collaboration. On the first day of the conference three tutorials have been offered. Each of them has been attended by about 30 participants. 1. Texture-aided residual stress identification system (TARSIuS) (organized by Prof. Dr. J. Bonarski and Mr. B. Kania) 2. MTEX - MATLAB toolbox for quantitative texture analysis (organized by Dr. R. Hielscher and Mr. F. Bachmann) 3. Grain boundary engineering (organized by Prof. N. Bozzolo and Prof. Dr. A.D. Rollett) A highlight of ICOTOM 17 was the ceremony honoring Prof. Dr. Claude Esling with the Bunge Award for his distinguished contributions to the field of Textures of Materials and his continuous effort to pass on his knowledge to future generations of texture experts. The Bunge Award is named after Professor Hans Bunge († 2004), to whom the world's texture community is very much indebted not only for his magisterial work on the Mathematical Theory of Texture, but also for his lifelong promotion of the field of Textures of Materials. To the great delight of all participants, Helga Bunge and her son Prof. Hans-Peter Bunge, to whom many of the older generation have a personal relationship, attended the ceremony (see Fig. 1 in the PDF). Following the award ceremony Prof. Dr. Claude Esling gave an in memoriam tribute to Prof. Dr. Richard Penelle, who was an internationally recognized texture specialist. Details can be found in the proceedings paper by Esling et al. [this issue]. During the conference the International ICSMA Committee decided to convene the next conference in St. George, USA, in 2017. We wish the organizers of ICOTOM 18 great success and look forward to meeting you in St. George. Werner Skrotzki* (Chairman of ICOTOM 17, Dresden University of Technology) Carl-Georg Oertel (Dresden University of Technology) Guest Editors Dresden, March, 2015 (* Corresponding author; e-mail address: werner.skrotzki@tu-dresden.de)
Conjoint representation of texture ensemble and location in the parahippocampal place area.
Park, Jeongho; Park, Soojin
2017-04-01
Texture provides crucial information about the category or identity of a scene. Nonetheless, not much is known about how the texture information in a scene is represented in the brain. Previous studies have shown that the parahippocampal place area (PPA), a scene-selective part of visual cortex, responds to simple patches of texture ensemble. However, in natural scenes textures exist in spatial context within a scene. Here we tested two hypotheses that make different predictions on how textures within a scene context are represented in the PPA. The Texture-Only hypothesis suggests that the PPA represents texture ensemble (i.e., the kind of texture) as is, irrespective of its location in the scene. On the other hand, the Texture and Location hypothesis suggests that the PPA represents texture and its location within a scene (e.g., ceiling or wall) conjointly. We tested these two hypotheses across two experiments, using different but complementary methods. In experiment 1 , by using multivoxel pattern analysis (MVPA) and representational similarity analysis, we found that the representational similarity of the PPA activation patterns was significantly explained by the Texture-Only hypothesis but not by the Texture and Location hypothesis. In experiment 2 , using a repetition suppression paradigm, we found no repetition suppression for scenes that had the same texture ensemble but differed in location (supporting the Texture and Location hypothesis). On the basis of these results, we propose a framework that reconciles contrasting results from MVPA and repetition suppression and draw conclusions about how texture is represented in the PPA. NEW & NOTEWORTHY This study investigates how the parahippocampal place area (PPA) represents texture information within a scene context. We claim that texture is represented in the PPA at multiple levels: the texture ensemble information at the across-voxel level and the conjoint information of texture and its location at the within-voxel level. The study proposes a working hypothesis that reconciles contrasting results from multivoxel pattern analysis and repetition suppression, suggesting that the methods are complementary to each other but not necessarily interchangeable. Copyright © 2017 the American Physiological Society.
Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan
2016-12-01
To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.
NASA Technical Reports Server (NTRS)
Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep
2001-01-01
The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.
Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis
NASA Astrophysics Data System (ADS)
Jerram, D. A.; Morgan, D. J.
2010-12-01
In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.
Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure.
Cunningham, Ryan J; Harding, Peter J; Loram, Ian D
2017-02-01
Despite widespread availability of ultrasound and a need for personalised muscle diagnosis (neck/back pain-injury, work related disorder, myopathies, neuropathies), robust, online segmentation of muscles within complex groups remains unsolved by existing methods. For example, Cervical Dystonia (CD) is a prevalent neurological condition causing painful spasticity in one or multiple muscles in the cervical muscle system. Clinicians currently have no method for targeting/monitoring treatment of deep muscles. Automated methods of muscle segmentation would enable clinicians to study, target, and monitor the deep cervical muscles via ultrasound. We have developed a method for segmenting five bilateral cervical muscles and the spine via ultrasound alone, in real-time. Magnetic Resonance Imaging (MRI) and ultrasound data were collected from 22 participants (age: 29.0±6.6, male: 12). To acquire ultrasound muscle segment labels, a novel multimodal registration method was developed, involving MRI image annotation, and shape registration to MRI-matched ultrasound images, via approximation of the tissue deformation. We then applied polynomial regression to transform our annotations and textures into a mean space, before using shape statistics to generate a texture-to-shape dictionary. For segmentation, test images were compared to dictionary textures giving an initial segmentation, and then we used a customized Active Shape Model to refine the fit. Using ultrasound alone, on unseen participants, our technique currently segments a single image in [Formula: see text] to over 86% accuracy (Jaccard index). We propose this approach is applicable generally to segment, extrapolate and visualise deep muscle structure, and analyse statistical features online.
NASA Astrophysics Data System (ADS)
Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.
2007-10-01
The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.
2016-03-01
Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.
Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.
Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus
2015-06-01
The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®
Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion
Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.
2011-01-01
Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879
Gerschke, Marco; Seehafer, Peggy
The aim of the study was to investigate differences in the acceptability between thickened and naturally viscous beverages. This was an exploratory, cross-sectional study. One hundred twenty-eight healthy volunteers rated overall liking/disliking of a selection of each of three thickened drinks and three beverages of natural viscosity pre- and postconsumption. Mean ratings were subjected to statistical analysis done with t tests. Although all naturally thick beverages evoked good expectations, there were significant differences in expected acceptance of thickened fluids concerning the kind of beverage. Postconsumption of naturally thick beverages were rated significantly better than thickened. The findings suggest an alternative offer of naturally thick drinks and waiver of thickening water when viscosity adaption is needed. The sufficient and safe oral fluid intake in dysphagia requires compliance to dietetic recommendations. Naturally thick beverages can contribute to increase the appeal of texture-modified diet.
Can we trust the calculation of texture indices of CT images? A phantom study.
Caramella, Caroline; Allorant, Adrien; Orlhac, Fanny; Bidault, Francois; Asselain, Bernard; Ammari, Samy; Jaranowski, Patricia; Moussier, Aurelie; Balleyguier, Corinne; Lassau, Nathalie; Pitre-Champagnat, Stephanie
2018-04-01
Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues have been raised in terms of its use in assessing patient images and it is crucial to harmonize and standardize this new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices potentially relevant in CT medical images and to determine their redundancy. For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were selected for their high reproducibility and capability of discriminating different textures. For the redundancy analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a correlation matrix was used to explore the 2 × 2 relationships. LIFEx software was used to explore 34 different parameters including first order and texture indices. Only eight indices of 34 exhibited high reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were independent from the six other indices but were intercorrelated, the other six indices correlated in diverse degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). Care should be taken when using texture analysis as a tool to characterize CT images because changes in quantitation may be primarily due to internal variability rather than from real physio-pathological effects. Some textural indices appear to be sufficiently reliable and capable to discriminate close textures on CT images. © 2018 American Association of Physicists in Medicine.
Genetic programming approach to evaluate complexity of texture images
NASA Astrophysics Data System (ADS)
Ciocca, Gianluigi; Corchs, Silvia; Gasparini, Francesca
2016-11-01
We adopt genetic programming (GP) to define a measure that can predict complexity perception of texture images. We perform psychophysical experiments on three different datasets to collect data on the perceived complexity. The subjective data are used for training, validation, and test of the proposed measure. These data are also used to evaluate several possible candidate measures of texture complexity related to both low level and high level image features. We select four of them (namely roughness, number of regions, chroma variance, and memorability) to be combined in a GP framework. This approach allows a nonlinear combination of the measures and could give hints on how the related image features interact in complexity perception. The proposed complexity measure M exhibits Pearson correlation coefficients of 0.890 on the training set, 0.728 on the validation set, and 0.724 on the test set. M outperforms each of all the single measures considered. From the statistical analysis of different GP candidate solutions, we found that the roughness measure evaluated on the gray level image is the most dominant one, followed by the memorability, the number of regions, and finally the chroma variance.
NASA Astrophysics Data System (ADS)
Wenk, H.-R.; Vasin, R. N.; Kern, H.; Matthies, S.; Vogel, S. C.; Ivankina, T. I.
2012-10-01
A sample of biotite gneiss from the Outokumpu deep drilling project in Finland was investigated by Kern et al. (2008) for crystal preferred orientation and elastic anisotropy. Considerable differences between measured acoustic velocities and velocities calculated on the basis of texture patterns were observed. Measured P-wave anisotropy was 15.1% versus a Voigt average yielding 7.9%. Here we investigate the same sample with different methods and using different averaging techniques. Analyzing time-of-flight neutron diffraction data from Dubna-SKAT and LANSCE-HIPPO diffractometers with the Rietveld technique, much stronger preferred orientation for biotite is determined, compared to conventional pole-figure analysis reported previously. The comparison reveals important differences: HIPPO has much better counting statistics but pole figure coverage is poor. SKAT has better angular resolution. Using the new preferred orientation data and applying a self-consistent averaging method that takes grain shapes into account, close agreement of calculated and measured P-wave velocities is observed (12.6%). This is further improved by adding 0.1 vol.% flat micropores parallel to the biotite platelets in the simulation (14.9%).
Ding, Liya; Martinez, Aleix M
2010-11-01
The appearance-based approach to face detection has seen great advances in the last several years. In this approach, we learn the image statistics describing the texture pattern (appearance) of the object class we want to detect, e.g., the face. However, this approach has had limited success in providing an accurate and detailed description of the internal facial features, i.e., eyes, brows, nose, and mouth. In general, this is due to the limited information carried by the learned statistical model. While the face template is relatively rich in texture, facial features (e.g., eyes, nose, and mouth) do not carry enough discriminative information to tell them apart from all possible background images. We resolve this problem by adding the context information of each facial feature in the design of the statistical model. In the proposed approach, the context information defines the image statistics most correlated with the surroundings of each facial component. This means that when we search for a face or facial feature, we look for those locations which most resemble the feature yet are most dissimilar to its context. This dissimilarity with the context features forces the detector to gravitate toward an accurate estimate of the position of the facial feature. Learning to discriminate between feature and context templates is difficult, however, because the context and the texture of the facial features vary widely under changing expression, pose, and illumination, and may even resemble one another. We address this problem with the use of subclass divisions. We derive two algorithms to automatically divide the training samples of each facial feature into a set of subclasses, each representing a distinct construction of the same facial component (e.g., closed versus open eyes) or its context (e.g., different hairstyles). The first algorithm is based on a discriminant analysis formulation. The second algorithm is an extension of the AdaBoost approach. We provide extensive experimental results using still images and video sequences for a total of 3,930 images. We show that the results are almost as good as those obtained with manual detection.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Texture operator for snow particle classification into snowflake and graupel
NASA Astrophysics Data System (ADS)
Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro
2012-11-01
In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R; Aguilera, T; Shultz, D
2014-06-15
Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less
Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert
2017-07-01
We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.
Feature recognition and detection for ancient architecture based on machine vision
NASA Astrophysics Data System (ADS)
Zou, Zheng; Wang, Niannian; Zhao, Peng; Zhao, Xuefeng
2018-03-01
Ancient architecture has a very high historical and artistic value. The ancient buildings have a wide variety of textures and decorative paintings, which contain a lot of historical meaning. Therefore, the research and statistics work of these different compositional and decorative features play an important role in the subsequent research. However, until recently, the statistics of those components are mainly by artificial method, which consumes a lot of labor and time, inefficiently. At present, as the strong support of big data and GPU accelerated training, machine vision with deep learning as the core has been rapidly developed and widely used in many fields. This paper proposes an idea to recognize and detect the textures, decorations and other features of ancient building based on machine vision. First, classify a large number of surface textures images of ancient building components manually as a set of samples. Then, using the convolution neural network to train the samples in order to get a classification detector. Finally verify its precision.
Textural content in 3T MR: an image-based marker for Alzheimer's disease
NASA Astrophysics Data System (ADS)
Bharath Kumar, S. V.; Mullick, Rakesh; Patil, Uday
2005-04-01
In this paper, we propose a study, which investigates the first-order and second-order distributions of T2 images from a magnetic resonance (MR) scan for an age-matched data set of 24 Alzheimer's disease and 17 normal patients. The study is motivated by the desire to analyze the brain iron uptake in the hippocampus of Alzheimer's patients, which is captured by low T2 values. Since, excess iron deposition occurs locally in certain regions of the brain, we are motivated to investigate the spatial distribution of T2, which is captured by higher-order statistics. Based on the first-order and second-order distributions (involving gray level co-occurrence matrix) of T2, we show that the second-order statistics provide features with sensitivity >90% (at 80% specificity), which in turn capture the textural content in T2 data. Hence, we argue that different texture characteristics of T2 in the hippocampus for Alzheimer's and normal patients could be used as an early indicator of Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari
2008-03-01
In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.
Mining textural knowledge in biological images: Applications, methods and trends.
Di Cataldo, Santa; Ficarra, Elisa
2017-01-01
Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.
NASA Astrophysics Data System (ADS)
Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark
2017-04-01
Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.
The use of higher-order statistics in rapid object categorization in natural scenes.
Banno, Hayaki; Saiki, Jun
2015-02-04
We can rapidly and efficiently recognize many types of objects embedded in complex scenes. What information supports this object recognition is a fundamental question for understanding our visual processing. We investigated the eccentricity-dependent role of shape and statistical information for ultrarapid object categorization, using the higher-order statistics proposed by Portilla and Simoncelli (2000). Synthesized textures computed by their algorithms have the same higher-order statistics as the originals, while the global shapes were destroyed. We used the synthesized textures to manipulate the availability of shape information separately from the statistics. We hypothesized that shape makes a greater contribution to central vision than to peripheral vision and that statistics show the opposite pattern. Results did not show contributions clearly biased by eccentricity. Statistical information demonstrated a robust contribution not only in peripheral but also in central vision. For shape, the results supported the contribution in both central and peripheral vision. Further experiments revealed some interesting properties of the statistics. They are available for a limited time, attributable to the presence or absence of animals without shape, and predict how easily humans detect animals in original images. Our data suggest that when facing the time constraint of categorical processing, higher-order statistics underlie our significant performance for rapid categorization, irrespective of eccentricity. © 2015 ARVO.
Yi, Jisook; Lee, Young Han; Kim, Sang Kyum; Kim, Seung Hyun; Song, Ho-Taek; Shin, Kyoo-Ho; Suh, Jin-Suck
2018-05-01
This study aimed to compare computed tomography (CT) features, including tumor size and textural and histogram measurements, of giant-cell tumors of bone (GCTBs) before and after denosumab treatment and determine their applicability in monitoring GCTB response to denosumab treatment. This retrospective study included eight patients (male, 3; female, 5; mean age, 33.4 years) diagnosed with GCTB, who had received treatment by denosumab and had undergone pre- and post-treatment non-contrast CT between January 2010 and December 2016. This study was approved by the institutional review board. Pre- and post-treatment size, histogram, and textural parameters of GCTBs were compared by the Wilcoxon signed-rank test. Pathological findings of five patients who underwent surgery after denosumab treatment were evaluated for assessment of treatment response. Relative to the baseline values, the tumor size had decreased, while the mean attenuation, standard deviation, entropy (all, P = 0.017), and skewness (P = 0.036) of the GCTBs had significantly increased post-treatment. Although the difference was statistically insignificant, the tumors also exhibited increased kurtosis, contrast, and inverse difference moment (P = 0.123, 0.327, and 0.575, respectively) post-treatment. Histologic findings revealed new bone formation and complete depletion or decrease in the number of osteoclast-like giant cells. The histogram and textural parameters of GCTBs changed significantly after denosumab treatment. Knowledge of the tendency towards increased mean attenuation and heterogeneity but increased local homogeneity in post-treatment CT histogram and textural features of GCTBs might aid in treatment planning and tumor response evaluation during denosumab treatment. Copyright © 2018. Published by Elsevier B.V.
Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo
2017-03-01
Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.
Structural analysis of natural textures.
Vilnrotter, F M; Nevatia, R; Price, K E
1986-01-01
Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.
Uncertainty in Pedotransfer Functions from Soil Survey Data
NASA Astrophysics Data System (ADS)
Pachepsky, Y. A.; Rawls, W. J.
2002-05-01
Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty
Texture analysis at neutron diffractometer STRESS-SPEC
NASA Astrophysics Data System (ADS)
Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.
2011-06-01
In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.
Influence of citric acid on the surface texture of glass ionomer restorative materials
Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani
2014-01-01
Aim: This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Materials and Methods: Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. Results: The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. Conclusion: The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials. PMID:25298643
Influence of citric acid on the surface texture of glass ionomer restorative materials.
Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani
2014-09-01
This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials.
