Analysis of operational limit of an aircraft: An aeroelastic approach
NASA Astrophysics Data System (ADS)
Hasan, Md. Mehedi; Hassan, M. D. Mehedi; Sarrowar, S. M. Bayazid; Faisal, Kh. Md.; Ahmed, Sheikh Reaz, Dr.
2017-06-01
In classical theory of elasticity, external loading acting on the body is independent of deformation of the body. But, in aeroelasticity, aerodynamic forces depend on the attitude of the body relative to the flow. Aircraft's are subjected to a range of static loads resulting from equilibrium or steady flight maneuvers such as coordinated level turn, steady pitch and bank rate, steady and level flight. Interaction of these loads with elastic forces of aircraft structure creates some aeroelastic phenomena. In this paper, we have summarized recent developments in the area of aeroelasticity. A numerical approach has been applied for finding divergence speed, a static aeroelastic phenomena, of a typical aircraft. This paper also involves graphical representations of constraints on load factor and bank angle during different steady flight maneuvers taking flexibility into account and comparing it with the value without flexibility. Effect of wing skin thickness, spar web thickness and position of flexural axis of wing on this divergence speed as well as load factor and bank angle has also been observed using MATLAB.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Trim control. 27.161 Section 27.161... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.161 Trim control. The trim control— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
Flapping wing flight can save aerodynamic power compared to steady flight.
Pesavento, Umberto; Wang, Z Jane
2009-09-11
Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.
NASA/FAA Tailplane Icing Program: Flight Test Report
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex
2000-01-01
This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Trim control. 29.161 Section 29.161... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.161 Trim control. The trim control— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level...
Application of hybrid methodology to rotors in steady and maneuvering flight
NASA Astrophysics Data System (ADS)
Rajmohan, Nischint
Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical takeoff and landing on unprepared sites. This makes their use especially desirable in military and search-and-rescue operations. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is nondissipative making it an attractive tool to study rotorcraft aeromechanics. Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method. The coupling methodology was extended to maneuvering flight analysis by enhancing the computational and structural models to handle non-periodic flight conditions and vehicle motions in time accurate mode. The flight test control angles were employed to enable the maneuvering flight analysis. The fully coupled model provided the presence of three dynamic stall cycles on the rotor in maneuver. It is important to mention that analysis of maneuvering flight requires knowledge of the pilot input control pitch settings, and the vehicle states. As the result, these computational tools cannot be used for analysis of loads in a maneuver that has not been duplicated in a real flight. This is a significant limitation if these tools are to be selected during the design phase of a helicopter where its handling qualities are evaluated in different trajectories. Therefore, a methodology was developed to couple the CFD/CSD simulation with an inverse flight mechanics simulation to perform the maneuver analysis without using the flight test control input. The methodology showed reasonable convergence in steady flight regime and control angles predictions compared fairly well with test data. In the maneuvering flight regions, the convergence was slower due to relaxation techniques used for the numerical stability. The subsequent computed control angles for the maneuvering flight regions compared well with test data. Further, the enhancement of the rotor inflow computations in the inverse simulation through implementation of a Lagrangian wake model improved the convergence of the coupling methodology.
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo
2009-01-01
Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.
Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft
NASA Technical Reports Server (NTRS)
Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan
2003-01-01
This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1975-01-01
Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.
The evaluation of the OSGLR algorithm for restructurable controls
NASA Technical Reports Server (NTRS)
Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.
1986-01-01
The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.
Flight test evaluation of predicted light aircraft drag, performance, and stability
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Fox, S. R.
1979-01-01
A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.
NASA Technical Reports Server (NTRS)
Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.
1986-01-01
The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.
Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression
NASA Technical Reports Server (NTRS)
Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.
2000-01-01
During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors, which have been implicated as mediators of the bone remodeling cycle. It is not yet clear whether these latter changes were due to weightlessness or to the transient increase in loading resulting from reentry.
Determination of the lift and drag characteristics of an airplane in flight
NASA Technical Reports Server (NTRS)
Green, Maurice W
1925-01-01
Flight tests to determine lift and drag characteristics are discussed. A review is given of the fundamental principles on which the tests are based and on the forces acting on an airplane in the various conditions of steady flight. Glide with and without propeller thrust and the relation between angle of attack and the indicated airspeed for different conditions of steady flight are discussed. The glide test procedure and the problem of the propeller are discussed.
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Trim control. 27.161 Section 27.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Trim control. 27.161 Section 27.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Trim control. 27.161 Section 27.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Trim control. 27.161 Section 27.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
Performance and rotor loads measurements of the Lynx XZ170 helicopter with rectangular blades
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Louie, Alexander W.; Griffiths, Nicholas; Sotiriou, Costantinos P.
1993-01-01
This report presents the results of a series of flight tests on the Lynx XZ170 helicopter with rectangular blades. The test objectives were to explore the flight envelope and to measure the performance and structural loads of the Lynx main-rotor system. The tests were conducted as part of the British Experimental Rotor Program (BERP) under a contract with the Ministry of Defense in England. Data were acquired for steady-level flights at five weight coefficients. Some flight conditions were tested at beyond the retreating-blade stall boundary, which was defined by a predetermined limit on the pitchlink vibratory load. In addition to documenting the flight conditions and data, this report describes the aircraft, particularly the rotor system, in detail.
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
NASA Technical Reports Server (NTRS)
Haglund, G. T.; Kane, E. J.
1974-01-01
The analysis of the 14 low-altitude transonic flights showed that the prevailing meteorological consideration of the acoustic disturbances below the cutoff altitude during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid over a wide range of meteorological conditions and provides a reasonable estimate of the airplane ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed excellent agreement with observations near the caustic, but the predicted overpressure levels were significantly lower than those observed far from the caustic. The analysis of caustics produced by inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the threshold Mach number showed that folds and associated caustics were produced by slight changes in the airplane ground speed. These caustic intensities ranged from 1 to 3 time the nominal steady, level flight intensity.
Challenges in Rotorcraft Acoustic Flight Prediction and Validation
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2003-01-01
Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
Results of the Quasi-Steady Acceleration Environment from the STS-62 Missions
NASA Technical Reports Server (NTRS)
Matisak, Brian; French, Larry; DeLombard, Richard; Wagar, William
1995-01-01
One of the clear benefits of conducting scientific research in space is to take advantage of the reduced acceleration environment. Many accelerometer packages have proven to accurately measure the acceleration environment at frequency levels above one Hz. However, for particular classes of experiments the quality of science returns is a direct function of the extremely low frequency (less than 0.01 Hz), quasi-steady acceleration environment. One class particularly interested in this acceleration regime is the group of crystal growth experimenters. These scientists are primarily interested in knowing the resultant quasi-steady acceleration vector at their respective crystal growth locations. The objective of many of these scientists is to minimize the amount of convective flow acting in a direction perpendicular to the growth axis of the crystal. Convective flow within the crystal can be induced by the direction and magnitude of the quasi-steady acceleration vector. Convective flows acting perpendicular to the growth axis of the crystal can cause nonuniformity within the crystal, thus reducing the quality of the results. The Orbital Acceleration Research Experiment (OARE), an accelerometer package hardmounted to the bottom of the payload bay of the orbiter Columbia (OV-102), has the capability of monitoring and recording the quasi-steady acceleration environment. This paper will describe the components that make up the on-orbit quasi-steady acceleration environment, detail how results from the OARE device were achieved, and compare modelled acceleration results with actual on-orbit OARE results from the STS-62 and STS-65 flights. A summary of the results will be provided along with possible recommendations of how to combine modelled and realtime quasi-steady accelerometer data for future Shuttle flights.
Flight Tests of the Wilford XOZ-1 Sea Gyroplane
NASA Technical Reports Server (NTRS)
Gustafson, Frederic B.