Silva, Eduardo Nascimento; Ribas-Filho, Jurandir Marcondes; Czeczko, Nicolau Gregori; Pachnicki, Jan Pawel Andrade; Netto, Mário Rodrigues Montemor; Lipinski, Leandro Cavalcante; Noronha, Lucia de; Colman, Joelmir; Zeni, João Otavio; Carvalho, Caroline Aragão de
2016-12-01
To assess the capsules formed by silicone implants coated with polyurethane foam and with a textured surface. Sixty-four Wistar albinus rats were divided into two groups of 32 each using polyurethane foam and textured surface. The capsules around the implants were analyzed for 30, 50, 70 and 90 days. Were analyzed the following parameters: foreign body reaction, granulation tissue, presence of myofibroblasts, neoangiogenesis, presence of synovial metaplasia, capsular thickness, total area and collagen percentage of type I and III, in capsules formed around silicone implants in both groups. The foreign body reaction was only present in the four polyurethane subgroups. The formation of granulation tissue and the presence of myofibroblasts were higher in the four polyurethane subgroups. Regarding to neoangiogenesis and synovial metaplasia, there was no statistical difference between the groups. Polyurethane group presented (all subgroups) a greater capsule thickness, a smaller total area and collagen percentage of type I and a higher percentage area of type III, with statistical difference. The use of polyurethane-coated implants should be stimulated by the long-term results in a more stable capsule and a lower incidence of capsular contracture, despite developing a more intense and delayed inflammatory reaction in relation to implants with textured surface.
NASA Astrophysics Data System (ADS)
Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard
2015-04-01
Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures were merged according to geological context. The major conclusions are: 1. Carbonate minerals can be mapped using spectral unmixing techniques. 2. Carbonatites are associated with specific geometric pattern 3. The combination of spectral and geometric information improves classification result and reduces misclassification. References Clausi, D. A. (2002): An analysis of co-occurrence texture statistics as a function of grey-level quantization. - Canadian Journal of Remote Sensing, 28 (1), 45-62 Jones, A. P., Genge, M. and Carmody, L (2013): Carbonate Melts and Carbonatites. - Reviews in Mineralogy & Geochemistry, 75, 289-322 Shahzad, F. & Gloaguen, R. (2011): TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. - Computers and Geosciences, 37 (2), 261-271
Multi-layer cube sampling for liver boundary detection in PET-CT images.
Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian
2018-06-01
Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.
Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn
2018-03-30
Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.
A neural network detection model of spilled oil based on the texture analysis of SAR image
NASA Astrophysics Data System (ADS)
An, Jubai; Zhu, Lisong
2006-01-01
A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
MRI Texture Analysis of Background Parenchymal Enhancement of the Breast
Woo, Jun; Amano, Maki; Yanagisawa, Fumi; Yamamoto, Hiroshi; Tani, Mayumi
2017-01-01
Purpose The purpose of this study was to determine texture parameters reflecting the background parenchymal enhancement (BPE) of the breast, which were acquired using texture analysis (TA). Methods We investigated 52 breasts of the 26 subjects who underwent dynamic contrast-enhanced MRI. One experienced reader scored BPE visually (i.e., minimal, mild, moderate, and marked). TA, including 12 texture parameters, was performed to distinguish the BPE scores quantitatively. Relationships between the visual BPE scores and texture parameters were evaluated using analysis of variance and receiver operating characteristic analysis. Results The variance and skewness of signal intensity were useful for differentiating between moderate and mild or minimal BPE or between mild and minimal BPE, respectively, with the cutoff value of 356.7 for variance and that of 0.21 for skewness. Some TA features could be useful for defining breast lesions from the BPE. Conclusion TA may be useful for quantifying the BPE of the breast. PMID:28812015
Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M
2017-07-01
To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.
Effect of texturing on polarization switching dynamics in ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu
2016-01-01
Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.
Pieniazek, Facundo; Messina, Valeria
2016-11-01
In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
NASA Astrophysics Data System (ADS)
Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan
2014-11-01
Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.
Instrumental texture characteristics of broiler pectoralis major with the woody breast condition
USDA-ARS?s Scientific Manuscript database
The objective was to characterize texture properties of raw and cooked broiler fillets (pectoralis major) with the woody breast condition (WBC) using instrumental texture techniques Meullenet-Owens Razor Shear (MORS) and texture profile analysis (TPA). Deboned (3 h postmortem) broiler fillets were c...
Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.
Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse
2017-01-01
Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
NASA Astrophysics Data System (ADS)
Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.
2014-03-01
Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.
Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
Chaddad, Ahmad; Sabri, Siham; Niazi, Tamim; Abdulkarim, Bassam
2018-06-19
We propose a multiscale texture features based on Laplacian-of Gaussian (LoG) filter to predict progression free (PFS) and overall survival (OS) in patients newly diagnosed with glioblastoma (GBM). Experiments use the extracted features derived from 40 patients of GBM with T1-weighted imaging (T1-WI) and Fluid-attenuated inversion recovery (FLAIR) images that were segmented manually into areas of active tumor, necrosis, and edema. Multiscale texture features were extracted locally from each of these areas of interest using a LoG filter and the relation between features to OS and PFS was investigated using univariate (i.e., Spearman's rank correlation coefficient, log-rank test and Kaplan-Meier estimator) and multivariate analyses (i.e., Random Forest classifier). Three and seven features were statistically correlated with PFS and OS, respectively, with absolute correlation values between 0.32 and 0.36 and p < 0.05. Three features derived from active tumor regions only were associated with OS (p < 0.05) with hazard ratios (HR) of 2.9, 3, and 3.24, respectively. Combined features showed an AUC value of 85.37 and 85.54% for predicting the PFS and OS of GBM patients, respectively, using the random forest (RF) classifier. We presented a multiscale texture features to characterize the GBM regions and predict he PFS and OS. The efficiency achievable suggests that this technique can be developed into a GBM MR analysis system suitable for clinical use after a thorough validation involving more patients. Graphical abstract Scheme of the proposed model for characterizing the heterogeneity of GBM regions and predicting the overall survival and progression free survival of GBM patients. (1) Acquisition of pretreatment MRI images; (2) Affine registration of T1-WI image with its corresponding FLAIR images, and GBM subtype (phenotypes) labelling; (3) Extraction of nine texture features from the three texture scales fine, medium, and coarse derived from each of GBM regions; (4) Comparing heterogeneity between GBM regions by ANOVA test; Survival analysis using Univariate (Spearman rank correlation between features and survival (i.e., PFS and OS) based on each of the GBM regions, Kaplan-Meier estimator and log-rank test to predict the PFS and OS of patient groups that grouped based on median of feature), and multivariate (random forest model) for predicting the PFS and OS of patients groups that grouped based on median of PFS and OS.
Filomena-Ambrosio, Annamaria; Quintanilla-Carvajal, María Ximena; Ana-Puig; Hernando, Isabel; Hernández-Carrión, María; Sotelo-Díaz, Indira
2016-01-01
Surimi gel is a food product traditionally manufactured from marine species; it has functional features including a specific texture and a high protein concentration. The objective of this study was to evaluate and compare the effect of the ultrasound extraction protein method and different stabilizers on the water-holding capacity (WHC), texture, and microstructure of surimi from panga and tilapia to potentially increase the value of these species. For this purpose, WHC was determined and texture profile analysis, scanning electron microscopy, and texture image analysis were carried out. The results showed that the ultrasound method and the sodium citrate can be used to obtain surimi gels from panga and tilapia with optimal textural properties such as the hardness and chewiness. Moreover, image analysis is recommended as a quantitative and non-invasive technique to evaluate the microstructure and texture image properties of surimis prepared using different processing methods and stabilizers. © The Author(s) 2015.
Extraction of texture features with a multiresolution neural network
NASA Astrophysics Data System (ADS)
Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.
1992-09-01
Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.
Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K
2018-04-01
This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.
NASA Astrophysics Data System (ADS)
Ji, Xinye; Shen, Chaopeng; Riley, William J.
2015-12-01
Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.
Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M; Galván-Tejada, Jorge I; Treviño, Victor; Tamez-Peña, Jose
2014-10-01
Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.
Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L
2008-01-01
This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.
NASA Astrophysics Data System (ADS)
Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration
Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.
Sensory and rapid instrumental methods as a combined tool for quality control of cooked ham.
Barbieri, Sara; Soglia, Francesca; Palagano, Rosa; Tesini, Federica; Bendini, Alessandra; Petracci, Massimiliano; Cavani, Claudio; Gallina Toschi, Tullia
2016-11-01
In this preliminary investigation, different commercial categories of Italian cooked pork hams have been characterized using an integrated approach based on both sensory and fast instrumental measurements. For these purposes, Italian products belonging to different categories (cooked ham, "selected" cooked ham and "high quality" cooked ham) were evaluated by sensory descriptive analysis and by the application of rapid tools such as image analysis by an "electronic eye" and texture analyzer. The panel of trained assessors identified and evaluated 10 sensory descriptors able to define the quality of the products. Statistical analysis highlighted that sensory characteristics related to appearance and texture were the most significant in discriminating samples belonged to the highest (high quality cooked hams) and the lowest (cooked hams) quality of the product whereas the selected cooked hams, showed intermediate characteristics. In particular, high quality samples were characterized, above all, by the highest intensity of pink intensity, typical appearance and cohesiveness, and, at the same time, by the lowest intensity of juiciness; standard cooked ham samples showed the lowest intensity of all visual attributes and the highest value of juiciness, whereas the intermediate category (selected cooked ham) was not discriminated from the other. Also physical-rheological parameters measured by electronic eye and texture analyzer were effective in classifying samples. In particular, the PLS model built with data obtained from the electronic eye showed a satisfactory performance in terms of prediction of the pink intensity and presence of fat attributes evaluated during the sensory visual phase. This study can be considered a first application of this combined approach that could represent a suitable and fast method to verify if the meat product purchased by consumer match its description in terms of compliance with the claimed quality.
Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data
NASA Astrophysics Data System (ADS)
Tunwal, M.; Mulchrone, K. F.; Meere, P. A.
2017-12-01
Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)
The promise and limits of PET texture analysis.
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen
2013-11-01
Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.
Wright, L; Cotter, D; Hickson, M; Frost, G
2005-06-01
There are very few studies looking at the energy and protein requirements of patients requiring texture modified diets. Dysphagia is the main indication for people to be recommended texture-modified diets. Older people post-stroke are the key group in the hospital setting who consume this type of diet. The diets can be of several consistencies ranging from pureed to soft textures. To compare the 24-hour dietary intake of older people consuming a texture modified diet in a clinical setting to older people consuming a normal hospital diet. Weighed food intakes and food record charts were used to quantify the patients' intakes, which were compared to their individual requirements. The oral intake of 55 patients was measured. Twenty-five of the patients surveyed were eating a normal diet and acted as controls for 30 patients who were prescribed a texture-modified diet. The results showed that the texture-modified group had significantly lower intakes of energy (3877 versus 6115 kJ, P < 0.0001) and protein (40 versus 60 g, P < 0.003) compared to consumption of the normal diet. The energy and protein deficit from estimated requirements was significantly greater in the texture-modified group (2549 versus 357 kJ, P < 0.0001; 6 versus 22 g, P = 0.013; respectively). These statistically significant results indicate that older people on texture-modified diets have a lower intake of energy and protein than those consuming a normal hospital diet and it is likely that other nutrients will be inadequate. All patients on texture-modified diets should be assessed by the dietitian for nutritional support. Evidence based strategies for improving overall nutrient intake should be identified.
NASA Astrophysics Data System (ADS)
Borri, Claudia; Paggi, Marco
2015-02-01
The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.
Rapid extraction of image texture by co-occurrence using a hybrid data structure
NASA Astrophysics Data System (ADS)
Clausi, David A.; Zhao, Yongping
2002-07-01
Calculation of co-occurrence probabilities is a popular method for determining texture features within remotely sensed digital imagery. Typically, the co-occurrence features are calculated by using a grey level co-occurrence matrix (GLCM) to store the co-occurring probabilities. Statistics are applied to the probabilities in the GLCM to generate the texture features. This method is computationally intensive since the matrix is usually sparse leading to many unnecessary calculations involving zero probabilities when applying the statistics. An improvement on the GLCM method is to utilize a grey level co-occurrence linked list (GLCLL) to store only the non-zero co-occurring probabilities. The GLCLL suffers since, to achieve preferred computational speeds, the list should be sorted. An improvement on the GLCLL is to utilize a grey level co-occurrence hybrid structure (GLCHS) based on an integrated hash table and linked list approach. Texture features obtained using this technique are identical to those obtained using the GLCM and GLCLL. The GLCHS method is implemented using the C language in a Unix environment. Based on a Brodatz test image, the GLCHS method is demonstrated to be a superior technique when compared across various window sizes and grey level quantizations. The GLCHS method required, on average, 33.4% ( σ=3.08%) of the computational time required by the GLCLL. Significant computational gains are made using the GLCHS method.
Methods for comparing 3D surface attributes
NASA Astrophysics Data System (ADS)
Pang, Alex; Freeman, Adam
1996-03-01
A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.
Multiresolution texture analysis applied to road surface inspection
NASA Astrophysics Data System (ADS)
Paquis, Stephane; Legeay, Vincent; Konik, Hubert; Charrier, Jean
1999-03-01
Technological advances provide now the opportunity to automate the pavement distress assessment. This paper deals with an approach for achieving an automatic vision system for road surface classification. Road surfaces are composed of aggregates, which have a particular grain size distribution and a mortar matrix. From various physical properties and visual aspects, four road families are generated. We present here a tool using a pyramidal process with the assumption that regions or objects in an image rise up because of their uniform texture. Note that the aim is not to compute another statistical parameter but to include usual criteria in our method. In fact, the road surface classification uses a multiresolution cooccurrence matrix and a hierarchical process through an original intensity pyramid, where a father pixel takes the minimum gray level value of its directly linked children pixels. More precisely, only matrix diagonal is taken into account and analyzed along the pyramidal structure, which allows the classification to be made.
Anterior dental microwear textures show habitat-driven variability in Neandertal behavior.
Krueger, Kristin L; Ungar, Peter S; Guatelli-Steinberg, Debbie; Hublin, Jean-Jacques; Pérez-Pérez, Alejandro; Trinkaus, Erik; Willman, John C
2017-04-01
The causes of Neandertal anterior tooth wear patterns, including labial rounding, labial scratches, and differential anterior-posterior wear, have been debated for decades. The most common explanation is the "stuff-and-cut" hypothesis, which describes Neandertals clamping down on a piece of meat and slicing a portion close to their lips. "Stuff-and-cut" has been accepted as a general aspect of Neandertal behavior without fully assessing its variability. This study analyzes anterior dental microwear textures across habitats, locations, and time intervals to discern possible variation in Neandertal anterior tooth-use behavior. Forty-five Neandertals from 24 sites were analyzed, represented by high-resolution replicas of permanent anterior teeth. The labial surface was scanned for antemortem microwear using a white-light confocal profiler. The resultant 3D-point clouds, representing 204 × 276 μm for each specimen, were uploaded into SSFA software packages for texture characterization. Statistical analyses, including MANOVAs, ANOVAs, and pairwise comparisons, were completed on ranked microwear data. Neandertal descriptive statistics were also compared to 10 bioarchaeological samples of known or inferred dietary and behavioral regimes. The Neandertal sample varied significantly by habitat, suggesting this factor was a principal driving force for differences in Neandertal anterior tooth-use behaviors. The Neandertals from open habitats showed significantly lower anisotropy and higher textural fill volume than those inhabiting more closed, forested environments. The texture signature from the open-habitat Neandertals was most similar to that of the Ipiutak and Nunavut, who used their anterior teeth for intense clamping and grasping behaviors related to hide preparation. Those in more closed habitats were most similar to the Arikara, who did not participate in non-dietary behaviors. These Neandertal individuals had a broad range of texture values consistent with non-dietary and dietary behaviors, suggesting they varied more in anterior tooth-use behaviors and exploited a wider variety of plant and animal resources than did those from open habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
Texture analysis of Napoleonic War Era copper bolts
NASA Astrophysics Data System (ADS)
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe
2016-04-01
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.
Automatic computational labeling of glomerular textural boundaries
NASA Astrophysics Data System (ADS)
Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Ecological model of glittering texture
NASA Astrophysics Data System (ADS)
Vallet, Matthieu; Paille, Damien; Monot, Annie; Kemeny, Andras
2003-06-01
The perceptual effects of changes of texture luminance either between the eyes or over time have been studied in several experiments and have led to a better comprehension of phenomenons such as sieve effect, binocular and monocular lustre and rivaldepth. In this paper, we propose an ecological model of glittering texture and analyze glitter perception in terms of variations of texture luminance and animation frequency, in dynamic illumination conditions. Our approach is based on randomly oriented mirrors that are computed according to the specular term of Phong's image rendering formula. The sparkling effect is thus correlated to the relative movements of the resulting textured object, the light array and the observer's point of view. The perceptual effect obtained with this model depends on several parameters: mirrors' density, the Phong specular exponent and the statistical properties of the mirrors' normal vectors. The ability to independently set these properties offers a way to explore a characterization space of glitter. A rating procedure provided a first approximation of the numerical values that lead to the best feeling of typical sparkling surfaces such as metallic paint, granite or sea shore.
A subjective study and an objective metric to quantify the granularity level of textures
NASA Astrophysics Data System (ADS)
Subedar, Mahesh M.; Karam, Lina J.
2015-03-01
Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.
NASA Astrophysics Data System (ADS)
Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan
2018-03-01
Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.
NASA Astrophysics Data System (ADS)
Brosnan, Kristen H.
In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)
Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge
2013-04-01
Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark classifier, suggest that quasi-supervised image texture labelling may be a useful method in the analysis and classification of pathological slides but further study is required to improve the results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Landscape metrics as functional traits in plants: perspectives from a glacier foreland
Dainese, Matteo; Krüsi, Bertil O.; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data. PMID:28785514
Landscape metrics as functional traits in plants: perspectives from a glacier foreland.
Sitzia, Tommaso; Dainese, Matteo; Krüsi, Bertil O; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
NASA Astrophysics Data System (ADS)
Novaković, S.; Tomašević, I.