1941-01-01
During August 1939 a series of flight tests was made at Langley Field on the Wilford sea gyroplane, designated by the Navy as the XOZ-1. These tests were intended to permit rough evaluation of the stability and control characteristics of the machine, with particular reference to possible improvements in rigging which might be made in future machines with fixed wing and nonarticulated feathering control rotor, and to provide data on the bending and feathering motions of the rotor blades. The tests made in 1939 proved inadequate, chiefly because the machine as flown did not have sufficient propeller thrust to give it an appreciable speed range in steady flight. Further tests were therefore made in August 1940 after overhauling the engine and substituting a metal propeller for the wooded one first used. The range of speeds covered in steady flight was markedly extended. Steady-flight runs only were made in this series, since it was felt that takeoffs and landings had been covered sufficiently in the previous tests.
Hub and blade structural loads measurements of an SA349/2 helicopter
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel
1988-01-01
Data from 23 flight conditions, including level flights ranging from advance ratio mu = 0.14 to 0.37 and steady turning flights from advance ratio mu = 0.26 to 0.35, are presented for an Aerospatiale SA349/2 Gazelle helicopter. The data include hub loads data (for 6 of the 23 conditions), blade structural data at eleven different blade radial stations, and fuselage structural data. All dynamic data are presented as harmonic analysis coefficients (ten harmonics per rotor revolution). The data acquisition and reduction procedures are also documented. Blade structural and inertial properties are provided in addition to control system geometry and properties.
Analysis of a Multi-Flap Control System for a Swashplateless Rotor
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Wilbur, Matthew L.
2011-01-01
An analytical study was conducted examining the feasibility of a swashplateless rotor controlled through two trailing edge flaps (TEF), where the cyclic and collective controls were provided by separate TEFs. This analysis included a parametric study examining the impact of various design parameters on TEF deflections. Blade pitch bearing stiffness; blade pitch index; and flap chord, span, location, and control function of the inboard and outboard flaps were systematically varied on a utility-class rotorcraft trimmed in steady level flight. Gradient-based optimizations minimizing flap deflections were performed to identify single- and two-TEF swashplateless rotor designs. Steady, forward and turning flight analyses suggest that a two-TEF swashplateless rotor where the outboard flap provides cyclic control and inboard flap provides collective control can reduce TEF deflection requirements without a significant impact on power, compared to a single-TEF swashplateless rotor design.
A Review of Microgravity Levels on Ten OARE Shuttle Missions
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.
1998-01-01
The Orbital Acceleration Research Experiment (OARE) is an accelerometer package with nano-g sensitivity and on-orbit bias calibration capabilities. The OARE consists of a three axis miniature electrostatic accelerometer (MESA), a full in-flight bias and scale factor calibration station, and an on-board microprocessor for experiment control and data storage. Originally designed to measure and record the aerodynamic acceleration environment of the NASA Space Shuttles during re-entry, the OARE has been used on ten shuttle missions to measure the quasi-steady acceleration environment (<1 Hz) of the Orbiter while in low-Earth orbit. The effects on the quasi-steady acceleration environment from Orbiter systems, Orbiter attitude, Orbiter altitude, and crew activity are well understood as a result of these ten shuttle missions. This knowledge of the quasi-steady acceleration realm has direct application to understanding the quasi-steady acceleration environment expected for the International Space Station (ISS). This paper will summarize the more salient aspects of this quasi-steady acceleration knowledge base.
NASA Technical Reports Server (NTRS)
Yechout, T. R.; Braman, K. B.
1984-01-01
The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.; Gaubert, Michel
1986-01-01
A flight test program was conducted to obtain data from an upgraded Gazelle helicopter with an advanced geometry, three bladed rotor. Data were acquired on upper and lower surface chordwise blade pressure, blade bending and torsion moments, and fuselage structural loads. Results are presented from 16 individual flight conditions, including level flights ranging from 10 to 77 m/sec at 50 to 3000 m altitude, turning flights up to 2.0 g, and autorotation. Rotor aerodynamic data include information from 51 pressure transducers distributed chordwise at 75, 88, and 97% radial stations. Individual tranducer pressure coefficients and airfoil section lift and pitching moment coefficients are presented, as are steady state flight condition parameters and time dependence rotor loads. All dynamic data are presented as harmonic analysis coefficients.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G
2016-09-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2018-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles. PMID:29348697
Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance
NASA Technical Reports Server (NTRS)
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2016-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
High Stability Engine Control (HISTEC): Flight Demonstration Results
NASA Technical Reports Server (NTRS)
Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
An Overview of Flight Test Results for a Formation Flight Autopilot
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.
2002-01-01
The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.
THE HIGHEST-ENERGY COSMIC RAYS CANNOT BE DOMINANTLY PROTONS FROM STEADY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Kotera, Kumiko
The bulk of observed ultrahigh-energy cosmic rays could be light or heavier elements and originate from an either steady or transient population of sources. This leaves us with four general categories of sources. Energetic requirements set a lower limit on single-source luminosities, while the distribution of particle arrival directions in the sky sets a lower limit on the source number density. The latter constraint depends on the angular smearing in the skymap due to the magnetic deflections of the charged particles during their propagation from the source to the Earth. We contrast these limits with the luminosity functions from surveysmore » of existing luminous steady objects in the nearby universe and strongly constrain one of the four categories of source models, namely, steady proton sources. The possibility that cosmic rays with energy >8 × 10{sup 19} eV are dominantly pure protons coming from steady sources is excluded at 95% confidence level, under the safe assumption that protons experience less than 30° magnetic deflection on flight.« less
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing
NASA Technical Reports Server (NTRS)
Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon
2010-01-01
The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.
Video analysis of the flight of a model aircraft
NASA Astrophysics Data System (ADS)
Tarantino, Giovanni; Fazio, Claudio
2011-11-01
A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the phugoid model for longitudinal flight. A comparison with the parameters and performance of the full-size aircraft has also been outlined.
Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.
Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M
2016-06-30
Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms.
The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
Evaluation of Standard Gear Metrics in Helicopter Flight Operation
NASA Technical Reports Server (NTRS)
Mosher, M.; Pryor, A. H.; Huff, E. M.
2002-01-01
Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the sense that the rpm, torque and forces on the gear have been held steady. For gears used in a dynamic environment such as that occurring in aircraft, the rpm, torque and forces on the gear are constantly changing. The authors have measured significant variation in rpm and torque in the transmissions of helicopters in controlled steady flight conditions flown by highly proficient test pilots. Statistical analyses of the data taken in flight show significant nonstationarity in the vibration measurements. These deviations from stationarity may increase false alarms in gear monitoring during aircraft flight. In the proposed paper, the authors will study vibration measurements made in flight on an AH- 1 Cobra and an OH-58C Kiowa helicopters. The primary focus will be the development of a methodology to assess the impact of nonstationarity on false alarms. Issues to be addressed include how time synchronous averages are constructed from raw data as well as how lack of stationarity effects the behavior of single value metrics. Emphasis will be placed on the occurrence of false alarms with the use of standard metrics. In order to maintain an acceptable level of false alarms in the flight environment, this study will also address the determination of appropriate threshold levels, which may need to be higher than for test rigs.
Experimental Flights for Testing of a Reactor as an Expedient for the Termination of Dangerous Spins
NASA Technical Reports Server (NTRS)
Hoehler, P.; Koeppen, I. v.
1949-01-01
In the Institute for Flight Mechanics of the DVL a reactor arrangement with a maximum output of 100 kg was investigated as an expedient for the termination of dangerous spins on an airplane of the FW 56 type. reproduce the influence of a disturbance of the steady spin condition by a pitching or yawing moment. The tests were meant to reproduce the influence of a disturbance of the steady spin condition by a pitching and yawing moment.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
NASA Technical Reports Server (NTRS)
Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.
1991-01-01
An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B. (Inventor)
1999-01-01
Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.