2017-09-01
Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.
Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor
2016-10-01
In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.
Michael L. Hoppus; Rachel I. Riemann; Andrew J. Lister; Mark V. Finco
2002-01-01
The panchromatic bands of Landsat 7, SPOT, and IRS satellite imagery provide an opportunity to evaluate the effectiveness of texture analysis of satellite imagery for mapping of land use/cover, especially forest cover. A variety of texture algorithms, including standard deviation, Ryherd-Woodcock minimum variance adaptive window, low pass etc., were applied to moving...
Perceptual adaptation in the use of night vision goggles
NASA Technical Reports Server (NTRS)
Durgin, Frank H.; Proffitt, Dennis R.
1992-01-01
The image intensification (I sup 2) systems studied for this report were the biocular AN/PVS-7(NVG) and the binocular AN/AVS-6(ANVIS). Both are quite impressive for purposes of revealing the structure of the environment in a fairly straightforward way in extremely low-light conditions. But these systems represent an unusual viewing medium. The perceptual information available through I sup 2 systems is different in a variety of ways from the typical input of everyday vision, and extensive training and practice is required for optimal use. Using this sort of system involves a kind of perceptual skill learning, but is may also involve visual adaptations that are not simply an extension of normal vision. For example, the visual noise evident in the goggles in very low-light conditions results in unusual statistical properties in visual input. Because we had recently discovered a strong and enduring aftereffect of perceived texture density which seemed to be sensitive to precisely the sorts of statistical distortions introduced by I sup 2 systems, it occurred to use that visual noise of this sort might be a very adapting stimulus for texture density and produce an aftereffect that extended into normal vision once the goggles were removed. We have not found any experimental evidence that I sup 2 systems produce texture density aftereffects. The nature of the texture density aftereffect is briefly explained, followed by an accounting of our studies of I sup 2 systems and our most recent work on the texture density aftereffect. A test for spatial frequency adaptation after exposure to NVG's is also reported, as is a study of perceived depth from motion (motion parallax) while wearing the biocular goggles. We conclude with a summary of our findings.
A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?
NASA Astrophysics Data System (ADS)
Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger
2014-05-01
Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the worth of proposed parameters, methodology and usefulness and willingness to contribute to a database with free access of the community. We further invite institutions to participate on a benchmark analysis of a set of 'standard' thin sections. Bunge, H.J. 1983, Texture Analysis in Materials Science: mathematical methods. Butterworth-Heinemann, 593pp. Hielscher, R., Schaeben, H., Chateigner, D., 2007, On the entropy to texture index relationship in quantitative texture analysis: Journal of Applied Crystallography 40, 371-375.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less
Textural states of a hot-worked MA2-1 magnesium alloy
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.
2007-02-01
Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.
NASA Astrophysics Data System (ADS)
Einstein, Andrew J.; Wu, Hai-Shan; Gil, Joan
1998-01-01
Methods are presented for characterizing the self-affinity and lacunarity of arbitrarily shaped images. Chromatin appearance in breast epithelial cell nuclei is shown to be statistically self-affine. Spectral and Minkowski dimensions are lesser in nuclei of malignant cases than in nuclei of benign cases, and lacunarity further quantifies morphologic differences such as chromatin clumping and nucleoli. Fractal texture features are used as the basis for an accurate cytologic diagnosis of breast cancer.
Sedimentary control of volcanic debris-avalanche structures and transformation into lahars
NASA Astrophysics Data System (ADS)
Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo
2017-04-01
Volcanic debris avalanche structures and related transformations into lahars have been extensively analysed in order to establish a sedimentary classification of the deposits. Textural and structural variations of eight debris-avalanche deposits (DADs) have been correlated with Shape Preferred Orientation of 30,000 clasts together with grain-size distributions and statistical parameters from 156 sieved matrix samples. Granular segregation patterns have been observed with structural fault controls: proximal granular-segregation structures of the Tutupaca DAD ridges in Peru, basal sheared bands along overthrust lateral levee (Mt. Dore, France), mixing and cataclasis of fault-controlled deposits in half-graben during lateral spreading of distal thrust lobe (Pichu-Pichu, Peru), neo-cataclasis at the frontal thrust lobe (Meager, Canada and Mt. Dore, France). A logarithmic regression characterises the % matrix vs. matrix/gravels showing proximal and primary cataclasis, hybrid DADs with polymodal matrix and mixed facies up to transformations into lahar (Misti, Mt Dore). The sequential fragmentation helps to distinguish DAD that belong to Andean and Cascade Volcanic arcs (Tutupaca and Misti, Peru; Meager, Canada) to the hybrid DADs, before distal transformation into lahars (Pichu-Pichu); and hydrovolcanic fragmentation characterises the transformed lahar deposits (Misti). The fractal values of 150 sieved samples range between 2.3 and 2.7, implying extensional fractures with granular disaggregation. Skewness vs. kurtosis values help to distinguish the proximal mass wasting deposits and the transformed deposits by dilution. The sorting vs. median values enable us to differentiate the hybrid DADs with the transformed deposits by dilution. The sedimentological statistical parameters with Shape Preferred Orientation analysis that have been correlated with textural and structural observations show textural fabrics resulting from kinematic processes: cataclasis, hybrid matrix facies and transformations. Inherited fractures from tectono-volcanic structures contribute to the particle size distributions of DAD and associated deposits such as pyroclastic and lahar deposits (Misti, Mt Dore, Tutupaca). The statistical results highlight granular structure and kinematic process of DAD transformations into lahars and associated deposits, which would contribute to understand the rheological process behind the excess DAD run-out and to test granular models for DAD transformations. Key words: volcanic debris-avalanche deposits, lahar transformation, structure, sedimentology, hazard
Crop identification of SAR data using digital textural analysis
NASA Technical Reports Server (NTRS)
Nuesch, D. R.
1983-01-01
After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.
Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.
Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W
2015-11-01
To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ahmed, Farzana; Gulliver, John S.; Nieber, J. L.
2015-11-01
Roadside drainage ditches (grassed swales) are an attractive stormwater control measure (SCM) since they can reduce runoff volume by infiltrating water into the soil, filter sediments and associated pollutants out of the water, and settle solids onto the soil surface. In this study a total of 722 infiltration measurements were collected in five swales located in Twin-Cities, MN and one swale located in Madison, WI to characterize the field-saturated hydraulic conductivity (Kfs) derived from the infiltration measurements of these swales. Measurements were taken with a falling head device, the Modified Philip Dunne (MPD) infiltrometer, which allows the collection of simultaneous infiltration measurements at multiple locations with several infiltrometers. Field-saturated hydraulic conductivity was higher than expected for different soil texture classes. We hypothesize that this is due to plant roots creating macropores that break up the soil for infiltration. Statistical analysis was performed on the Kfs values to analyze the effect of initial soil moisture content, season, soil texture class and distance in downstream direction on the geometric mean Kfs value of a swale. Because of the high spatial variation of Kfs in the same swale no effect of initial soil moisture content, season and soil texture class was observed on the geometric mean Kfs value. But the distance in downstream direction may have positive or negative effect on the Kfs value. An uncertainty analysis on the Kfs value indicated that approximately twenty infiltration measurements is the minimum number to obtain a representative geometric mean Kfs value of a swale that is less than 350 m long within an acceptable level of uncertainty.
Characterizing mammographic images by using generic texture features
2012-01-01
Introduction Although mammographic density is an established risk factor for breast cancer, its use is limited in clinical practice because of a lack of automated and standardized measurement methods. The aims of this study were to evaluate a variety of automated texture features in mammograms as risk factors for breast cancer and to compare them with the percentage mammographic density (PMD) by using a case-control study design. Methods A case-control study including 864 cases and 418 controls was analyzed automatically. Four hundred seventy features were explored as possible risk factors for breast cancer. These included statistical features, moment-based features, spectral-energy features, and form-based features. An elaborate variable selection process using logistic regression analyses was performed to identify those features that were associated with case-control status. In addition, PMD was assessed and included in the regression model. Results Of the 470 image-analysis features explored, 46 remained in the final logistic regression model. An area under the curve of 0.79, with an odds ratio per standard deviation change of 2.88 (95% CI, 2.28 to 3.65), was obtained with validation data. Adding the PMD did not improve the final model. Conclusions Using texture features to predict the risk of breast cancer appears feasible. PMD did not show any additional value in this study. With regard to the features assessed, most of the analysis tools appeared to reflect mammographic density, although some features did not correlate with PMD. It remains to be investigated in larger case-control studies whether these features can contribute to increased prediction accuracy. PMID:22490545
Pectin engineering to modify product quality in potato.
Ross, Heather A; Morris, Wayne L; Ducreux, Laurence J M; Hancock, Robert D; Verrall, Susan R; Morris, Jenny A; Tucker, Gregory A; Stewart, Derek; Hedley, Pete E; McDougall, Gordon J; Taylor, Mark A
2011-10-01
Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
Understanding the effect of watershed characteristic on the runoff using SCS curve number
NASA Astrophysics Data System (ADS)
Damayanti, Frieta; Schneider, Karl
2015-04-01
Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the estimated runoff. CN values were estimated using the field measurements of soil textures for different combinations of land use and topography. To transfer the local soil texture measurements to the watershed domain a statistical analysis using the frequency distribution of the measured soil textures is applied and used to derive the effective CN value for a given land use, topography and soil texture combination. Since the curve numbers change as a function of parameter combinations, the effect of different methods to estimate the curve number upon the runoff is analyzed and compared to the straight forward method of using the data from the FAO soil map.
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...
SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Aditya P.; Deasy, Joseph O.
2016-06-15
Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less
Texture analysis of medical images for radiotherapy applications
Rizzo, Giovanna
2017-01-01
The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique. PMID:27885836
Some distinguishing characteristics of contour and texture phenomena in images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1992-01-01
The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masotti, Matteo; Lanconelli, Nico; Campanini, Renato
In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with theirmore » gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks when compared to the previous one. Specifically, at 60%, 65%, and 70% per-mammogram sensitivity, the new CAD system achieves 0.50, 0.68, and 0.92 FP marks per mammogram, whereas at 70%, 75%, and 80% per-case sensitivity it achieves 0.37, 0.48, and 0.71 FP marks per mammogram, respectively. Conversely, at the same sensitivities, the previous CAD system reached 0.71, 0.87, and 1.15 FP marks per mammogram, and 0.57, 0.73, and 0.92 FPs per mammogram. Also, statistical significance of the difference between the two per-mammogram and per-case FROC curves is demonstrated by the p-value<0.001 returned by jackknife FROC analysis performed on the two CAD systems.« less
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
Statistical process control applied to mechanized peanut sowing as a function of soil texture.
Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.
Statistical process control applied to mechanized peanut sowing as a function of soil texture
Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095
Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan
2016-04-01
To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.
Interior car noise created by textured pavement surfaces : final report.
DOT National Transportation Integrated Search
1975-01-01
Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...
Clustering document fragments using background color and texture information
NASA Astrophysics Data System (ADS)
Chanda, Sukalpa; Franke, Katrin; Pal, Umapada
2012-01-01
Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.
Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin
2018-02-01
We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
The neutron texture diffractometer at the China Advanced Research Reactor
NASA Astrophysics Data System (ADS)
Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng
2016-03-01
The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li
2016-01-01
Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211
Lanza, Barbara; Amoruso, Filomena
2018-02-02
A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Eldosouky, Ahmed M.; Elkhateeb, Sayed O.
2018-06-01
Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.
ERIC Educational Resources Information Center
Patel, Meeta R.; Piazza, Cathleen C.; Layer, Stacy A.; Coleman, Russell; Swartzwelder, Dana M.
2005-01-01
This study examined packing (pocketing or holding accepted food in the mouth) in 3 children who were failing to thrive or had inadequate weight gain due to insufficient caloric intake. The results of an analysis of texture indicated that total grams consumed were higher when lower textured foods were presented than when higher textured foods were…
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...
Cui, Helen W; Devlies, Wout; Ravenscroft, Samuel; Heers, Hendrik; Freidin, Andrew J; Cleveland, Robin O; Ganeshan, Balaji; Turney, Benjamin W
2017-07-01
Understanding the factors affecting success of extracorporeal shockwave lithotripsy (SWL) would improve informed decision-making on the most appropriate treatment modality for an individual patient. Although stone size and skin-to-stone distance do correlate with fragmentation efficacy, it has been shown that stone composition and architecture, as reflected by structural heterogeneity on CT, are also important factors. This study aims to determine if CT texture analysis (CTTA), a novel, nondestructive, and objective tool that generates statistical metrics reflecting stone heterogeneity, could have utility in predicting likelihood of SWL success. Seven spontaneously passed, intact renal tract stones, were scanned ex vivo using standard CT KUB and micro-CT. The stones were then fragmented in vitro using a clinical lithotripter, after which, chemical composition analysis was performed. CTTA was used to generate a number of metrics that were correlated to the number of shocks needed to fragment the stone. CTTA metrics reflected stone characteristics and composition, and predicted ease of SWL fragmentation. The strongest correlation with number of shocks required to fragment the stone was mean Hounsfield unit (HU) density (r = 0.806, p = 0.028) and a CTTA metric measuring the entropy of the pixel distribution of the stone image (r = 0.804, p = 0.039). Using multiple linear regression analysis, the best model showed that CTTA metrics of entropy and kurtosis could predict 92% of the outcome of number of shocks needed to fragment the stone. This was superior to using stone volume or density. CTTA metrics entropy and kurtosis have been shown in this experimental ex vivo setting to strongly predict fragmentation by SWL. This warrants further investigation in a larger clinical study for the contribution of CT textural metrics as a measure of stone heterogeneity, along with other known clinical factors, to predict likelihood of SWL success.
Texture segmentation by genetic programming.
Song, Andy; Ciesielski, Vic
2008-01-01
This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.
NASA Astrophysics Data System (ADS)
Yang, Masaki J. S.
2017-03-01
In this paper, we attempt to build a unified model with the democratic texture, that has some unification between up-type Yukawa interactions Yν and Yu . Since the S3 L×S3 R flavor symmetry is chiral, the unified gauge group is assumed to be Pati-Salam type S U (4 )c×S U (2 )L×S U (2 )R. The breaking scheme of the flavor symmetry is considered to be S3 L×S3 R→S2 L×S2 R→0 . In this picture, the four-zero texture is desirable for realistic masses and mixings. This texture is realized by a specific representation for the second breaking of the S3 L×S3 R flavor symmetry. Assuming only renormalizable Yukawa interactions, type-I seesaw mechanism, and neglecting C P phases for simplicity, the right-handed neutrino mass matrix MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR basically behaves like the "waterfall texture." Since MR tends to be the "cascade texture" in the democratic texture approach, a model with type-I seesaw and up-type Yukawa unification Yν≃Yu basically requires fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism. Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR 1 is too light to achieve successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-tunings of parameters.
NASA Astrophysics Data System (ADS)
Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina
2016-03-01
Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women's cancer risk evaluation.
Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions
Khatri, Pallavi; Choudhury, Monisha; Jain, Manjula; Thomas, Shaji
2017-01-01
Context: Thyroid nodules represent a common problem, with an estimated prevalence of 4–7%. Although fine needle aspiration cytology (FNAC) has been accepted as a first line diagnostic test, the rate of false negative reports of malignancy is still high. Nuclear morphometry is the measurement of nuclear parameters by image analysis. Image analysis can merge the advantages of morphologic interpretation with those of quantitative data. Aims: To evaluate the nuclear morphometric parameters in fine needle aspirates of thyroid lesions and to study its role in differentiating benign from malignant thyroid lesions. Material and Methods: The study included 19 benign and 16 malignant thyroid lesions. Image analysis was performed on Giemsa-stained FNAC slides by Nikon NIS-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included nuclear size, shape, texture, and density parameters. Statistical Analysis: Normally distributed continuous variables were compared using the unpaired t-test for two groups and analysis of variance was used for three or more groups. Tukey or Tamhane's T2 multiple comparison test was used to assess the differences between the individual groups. Categorical variables were analyzed using the chi square test. Results and Conclusion: Five out of the six nuclear size parameters as well as all the texture and density parameters studied were significant in distinguishing between benign and malignant thyroid lesions (P < 0.05). Cut-off values were derived to differentiate between benign and malignant cases. PMID:28182069
NASA Astrophysics Data System (ADS)
Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man
2012-03-01
We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.
Global ensemble texture representations are critical to rapid scene perception.
Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A
2017-06-01
Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, Jose
2014-01-01
Abstract. Early diagnoses of Alzheimer’s disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different (p-value=2.04e−11). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones. PMID:26158047
A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation.
Wang, Huafeng; Zhao, Tingting; Li, Lihong Connie; Pan, Haixia; Liu, Wanquan; Gao, Haoqi; Han, Fangfang; Wang, Yuehai; Qi, Yifan; Liang, Zhengrong
2018-01-01
The malignancy risk differentiation of pulmonary nodule is one of the most challenge tasks of computer-aided diagnosis (CADx). Most recently reported CADx methods or schemes based on texture and shape estimation have shown relatively satisfactory on differentiating the risk level of malignancy among the nodules detected in lung cancer screening. However, the existing CADx schemes tend to detect and analyze characteristics of pulmonary nodules from a statistical perspective according to local features only. Enlightened by the currently prevailing learning ability of convolutional neural network (CNN), which simulates human neural network for target recognition and our previously research on texture features, we present a hybrid model that takes into consideration of both global and local features for pulmonary nodule differentiation using the largest public database founded by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). By comparing three types of CNN models in which two of them were newly proposed by us, we observed that the multi-channel CNN model yielded the best discrimination in capacity of differentiating malignancy risk of the nodules based on the projection of distributions of extracted features. Moreover, CADx scheme using the new multi-channel CNN model outperformed our previously developed CADx scheme using the 3D texture feature analysis method, which increased the computed area under a receiver operating characteristic curve (AUC) from 0.9441 to 0.9702.