Measured Noise from Small Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand
2016-01-01
Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.
14 CFR 91.611 - Authorization for ferry flight with one engine inoperative.
Code of Federal Regulations, 2010 CFR
2010-01-01
... chapter but with— (i) The actual steady gradient of the final takeoff climb requirement not less than 1.2... less than the two-engine inoperative trim speed for the actual steady gradient of the final takeoff...
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
2001-03-14
Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.; Yuhas, Andrew J.; Williams, John G.; Steenken, William G.
1997-01-01
The effects of high-angle-of-attack flight on aircraft inlet aerodynamic characteristics were investigated at NASA Dryden Flight Research Center, Edwards, California, as part of NASA's High Alpha Technology Program. The highly instrumented F/A-18A High Alpha Research Vehicle was used for this research. A newly designed inlet total-pressure rake was installed in front of the starboard F404-GE-400 engine to measure inlet recovery and distortion characteristics. One objective was to determine inlet total-pressure characteristics at steady high-angle-of-attack conditions. Other objectives include assessing whether significant differences exist in inlet distortion between rapid angle-of-attack maneuvers and corresponding steady aerodynamic conditions, assessing inlet characteristics during aircraft departures, providing data for developing and verifying computational fluid dynamic codes, and calculating engine airflow using five methods. This paper addresses the first objective by summarizing results of 79 flight maneuvers at steady aerodynamic conditions, ranging from -10 deg to 60 deg angle of attack and from -8 deg to 11 deg angle of sideslip at Mach 0.3 and 0.4. These data and the associated database have been rigorously validated to establish a foundation for understanding inlet characteristics at high angle of attack.
Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing
NASA Technical Reports Server (NTRS)
Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.
1988-01-01
Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.
Control for small-speed lateral flight in a model insect.
Zhang, Yan Lai; Sun, Mao
2011-09-01
Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.
DOT National Transportation Integrated Search
1985-02-01
Two types of shift rotation in the same air traffic facility were investigated in order to determine the relative advantages and disadvantages of nonrotating shift work (steady shift) and rotating shift work. The rotating shift work chosen for compar...
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)
2000-01-01
Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Deal, P. L.
1975-01-01
The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator.
A Flying Qualities Study of Longitudinal Long-Term Dynamics of Hypersonic Planes
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Sachs, G.; Knoll, A.; Stich, R.
1995-01-01
The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well defined steady-level turns with varying phugoid and height mode instabilities. The data collected include Pilot ratings and comments, performance measurements, and Pilot workload measurements. The results presented in this paper include design guidelines for height and Phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control Power design requirements.
A flying qualities study of longitudinal long-term dynamics of hypersonic planes
NASA Technical Reports Server (NTRS)
Cox, T.; Sachs, G.; Knoll, A.; Stich, R.
1995-01-01
The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well-defined steady-level turns with varying phugoid and height mode instabilities. Th data collected include pilot ratings and comments, performance measurements, and pilot workload measurements. The results presented in this paper include design guidelines for height and phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control power design requirements.
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1976-01-01
The performance, blade loads, and acoustic characteristics of a variable geometry rotor (VGR) system in forward flight and in a pullup maneuver were determined by the use of existing analytical programs. The investigation considered the independent effects of vertical separation of two three-bladed rotor systems as well as the effects of azimuthal spacing between the blades of the two rotors. The computations were done to determine the effects of these parameters on the performance, blade loads, and acoustic characteristics at two advance ratios in steady-state level flight and for two different g pullups at one advance ratio. To evaluate the potential benefits of the VGR concept in forward flight and pullup maneuvers, the results were compared as to performance, oscillatory blade loadings, vibratory forces transmitted to the fixed fuselage, and the rotor noise characteristics of the various VGR configurations with those of the conventional six-bladed rotor system.
NASA Technical Reports Server (NTRS)
Kroll, R. I.; Clemmons, R. E.
1979-01-01
The equations of motion program L217 formulates the matrix coefficients for a set of second order linear differential equations that describe the motion of an airplane relative to its level equilibrium flight condition. Aerodynamic data from FLEXSTAB or Doublet Lattice (L216) programs can be used to derive the equations for quasi-steady or full unsteady aerodynamics. The data manipulation and the matrix coefficient formulation are described.
2015-04-01
to successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak...uncover any workmanship errors in spite of exposing the PPUs to vibration levels in excess of what is expected for flight on any of the launchers ...successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak
Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight
NASA Technical Reports Server (NTRS)
Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.
1982-01-01
A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.
A Flight-Dynamic Helicopter Mathematical Model with a Single Flap-Lag- Torsion Main Rotor
1990-02-01
allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces...steady Greenberg model is used (ref. 3), Unsteady inflow effects are included using the three-state nonlinear Pitt/Peters dynamic inflow model (ref. 4...sectional aerodynamic model is based on quasi-steady Greenberg theory, which is a Theodorsen theory modified to account for lead-lag motions (refs. 3,14). The
Augmentor transient capability of an F100 engine equipped with a digital electronic engine control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Pai, G. D.
1984-01-01
An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.
Optimization of the Flapping Wing Systems for Micro Air Vehicle
2010-09-01
as 87%, under specific combinations of the flapping kinematics by water tunnel experiments [5]. Pesavento and Wang found that optimized flapping wing...41-72. [6] Pesavento , U., and Wang Z. J., “Flapping Wing Flight Can Save Aerodynamic Power Compared to Steady Flight,” Physical Review Letters
A CFD-informed quasi-steady model of flapping wing aerodynamics.
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J
2015-11-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Turner, Simon; Andrisani, Dominick, II
1992-01-01
The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
Dynamic Ground Effect for a Cranked Arrow Wing Airplane
NASA Technical Reports Server (NTRS)
Curry, Robert E.
1997-01-01
Flight-determined ground effect characteristics for an F-16XL airplane are presented and correlated with wind tunnel predictions and similar flight results from other aircraft. Maneuvers were conducted at a variety of flightpath angles. Conventional ground effect flight test methods were used, with the exception that space positioning data were obtained using the differential global positioning system (DGPS). Accuracy of the DGPS was similar to that of optical tracking methods, but it was operationally more attractive. The dynamic flight determined lift and drag coefficient increments were measurably lower than steady-state wind-tunnel predictions. This relationship is consistent with the results of other aircraft for which similar data are available. Trends in the flight measured lift increments caused by ground effect as a function of flightpath angle were evident but weakly correlated. An engineering model of dynamic ground effect was developed based on linear aerodynamic theory and super-positioning of flows. This model was applied to the F-16XL data set and to previously published data for an F-15 airplane. In both cases, the model provided an engineering estimate of the ratio between the steady-state and dynamic data sets.
Momentum effects in steady nucleate pool boiling during microgravity.
Merte, Herman
2004-11-01
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.
Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction.
Ranaldi, Francesco; Vanni, Paolo; Giachetti, Eugenio
2003-01-21
Two decades of research in microgravity have shown that certain biochemical processes can be altered by weightlessness. Approximately 10 years ago, our team, supported by the European Space Agency (ESA) and the Agenzia Spaziale Italiana, started the Effect of Microgravity on Enzyme Catalysis project to test the possibility that the microgravity effect observed at cellular level could be mediated by enzyme reactions. An experiment to study the cleavage reaction catalyzed by isocitrate lyase was flown on the sounding rocket MASER 7, and we found that the kinetic parameters were not altered by microgravity. During the 28th ESA parabolic flight campaign, we had the opportunity to replicate the MASER 7 experiment and to perform a complete steady-state analysis of the isocitrate lyase reaction. This study showed that both in microgravity and in standard g controls the enzyme reaction obeyed the same kinetic mechanism and none of the kinetic parameters, nor the equilibrium constant of the overall reaction were altered. Our results contrast with those of a similar experiment, which was performed during the same parabolic flight campaign, and showed that microgravity increased the affinity of lipoxygenase-1 for linoleic acid. The hypotheses suggested to explain this change effect of the latter were here tested by computer simulation, and appeared to be inconsistent with the experimental outcome.