Analysis of Consumers' Preferences and Price Sensitivity to Native Chickens.
Lee, Min-A; Jung, Yoojin; Jo, Cheorun; Park, Ji-Young; Nam, Ki-Chang
2017-01-01
This study analyzed consumers' preferences and price sensitivity to native chickens. A survey was conducted from Jan 6 to 17, 2014, and data were collected from consumers (n=500) living in Korea. Statistical analyses evaluated the consumption patterns of native chickens, preference marketing for native chicken breeds which will be newly developed, and price sensitivity measurement (PSM). Of the subjects who preferred broilers, 24.3% do not purchase native chickens because of the dryness and tough texture, while those who preferred native chickens liked their chewy texture (38.2%). Of the total subjects, 38.2% preferred fried native chickens (38.2%) for processed food, 38.4% preferred direct sales for native chicken distribution, 51.0% preferred native chickens to be slaughtered in specialty stores, and 32.4% wanted easy access to native chickens. Additionally, the price stress range (PSR) was 50 won and the point of marginal cheapness (PMC) and point of marginal expensiveness (PME) were 6,980 won and 12,300 won, respectively. Evaluation of the segmentation market revealed that consumers who prefer broiler to native chicken breeds were more sensitive to the chicken price. To accelerate the consumption of newly developed native chicken meat, it is necessary to develop a texture that each consumer needs, to increase the accessibility of native chickens, and to have diverse menus and recipes as well as reasonable pricing for native chickens.
Analysis of Consumers’ Preferences and Price Sensitivity to Native Chickens
Lee, Min-A; Jung, Yoojin; Jo, Cheorun
2017-01-01
This study analyzed consumers’ preferences and price sensitivity to native chickens. A survey was conducted from Jan 6 to 17, 2014, and data were collected from consumers (n=500) living in Korea. Statistical analyses evaluated the consumption patterns of native chickens, preference marketing for native chicken breeds which will be newly developed, and price sensitivity measurement (PSM). Of the subjects who preferred broilers, 24.3% do not purchase native chickens because of the dryness and tough texture, while those who preferred native chickens liked their chewy texture (38.2%). Of the total subjects, 38.2% preferred fried native chickens (38.2%) for processed food, 38.4% preferred direct sales for native chicken distribution, 51.0% preferred native chickens to be slaughtered in specialty stores, and 32.4% wanted easy access to native chickens. Additionally, the price stress range (PSR) was 50 won and the point of marginal cheapness (PMC) and point of marginal expensiveness (PME) were 6,980 won and 12,300 won, respectively. Evaluation of the segmentation market revealed that consumers who prefer broiler to native chicken breeds were more sensitive to the chicken price. To accelerate the consumption of newly developed native chicken meat, it is necessary to develop a texture that each consumer needs, to increase the accessibility of native chickens, and to have diverse menus and recipes as well as reasonable pricing for native chickens. PMID:28747834
MRI signal and texture features for the prediction of MCI to Alzheimer's disease progression
NASA Astrophysics Data System (ADS)
Martínez-Torteya, Antonio; Rodríguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, José G.
2014-03-01
An early diagnosis of Alzheimer's disease (AD) confers many benefits. Several biomarkers from different information modalities have been proposed for the prediction of MCI to AD progression, where features extracted from MRI have played an important role. However, studies have focused almost exclusively in the morphological characteristics of the images. This study aims to determine whether features relating to the signal and texture of the image could add predictive power. Baseline clinical, biological and PET information, and MP-RAGE images for 62 subjects from the Alzheimer's Disease Neuroimaging Initiative were used in this study. Images were divided into 83 regions and 50 features were extracted from each one of these. A multimodal database was constructed, and a feature selection algorithm was used to obtain an accurate and small logistic regression model, which achieved a cross-validation accuracy of 0.96. These model included six features, five of them obtained from the MP-RAGE image, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index, showing that both groups are statistically different (p-value of 2.04e-11). The results demonstrate that MRI features related to both signal and texture, add MCI to AD predictive power, and support the idea that multimodal biomarkers outperform single-modality biomarkers.
Combining multiple features for color texture classification
NASA Astrophysics Data System (ADS)
Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo
2016-11-01
The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
1971-12-01
1. General Principles: 'Statistical Aspect of the Correlation Between Objective and Subjective Measurements of Meat Tenderness', by M. C. Gacula, Jr., J. B. Reaume, K. J. Morgan, and R. L. Luckett 1. General Principles: 'Texture of Semi-Solid Foods: Sensory and Physical Correlates', by W. F. Henry, M. H. Katz, F. J. Pilgrim, and A. T. May 2. Instrumentation and Methodology: 'Measurement of Bread Staling', by W. Morandini and L. Wassermann 2. Instrumentation and Methodology: 'Physical Considerations of the Methods of Consistency Measurement of Butter', by E. Knoop 2. Instrumentation and Methodology: 'Electronic Recording Mixers for the Baking Test', by P. W. Voisey, V. M. Bendelow and H. Miller 2. Instrumentation and Methodology: 'Measurement of the Consistency of Reconstituted Instant Potato Flakes', by P. W. Voisey and P. R. Dean 2. Instrumentation and Methodology: 'The Ottawa Electronic Recording Farinograph', by P. W. Voisey, H. Miller and P. L. Byrne 3. Objective Measurements: A. FOODS: 'The Rheological Properties of Corn Horny Endosperm', by J. R. Hamerle*, R. K. White**, and N. N. Mohsenin*** 3. Objective Measurements: 'Evaluation of Mechanical Properties of Comminuted Sausages by Construction and Analysis of Rheological Model', by St. Tyszkiewicz 3. Objective Measurements: 'Studies on Creep Compliance of Butter', by M. Chwiej 3. Objective Measurements: 'Heat-Induced Milk Gels. II. Preparation of Gels and Measurement of Firmness', by M. Kalab, P. W. Voisey and D. B. Emmons 3. Objective Measurements: 'Rheology of Fresh, Aged and Gamma-Irradiated Egg White', by M. A. Tung, J. F. Richards, B. C. Morrison and E. L. Watson 3. Objective Measurements: 'Retardation of Bread Staling - Practical Experiences', by W. Morandini and L. Wassermann 3. Objective Measurements: B. PHARMACEUTICALS: 'Influence of HLB on Certain Physicochemical Parameters of an O/W Emulsion', by M. Schrenzel 3. Objective Measurements: 'The Rheological Evaluation of Semisolids', by L. H. Block and P. P. Lamy 4. Factors Affecting Texture: 'Effects of Physical and Mechanical Treatments on the Tenderness of the Beef Longissimus', by G. C. Smith, T. C. Arango and Z. L. Carpenter 4. Factors Affecting Texture: 'Histological and Physical Changes in Carrots as Affected by Blanching, Cooking, Freezing, Freeze Drying and Compression', by A. R. Rahman, W. L. Henning and D. E. Westcott 4. Factors Affecting Texture: 'Effects of Physiological Maturity of Beef and Marbling of Rib Steaks on Eating Quality', by H. L. Norris, D. L. Harrison, L. L. Anderson, B. Van Welck and H. J. Tuma 4. Factors Affecting Texture: 'Effect of Ultimate pH Upon the Water-Holding Capacity and Tenderness of Mutton', by P. E. Bouton, P. V. Harris and W. R. Shorthose 4. Factors Affecting Texture: 'The Dilution Coefficient of Butter Serum and the Consistency of Butter', by E. Pijanowski, M. Chwiej, H. Hernik and M. Kurtowicz 4. Factors Affecting Texture: 'Moisture and pH Changes as Criteria of Freshness in Abalone and their Relationship to Texture of the Canned Product', by D. G. James and J. Olley 4. Factors Affecting Texture: 'Effect of Sucrose on Crispness of Explosion-Puffed Apple Pieces Exposed to High Humidities', by E. O. Strolle, J. Cording, Jr., P. E. McDowell, and R. K. Eskew 4. Factors Affecting Texture: 'Effect of Heat Treatment on Viscosity of Yolk', by P. K. Chang, W. D. Powrie and O. Fennema 4. Factors Affecting Texture: 'Protein Quality and Quantity: A Rheological Assessment of the Relative Importance in Breadmaking', by T. Webb, P. W. Heaps, and J. B. M. Coppock 4. Factors Affecting Texture: 'Bread Staling. 1. Experimental Study', by E. M. A. Willhoft 4. Factors Affecting Texture: 'Bread Staling. II. Theoretical Study', by E. M. A. Willhoft.
NASA Astrophysics Data System (ADS)
Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui
2016-01-01
Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.
Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S
2008-01-01
Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.
Evaluation of efficacy of a bioresorbable membrane in the treatment of oral lichen planus
Kapoor, Anoop; Sikri, Poonam; Grover, Vishakha; Malhotra, Ranjan; Sachdeva, Sonia
2014-01-01
Background: Gingival involvement is commonly seen in lichen planus, a chronic mucocutaneous inflammatory condition of the stratified squamous epithelia. It is often painful and may undergo malignant transformation and thus warrants early diagnosis and prompt treatment. The aim of this study is to evaluate the use of a bioresorbable membrane (Polyglactin 910) in the management of erosive lichen planus of gingiva. Materials and Methods: A split-mouth randomized controlled trial was carried out. Fifteen patients with identical bilateral lesions of lichen planus on gingiva were included in the study. Three parameters were selected for the clinical assessment of gingival lesions: Surface texture, color, and burning sensation. After complete oral prophylaxis, an excisional biopsy procedure was carried out for lesions on both sides, but on the experimental side, the biopsy procedure was combined with placement of the bioresorbable membrane. The statistical significance of intergroup differences in measurements was tested by using an independent sample t-test. A two-tailed P-value less than 0.05 was considered as statistically significant. Results: Intragroup comparisons revealed a statistically significant difference between mean value of grades at 6, 12, and 24 weeks in both groups for the surface texture, color, and burning sensation of gingiva, respectively. For intergroup comparison of change in surface texture, color, and burning sensation of gingiva between group A and group B, differences were statistically nonsignificant. Conclusion: Surgical management of the lesion accomplished significant improvement of lesion with no significant additional clinical benefits with the application of bioresorbable membrane. Worsening of baseline scores was not observed in any case at the end of the study. PMID:25097651
Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David
2018-05-14
To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.
Resolving structural influences on water-retention properties of alluvial deposits
Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.
2006-01-01
With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.
X-ray diffraction analysis of residual stresses in textured ZnO thin films
NASA Astrophysics Data System (ADS)
Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.
2017-02-01
Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.
NASA Astrophysics Data System (ADS)
Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.
2017-02-01
Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.
Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A
2011-10-01
Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.
Tephrostratigraphy of the A.D. 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy)
NASA Astrophysics Data System (ADS)
Lirer, Lucio; Munno, Rosalba; Petrosino, Paola; Vinci, Anna
1993-11-01
Correlations between pyroclastic deposits in perivolcanic areas are often complicated by lateral and vertical textural variations linked to very localized depositional effects. In this regard, a detailed sampling of A.D. 79 eruption products has been performed in the main archaeological sites of the perivolcanic area, with the aim of carrying out a grain-size, compositional and geochemical investigation so as to identify the marker layers from different stratigraphic successions and thus reconstruct the eruptive sequence. In order to process the large number of data available, a statistical approach was considered the most suitable. Statistical processing highlighted 14 marker layers among the fall, stratified surge and pyroclastic flow deposits. Furthermore statistical analysis made it possible to correlate pyroclastic flow and surge deposits interbedded with fall, interpreted as a lateral facies variation. Finally, the passage from magmatic to hydromagmatic activity is marked by the deposition of pyroclastic flow, surge and accretionary lapilli-bearing deposits. No transitional phase from magmatic to hydromagmatic activity has been recognized.
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Pneumothorax detection in chest radiographs using local and global texture signatures
NASA Astrophysics Data System (ADS)
Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit
2015-03-01
A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.
The effect of texture on the shaft surface on the sealing performance of radial lip seals
NASA Astrophysics Data System (ADS)
Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing
2014-07-01
On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.
Early classification of Alzheimer's disease using hippocampal texture from structural MRI
NASA Astrophysics Data System (ADS)
Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong
2017-03-01
Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina
2014-03-01
Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.
Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.
Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M
2014-01-01
Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.
A perceptual space of local image statistics.
Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M
2015-12-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.
A perceptual space of local image statistics
Victor, Jonathan D.; Thengone, Daniel J.; Rizvi, Syed M.; Conte, Mary M.
2015-01-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4 min. In sum, local image statistics forms a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. PMID:26130606
Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi
2015-01-01
Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fancher, Chris M.; Blendell, John E.; Bowman, Keith J.
2017-02-07
A method leveraging Rietveld full-pattern texture analysis to decouple induced domain texture from a preferred grain orientation is presented in this paper. The proposed method is demonstrated by determining the induced domain texture in a polar polymorph of 100 oriented 0.91Bi 1/2Na 1/2TiO 3-0.07BaTiO 3-0.02K 0.5Na 0.5NbO 3. Domain textures determined using the present method are compared with results obtained via single peak fitting. Texture determined using single peak fitting estimated more domain alignment than that determined using the Rietveld based method. These results suggest that the combination of grain texture and phase transitions can lead to single peak fittingmore » under or over estimating domain texture. Finally, while demonstrated for a bulk piezoelectric, the proposed method can be applied to quantify domain textures in multi-component systems and thin films.« less
Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao
2017-07-01
A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images.
Kaya, Sertan; Bayraktar, Mustafa; Kockara, Sinan; Mete, Mutlu; Halic, Tansel; Field, Halle E; Wong, Henry K
2016-10-06
Automated skin lesion border examination and analysis techniques have become an important field of research for distinguishing malignant pigmented lesions from benign lesions. An abrupt pigment pattern cutoff at the periphery of a skin lesion is one of the most important dermoscopic features for detection of neoplastic behavior. In current clinical setting, the lesion is divided into a virtual pie with eight sections. Each section is examined by a dermatologist for abrupt cutoff and scored accordingly, which can be tedious and subjective. This study introduces a novel approach to objectively quantify abruptness of pigment patterns along the lesion periphery. In the proposed approach, first, the skin lesion border is detected by the density based lesion border detection method. Second, the detected border is gradually scaled through vector operations. Then, along gradually scaled borders, pigment pattern homogeneities are calculated at different scales. Through this process, statistical texture features are extracted. Moreover, different color spaces are examined for the efficacy of texture analysis. The proposed method has been tested and validated on 100 (31 melanoma, 69 benign) dermoscopy images. Analyzed results indicate that proposed method is efficient on malignancy detection. More specifically, we obtained specificity of 0.96 and sensitivity of 0.86 for malignancy detection in a certain color space. The F-measure, harmonic mean of recall and precision, of the framework is reported as 0.87. The use of texture homogeneity along the periphery of the lesion border is an effective method to detect malignancy of the skin lesion in dermoscopy images. Among different color spaces tested, RGB color space's blue color channel is the most informative color channel to detect malignancy for skin lesions. That is followed by YCbCr color spaces Cr channel, and Cr is closely followed by the green color channel of RGB color space.
The analysis of image feature robustness using cometcloud
Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin
2012-01-01
The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759
Texture analysis of high-resolution FLAIR images for TLE
NASA Astrophysics Data System (ADS)
Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost
2005-04-01
This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.
NASA Astrophysics Data System (ADS)
Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron
2010-03-01
Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.
Textural signatures for wetland vegetation
NASA Technical Reports Server (NTRS)
Whitman, R. I.; Marcellus, K. L.
1973-01-01
This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.
Efficient Data Mining for Local Binary Pattern in Texture Image Analysis
Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.
2015-01-01
Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332
Color and texture associations in voice-induced synesthesia
Moos, Anja; Simmons, David; Simner, Julia; Smith, Rachel
2013-01-01
Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers. PMID:24032023
Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations.
Borneo, Rafael; Aguirre, Alicia; León, Alberto E
2010-06-01
This study determined the overall acceptability, sensory characteristics, functional properties, and nutrient content of cakes made using chia (Salvia hispanica L) gel as a replacement for oil or eggs. Chia gel was used to replace 25%, 50%, and 75% of oil or eggs in a control cake formulation. Seventy-five untrained panelists participated in rating cakes on a seven-point hedonic scale. Analysis of variance conducted on the sensory characteristics and overall acceptability indicated a statistically significant effect when replacing oil or eggs for color, taste, texture, and overall acceptability (P<0.05). Post hoc analysis (using Fisher's least significant difference method) indicated that the 25% chia gel cakes were not significantly different from the control for color, taste, texture, and overall acceptability. The 50% oil substituted (with chia gel) cake, compared to control, had 36 fewer kilocalories and 4 g less fat per 100-g portion. Cake weight was not affected by chia gel in the formulation, although cake volume was lower as the percentage of substitution increased. Symmetry was generally not affected. This study demonstrates that chia gel can replace as much as 25% of oil or eggs in cakes while yielding a more nutritious product with acceptable sensory characteristics. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Optimizing morphology through blood cell image analysis.
Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J
2018-05-01
Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.
Grounding the figure: surface attachment influences figure-ground organization.
Vecera, Shaun P; Palmer, Stephen E
2006-08-01
We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.
Jerosch-Herold, C.; Houghton, J.; Miller, L.; Shepstone, L.
2016-01-01
Despite surgery for carpal tunnel syndrome being effective in 80%–90% of cases, chronic numbness and hand disability can occur. The aim of this study was to investigate whether sensory relearning improves tactile discrimination and hand function after decompression. In a multi-centre, pragmatic, randomized, controlled trial, 104 patients were randomized to a sensory relearning (n = 52) or control (n = 52) group. A total of 93 patients completed a 12-week follow-up. Primary outcome was the shape-texture identification test at 6 weeks. Secondary outcomes were touch threshold, touch localization, dexterity and self-reported hand function. No significant group differences were seen for the primary outcome (Shape-Texture Identification) at 6 weeks or 12 weeks. Similarly, no significant group differences were observed on secondary outcomes, with the exception of self-reported hand function. A secondary complier-averaged-causal-effects analysis showed no statistically significant treatment effect on the primary outcome. Sensory relearning for tactile sensory and functional deficits after carpal tunnel decompression is not effective. Level of Evidence: II PMID:27402282
The scale invariant generator technique for quantifying anisotropic scale invariance
NASA Astrophysics Data System (ADS)
Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.
1999-11-01
Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...
2018-04-30
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors
2011-12-01
synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean
Textural features for radar image analysis
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.
1981-01-01
Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.
Texture-dependent motion signals in primate middle temporal area
Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G
2013-01-01
Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Loch-Wilkinson, Anna; Beath, Kenneth J; Knight, Robert John William; Wessels, William Louis Fick; Magnusson, Mark; Papadopoulos, Tim; Connell, Tony; Lofts, Julian; Locke, Michelle; Hopper, Ingrid; Cooter, Rodney; Vickery, Karen; Joshi, Preeti Avinash; Prince, H Miles; Deva, Anand K
2017-10-01
The association between breast implants and breast implant-associated anaplastic large cell lymphoma (ALCL) has been confirmed. Implant-related risk has been difficult to estimate to date due to incomplete datasets. All cases in Australia and New Zealand were identified and analyzed. Textured implants reported in this group were subjected to surface area analysis. Sales data from three leading breast implant manufacturers (i.e., Mentor, Allergan, and Silimed) dating back to 1999 were secured to estimate implant-specific risk. Fifty-five cases of breast implant-associated ALCL were diagnosed in Australia and New Zealand between 2007 and 2016. The mean age of patients was 47.1 years and the mean time of implant exposure was 7.46 years. There were four deaths in the series related to mass and/or metastatic presentation. All patients were exposed to textured implants. Surface area analysis confirmed that higher surface area was associated with 64 of the 75 implants used (85.3 percent). Biocell salt loss textured (Allergan, Inamed, and McGhan) implants accounted for 58.7 percent of the implants used in this series. Comparative analysis showed the risk of developing breast implant-associated ALCL to be 14.11 times higher with Biocell textured implants and 10.84 higher with polyurethane (Silimed) textured implants compared with Siltex textured implants. This study has calculated implant-specific risk of breast implant-associated ALCL. Higher-surface-area textured implants have been shown to significantly increase the risk of breast implant-associated ALCL in Australia and New Zealand. The authors present a unifying hypothesis to explain these observations.
Wang, Kun-Ching
2015-01-14
The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei
2015-11-01
The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.
Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool
NASA Astrophysics Data System (ADS)
Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre
2018-04-01
The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.
NASA Astrophysics Data System (ADS)
Williams, Godfried B.
2005-03-01
This paper attempts to demonstrate a novel based idea for transforming statistical image data to text using autoassociative and unsupervised artificial neural network and iconic image maps using the shape and texture genetic algorithm, underlying concepts translating the image data to text. Full details of experiments could be assessed at http://www.uel.ac.uk/seis/applications/.
NASA Astrophysics Data System (ADS)
Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina
2011-03-01
Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.
Mammographic phenotypes of breast cancer risk driven by breast anatomy
NASA Astrophysics Data System (ADS)
Gastounioti, Aimilia; Oustimov, Andrew; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina
2017-03-01
Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women's cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.
De Los Ríos, F. A.; Paluszny, M.
2015-01-01
We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281
NASA Astrophysics Data System (ADS)
Ivanova, T. M.; Serebryany, V. N.
2017-12-01
The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.
Texture and phase analysis of deformed SUS304 by using HIPPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Vogel, Sven C.
2016-11-15
These slides represent the author's research activity at Los Alamos National Laboratory (LANL), which is about texture and phase analysis of deformed SUS304 by using HIPPO. The following topics are covered: diffraction histogram at each sample position, diffraction histogram (all bank data averaged), possiblity of ε-phase, MAUD analysis with including ε-phase.
NASA Technical Reports Server (NTRS)
Haralick, R. H. (Principal Investigator); Bosley, R. J.
1974-01-01
The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.
Texton-based analysis of paintings
NASA Astrophysics Data System (ADS)
van der Maaten, Laurens J. P.; Postma, Eric O.
2010-08-01
The visual examination of paintings is traditionally performed by skilled art historians using their eyes. Recent advances in intelligent systems may support art historians in determining the authenticity or date of creation of paintings. In this paper, we propose a technique for the examination of brushstroke structure that views the wildly overlapping brushstrokes as texture. The analysis of the painting texture is performed with the help of a texton codebook, i.e., a codebook of small prototypical textural patches. The texton codebook can be learned from a collection of paintings. Our textural analysis technique represents paintings in terms of histograms that measure the frequency by which the textons in the codebook occur in the painting (so-called texton histograms). We present experiments that show the validity and effectiveness of our technique for textural analysis on a collection of digitized high-resolution reproductions of paintings by Van Gogh and his contemporaries. As texton histograms cannot be easily be interpreted by art experts, the paper proposes to approaches to visualize the results on the textural analysis. The first approach visualizes the similarities between the histogram representations of paintings by employing a recently proposed dimensionality reduction technique, called t-SNE. We show that t-SNE reveals a clear separation of paintings created by Van Gogh and those created by other painters. In addition, the period of creation is faithfully reflected in the t-SNE visualizations. The second approach visualizes the similarities and differences between paintings by highlighting regions in a painting in which the textural structure of the painting is unusual. We illustrate the validity of this approach by means of an experiment in which we highlight regions in a painting by Monet that are not very "Van Gogh-like". Taken together, we believe the tools developed in this study are well capable of assisting for art historians in support of their study of paintings.
Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders
2017-06-22
In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Craciunescu, O
Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less
Caracterisation des occupations du sol en milieu urbain par imagerie radar
NASA Astrophysics Data System (ADS)
Codjia, Claude
This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.
Topographic modelling of haptic properties of tissue products
NASA Astrophysics Data System (ADS)
Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.
2014-03-01
The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).
Scatter metrology of photovoltaic textured surfaces
NASA Astrophysics Data System (ADS)
Stover, John C.; Hegstrom, Eric L.
2010-09-01
In recent years it has become common practice to texture many of the layered surfaces making up photovoltaic cells in order to increase light absorption and efficiency. Profilometry has been used to characterize the texture, but this is not satisfactory for in-line production systems which move surfaces too fast for that measurement. Scatterometry has been used successfully to measure roughness for many years. Its advantages include low cost, non-contact measurement and insensitivity to vibration; however, it also has some limitations. This paper presents scatter measurements made on a number of photovoltaic samples using two different scatterometers. It becomes clear that in many cases the surface roughness exceeds the optical smoothness limit (required to calculate surface statistics from scatter), but it is also clear that scatter measurement is a fast, sensitive indicator of texture and can be used to monitor whether design specifications are being met. A third key point is that there is a lot of surface dependent information available in the angular variations of the measured scatter. When the surface is inspected by integrating the scatter signal (often called a "Haze" measurement) this information is lost.
[Development of bakery products for greater adult consumption based on wheat and rice flour].
Reyes Aguilar, María José; Palomo, Patricia de; Bressani, Ricardo
2004-09-01
The present investigation was developed as a contribution to Guatemalan's elderly food and nutrition. Its main objective was to evaluate the chemical, nutritional and sensory quality of bread prepared from the partial substitution of wheat flour with rice flour. Wheat flour substitutions with rice flour in the order of 15, 20, 30, 40, 50 and 60% were evaluated. Differences with the control (100% wheat bread) were found during the process of preparation, as well as texture, volume, height, weight and specific volume. Important effects in dough handling were noted specifically in the 40, 50 and 60% rice bread. Thus, a sandy texture was found in breads of higher rice levels. The bread protein quality increased with the level of substitution; however the protein quality difference between the wheat bread and the bread with 60% rice flour did not achieve statistical significance. Based on a statistical analysis of the physical properties the bread with 30 and 40% rice flour was selected, and through a preference test between these last two, the 30% rice flour bread was selected as the sample best suited to the present study's purposes. This bread was not different to wheat bread in many nutritional parameters, although in others it showed to be superior. Each serving size of bread has a weight of 80 grams (2 slices) that contributes adequate quantity of calories, protein and sodium, although a little less dietary fiber than 100% wheat bread.
NASA Astrophysics Data System (ADS)
Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk
2017-03-01
Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively if PCA was performed to reduce the dimension of features. Patterns of breast tumors on VTIs can effectively be recognized by quantitative texture parameters, and differentiated malignant from benign lesions by fuzzy-based neural network with PCA.
Automated Texture Classification of the Mawrth Vallis Landing Site Region
NASA Astrophysics Data System (ADS)
Parente, M.; Bayley, L.; Hunkins, L.; McKeown, N. K.; Bishop, J. L.
2009-12-01
Supervised classification techniques have been developed to discriminate geomorphologic units in HiRISE images of Mawrth Vallis on Mars, one of the MSL candidate landing sites. A variety of clay minerals that indicate water was once present have been identified in the ancient bedrock at Mawrth Vallis [1-7]. These clay-rich rocks exhibit distinct surface textures in HiRISE images, where the nontronite-bearing unit consists of two primary textures: 2-5 m irregular inverted polygons and irregular parallel fracture sets ([8,13], Fig. b-c). In contrast, the montmorillonite-bearing unit consists of 0.5-1.5 m regular polygons ([8,13], Fig. e). We also characterized dunes (Fig. d), and the spectrally unremarkable caprock unit (Fig. a). Classification of these textures was performed by extracting discriminatory features from gray-level run length matrices (GLRLMs) [9], gray-level co-occurrence matrices (GLCMs) [10], and semivariograms [11] calculated for small blocks of data in HiRISE images. Preliminary results using an algorithm containing eight of these classification features produced a texture classification technique that is 85 percent accurate. The discriminant analysis (e.g. [12]) classifier we used modeled a linear discriminant function for each class based on the training feature vectors for that class. The test vector with the largest value for its discriminant function was then assigned to each class. We assumed linear functions were acceptable for small training sets and we performed automated selection in order to identify the most discriminative features for the textures in Mawrth Vallis. Continued efforts are underway to test and refine this procedure in order to optimize texture recognition on a broader collection of textures, representing additional surface components from Mawrth Vallis and other landing sites on Mars. [1] Bibring, J.-P., et al. (2005) Science, 307, 1576-1581. [2] Poulet, F., et al. (2005) Nature, 438, 632-627. [3] Bishop, J. L., et al. (2008) Science, 321, 830-833. [4] Wray, J. J., et al. (2008) GRL, 35, L12202. [5] Loizeau, D., et al. (2009) Icarus, (in press). [6] McKeown, N. K., et al. (2009) JGR- Planets, (in press). [7] Noe Dobrea, E. Z., et al. (2009) JGR- Planets, (in revision). [8] McKeown, N. K. et al. (2009) LPSC abs. #2433. [9] Galloway, M. M., (1975),Computer Graphics and Image Processing 4, 172-179. [10] Haralick, R. M., (1973) IEEE Trans. on Systems, Man and Cybernetics 3, 610-621. [11] Curran, P. J., Remote Sensing of Environment 24, 493-507, 1988. [12] Hastie T., et al. (2005), The elements of statistical learning. Springer. [13] McKeown, N. K., et al. (2009) AGU
USDA-ARS?s Scientific Manuscript database
Texture is one of the most important quality attributes of fish fillets, and accurate assessment of variation in this attribute, as affected by storage and handling, is critical in providing consistent quality product. Trout fillets received 4 treatments: 3-d refrigeration (R3), 7-d refrigeration (R...
Detection of Focal Cortical Dysplasia Lesions in MRI Using Textural Features
NASA Astrophysics Data System (ADS)
Loyek, Christian; Woermann, Friedrich G.; Nattkemper, Tim W.
Focal cortical dysplasia (FCD) is a frequent cause of medically refractory partial epilepsy. The visual identification of FCD lesions on magnetic resonance images (MRI) is a challenging task in standard radiological analysis. Quantitative image analysis which tries to assist in the diagnosis of FCD lesions is an active field of research. In this work we investigate the potential of different texture features, in order to explore to what extent they are suitable for detecting lesional tissue. As a result we can show first promising results based on segmentation and texture classification.
Preference evaluation of ground beef by untrained subjects with three levels of finely textured beef
Depue, Sandra Molly; Neilson, Morgan Marie
2018-01-01
After receiving bad publicity in 2012 and being removed from many ground beef products, finely textured beef (referred to as ‘pink slime’ by some) is making a comeback. Some of its proponents argue that consumers prefer ground beef containing finely textured beef, but no objective scientific party has tested this claim—that is the purpose of the present study. Over 200 untrained subjects participated in a sensory analysis in which they tasted one ground beef sample with no finely textured beef, another with 15% finely textured beef (by weight), and another with more than 15%. Beef with 15% finely textured beef has an improved juiciness (p < 0.01) and tenderness (p < 0.01) quality. However, subjects rate the flavor-liking and overall likeability the same regardless of the finely textured beef content. Moreover, when the three beef types are consumed as part of a slider (small hamburger), subjects are indifferent to the level of finely textured beef. PMID:29342174
Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis
NASA Astrophysics Data System (ADS)
Springer, Everett P.; Cundy, Terrance W.
1987-02-01
Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klawikowski, S; Christian, J; Schott, D
Purpose: Pilot study developing a CT-texture based model for early assessment of treatment response during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Daily CT data acquired for 24 pancreatic head cancer patients using CT-on-rails, during the routine CT-guided CRT delivery with a radiation dose of 50.4 Gy in 28 fractions, were analyzed. The pancreas head was contoured on each daily CT. Texture analysis was performed within the pancreas head contour using a research tool (IBEX). Over 1300 texture metrics including: grey level co-occurrence, run-length, histogram, neighborhood intensity difference, and geometrical shape features were calculated for each dailymore » CT. Metric-trend information was established by finding the best fit of either a linear, quadratic, or exponential function for each metric value verses accumulated dose. Thus all the daily CT texture information was consolidated into a best-fit trend type for a given patient and texture metric. Linear correlation was performed between the patient histological response vector (good, medium, poor) and all combinations of 23 patient subgroups (statistical jackknife) determining which metrics were most correlated to response and repeatedly reliable across most patients. Control correlations against CT scanner, reconstruction kernel, and gated/nongated CT images were also calculated. Euclidean distance measure was used to group/sort patient vectors based on the data of these trend-response metrics. Results: We found four specific trend-metrics (Gray Level Coocurence Matrix311-1InverseDiffMomentNorm, Gray Level Coocurence Matrix311-1InverseDiffNorm, Gray Level Coocurence Matrix311-1 Homogeneity2, and Intensity Direct Local StdMean) that were highly correlated with patient response and repeatedly reliable. Our four trend-metric model successfully ordered our pilot response dataset (p=0.00070). We found no significant correlation to our control parameters: gating (p=0.7717), scanner (p=0.9741), and kernel (p=0.8586). Conclusion: We have successfully created a CT-texture based early treatment response prediction model using the CTs acquired during the delivery of chemoradiation therapy for pancreatic cancer. Future testing is required to validate the model with more patient data.« less
Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun
2015-01-01
Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.
NASA Astrophysics Data System (ADS)
Kim, Namkug; Seo, Joon Beom; Sung, Yu Sub; Park, Bum-Woo; Lee, Youngjoo; Park, Seong Hoon; Lee, Young Kyung; Kang, Suk-Ho
2008-03-01
To find optimal binning, variable binning size linear binning (LB) and non-linear binning (NLB) methods were tested. In case of small binning size (Q <= 10), NLB shows significant better accuracy than the LB. K-means NLB (Q = 26) is statistically significant better than every LB. To find optimal binning method and ROI size of the automatic classification system for differentiation between diffuse infiltrative lung diseases on the basis of textural analysis at HRCT Six-hundred circular regions of interest (ROI) with 10, 20, and 30 pixel diameter, comprising of each 100 ROIs representing six regional disease patterns (normal, NL; ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EMPH; and consolidation, CONS) were marked by an experienced radiologist from HRCT images. Histogram (mean) and co-occurrence matrix (mean and SD of angular second moment, contrast, correlation, entropy, and inverse difference momentum) features were employed to test binning and ROI effects. To find optimal binning, variable binning size LB (bin size Q: 4~30, 32, 64, 128, 144, 196, 256, 384) and NLB (Q: 4~30) methods (K-means, and Fuzzy C-means clustering) were tested. For automated classification, a SVM classifier was implemented. To assess cross-validation of the system, a five-folding method was used. Each test was repeatedly performed twenty times. Overall accuracies with every combination of variable ROIs, and binning sizes were statistically compared. In case of small binning size (Q <= 10), NLB shows significant better accuracy than the LB. K-means NLB (Q = 26) is statistically significant better than every LB. In case of 30x30 ROI size and most of binning size, the K-means method showed better than other NLB and LB methods. When optimal binning and other parameters were set, overall sensitivity of the classifier was 92.85%. The sensitivity and specificity of the system for each class were as follows: NL, 95%, 97.9%; GGO, 80%, 98.9%; RO 85%, 96.9%; HC, 94.7%, 97%; EMPH, 100%, 100%; and CONS, 100%, 100%, respectively. We determined the optimal binning method and ROI size of the automatic classification system for differentiation between diffuse infiltrative lung diseases on the basis of texture features at HRCT.
Application of Texture Analysis to Study Small Vessel Disease and Blood-Brain Barrier Integrity.