NASA Technical Reports Server (NTRS)
Gray, Robin B.
1960-01-01
Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.
The Small Angular Oscillations of Airplanes in Steady Flight
NASA Technical Reports Server (NTRS)
Norton, F H
1924-01-01
This investigation was carried out by the National Advisory Committee for Aeronautics at the request of the Army Air Service to provide data concerning the small angular oscillations of several types of airplanes in steady flight under various atmospheric conditions. The data are of use in the design of bomb sights and other aircraft instruments. The method used consisted in flying the airplane steadily in one direction for at least one minute, while recording the angle of the airplane with the sun by means of a kymograph. The results show that the oscillations differ but little for airplanes of various types, but that the condition of the atmosphere is an important factor. The average angular excursion from the mean in smooth air is 0.8 degrees in pitch, 1.4 degrees in roll, and 0.9 degrees in yaw, without special instruments to aid the pilot in holding steady conditions. In bumpy air the values given above are increased about 50 per cent. (author)
1992-02-01
these following sections will includ descriptions of the flight results have validated die simulation study approach im t md mehodolies assocated with the...Consultant and E-xchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and...tasks with ever-increasing levels of fidelity is leading to a steady growth in their use for all areas of aviation from new concept studies , through
Joint Eglin Acoustics Week 2013 Data Report
NASA Technical Reports Server (NTRS)
Conner, David A.; Stephenson, James H.; Sim, Ben W.; Watts, Michael E.; Greenwood, Eric; Smith, Charles D.
2017-01-01
Far-field acoustic measurements were obtained for the AH-64D, HH-60M and CV-22B at the Eglin AFB, Test Area C-72, in July/August 2013. The primary purpose for this flight test was to obtain a benchmark database of detailed acoustic source noise characteristics for the aircraft operating at typical mission gross weights over a range of typical mission operating conditions. Data were acquired for a range of steady-state level and descending flight conditions, hover, and a variety of unsteady maneuver conditions. Between 30 and 37 microphones were deployed during these tests. Vehicle position and state data, as well as weather data were acquired simultaneously with the acoustic data. This paper describes the test aircraft, onboard instrumentation, ground instrumentation, and the data acquired. Data from this test are available upon request and review.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
Analytical modeling and experimental evaluation of a passively morphing ornithopter wing
NASA Astrophysics Data System (ADS)
Wissa, Aimy A.
Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using ViconRTM motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. +/-4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.
A Potential Theory for the Steady Separated Flow about an Aerofoil Section
1988-02-01
Adviser (3 copies Doc Data sheet) Aircraft Maintenance and Flight Trials Unit Director of Naval Aircraft Engineering Director of Naval Air Warfare...Superintendent, Aircraft Maintenance and Repair Army Office Scientific Adviser - Army (Doc Data sheet only) Engineering Development Establishment, Library...Flight Group Library Technical Division Library Director General Aircraft Engineering - Air Force Director General Operational Requirements - Air Force
NASA Technical Reports Server (NTRS)
Walsh, K. R.; Burcham, F. W.
1984-01-01
The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
Performance of a quasi-steady, multi megawatt, coaxial plasma thruster
NASA Technical Reports Server (NTRS)
Scheuer, Jay T.; Schoenberg, Kurt F.; Henins, Ivars; Gerwin, Richard A.; Moses, Ronald W., Jr.; Garcia, Jose A.; Gribble, Robert F.; Hoyt, Robert P.; Black, Dorwin C.; Mayo, Robert M.
1994-01-01
The Los Alamos National Laboratory Coaxial Thruster Experiment (CTX) has been upgraded to enable the quasisteady operation of magnetoplasmadynamic (MPD) type thrusters at power levels from 2 to 40 MW for 10 ms. Diagnostics include an eight position, three axis magnetic field probe to measure magnetic field fluctuations during the pulse; a triple Langmuir probe to measure ion density, electron temperature, and plasma potential; and a time-of-flight neutral particle spectrometer to measure specific impulse. Here we report on the experimental observations and associated analysis and interpretation of long-pulse, quasisteady, coaxial thruster performance in the CTX device.
A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert
1999-01-01
The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented
NASA Technical Reports Server (NTRS)
Suit, W. T.; Cannaday, R. L.
1979-01-01
The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.
A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.
2012-01-01
A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.
NASA Technical Reports Server (NTRS)
Mohr, R. L.
1975-01-01
A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging
NASA Astrophysics Data System (ADS)
Tahmasian, Sevak; Woolsey, Craig A.
2017-08-01
A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.
NASA Technical Reports Server (NTRS)
Bamber, M J; House, R O
1937-01-01
Report presents the results of tests of a 1/10-scale model of the XN2Y-1 airplane tested in the NACA 5-foot vertical wind tunnel in which the six components of forces and moments were measured. The model was tested in 17 attitudes in which the full-scale airplane had been observed to spin, in order to determine the effects of scale, tunnel, and interference. In addition, a series of tests was made to cover the range of angles of attack, angles of sideslip, rates of rotation, and control setting likely to be encountered by a spinning airplane. The data were used to estimate the probable attitudes in steady spins of an airplane in flight and of a model in the free-spinning tunnel. The estimated attitudes of steady spin were compared with attitudes measured in flight and in the spinning tunnel. The results indicate that corrections for certain scale and tunnel effects are necessary to estimate full-scale spinning attitudes from model results.
NASA Technical Reports Server (NTRS)
Chang, I. C.
1984-01-01
A new computer program is presented for calculating the quasi-steady transonic flow past a helicopter rotor blade in hover as well as in forward flight. The program is based on the full potential equations in a blade attached frame of reference and is capable of treating a very general class of rotor blade geometries. Computed results show good agreement with available experimental data for both straight and swept tip blade geometries.
Transient performance of fan engine with water ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Mullican, A.
1993-01-01
In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.
NASA Technical Reports Server (NTRS)
Grow, R. Bruce; Preisser, John S.
1971-01-01
A reefed 12.2-meter nominal-diameter (40-ft) disk-gap-band parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. A three-stage rocket was used to drive the instrumented payload to an altitude of 43.6 km (143,000 ft), a Mach number of 2.58, and a dynamic pressure of 972 N/m(exp 2) (20.3 lb/ft(exp 2)) where the parachute was deployed by means of a mortar. The parachute deployed satisfactorily and reached a partially inflated condition characterized by irregular variations in parachute projected area. A full, stable reefed inflation was achieved when the system had decelerated to a Mach number of about 1.5. The steady, reefed projected area was 49 percent of the steady, unreefed area and the average drag coefficient was 0.30. Disreefing occurred at a Mach number of 0.99 and a dynamic pressure of 81 N/m(exp 2) (1.7 lb/ft(exp 2)). The parachute maintained a steady inflated shape for the remainder of the deceleration portion of the flight and throughout descent. During descent, the average effective drag coefficient was 0.57. There was little, if any, coning motion, and the amplitude of planar oscillations was generally less than 10 degrees. The film also shows a wind tunnel test of a 1.7-meter-diameter parachute inflating at Mach number 2.0.
Application of the V-Gamma map to vehicle breakup analysis
NASA Technical Reports Server (NTRS)
Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex
2003-01-01
The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.
75 FR 80669 - Wright Brothers Day, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... the steady winds of Kitty Hawk, North Carolina and conquered the age-old dream of manned flight. That... boundaries of human knowledge and realize tomorrow what we can only dream today. We must also ready our...
STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight
NASA Technical Reports Server (NTRS)
1981-01-01
The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.
NASA Technical Reports Server (NTRS)
Suit, W. T.
1977-01-01
Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.
F-8C digital CCV flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.