Valdés Hernández, Maria Del C; González-Castro, Victor; Chappell, Francesca M; Sakka, Eleni; Makin, Stephen; Armitage, Paul A; Nailon, William H; Wardlaw, Joanna M
2017-01-01
We evaluate the alternative use of texture analysis for evaluating the role of blood-brain barrier (BBB) in small vessel disease (SVD). We used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH) and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal-Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with Fazekas scores. Textural "homogeneity" increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural "homogeneity" increased with age, basal ganglia perivascular spaces scores ( p < 0.01) and SVD scores ( p < 0.05) and was significantly higher in hypertensive patients ( p < 0.002) and lacunar stroke ( p = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean = 65.6 years, SD = 11.3) predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast. A consistent general pattern of increasing textural "homogeneity" with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Yu, H; Jara, H
Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less
Accommodation in Untextured Stimulus Fields.
1979-05-01
that accommodation is notably inaccurate with reduced illumination, textural cue removal, or small aper ture viewing. These situational ametropias are...dark focus. Although, for any individual, large correlations exist among these ametropias , statistically reliable differen ces occur among them as well
Wind turbine fault detection and classification by means of image texture analysis
NASA Astrophysics Data System (ADS)
Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc
2018-07-01
The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.
Farneti, Brian; Di Guardo, Mario; Khomenko, Iuliia; Cappellin, Luca; Biasioli, Franco; Velasco, Riccardo; Costa, Fabrizio
2017-03-01
Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Mapping soil texture targeting predefined depth range or synthetizing from standard layers?
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László
2017-04-01
There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data were applied as auxiliary variables. We compared the directly compiled and the synthetized clay-, sand content, and texture class maps by different tools. In addition to pairwise comparison of basic statistical features (histograms, scatter plots), we examined the spatial distribution of the differences. We quantified the taxonomical distances of the textural classes, in order to investigate the differences of the map-pairs. We concluded that the directly computed and the synthetized maps show various differences. In the case of clay-, and sand content maps, the map-pairs have to be considered statistically different. On the other hand, the differences of the texture class maps are not significant. However, in all cases, the differences rather concern the extreme ranges and categories. Using of synthetized maps can intensify extremities by error propagation in models and scenarios. Based on our results, we suggest the usage of the directly composed maps.
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Brooks, Dana; Dimarzio, Charles
2010-07-01
The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J., E-mail: Gregory.Czarnota@sunnybrook.ca
2015-11-15
Purpose: Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean valuesmore » of these functional metabolic maps. Methods: Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Results: Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001 < p < 0.049), and mean value of water content in tissue (p = 0.010). The cross-validated sensitivity and specificity of these parameters at week one of therapy ranged between 80%–100% and 67%–100%, respectively. Higher levels of statistically significant differences were exhibited at week four after start of treatment, with cross-validated sensitivities and specificities ranging between 80% and 100% for three textural and three mean-value parameters. The combination of the textural and mean-value parameters in a “hybrid” profile could better separate the two patient populations early on during a course of treatment, with cross-validated sensitivities and specificities of up to 100% (p = 0.001). Conclusions: The results of this study suggest that alterations in textural characteristics of DOS images, in conjunction with changes in their mean values, can classify noninvasively the ultimate clinical and pathologic response of LABC patients to chemotherapy, as early as one week after start of their treatment. This provides a basis for using DOS imaging as a tool for therapy personalization.« less
Sadeghi-Naini, Ali; Vorauer, Eric; Chin, Lee; Falou, Omar; Tran, William T; Wright, Frances C; Gandhi, Sonal; Yaffe, Martin J; Czarnota, Gregory J
2015-11-01
Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean values of these functional metabolic maps. Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001
3D Texture Features Mining for MRI Brain Tumor Identification
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra
2014-03-01
Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.
Texture Feature Extraction and Classification for Iris Diagnosis
NASA Astrophysics Data System (ADS)
Ma, Lin; Li, Naimin
Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.
Ryu, Ju Seok; Park, Donghwi; Oh, Yoongul; Lee, Seok Tae; Kang, Jin Young
2016-01-01
Background/Aims The purpose of this study was to develop new parameters of high-resolution manometry (HRM) and to applicate these to quantify the effect of bolus volume and texture on pharyngeal swallowing. Methods Ten healthy subjects prospectively swallowed dry, thin fluid 2 mL, thin fluid 5 mL, thin fluid 10 mL, and drinking twice to compare effects of bolus volume. To compare effect of texture, subjects swallowed thin fluid 5 mL, yogurt 5 mL, and bread twice. A 32-sensor HRM catheter and BioVIEW ANALYSIS software were used for data collection and analysis. HRM data were synchronized with kinematic analysis of videofluoroscopic swallowing study (VFSS) using epiglottis tilting. Results Linear correlation analysis for volume showed significant correlation for area of velopharynx, duration of velopharynx, pre-upper esophageal sphincter (UES) maximal pressure, minimal UES pressure, UES activity time, and nadir UES duration. In the correlation with texture, all parameters were not significantly different. The contraction of the velopharynx was faster than laryngeal elevation. The durations of UES relaxation was shorter in the kinematic analysis than HRM. Conclusions The bolus volume was shown to have significant effect on pharyngeal pressure and timing, but the texture did not show any effect on pharyngeal swallowing. The parameters of HRM were more sensitive than those of kinematic analysis. As the parameters of HRM are based on precise anatomic structure and the kinematic analysis reflects the actions of multiple anatomic structures, HRM and VFSS should be used according to their purposes. PMID:26598598
Histogram contrast analysis and the visual segregation of IID textures.
Chubb, C; Econopouly, J; Landy, M S
1994-09-01
A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.
Wang, Kun-Ching
2015-01-01
The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590
Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing
2015-01-01
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
Nian, Rui; Liu, Fang; He, Bo
2013-07-16
Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs).
Nian, Rui; Liu, Fang; He, Bo
2013-01-01
Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs). PMID:23863855
King, P M
1997-01-01
The purpose of this study was to determine if a correlation exists between touch-pressure threshold testing and sensory discrimination function, specifically tactile gnosis for texture and object recognition. Twenty-nine patients diagnosed with carpal tunnel syndrome (CTS), as confirmed by electromyography or nerve conduction velocity tests, were administered three sensibility tests: the Semmes-Weinstein monofilament test, a texture discrimination test, and an object identification test. Norms were established for texture and object recognition tests using 100 subjects (50 females and 50 males) with normal touch-pressure thresholds as assessed by the Semmes-Weinstein monofilament test. The CTS patients were grouped into three categories of sensibility as determined by their performance on the Semmes-Weinstein monofilament test: normal, diminished light touch, and diminished protective sensation. Through an independent t test statistical procedure, each of the three categories mean response times for identification of textures of objects were compared with the normed response times. Accurate responses were given for identification of all textures and objects. No significant difference (p < .05) was noted in mean response times of the CTS patients with normal touch-pressure thresholds. A significant difference (p < .05) in response times by those CTS patients with diminished light touch was detected in identification in four out of six objects. Subjects with diminished protective sensation had significantly longer response times (p < .05) for identification of the textures of cork, coarse and fine sandpaper, and rubber. Significantly longer response times were recorded by the same subjects for identification of such objects as a screw and a button, and for the shapes of a square, triangle, and oval.
Potential Performance Criteria for Combat Ration Packs - Texture Profile Analysis
2014-11-01
12 3.3.1 Apricot & coconut muesli bar...Figure 5 Texture vs aw of canned puddings stored at 30 °C for up to 730 days. 3.3 Muesli Bar The three muesli bars (apricot and coconut , tropical...Apricot & coconut muesli bar No significant changes were observed during storage for texture attributes, except at 40 °C for break strength and
Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite.
Bairagi, Vinayak K; Charpe, Kshipra C
2016-01-01
Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database.
The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area
NASA Astrophysics Data System (ADS)
Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.
2017-10-01
The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.
Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces
NASA Astrophysics Data System (ADS)
Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf
2016-06-01
The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.
Comparative study of texture of normal and energy reduced sponge cakes.
Baeva, M R; Panchev, I N; Terzieva, V V
2000-08-01
The complete sucrose elimination and its replacement by microencapsulated aspartame (Nutra Sweet) and bulking agents (sorbitol, wheat starch and wheat germ) on the physical and textural sensory characteristics of two diabetic sponge cakes against a control sponge cake was studied. Mathematical and statistical methods were used and regression models worked out, describing the physical and textural characteristics of the three sponge cakes and their values were optimized. The effect on the porosity, springiness, volume and shrinkage of sponge takes was substantial and depended on the amount of the added ingredients. The diabetic sponge cake containing wheat germ showed the least physical and sensory deviations against the control sponge cake. The energy value of the diabetic sponge cakes against the control one was reduced with 25% for the ordinary sponge cake without sucrose and with 29% for sponge cake without sucrose containing wheat germ.
Origin of texture development in orthorhombic uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
Origin of texture development in orthorhombic uranium
Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...
2016-04-09
We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Das, S
Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn
A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious
NASA Astrophysics Data System (ADS)
Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming
2018-01-01
The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.
Diet of upper paleolithic modern humans: evidence from microwear texture analysis.
El Zaatari, Sireen; Hublin, Jean-Jacques
2014-04-01
This article presents the results of the occlusal molar microwear texture analysis of 32 adult Upper Paleolithic modern humans from a total of 21 European sites dating to marine isotope stages 3 and 2. The occlusal molar microwear textures of these specimens were analyzed with the aim of examining the effects of the climatic, as well as the cultural, changes on the diets of the Upper Paleolithic modern humans. The results of this analysis do not reveal any environmentally driven dietary shifts for the Upper Paleolithic hominins indicating that the climatic and their associated paleoecological changes did not force these humans to significantly alter their diets in order to survive. However, the microwear texture analysis does detect culturally related changes in the Upper Paleolithic humans' diets. Specifically, significant differences in diet were found between the earlier Upper Paleolithic individuals, i.e., those belonging to the Aurignacian and Gravettian contexts, and the later Magdalenian ones, such that the diet of the latter group was more varied and included more abrasive foods compared with those of the former. Copyright © 2014 Wiley Periodicals, Inc.
Purnell, Mark; Seehausen, Ole; Galis, Frietson
2012-01-01
Resource polymorphisms and competition for resources are significant factors in speciation. Many examples come from fishes, and cichlids are of particular importance because of their role as model organisms at the interface of ecology, development, genetics and evolution. However, analysis of trophic resource use in fishes can be difficult and time-consuming, and for fossil fish species it is particularly problematic. Here, we present evidence from cichlids that analysis of tooth microwear based on high-resolution (sub-micrometre scale) three-dimensional data and new ISO standards for quantification of surface textures provides a powerful tool for dietary discrimination and investigation of trophic resource exploitation. Our results suggest that three-dimensional approaches to analysis offer significant advantages over two-dimensional operator-scored methods of microwear analysis, including applicability to rough tooth surfaces that lack distinct scratches and pits. Tooth microwear textures develop over a longer period of time than is represented by stomach contents, and analyses based on textures are less prone to biases introduced by opportunistic feeding. They are more sensitive to subtle dietary differences than isotopic analysis. Quantitative textural analysis of tooth microwear has a useful role to play, complementing existing approaches, in trophic analysis of fishes—both extant and extinct. PMID:22491979
Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K
2015-01-01
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
Computer-aided diagnosis with textural features for breast lesions in sonograms.
Chen, Dar-Ren; Huang, Yu-Len; Lin, Sheng-Hsiung
2011-04-01
Computer-aided diagnosis (CAD) systems provided second beneficial support reference and enhance the diagnostic accuracy. This paper was aimed to develop and evaluate a CAD with texture analysis in the classification of breast tumors for ultrasound images. The ultrasound (US) dataset evaluated in this study composed of 1020 sonograms of region of interest (ROI) subimages from 255 patients. Two-view sonogram (longitudinal and transverse views) and four different rectangular regions were utilized to analyze each tumor. Six practical textural features from the US images were performed to classify breast tumors as benign or malignant. However, the textural features always perform as a high dimensional vector; high dimensional vector is unfavorable to differentiate breast tumors in practice. The principal component analysis (PCA) was used to reduce the dimension of textural feature vector and then the image retrieval technique was performed to differentiate between benign and malignant tumors. In the experiments, all the cases were sampled with k-fold cross-validation (k=10) to evaluate the performance with receiver operating characteristic (ROC) curve. The area (A(Z)) under the ROC curve for the proposed CAD system with the specific textural features was 0.925±0.019. The classification ability for breast tumor with textural information is satisfactory. This system differentiates benign from malignant breast tumors with a good result and is therefore clinically useful to provide a second opinion. Copyright © 2010 Elsevier Ltd. All rights reserved.
Achondrite Binda; Ordinary Eucrite or the Only Crystalline Howardite?
NASA Astrophysics Data System (ADS)
Yanai, K.
1996-03-01
Binda meteorite, originally classified as howardite (Hey, 1966), was reclassified as eucrite of monomict breccia (Duke and Silver, 1967). Binda was recognized as the most Mg-rich eucrite (or most Fe-rich diogenite) with crystalline-unbrecciated texture for long time. Therefore Binda is believed to have genetic significance in relation to eucrites and diogenites, because in howardite group Binda is the only specimen with unbrecciated or monomict and crystalline texture. Re-examination of Binda was carried out by EPMA, microscope analysis and wet chemical analysis. Binda is the most common (ordinary) encrite showing crystalline texture with slightly brecciated.
Anorexia Nervosa: Analysis of Trabecular Texture with CT
Tabari, Azadeh; Torriani, Martin; Miller, Karen K.; Klibanski, Anne; Kalra, Mannudeep K.
2017-01-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016 PMID:27797678
Texture analysis improves level set segmentation of the anterior abdominal wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhoubing; Allen, Wade M.; Baucom, Rebeccah B.
2013-12-15
Purpose: The treatment of ventral hernias (VH) has been a challenging problem for medical care. Repair of these hernias is fraught with failure; recurrence rates ranging from 24% to 43% have been reported, even with the use of biocompatible mesh. Currently, computed tomography (CT) is used to guide intervention through expert, but qualitative, clinical judgments, notably, quantitative metrics based on image-processing are not used. The authors propose that image segmentation methods to capture the three-dimensional structure of the abdominal wall and its abnormalities will provide a foundation on which to measure geometric properties of hernias and surrounding tissues and, therefore,more » to optimize intervention.Methods: In this study with 20 clinically acquired CT scans on postoperative patients, the authors demonstrated a novel approach to geometric classification of the abdominal. The authors’ approach uses a texture analysis based on Gabor filters to extract feature vectors and follows a fuzzy c-means clustering method to estimate voxelwise probability memberships for eight clusters. The memberships estimated from the texture analysis are helpful to identify anatomical structures with inhomogeneous intensities. The membership was used to guide the level set evolution, as well as to derive an initial start close to the abdominal wall.Results: Segmentation results on abdominal walls were both quantitatively and qualitatively validated with surface errors based on manually labeled ground truth. Using texture, mean surface errors for the outer surface of the abdominal wall were less than 2 mm, with 91% of the outer surface less than 5 mm away from the manual tracings; errors were significantly greater (2–5 mm) for methods that did not use the texture.Conclusions: The authors’ approach establishes a baseline for characterizing the abdominal wall for improving VH care. Inherent texture patterns in CT scans are helpful to the tissue classification, and texture analysis can improve the level set segmentation around the abdominal region.« less
Anorexia Nervosa: Analysis of Trabecular Texture with CT.
Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A
2017-04-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desseroit, M; Cheze Le Rest, C; Tixier, F
2014-06-15
Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less
Understanding Crystal Populations: The Role of Textural Analysis in Determining Magmatic Timescales
NASA Astrophysics Data System (ADS)
Jerram, D. A.
2006-12-01
Crystal populations in igneous rocks that erupt at the Earths surface act as records of magma chamber processes at depth, predominantly recording episodes of growth/nucleation and geochemical changes within the host body. Detailed inspection of such crystal populations, however, reveals a complex crystal cargo that comprises crystals which have grown directly from the host, crystals that have spent one or more protracted periods being isolated from the host magma and crystals that originated from a completely different magma body and/or country rock. To further interrogate this crystal cargo we can use textural analysis techniques to fully quantify the crystal population and gather important information about the population, such as crystal morphology, spatial distribution and size relationships. When quantified, such data can be used to better constrain the different components of the resultant crystal population and how they relate to each other. Additionally, by combining textural analysis information with geochemical analysis, a powerful measure of magma timescales and magma chamber processes results. In this contribution the different types of textural analysis techniques in 2D and 3D are introduced with examples from both plutonic and volcanic systems presented to highlight the roll of this approach to quantifying magma timescales.
Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis
Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.
2015-01-01
Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505
Herrero, A M; de la Hoz, L; Ordóñez, J A; Herranz, B; Romero de Ávila, M D; Cambero, M I
2008-11-01
The possibilities of using breaking strength (BS) and energy to fracture (EF) for monitoring textural properties of some cooked meat sausages (chopped, mortadella and galantines) were studied. Texture profile analysis (TPA), folding test and physico-chemical measurements were also performed. Principal component analysis enabled these meat products to be grouped into three textural profiles which showed significant (p<0.05) differences mainly for BS, hardness, adhesiveness and cohesiveness. Multivariate analysis indicated that BS, EF and TPA parameters were correlated (p<0.05) for every individual meat product (chopped, mortadella and galantines) and all products together. On the basis of these results, TPA parameters could be used for constructing regression models to predict BS. The resulting regression model for all cooked meat products was BS=-0.160+6.600∗cohesiveness-1.255∗adhesiveness+0.048∗hardness-506.31∗springiness (R(2)=0.745, p<0.00005). Simple linear regression analysis showed significant coefficients of determination between BS (R(2)=0.586, p<0.0001) versus folding test grade (FG) and EF versus FG (R(2)=0.564, p<0.0001).
The Wear Behavior of Textured Steel Sliding against Polymers
Wang, Meiling; Zhang, Changtao; Wang, Xiaolei
2017-01-01
Artificially fabricated surface textures can significantly improve the friction and wear resistance of a tribological contact. Recently, this surface texturing technique has been applied to polymer materials to improve their tribological performance. However, the wear behavior of textured tribo-pairs made of steel and polymer materials has been less thoroughly investigated and is not well understood; thus, it needs further research. The aim of this study is to investigate the wear properties of tribological contacts made of textured stainless steel against polymer surfaces. Three polymer materials were selected in this study, namely, ultrahigh molecular weight polyethylene (UHMWPE), polyoxymethylene (POM) and (polyetheretherketone) PEEK. Wear tests were operated through a ring-on-plane mode. The results revealed that the texture features and material properties affected the wear rates and friction coefficients of the textured tribo-pairs. In general, PEEK/textured steel achieved the lowest wear rate among the three types of tribo-pairs investigated. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that the elements of C and O on the contacting counterfaces varied with texture features and indicated different wear behavior. Experimental and simulated results showed differences in the stress distribution around the dimple edge, which may influence wear performance. Wear debris with different surface morphologies were found for tribo-pairs with varying texture features. This study has increased the understanding of the wear behavior of tribo-pairs between textured stainless steel and polymer materials. PMID:28772688
Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Lian; Boudousq, Vincent; Basset, Oliver
Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further usedmore » for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.« less
Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan
2018-04-30
To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.
Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity
2007-10-26
Ferroelectric Ceramics , Materials Science Forum, 404-407, 413-418 2002. 42. R. T. Brewer, H. A. Atwater Rapid biaxial texture development during...Multiscale Study of Internal Stress and Texture in Electroceramics, 106th Annual Meeting of the American Ceramic Society, Indianapolis, Indiana, 20...Rogan, Texture and Strain Analysis of PZT by In-Situ Neutron Diffraction, MRS Spring Meeting, San Francisco, CA; April 2002. 43. E. Ustundag
Breast density characterization using texton distributions.
Petroudi, Styliani; Brady, Michael
2011-01-01
Breast density has been shown to be one of the most significant risks for developing breast cancer, with women with dense breasts at four to six times higher risk. The Breast Imaging Reporting and Data System (BI-RADS) has a four class classification scheme that describes the different breast densities. However, there is great inter and intra observer variability among clinicians in reporting a mammogram's density class. This work presents a novel texture classification method and its application for the development of a completely automated breast density classification system. The new method represents the mammogram using textons, which can be thought of as the building blocks of texture under the operational definition of Leung and Malik as clustered filter responses. The new proposed method characterizes the mammographic appearance of the different density patterns by evaluating the texton spatial dependence matrix (TDSM) in the breast region's corresponding texton map. The TSDM is a texture model that captures both statistical and structural texture characteristics. The normalized TSDM matrices are evaluated for mammograms from the different density classes and corresponding texture models are established. Classification is achieved using a chi-square distance measure. The fully automated TSDM breast density classification method is quantitatively evaluated on mammograms from all density classes from the Oxford Mammogram Database. The incorporation of texton spatial dependencies allows for classification accuracy reaching over 82%. The breast density classification accuracy is better using texton TSDM compared to simple texton histograms.
Nguyen, Phan; Bashirzadeh, Farzad; Hundloe, Justin; Salvado, Olivier; Dowson, Nicholas; Ware, Robert; Masters, Ian Brent; Bhatt, Manoj; Kumar, Aravind Ravi; Fielding, David
2012-03-01
Morphologic and sonographic features of endobronchial ultrasound (EBUS) convex probe images are helpful in predicting metastatic lymph nodes. Grey scale texture analysis is a well-established methodology that has been applied to ultrasound images in other fields of medicine. The aim of this study was to determine if this methodology could differentiate between benign and malignant lymphadenopathy of EBUS images. Lymph nodes from digital images of EBUS procedures were manually mapped to obtain a region of interest and were analyzed in a prediction set. The regions of interest were analyzed for the following grey scale texture features in MATLAB (version 7.8.0.347 [R2009a]): mean pixel value, difference between maximal and minimal pixel value, SEM pixel value, entropy, correlation, energy, and homogeneity. Significant grey scale texture features were used to assess a validation set compared with fluoro-D-glucose (FDG)-PET-CT scan findings where available. Fifty-two malignant nodes and 48 benign nodes were in the prediction set. Malignant nodes had a greater difference in the maximal and minimal pixel values, SEM pixel value, entropy, and correlation, and a lower energy (P < .0001 for all values). Fifty-one lymph nodes were in the validation set; 44 of 51 (86.3%) were classified correctly. Eighteen of these lymph nodes also had FDG-PET-CT scan assessment, which correctly classified 14 of 18 nodes (77.8%), compared with grey scale texture analysis, which correctly classified 16 of 18 nodes (88.9%). Grey scale texture analysis of EBUS convex probe images can be used to differentiate malignant and benign lymphadenopathy. Preliminary results are comparable to FDG-PET-CT scan.
Wu, Shulian; Huang, Yudian; Li, Hui; Wang, Yunxia; Zhang, Xiaoman
2015-01-01
Dermatofibrosarcoma protuberans (DFSP) is a skin cancer usually mistaken as other benign tumors. Abnormal DFSP resection results in tumor recurrence. Quantitative characterization of collagen alteration on the skin tumor is essential for developing a diagnostic technique. In this study, second harmonic generation (SHG) microscopy was performed to obtain images of the human DFSP skin and normal skin. Subsequently, structure and texture analysis methods were applied to determine the differences in skin texture characteristics between the two skin types, and the link between collagen alteration and tumor was established. Results suggest that combining SHG microscopy and texture analysis methods is a feasible and effective method to describe the characteristics of skin tumor like DFSP. © Wiley Periodicals, Inc.
About normal distribution on SO(3) group in texture analysis
NASA Astrophysics Data System (ADS)
Savyolova, T. I.; Filatov, S. V.
2017-12-01
This article studies and compares different normal distributions (NDs) on SO(3) group, which are used in texture analysis. Those NDs are: Fisher normal distribution (FND), Bunge normal distribution (BND), central normal distribution (CND) and wrapped normal distribution (WND). All of the previously mentioned NDs are central functions on SO(3) group. CND is a subcase for normal CLT-motivated distributions on SO(3) (CLT here is Parthasarathy’s central limit theorem). WND is motivated by CLT in R 3 and mapped to SO(3) group. A Monte Carlo method for modeling normally distributed values was studied for both CND and WND. All of the NDs mentioned above are used for modeling different components of crystallites orientation distribution function in texture analysis.
NASA Technical Reports Server (NTRS)
1979-01-01
Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, A; Veeraraghavan, H; Oh, J
Purpose: To present an open source and free platform to facilitate radiomics research — The “Radiomics toolbox” in CERR. Method: There is scarcity of open source tools that support end-to-end modeling of image features to predict patient outcomes. The “Radiomics toolbox” strives to fill the need for such a software platform. The platform supports (1) import of various kinds of image modalities like CT, PET, MR, SPECT, US. (2) Contouring tools to delineate structures of interest. (3) Extraction and storage of image based features like 1st order statistics, gray-scale co-occurrence and zonesize matrix based texture features and shape features andmore » (4) Statistical Analysis. Statistical analysis of the extracted features is supported with basic functionality that includes univariate correlations, Kaplan-Meir curves and advanced functionality that includes feature reduction and multivariate modeling. The graphical user interface and the data management are performed with Matlab for the ease of development and readability of code and features for wide audience. Open-source software developed with other programming languages is integrated to enhance various components of this toolbox. For example: Java-based DCM4CHE for import of DICOM, R for statistical analysis. Results: The Radiomics toolbox will be distributed as an open source, GNU copyrighted software. The toolbox was prototyped for modeling Oropharyngeal PET dataset at MSKCC. The analysis will be presented in a separate paper. Conclusion: The Radiomics Toolbox provides an extensible platform for extracting and modeling image features. To emphasize new uses of CERR for radiomics and image-based research, we have changed the name from the “Computational Environment for Radiotherapy Research” to the “Computational Environment for Radiological Research”.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Qingge; Song, Gian; Gorti, Sarma B.
Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into accountmore » to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.« less
Influence of Texture and Colour in Breast TMA Classification
Fernández-Carrobles, M. Milagro; Bueno, Gloria; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial; González-López, Lucía
2015-01-01
Breast cancer diagnosis is still done by observation of biopsies under the microscope. The development of automated methods for breast TMA classification would reduce diagnostic time. This paper is a step towards the solution for this problem and shows a complete study of breast TMA classification based on colour models and texture descriptors. The TMA images were divided into four classes: i) benign stromal tissue with cellularity, ii) adipose tissue, iii) benign and benign anomalous structures, and iv) ductal and lobular carcinomas. A relevant set of features was obtained on eight different colour models from first and second order Haralick statistical descriptors obtained from the intensity image, Fourier, Wavelets, Multiresolution Gabor, M-LBP and textons descriptors. Furthermore, four types of classification experiments were performed using six different classifiers: (1) classification per colour model individually, (2) classification by combination of colour models, (3) classification by combination of colour models and descriptors, and (4) classification by combination of colour models and descriptors with a previous feature set reduction. The best result shows an average of 99.05% accuracy and 98.34% positive predictive value. These results have been obtained by means of a bagging tree classifier with combination of six colour models and the use of 1719 non-correlated (correlation threshold of 97%) textural features based on Statistical, M-LBP, Gabor and Spatial textons descriptors. PMID:26513238
Xie, Qingge; Song, Gian; Gorti, Sarma B.; ...
2018-02-21
Bragg-edge imaging, which is also known as neutron radiography, has recently emerged as a novel crystalline characterization technique. Modelling of this novel technique by incorporating various features of the underlying microstructure (including the crystallographic texture, the morphological texture, and the grain size) of the material remains a subject of considerable research and development. In this paper, Inconel 718 samples made by additive manufacturing were investigated by neutron diffraction and neutron radiography techniques. The specimen features strong morphological and crystallographic textures and a highly heterogeneous microstructure. A 3D statistical full-field model is introduced by taking details of the microstructure into accountmore » to understand the experimental neutron radiography results. The Bragg-edge imaging and the total cross section were calculated based on the neutron transmission physics. A good match was obtained between the model predictions and experimental results at different incident beam angles with respect to the sample build direction. The current theoretical approach has the ability to incorporate 3D spatially resolved microstructural heterogeneity information and shows promise in understanding the 2D neutron radiography of bulk samples. With further development to incorporate the heterogeneity in lattice strain in the model, it can be used as a powerful tool in the future to better understand the neutron radiography data.« less
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.
2013-05-01
Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.
NASA Astrophysics Data System (ADS)
Wani, Kohmei
Quantitative determination of textural quality of frozen food due to freezing and storage conditions is complicated,since the texture is consisted of multi-dimensiona1 factors. The author reviewed the importance of texture in food quality and the factors which is proposed by a priori estimation. New classification of expression words of textural properties by subjective evaluation and an application of four elements mechanical model for analysis of physical characteristics was studied on frozen meat patties. Combination of freezing-thawing condition on the subjective properties and physiochemical characteristics of beef lean meat and hamachi fish (Yellow-tail) meat was studied. Change of the plasticity and the deformability of these samples differed by freezing-thawing rate and cooking procedure. Also optimum freezing-thawing condition was differed from specimens.
NASA Astrophysics Data System (ADS)
Mostaan, Hossein; Safari, Mehdi; Bakhtiari, Arash
2018-04-01
In this study, the effect of friction stir welding of AISI 430 (X6Cr17, material number 1.4016) ferritic stainless steel is examined. Two thin sheets with dimensions of 0.4 × 50 × 200 mm3 are joined in lap configuration. Optical microscopy and field emission electron microscopy were used in order to microstructural evaluations and fracture analysis, respectively. Tensile test and microhardness measurements are employed in order to study the mechanical behaviors of welds. Also, vibrational sample magnetometry (VSM) is employed for characterizing magnetic properties of welded samples. Texture analysis is carried out in order to clarify the change mechanism of magnetic properties in the welded area. The results show that AISI 430 sheets are successfully joined considering both, the appearance of the welding bead and the strength of the welded joint. It is found that by friction stir welding of AISI 430 sheets, texture components with easy axes magnetization have been replaced by texture components with harder magnetization axes. VSM analysis showed that friction stir welding leads to increase in residual induction (Br) and coercivity (Hc). This increase is attributed to the grain refining due the friction stir welding and formation of texture components with harder axes of magnetizations.
Variations in algorithm implementation among quantitative texture analysis software packages
NASA Astrophysics Data System (ADS)
Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.
2018-02-01
Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.
Depth image enhancement using perceptual texture priors
NASA Astrophysics Data System (ADS)
Bang, Duhyeon; Shim, Hyunjung
2015-03-01
A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.
García-Esteban, Marta; Ansorena, Diana; Astiasarán, Iciar
2004-05-01
Slices of dry-cured hams (Biceps femoris muscle) were stored during 8 weeks under vacuum and modified atmospheres (100% N(2) and a mixture of 20% CO(2) and 80% N(2)) in order to study the modifications on colour, texture and microbial counts during that period. Lightness was found to be more stable when samples were stored with 20% CO(2) and 80% N(2) without statistical differences between vacuum and 100% N(2). A slight whiteness was observed in the vacuum packed samples. Yellowness increased during time in vacuum packed samples, although no differences were found among the three conditions at the end of the study. Redness values were not affected by time or by the packaging system. With regard to texture, values found for all samples were within the normal range for this type of products, although it was observed that modified atmosphere packaging preserved samples better from hardening than vacuum packaging. No safety problems were detected in relation to the microbial quality in any case. In general, no clear differences were found among the three packaging systems for colour, texture and microbial quality in the storage conditions studied.
Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.
Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond
2011-06-01
To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shashaank; Belianinov, Alex; Okatan, Mahmut B
(001)pc textured K0.5Na0.5NbO3 (KNN) ceramic was found to exhibit a 65% improvement in the longitudinal piezoelectric response as compared to its random counterpart. Piezoresponse force microscopy study revealed the existence of larger 180 and non-180 domains for textured ceramic as compared to that of the random ceramic. Improvement in piezoresponse by the development of (001)pc texture is discussed in terms of the crystallographic nature of KNN and domain morphology. A comparative analysis performed with a rhombohedral composition suggested that the improvement in longitudinal piezoresponse of polycrystalline ceramics by the development of (001)pc texture is limited by the crystal structure.
Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.
Pan, Jui-Wen; Wang, Chia-Shen
2012-09-10
We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.
NASA Astrophysics Data System (ADS)
Owen, Karen K.
This research addresses the need for reliable, repeatable, quantitative measures to differentiate informal (slum) from formal (planned) settlements using commercial very high resolution imagery and elevation data. Measuring the physical, spatial and spectral qualities of informal settlements is an important precursor for evaluating success toward improving the lives of 100 million slum dwellers worldwide, as pledged by the United Nations Millennium Development Goal Target 7D. A variety of measures were tested based on surface material spectral properties, texture, built-up structure, road network accessibility, and geomorphology from twelve communities in Guatemala City to reveal statistically significant differences between informal and formal settlements that could be applied to other parts of the world without the need for costly or dangerous field surveys. When information from satellite imagery is constrained to roads and residential boundaries, a more precise understanding of human habitation is produced. A classification and regression tree (CART) approach and linear discriminant function analysis enabled a variable dimensionality reduction from the original 23 to 6 variables that are sufficient to differentiate a settlement as informal or formal. The results demonstrate that the entropy texture of roads, the degree of asphalt road surface, the vegetation patch compactness and patch size, the percent of bare soil land cover, the geomorphic profile convexity of the terrain, and the road density distinguish informal from formal settlements with 87--92% accuracy when results are cross-validated. The variables with highest contribution to model outcome that are common to both approaches are entropy texture of roads, vegetation patch size, and vegetation compactness suggesting that road texture, surface materials and vegetation provide the necessary characteristics to distinguish the level of informality of a settlement. The results will assist urban planners and settlement analysts who must process vast amounts of imagery worldwide, enabling them to report annually on slum conditions. An added benefit is the ability to use the measures in data-poor regions of the world without field surveys.
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
NASA Astrophysics Data System (ADS)
Leijenaar, Ralph T. H.; Nalbantov, Georgi; Carvalho, Sara; van Elmpt, Wouter J. C.; Troost, Esther G. C.; Boellaard, Ronald; Aerts, Hugo J. W. L.; Gillies, Robert J.; Lambin, Philippe
2015-08-01
FDG-PET-derived textural features describing intra-tumor heterogeneity are increasingly investigated as imaging biomarkers. As part of the process of quantifying heterogeneity, image intensities (SUVs) are typically resampled into a reduced number of discrete bins. We focused on the implications of the manner in which this discretization is implemented. Two methods were evaluated: (1) RD, dividing the SUV range into D equally spaced bins, where the intensity resolution (i.e. bin size) varies per image; and (2) RB, maintaining a constant intensity resolution B. Clinical feasibility was assessed on 35 lung cancer patients, imaged before and in the second week of radiotherapy. Forty-four textural features were determined for different D and B for both imaging time points. Feature values depended on the intensity resolution and out of both assessed methods, RB was shown to allow for a meaningful inter- and intra-patient comparison of feature values. Overall, patients ranked differently according to feature values-which was used as a surrogate for textural feature interpretation-between both discretization methods. Our study shows that the manner of SUV discretization has a crucial effect on the resulting textural features and the interpretation thereof, emphasizing the importance of standardized methodology in tumor texture analysis.