1976-01-01
A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.
Transonic flow analysis for rotors. Part 3: Three-dimensional, quasi-steady, Euler calculation
NASA Technical Reports Server (NTRS)
Chang, I-Chung
1990-01-01
A new method is presented for calculating the quasi-steady transonic flow over a lifting or non-lifting rotor blade in both hover and forward flight by using Euler equations. The approach is to solve Euler equations in a rotor-fixed frame of reference using a finite volume method. A computer program was developed and was then verified by comparison with wind-tunnel data. In all cases considered, good agreement was found with published experimental data.
NASA Technical Reports Server (NTRS)
Malpica, Carlos; Greenwood, Eric; Sim, Ben
2016-01-01
At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
NASA Technical Reports Server (NTRS)
Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)
2001-01-01
Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with the lower superheat was sensitive to the thermal environment around the compensation chamber, while the LHP with the higher superheat (similar in design to DM LHP) was not. In response to the test results the placement of the starter heater will be optimized for the flight instrument testing for higher achieved superheat. This presentation discusses startup behavior, overall conductance of a radiator system, low power operation, high power operation, temperature control stability, and control heater power requirements as measured during this acceptance thermal vacuum test. A brief summary of 'lessons learned' will be included.
Effect of steady flight loads on JT9D-7 performance deterioration
NASA Technical Reports Server (NTRS)
Jay, A.; Todd, E. S.
1978-01-01
Short term engine deterioration occurs in less than 250 flights on a new engine and in the first flights following engine repair; while long term deterioration involves primarily hot section distress and compression system losses which occur at a somewhat slower rate. The causes for short-term deterioration are associated with clearance changes which occur in the flight environment. Analytical techniques utilized to examine the effects of flight loads and engine operating conditions on performance deterioration are presented. The role of gyroscopic, gravitational, and aerodynamic loads are discussed along with the effect of variations in engine build clearances. These analytical results are compared to engine test data along with the correlation between analytically predicted and measured clearances and rub patterns. Conclusions are drawn and important issues are discussed.
Evaluation of F/A-18A HARV inlet flow analysis with flight data
NASA Technical Reports Server (NTRS)
Smith, C. Frederic; Podleski, Steve D.; Barankiewicz, Wendy S.; Zeleznik, Susan Z.
1995-01-01
The F/A-18A aircraft has experienced engine stalls at high angles-of-attack and yaw flight conditions which were outside of its flight envelope. Future aircraft may be designed to operate routinely in this flight regime. Therefore, it is essential that an understanding of the inlet flow field at these flight conditions be obtained. Due to the complex interactions of the fuselage and inlet flow fields, a study of the flow within the inlet must also include external effects. Full Navier-Stokes (FNS) calculations on the F/A-18A High Alpha Research Vehicle (HARV) inlet for several angles-of-attack with sideslip and free stream Mach numbers have been obtained. The predicted forebody/fuselage surface static pressures agreed well with flight data. The surface static pressures along the inlet lip are in good agreement with the numerical predictions. The major departure in agreement is along the bottom of the lip at 30 deg and 60 deg angle-of-attack where a possible streamwise flow separation is not being predicted by the code. The circumferential pressure distributions at the engine face are in very good agreement with the numerical results. The variation in surface static pressure in the circumferential direction is very small with the exception of 60 angle-of-attack. Although the simulation does not include the effect of the engine, it appears that this omission has a second order effect on the circumferential pressure distribution. An examination of the unsteady flight test data base has shown that the secondary vortex migrates a significant distance with time. In fact, the extent of this migration increases with angle-of-attack with increasing levels of distortion. The effects of the engine on this vortex movement is unknown. This implies that the level of flow unsteadiness increases with increasing distortion. Since the computational results represent an asymptotic solution driven by steady boundary conditions, these numerical results may represent an arbitrary point in time. A comparison of the predicted total pressure contours with flight data indicates that the numerical results are within the excursion range of the unsteady data which is the best the calculations can attain unless an unsteady simulation is performed.
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.
1989-01-01
The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.
NASA Technical Reports Server (NTRS)
Donlan, C. J.; Kemp, W. B., Jr.; Polhamus, E. C.
1976-01-01
A 1/4 scale model of the Bell XS-1 transonic aircraft was tested in the Langley 300 mile-per-hour 7 by 10 foot tunnel to determine its low speed longitudinal stability and control characteristics. Pertinent longitudinal flying qualities expected of the XS-1 research airplane were estimated from the results of these tests including the effects of compressibility likely to be encountered at speeds below the force break. It appears that the static longitudinal stability and elevator control power will be adequate, but that the elevator control force gradient in steady flight will be undesirably low for all configurations. It is suggested that a centering spring be incorporated in the elevator control system of the airplane in order to increase the control force gradient in steady flight and in maneuvers.
Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition
NASA Astrophysics Data System (ADS)
Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.
A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.
Kinematic control of male Allen's Hummingbird wing trill over a range of flight speeds.
Clark, Christopher J; Mistick, Emily A
2018-05-18
Wing trills are pulsed sounds produced by modified wing feathers at one or more specific points in time during a wingbeat. Male Allen's Hummingbird ( Selasphorus sasin ) produce a sexually dimorphic 9 kHz wing trill in flight. Here we investigate the kinematic basis for trill production. The wingtip velocity hypothesis posits that trill production is modulated by the airspeed of the wingtip at some point during the wingbeat, whereas the wing rotation hypothesis posits that trill production is instead modulated by wing rotation kinematics. To test these hypotheses, we flew six male Allen's Hummingbirds in an open jet wind tunnel at flight speeds of 0, 3, 6, 9, 12 and 14 m s -1 , and recorded their flight with two 'acoustic cameras' placed below and behind, or below and lateral to the flying bird. The acoustic cameras are phased arrays of 40 microphones that used beamforming to spatially locate sound sources within a camera image. Trill Sound Pressure Level (SPL) exhibited a U-shaped relationship with flight speed in all three camera positions. SPL was greatest perpendicular to the stroke plane. Acoustic camera videos suggest that the trill is produced during supination. The trill was up to 20 dB louder during maneuvers than it was during steady state flight in the wind tunnel, across all airspeeds tested. These data provide partial support for the wing rotation hypothesis. Altered wing rotation kinematics could allow male Allen's Hummingbird to modulate trill production in social contexts such as courtship displays. © 2018. Published by The Company of Biologists Ltd.
The effect of unsteady blade loading on the aeroacoustics of a pusher propeller
NASA Astrophysics Data System (ADS)
Mauk, Clay S.; Farokhi, Saeed
1993-06-01
A theoretical/computational approach is developed to predict the change in near-field noise due to a momentum-deficit upstream of a propeller plane, specifically for a pylon wake in a pusher configuration. The acoustic pressure is computed using blade geometry and unsteady blade surface pressure history. The steady blade surface pressure is predicted using blade-momentum theory and two-dimensional airfoil characteristics. Unsteady blade pressures are derived from in-flight measurements. In-flight acoustic measurements are used for code validation purposes. Overall sound pressure levels (OSPL) are computed for an array of observer locations parallel to the propeller axis of rotation. In order to clearly realize the effect of the wake encounter on the radiated sound, the wake signature is eliminated from the unsteady blade pressures. By subtracting the OSPL computed with the smoothed data from that computed with the original unsteady data, the change in noise resulting from the wake encounter is deduced. In general, the noise was increased due to the propeller-wake chopping activity. For all flight conditions, the largest increase in radiated noise occurred for a highly loaded propeller. The results indicate that the propeller noise due to periodic wake encounter may possess a unique directivity pattern.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2012-01-01
A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.
Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong
2011-01-01
The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.
An aerodynamic model for insect flapping wings in forward flight.