González-Tomás, L; Costell, E
2006-12-01
Consumers' perceptions of the color and texture of 8 commercial vanilla dairy desserts were studied and related to color and rheological measurements. First, the 8 desserts were evaluated by a group of consumers by means of the Free Choice Profile. For both color and texture, a 2-dimensional solution was chosen, with dimension 1 highly related to yellow color intensity in the case of color and to thickness in the case of texture. Second, mechanical spectra, flow behavior, and instrumental color were determined. All the samples showed a time-dependent and shear-thinning flow and a mechanical spectrum typical of a weak gel. Differences were found in the flow index, in the apparent viscosity at 10 s(-1), and in the values of the storage modulus, the loss modulus, the loss angle tangent, and the complex viscosity at 1 Hz, as well as in the color parameters. Finally, sensory and instrumental relationships were investigated by a generalized Procrustes analysis. For both color and texture, a 3-dimensional solution explained a high percentage of the total variance (>80%). In these particular samples, the instrumental color parameters provided more accurate information on consumers' color perceptions than was provided by the rheological parameters of consumers' perceptions of texture.
Optimal background matching camouflage.
Michalis, Constantine; Scott-Samuel, Nicholas E; Gibson, David P; Cuthill, Innes C
2017-07-12
Background matching is the most familiar and widespread camouflage strategy: avoiding detection by having a similar colour and pattern to the background. Optimizing background matching is straightforward in a homogeneous environment, or when the habitat has very distinct sub-types and there is divergent selection leading to polymorphism. However, most backgrounds have continuous variation in colour and texture, so what is the best solution? Not all samples of the background are likely to be equally inconspicuous, and laboratory experiments on birds and humans support this view. Theory suggests that the most probable background sample (in the statistical sense), at the size of the prey, would, on average, be the most cryptic. We present an analysis, based on realistic assumptions about low-level vision, that estimates the distribution of background colours and visual textures, and predicts the best camouflage. We present data from a field experiment that tests and supports our predictions, using artificial moth-like targets under bird predation. Additionally, we present analogous data for humans, under tightly controlled viewing conditions, searching for targets on a computer screen. These data show that, in the absence of predator learning, the best single camouflage pattern for heterogeneous backgrounds is the most probable sample. © 2017 The Authors.
Automatic age and gender classification using supervised appearance model
NASA Astrophysics Data System (ADS)
Bukar, Ali Maina; Ugail, Hassan; Connah, David
2016-11-01
Age and gender classification are two important problems that recently gained popularity in the research community, due to their wide range of applications. Research has shown that both age and gender information are encoded in the face shape and texture, hence the active appearance model (AAM), a statistical model that captures shape and texture variations, has been one of the most widely used feature extraction techniques for the aforementioned problems. However, AAM suffers from some drawbacks, especially when used for classification. This is primarily because principal component analysis (PCA), which is at the core of the model, works in an unsupervised manner, i.e., PCA dimensionality reduction does not take into account how the predictor variables relate to the response (class labels). Rather, it explores only the underlying structure of the predictor variables, thus, it is no surprise if PCA discards valuable parts of the data that represent discriminatory features. Toward this end, we propose a supervised appearance model (sAM) that improves on AAM by replacing PCA with partial least-squares regression. This feature extraction technique is then used for the problems of age and gender classification. Our experiments show that sAM has better predictive power than the conventional AAM.
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Jiang, Yuan Yuan; Kim, Sung Min
2015-01-01
This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics, 18 gray level co-occurrence matrices, 18 Law's, and echogenicity were extracted. A total of 29 key features that were selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically.
Distribution and variation of arsenic in Wisconsin surface soils, with data on other trace elements
Stensvold, Krista A.
2012-01-01
Soils with sandy glacial outwash as a parent material have a lower median arsenic concentration (1.0 mg/kg) than soils forming in other parent materials (1.5 to 3.0 mg/kg). Soil texture and drainage category also influence median arsenic concentration. Finer grained soils have a higher observed range of concentrations. For loamy and loess-dominated soil groups, drainage category influences the median arsenic concentration and observed range of values, but a consistent relationship within the data is not apparent. Statistical analysis of the 16 other elements are presented in this report, but the relationships of concentrations to soil properties or geographic areas were not examined.
Accurate Inventories Of Irrigated Land
NASA Technical Reports Server (NTRS)
Wall, S.; Thomas, R.; Brown, C.
1992-01-01
System for taking land-use inventories overcomes two problems in estimating extent of irrigated land: only small portion of large state surveyed in given year, and aerial photographs made on 1 day out of year do not provide adequate picture of areas growing more than one crop per year. Developed for state of California as guide to controlling, protecting, conserving, and distributing water within state. Adapted to any large area in which large amounts of irrigation water needed for agriculture. Combination of satellite images, aerial photography, and ground surveys yields data for computer analysis. Analyst also consults agricultural statistics, current farm reports, weather reports, and maps. These information sources aid in interpreting patterns, colors, textures, and shapes on Landsat-images.
Randomized clinical trial of two resin-modified glass ionomer materials: 1-year results.
Perdigão, J; Dutra-Corrêa, M; Saraceni, S H C; Ciaramicoli, M T; Kiyan, V H
2012-01-01
With institutional review board approval, 33 patients who needed restoration of noncarious cervical lesions (NCCL) were enrolled in this study. A total of 92 NCCL were selected and randomly assigned to three groups: (1) Ambar (FGM), a two-step etch-and-rinse adhesive (control), combined with the nanofilled composite resin Filtek Supreme Plus (FSP; 3M ESPE); (2) Fuji II LC (GC America), a traditional resin-modified glass ionomer (RMGIC) restorative material; (3) Ketac Nano (3M ESPE), a nanofilled RMGIC restorative material. Restorations were evaluated at six months and one year using modified United States Public Health Service parameters. At six months after initial placement, 84 restorations (a 91.3% recall rate) were evaluated. At one year, 78 restorations (a 84.8% recall rate) were available for evaluation. The six month and one year overall retention rates were 93.1% and 92.6%, respectively, for Ambar/FSP; 100% and 100%, respectively, for Fuji II LC; and 100% and 100%, respectively, for Ketac Nano with no statistical difference between any pair of groups at each recall. Sensitivity to air decreased for all three adhesive materials from the preoperative to the postoperative stage, but the difference was not statistically significant. For Ambar/FSP, there were no statistical differences for any of the parameters from baseline to six months and from baseline to one year. For Fuji II LC, surface texture worsened significantly from baseline to six months and from baseline to one year. For Ketac Nano, enamel marginal staining increased significantly from baseline to one year and from six months to one year. Marginal adaptation was statistically worse at one year compared with baseline only for Ketac Nano. When parameters were compared for materials at each recall, Ketac Nano resulted in significantly worse color match than any of the other two materials at any evaluation period. At one year, Ketac Nano resulted in significantly worse marginal adaptation than the other two materials and worse marginal staining than Fuji II LC. Surface texture was statistically worse for Fuji II LC compared with the other two materials at all evaluation periods. The one-year retention rate was statistically similar for the three adhesive materials. Nevertheless, enamel marginal deficiencies and color mismatch were more prevalent for Ketac Nano. Surface texture of Fuji II LC restorations deteriorated quickly.
Di Guardo, Mario; Bink, Marco C.A.M.; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G.F.; van de Weg, Eric
2017-01-01
Abstract Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer’s appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. PMID:28338805
Di Guardo, Mario; Bink, Marco C A M; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G F; van de Weg, Eric; Costa, Fabrizio
2017-03-01
Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish
Woods, Kristin; Lea, Jeanne M.; Brashear, Suzanne S.; Boue, Stephen M.; Daigle, Kim W.; Bett-Garber, Karen L.
2018-01-01
Catfish is often consumed as a breaded and battered fried product; however, there is increasing interest in breaded and battered baked products as a healthier alternative. Par frying can improve the texture properties of breaded and battered baked products, but there are concerns about the increase in lipid uptake from par frying. The objective of this study was to examine the effect of different batters (rice, corn, and wheat) and the effect of par frying on the composition and texture properties of baked catfish. Catfish fillets were cut strips and then coated with batters, which had similar viscosities. Half of the strips were par fried in 177 °C vegetable oil for 1 min and the other half were not par fried. Samples were baked at 177 °C for 25 min. Analysis included % batter adhesion, cooking loss, protein, lipid, ash, and moisture, plus hardness and fracture quality measured using a texture analyzer. A trained sensory panel evaluated both breading and flesh texture attributes. Results found the lipid content of par fried treatments were significantly higher for both corn and wheat batters than for non-par fried treatments. Sensory analysis indicated that the texture of the coatings in the par fried treatments were significantly greater for hardness attributes. Fillet flakiness was significantly greater in the par fried treatments and corn-based batters had moister fillet strips compared to the wheat flour batters. Texture analyzer hardness values were higher for the par fried treatments. PMID:29570660
Material quality assessment of silk nanofibers based on swarm intelligence
NASA Astrophysics Data System (ADS)
Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir
2013-02-01
In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
BCC skin cancer diagnosis based on texture analysis techniques
NASA Astrophysics Data System (ADS)
Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.
2011-03-01
In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.
NASA Astrophysics Data System (ADS)
Ferré, Chiara; Comolli, Roberto
2015-04-01
The study area is located in an abandoned meander of the Oglio river (southern Lombardy, Italy), with young soils of alluvial origin (Calcaric Fluvisols). During 2002, in an area covering 20 hectares, a tree plant for wood production was realized (oak, hornbeam, ash, alder, and walnut; poplar only in the first part of the growth cycle). Objective of the study was to verify the existence of correlations between tree growth and soil characteristics. In 2004, the soil was sampled at 126 points, according to a regular grid, taking the surface soil horizon (Ap). The collected soil samples were analyzed in laboratory, measuring pH in H2O and KCl, texture, total carbonates, soil organic C (SOC), available P (Olsen), and exchangeable K. The pH in H2O varies between 7.7 and 8.1; the pH in KCl varies between 7.2 and 7.7; the more frequent particle-size classes are loam and sandy loam; SOC varies between 0.4 and 1.1%; total carbonates from 23 to 45%; exchangeable K between 0.01 and 0.25 cmol(+) kg-1; available P between 1.2 and 16.8 mg kg-1. At a distance of 12 years, in 2014, diameters at breast height of all the trees (2513 in total) were measured and their height was estimated on the basis of empirical equations obtained for each species, in order to calculate the tree volume. Spatial variability of soil properties was evaluated and mapped using multivariate geostatistical techniques. The analyses revealed the presence of different scales of spatial variation: micro-scale, short range scale (about 80 m for texture) and long range scale (about 220 m for texture). The spatial pattern of most soil properties (mainly texture and total carbonates) was probably associated with fluvial depositional processes. To evaluate soil-plant relationships, soil characteristics were collocated into the plant data set by estimating specific soil properties at each individual tree location. Soil spatial variability was reflected by the differences in plant growth. Statistical analysis of the collected data highlighted a number of statistically significant correlations between tree growth and soil features: clay content and total carbonates were almost always negatively correlated with tree growth; sand content, pH in KCl, available P and exchangeable K were almost always positively correlated; SOC content was negatively correlated, but only for oak.
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagher-Ebadian, H; Chetty, I; Liu, C
Purpose: To examine the impact of image smoothing and noise on the robustness of textural information extracted from CBCT images for prediction of radiotherapy response for patients with head/neck (H/N) cancers. Methods: CBCT image datasets for 14 patients with H/N cancer treated with radiation (70 Gy in 35 fractions) were investigated. A deformable registration algorithm was used to fuse planning CT’s to CBCT’s. Tumor volume was automatically segmented on each CBCT image dataset. Local control at 1-year was used to classify 8 patients as responders (R), and 6 as non-responders (NR). A smoothing filter [2D Adaptive Weiner (2DAW) with 3more » different windows (ψ=3, 5, and 7)], and two noise models (Poisson and Gaussian, SNR=25) were implemented, and independently applied to CBCT images. Twenty-two textural features, describing the spatial arrangement of voxel intensities calculated from gray-level co-occurrence matrices, were extracted for all tumor volumes. Results: Relative to CBCT images without smoothing, none of 22 textural features extracted showed any significant differences when smoothing was applied (using the 2DAW with filtering parameters of ψ=3 and 5), in the responder and non-responder groups. When smoothing, 2DAW with ψ=7 was applied, one textural feature, Information Measure of Correlation, was significantly different relative to no smoothing. Only 4 features (Energy, Entropy, Homogeneity, and Maximum-Probability) were found to be statistically different between the R and NR groups (Table 1). These features remained statistically significant discriminators for R and NR groups in presence of noise and smoothing. Conclusion: This preliminary work suggests that textural classifiers for response prediction, extracted from H&N CBCT images, are robust to low-power noise and low-pass filtering. While other types of filters will alter the spatial frequencies differently, these results are promising. The current study is subject to Type II errors. A much larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian Medical Systems (Palo Alto, CA)« less
Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V
2016-05-15
The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh
NASA Astrophysics Data System (ADS)
Khalil, Zahid
2016-07-01
Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.
"Textural analysis of multiparametric MRI detects transition zone prostate cancer".
Sidhu, Harbir S; Benigno, Salvatore; Ganeshan, Balaji; Dikaios, Nikos; Johnston, Edward W; Allen, Clare; Kirkham, Alex; Groves, Ashley M; Ahmed, Hashim U; Emberton, Mark; Taylor, Stuart A; Halligan, Steve; Punwani, Shonit
2017-06-01
To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. ADC kurtosis was significantly lower (p < 0.001) in TZ containing significant tumour with ROC-AUC 0.80 (LOO-AUC 0.78); the difference became non-significant following exclusion of significant tumour from single-slice whole TZ-ROI (p = 0.23). T1-entropy was significantly lower (p = 0.004) in TZ containing significant tumour with ROC-AUC 0.70 (LOO-AUC 0.66) and was unaffected by excluding significant tumour from TZ-ROI (p = 0.004). Combining these parameters yielded ROC-AUC 0.86 (LOO-AUC 0.83). Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. • MR textural features of prostate transition zone may discriminate significant prostatic cancer. • Transition zone (TZ) containing significant tumour demonstrates a less peaked ADC histogram. • TZ containing significant tumour reveals higher post-contrast T1-weighted homogeneity. • The utility of MR texture analysis in prostate cancer merits further investigation.
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V
2015-11-01
Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR
NASA Astrophysics Data System (ADS)
Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin
2016-06-01
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.
78 FR 20667 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
..., et al. Visualization of biological texture using correlation coefficient images. J Biomed Opt. 2006.... Development Stage: Early-stage In vitro data available Inventors: Paolo Lusso and David J. Auerbach (NIAID... algorithms to visualize regions of statistical similarity in the image have been developed. Though the...
Geographic trends in alfalfa stand age and crops that follow alfalfa
USDA-ARS?s Scientific Manuscript database
USDA-National Agricultural Statistics Service cropland data layers and Soil Survey Geographic Database layers were combined for six states (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, and Wisconsin) and seven years (2006-2012) to determine how soil texture and geographic location affect t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko
2014-10-06
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less
NASA Astrophysics Data System (ADS)
Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke
2014-10-01
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.
An application of Chan-Vese method used to determine the ROI area in CT lung screening
NASA Astrophysics Data System (ADS)
Prokop, Paweł; Surtel, Wojciech
2016-09-01
The article presents two approaches of determining the ROI area in CT lung screening. First approach is based on a classic method of framing the image in order to determine the ROI by using a MaZda tool. Second approach is based on segmentation of CT images of the lungs and reducing the redundant information from the image. Of the two approaches of an Active Contour, it was decided to choose the Chan-Vese method. In order to determine the effectiveness of the approach, it was performed an analysis of received ROI texture and extraction of textural features. In order to determine the effectiveness of the method, it was performed an analysis of the received ROI textures and extraction of the texture features, by using a Mazda tool. The results were compared and presented in the form of the radar graphs. The second approach proved to be effective and appropriate and consequently it is used for further analysis of CT images, in the computer-aided diagnosis of sarcoidosis.
NASA Astrophysics Data System (ADS)
Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.
2001-06-01
Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Markel, D; Hegyi, G
2016-06-15
Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less
Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan
2016-01-01
Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.
Ross, Heather A; Wright, Kathryn M; McDougall, Gordon J; Roberts, Alison G; Chapman, Sean N; Morris, Wayne L; Hancock, Robert D; Stewart, Derek; Tucker, Gregory A; James, Euan K; Taylor, Mark A
2011-01-01
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties.
Ross, Heather A.; Wright, Kathryn M.; McDougall, Gordon J.; Roberts, Alison G.; Chapman, Sean N.; Morris, Wayne L.; Hancock, Robert D.; Stewart, Derek; Tucker, Gregory A.; James, Euan K.; Taylor, Mark A.
2011-01-01
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties. PMID:20855456
Automatic Texture Mapping of Architectural and Archaeological 3d Models
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Evolution of microstructure in stainless martensitic steel for seamless tubing
NASA Astrophysics Data System (ADS)
Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.
2017-12-01
Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.
NASA Astrophysics Data System (ADS)
Florindo, João. Batista
2018-04-01
This work proposes the use of Singular Spectrum Analysis (SSA) for the classification of texture images, more specifically, to enhance the performance of the Bouligand-Minkowski fractal descriptors in this task. Fractal descriptors are known to be a powerful approach to model and particularly identify complex patterns in natural images. Nevertheless, the multiscale analysis involved in those descriptors makes them highly correlated. Although other attempts to address this point was proposed in the literature, none of them investigated the relation between the fractal correlation and the well-established analysis employed in time series. And SSA is one of the most powerful techniques for this purpose. The proposed method was employed for the classification of benchmark texture images and the results were compared with other state-of-the-art classifiers, confirming the potential of this analysis in image classification.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.