Han, Jong-Seob; Chang, Jo Won; Han, Jae-Hung
2017-03-31
This paper proposes a semi-empirical quasi-steady aerodynamic model of a flapping wing in forward flight. A total of 147 individual cases, which consisted of advance ratios J of 0 (hovering), 0.125, 0.25, 0.5, 0.75, 1 and ∞, and angles of attack α of -5 to 95° at intervals of 5°, were examined to extract the aerodynamic coefficients. The Polhamus leading-edge suction analogy and power functions were then employed to establish the aerodynamic model. In order to preserve the existing level of simplicity, K P and K V , the correction factors of the potential and vortex force models, were rebuilt as functions of J and α. The estimations were nearly identical to direct force/moment measurements which were obtained from both artificial and practical wingbeat motions of a hawkmoth. The model effectively compensated for the influences of J, particularly showing outstanding moment estimation capabilities. With this model, we found that using a lower value of α during the downstroke would be an effective strategy for generating adequate lift in forward flight. The rotational force and moment components had noticeable portions generating both thrust and counteract pitching moment during pronation. In the upstroke phase, the added mass component played a major role in generating thrust in forward flight. The proposed model would be useful for a better understanding of flight stability, control, and the dynamic characteristics of flapping wing flyers, and for designing flapping-wing micro air vehicles.
A low-cost simulation platform for flapping wing MAVs
NASA Astrophysics Data System (ADS)
Kok, J. M.; Chahl, J. S.
2015-03-01
This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.
2011-07-25
testing, the EFTR must be keyed with the same key used to encrypt the Enhanced Flight Termination Systems ( EFTS ) message. To ensure identical keys...required to verify the proper state. e. Procedure. (1) Pull up EFTS graphic user interface (GUI) (Figure 3). (2) Click “Receiver Power On...commanded mode steady state input currents will not exceed their specified values. TOP 05-2-543 25 July 2011 19 Figure 3. EFTS GUIa
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
Unsuspected neurologic disease in aviation personnel : survival following seizures in flight.
DOT National Transportation Integrated Search
1963-08-01
The increasing use of private and commercial air transportation combined with the steady increase in recreational aviation have inevitably increased the likelihood of pilot failure caused by medical disability simply because there are more pilots in ...
Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David
2016-12-06
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
Vestibuloocular reflex of rhesus monkeys after spaceflight
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei
1992-01-01
The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.
Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions
NASA Astrophysics Data System (ADS)
Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji
To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.
Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Tobak, M.; Malcolm, G. N.
1980-01-01
This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.
Experimental Results From a 2kW Brayton Power Conversion Unit
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Arthur
2003-01-01
This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).
Shape matters: improved flight in tapered auto-rotating wings
NASA Astrophysics Data System (ADS)
Liu, Yucen; Vincent, Lionel; Kanso, Eva
2017-11-01
Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Space Shuttle booster thrust imbalance analysis
NASA Technical Reports Server (NTRS)
Bailey, W. R.; Blackwell, D. L.
1985-01-01
An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).
NASA Technical Reports Server (NTRS)
Klein, V.
1979-01-01
Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1986-01-01
The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.
The Role of CFD Simulation in Rocket Propulsion Support Activities
NASA Technical Reports Server (NTRS)
West, Jeff
2011-01-01
Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications
Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W
2002-10-01
Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.
Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.
Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight
NASA Technical Reports Server (NTRS)
Favier, J. J.; Degoer, J.
1984-01-01
One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.
1976-01-01
AGAJ74) of C-81. The program computes aircraft trim, stability derivatives and control power, and time histories of aircraft and blade motions and...activated. The quasi-static, time-variant trim was used for the main rotor for camel where either time history solutions or steady-state blade loads...of the maneuver since test data were not recorded for the start of the maneu- ver. The time histories for the test data which were avail- able
NASA Technical Reports Server (NTRS)
Hamaker, Frank M; Neice, Stanford E; Wong, Thomas J
1953-01-01
The similarity law for nonsteady, inviscid, hypersonic flow about slender three-dimensional shapes is derived. Conclusions drawn are shown to be valid for rotational flow. Requirements for dynamic similarity of related shapes in free flight are obtained. The law is examined for steady flow about related three-dimensional shapes. Results of an experimental investigation of the pressures acting on two inclined cones are found to check the law as it applies to bodies of revolution.
Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, K. A.; Friedmann, P. P.
1995-01-01
This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.
Mariner Venus/Mercury 1973 rocket engine assembly
NASA Technical Reports Server (NTRS)
Snoke, D. R.; Williams, R. S.
1972-01-01
The fabrication and test of rocket engine assemblies (REA) for Mariner Venus/Mercury 1973 are reported. The fabrication, assembly and flight acceptance test of seven REA's including the type approval test of one engine and fabrication of one additional kit consisting of detail parts for an engine ready for catalyst loading are presented. The MV/M '73 REA which is a nominal 51 lbs thrust monopropellant engine is described. Under steady state operation the specific impulse is not less than 228 lb-sec at 55 lb and 218.5 lb-sec at 10 lb thrust varying linearly between these limits. The characteristic velocity is not less than 4100 ft/sec at any thrust level.
Design and flight testing of a nullable compressor face rake
NASA Technical Reports Server (NTRS)
Holzman, J. K.; Payne, G. A.
1973-01-01
A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.
Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity
NASA Technical Reports Server (NTRS)
Haglund, G. T.; Kane, E. J.
1973-01-01
The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-11-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-01-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
NASA Astrophysics Data System (ADS)
Bao, Heng; Zhou, Jin; Pan, Yu
2015-12-01
Spark ignition experiments of liquid kerosene are conducted in a scramjet model equipped with dual-cavities at Ma 4.5 flight condition with a stagnation temperature of 1032 K. The ignition ability of two cavities with different length is compared and analyzed based on the wall pressure distribution along the combustor and the thrust evolution. The experimental results indicate that the longer cavity (L/D=7) is more suitable than the smaller cavity (L/D=5) in spark ignition. When employing the smaller cavity, three steady combustion states are observed after spark ignition. The concept of 'local flame' is adopted to explain the expanding problem of weak combustion. The local equivalence ratio in the shear layer is the dominated factor in determining the developing process of local flame. The final steady combustion mode of the combustor is dependent on the flame developing process. When employing the longer cavity, the establishment of intense combustion state can be much easier.
The Influences of Airmass Histories on Radical Species During POLARIS
NASA Technical Reports Server (NTRS)
Pierson, James M.; Kawa, S. R.
1998-01-01
The POLARIS mission focused on understanding the processes associated with the decrease of polar stratospheric ozone from spring to fall at high latitudes. This decrease is linked primarily to in situ photochemical destruction by reactive nitrogen species, NO and NO2, which also control other catalytic loss cycles. Steady state models have been used to test photochemistry and radical behavior but are not always adequate in simulating radical species observations. In some cases, air mass history can be important and trajectory models give an improved simulation of the radical species. Trajectory chemistry models, however, still consistently underestimate NO and NO2 abundances compared to measurements along the ER-2 flight track. The Goddard chemistry on trajectory model has been used to test updated rate constants for NO2 + OH, NO2 + O and OH + HNO3, key reactions that affect NO and NO2 abundances. We present comparisons between the modified Goddard chemistry on trajectory model, the JPL steady state model and observations from selected flights.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.
Uncontrolled Stability in Freely Flying Insects
NASA Astrophysics Data System (ADS)
Melfi, James, Jr.; Wang, Z. Jane
2015-11-01
One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.
Bumblebees minimize control challenges by combining active and passive modes in unsteady winds
NASA Astrophysics Data System (ADS)
Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao
2016-10-01
The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.
Variation of fan tone steadiness for several inflow conditions
NASA Technical Reports Server (NTRS)
Balombin, J. R.
1978-01-01
An amplitude probability density function analysis technique for quantifying the degree of fan noise tone steadiness has been applied to data from a fan tested under a variety of inflow conditions. The test conditions included typical static operation, inflow control by a honeycomb/screen device and forward velocity in a wind tunnel simulating flight. The ratio of mean square sinusoidal-to-random signal content in the fundamental and second harmonic tones was found to vary by more than an order-of-magnitude. Some implications of these results concerning the nature of fan noise generation mechanisms are discussed.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location of excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from, and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms of performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction. The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location o excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms o performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
Insect Flight: Computation and Biomimetic Design
2008-05-31
Mechanics, 37, 183-210 (2005). • Z. Jane Wang, ”Insect Flight”, McGraw Hill Year Book of Science and Technology, 2006. • Anders Andersen, Umberto Pesavento ...Umberto Pesavento , and Z. Jane Wang, ’Analysis of transitions between fluttering, tumbling and steady descent of falling cards’, Journal of Fluid
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft
NASA Technical Reports Server (NTRS)
Denham, Casey; Owens, D. Bruce
2016-01-01
Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.
An in-flight investigation of a twin fuselage configuration in approach and landing
NASA Technical Reports Server (NTRS)
Weingarten, N. C.
1984-01-01
An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected.
Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP
NASA Technical Reports Server (NTRS)
Coffen, Charles D.; George, Albert R.
1990-01-01
The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.
14 CFR 25.201 - Stall demonstration.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; or (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when... steady rate of speed reduction can be established, apply the longitudinal control so that the speed... flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per...
14 CFR 25.201 - Stall demonstration.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; or (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when... steady rate of speed reduction can be established, apply the longitudinal control so that the speed... flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per...
14 CFR 25.201 - Stall demonstration.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; or (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when... steady rate of speed reduction can be established, apply the longitudinal control so that the speed... flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per...
14 CFR 25.201 - Stall demonstration.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; or (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when... steady rate of speed reduction can be established, apply the longitudinal control so that the speed... flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per...
14 CFR 25.201 - Stall demonstration.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; or (3) The pitch control reaches the aft stop and no further increase in pitch attitude occurs when... steady rate of speed reduction can be established, apply the longitudinal control so that the speed... flight stalls, apply the longitudinal control to achieve airspeed deceleration rates up to 3 knots per...
14 CFR 25.119 - Landing climb: All-engines-operating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing climb: All-engines-operating. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.119 Landing climb: All-engines-operating. In the landing configuration, the steady gradient of climb may not be less than...
14 CFR 25.119 - Landing climb: All-engines-operating.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing climb: All-engines-operating. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.119 Landing climb: All-engines-operating. In the landing configuration, the steady gradient of climb may not be less than...
V/STOL propulsion control analysis: Phase 2, task 5-9
NASA Technical Reports Server (NTRS)
1981-01-01
Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.
Methods for predicting unsteady takeoff and landing trajectories of the aircraft
NASA Astrophysics Data System (ADS)
Shevchenko, A.; Pavlov, B.; Nachinkina, G.
2017-01-01
Informational and situational awareness of the aircrew greatly affects the probability of accidents, during takeoff and landing in particular. For the purpose of assessing the current and predicting the future states of an aircraft the energy approach to the flight control is used. Key energy balance equation is generalized to the ground phases. The equation describes the process of accumulating of the total energy of the aircraft along the entire trajectory, including the segment ahead. This segment length is defined by the required terminal energy state. For the takeoff phase the predict algorithm calculates the aircraft position on a runway after which it is possible to accelerate up to the speed of steady level flight and to reach the altitude sufficient for overcoming the high-rise obstacles. For the landing phase the braking distance length is determined. For increasing the likelihood of predicting the correction of the algorithm is introduced. The results of modeling many takeoffs and landings of passenger liner with different weights with the ahead obstacle and the engine failure are given. Working availability of the algorithm correction is shown.
Simulating Effects of High Angle of Attack on Turbofan Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.
Evaluation of graphite composite materials for bearingless helicopter rotor application
NASA Technical Reports Server (NTRS)
Ulitchny, M. G.; Lucas, J. J.
1974-01-01
Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced.
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Foster, John V.
2007-01-01
A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.
Hedrick, Tyson L; Tobalske, Bret W; Biewener, Andrew A
2002-05-01
Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed wind tunnel. Gait use was investigated via a combination of three-dimensional kinematics and quasi-steady aerodynamic modeling of bound circulation on the distal and proximal portions of the wing. Estimates of lift from our circulation model were sufficient to support body weight at all but the slowest speeds (1 and 3 ms(-1)). From comparisons of aerodynamic impulse derived from our circulation analysis with the impulse estimated from whole-body acceleration, it appeared that our quasi-steady aerodynamic analysis was most accurate at intermediate speeds (5-11 ms(-1)). Despite differences in wing shape and wing loading, both species shifted from a vortex-ring to a continuous-vortex gait at 7 ms(-1). We found that the shift from a vortex-ring to a continuous-vortex gait (i) was associated with a phase delay in the peak angle of attack of the proximal wing section from downstroke into upstroke and (ii) depended on sufficient forward velocity to provide airflow over the wing during the upstroke similar to that during the downstroke. Our kinematic estimates indicated significant variation in the magnitude of circulation over the course the wingbeat cycle when either species used a continuous-vortex gait. This variation was great enough to suggest that both species shifted to a ladder-wake gait as they approached the maximum flight speed (cockatiels 15 ms(-1), doves 17 ms(-1)) that they would sustain in the wind tunnel. This shift in flight gait appeared to reflect the need to minimize drag and produce forward thrust in order to fly at high speed. The ladder-wake gait was also employed in forward and vertical acceleration at medium and fast flight speeds.
Comparative Modal Analysis of Sieve Hardware Designs
NASA Technical Reports Server (NTRS)
Thompson, Nathaniel
2012-01-01
The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.
Homeostasis and biological rhythms in the rat during spaceflight
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1985-01-01
The effects of microgravity on the physiological regulation of homeostatic systems is studied. The temperature and heart rate of rats exposed to seven days of microgravity and a 12:12 light/dark cycle are analyzed. A 24-hour nocturnal rhythmicity is observed in the control and in-flight heart rates and body temperatures. The preflight daytime body temperature was calculated as 37.2 + or - 0.03 C and in-flight as 37.4 + or 0.04 C; nighttime body temperature preflight daytime was determined as 38.0 + or - 0.02 C, and in-flight as 37.8 + or 0.06 C. The 24-hour mean heart rate was depressed from 412 + or - 3.3 bpm preflight to 373 + or - 2.4 bpm in-flight; this change is noted in both dark and light conditions. It is detected that microgravity alters the steady state regulation of heart rate and body temperature.
14 CFR 23.441 - Maneuvering loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conditions. In computing the loads, the yawing velocity may be assumed to be zero: (1) With the airplane in unaccelerated flight at zero yaw, it is assumed that the rudder control is suddenly displaced to the maximum... attainable steady state sideslip angle, with the rudder at maximum deflection caused by any one of the...
NASA Technical Reports Server (NTRS)
Bienert, W. B.
1974-01-01
The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.
Sonic-boom research: Selected bibliography with annotation
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.
1986-01-01
Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.
Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.
1981-01-01
Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.
Computational Study of Axisymmetric Off-Design Nozzle Flows
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles operating off-design at transonic Mach numbers have been completed. These computations span the very difficult transonic flight regime with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined, including the Explicit Algebraic Stress model. Computations have been completed at freestream Mach numbers of 0.9 and 1.2, and nozzle pressure ratios (NPR) of 4 and 6. Calculations completed with variable time-stepping (steady-state) did not converge to a true steady-state solution. Calculations obtained using constant timestepping (timeaccurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was the result of using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show reasonable agreement with experimental data. The SST turbulence model demonstrates the best overall agreement with experimental data.
Effect of chordwise forces and deformations and deformations due to steady lift on wing flutter
NASA Technical Reports Server (NTRS)
Boyd, W. N.
1977-01-01
This investigation explores the effects of chordwise forces and deformations and steady-state deformation due to lift on the static and dynamic aeroelastic stability of a uniform cantilever wing. Results of this analysis are believed to have practical applications for high-performance sailplanes and certain RPV's. The airfoil cross section is assumed to be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-aft bending, and torsion are considered. A differential equation model is developed, which included the nonlinear elastic bending-torsion coupling that accompanies even moderate deflections. A linearized expansion in small time-dependent deflections is made about a steady flight condition. The stability determinant of the linearized system then contains coefficients that depend on steady displacements. Loads derived from two-dimensional incompressible aerodynamic theory are used to obtain the majority of the results, but cases using three-dimensional subsonic compressible theory are also studied. The stability analysis is carried out in terms of the dynamically uncoupled natural modes of vibration of the uniform cantilever.
Forward flight of swallowtail butterfly with simple flapping motion.
Tanaka, Hiroto; Shimoyama, Isao
2010-06-01
Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
The modern rotor aerodynamic limits survey: A report and data survey
NASA Technical Reports Server (NTRS)
Cross, J.; Brilla, J.; Kufeld, R.; Balough, D.
1993-01-01
The first phase of the Modern Technology Rotor Program, the Modern Rotor Aerodynamic Limits Survey, was a flight test conducted by the United States Army Aviation Engineering Flight Activity for NASA Ames Research Center. The test was performed using a United States Army UH-60A Black Hawk aircraft and the United States Air Force HH-60A Night Hawk instrumented main-rotor blade. The primary purpose of this test was to gather high-speed, steady-state, and maneuvering data suitable for correlation purposes with analytical prediction tools. All aspects of the data base, flight-test instrumentation, and test procedures are presented and analyzed. Because of the high volume of data, only select data points are presented. However, access to the entire data set is available upon request.
Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane
NASA Technical Reports Server (NTRS)
Goforth, E. A.; Murphy, R. C.; Beranek, J. A.; Davis, R. A.
1987-01-01
A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.
Time frequency analysis of sound from a maneuvering rotorcraft
NASA Astrophysics Data System (ADS)
Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.
2014-10-01
The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.
NASA Technical Reports Server (NTRS)
Woodruff, Kristin K.; Johnson, Anyika N.; Lee, Stuart M. C.; Gernhardt, Michael; Schneider, Suzanne M.; Foster, Philip P.
2000-01-01
Decompression sickness (DCS) is a serious risk to astronauts performing extravehicular activity (EVA). To reduce this risk, the addition of ten minutes of moderate exercise (75% VO2pk) during prebreathe has been shown to decrease the total prebreathe time from 4 to 2 hours and to decrease the incidence of DCS. The overall purpose of this pilot study was to develop an exercise protocol using flight hardware and an in-flight physical fitness cycle test to perform prebreathe exercise before an EVA. Eleven subjects volunteered to participate in this study. The first objective of this study was to compare the steady-state heart rate (HR) and oxygen consumption (VO2) from a submaximal arm and leg exercise (ALE) session with those predicted from a maximal ALE test. The second objective was to compare the steady-state HR and V02 from a submaximal elastic tube and leg exercise (TLE) session with those predicted from the maximal ALE test. The third objective involved a comparison of the maximal ALE test with a maximal leg-only (LE) test to conform to the in- flight fitness assessment test. The 75% VO2pk target HR from the LE test was significantly less than the target HR from the ALE test. Prescribing exercise using data from the maximal ALE test resulted in the measured submaximal values being higher than predicted VO2 and HR. The results of this pilot study suggest that elastic tubing is valid during EVA prebreathe as a method of arm exercise with the flight leg ergometer and it is recommended that prebreathe countermeasure exercise protocol incorporate this method.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Two flight prototype solid propellant pulsed plasma microthruster propulsion systems for the SMS satellite were fabricated, assembled and tested. The propulsion system is a completely self contained system requiring only three electrical inputs to operate: a 29.4 volt power source, a 28 volt enable signal and a 50 millsec long command fire signal that can be applied at any rate from 50 ppm to 110 ppm. The thrust level can be varied over a range 2.2 to 1 at constant impulse bit amplitude. By controlling the duration of the 28 volt enable either steady state thrust or a series of discrete impulse bits can be generated. A new technique of capacitor charging was implemented to reduce high voltage stress on energy storage capacitors.
NASA Technical Reports Server (NTRS)
May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei
2014-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
NASA Technical Reports Server (NTRS)
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
Steady properly-banked turns of turbojet-propelled airplanes
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The problem of a jet-propelled airplane held in a steady turn is treated both in the very general case and also in the particular case when the polar curve can be approximated by a parabola. Once the general solution has been obtained, some typical maneuvers are next studied such as, the turn of maximum bank, of maximum angular velocity, and of minimum radius of curvature. After a brief comparison is made between the turning characteristics of conventional airplanes and jet airplanes, and after the effect of compressibility upon the turn is examined, the effects of the salient aerodynamic and structural parameters upon the behavior of the plane in curvilinear flight are summarized in the conclusions.
Preliminary supersonic flight test evaluation of performance seeking control
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1993-01-01
Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.
Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H
2014-06-01
The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds.
Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi
2018-03-01
Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P < 0.001). Furthermore, there was a gradual increase of central SBP (cSBP), DBP and MBP from the lowest to the highest quintiles of uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P < 0.001) and men (β = 0.043 and 0.051, both P ≤ 0.003). After further adjustments for MBP to account for the concomitant increase in steady component of BP, SBPs were no longer associated with uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.
Flap-Lag-Torsion Stability in Forward Flight
NASA Technical Reports Server (NTRS)
Panda, B.; Chopra, I.
1985-01-01
An aeroelastic stability of three-degree flap-lag-torsion blade in forward flight is examined. Quasisteady aerodynamics with a dynamic inflow model is used. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory as well as constant coefficient approximation in the fixed reference frame. Results are presented for both stiff-inplane and soft-inplane blade configurations. The effects of several parameters on blade stability are examined, including structural coupling, pitch-flap and pitch-lag coupling, torsion stiffness, steady inflow distribution, dynamic inflow, blade response solution and constant coefficient approximation.
Maneuver Acoustic Flight Test of the Bell 430 Helicopter
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel
2012-01-01
A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.
The span as a fundamental factor in airplane design
NASA Technical Reports Server (NTRS)
Lachmann, G
1928-01-01
Previous theoretical investigations of steady curvilinear flight did not afford a suitable criterion of "maneuverability," which is very important for judging combat, sport and stunt-flying airplanes. The idea of rolling ability, i.e., of the speed of rotation of the airplane about its X axis in rectilinear flight at constant speed and for a constant, suddenly produced deflection of the ailerons, is introduced and tested under simplified assumptions for the air-force distribution over the span. This leads to the following conclusions: the effect of the moment of inertia about the X axis is negligibly small, since the speed of rotation very quickly reaches a uniform value.
Monopropellant hydrazine resistojet: Flight application design
NASA Technical Reports Server (NTRS)
Kurch, C. K.
1973-01-01
The design, development, and testing of an engineering model nominal 20-millipound thrust monopropellant hydrazine resistojet program is directed toward the advanced development of an electrothermal hydrazine thruster (EHT). The EHT decomposes hydrazine thermally and expands the decomposition products through a nozzle to provide the impulse necessary to fulfill spacecraft propulsive requirements. The thruster is capable of operation at pulse widths from 0.050 second to steady state and delivers specific impulse values up to about 230 seconds depending on the duty cycle. The program is comprised of six tasks including analyses, the generation of specifications and other documentation, design, fabrication and test, data correlation, and recommendations for the design of flight units.
An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software
NASA Technical Reports Server (NTRS)
Binder, Michael
1993-01-01
Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.
NASA Technical Reports Server (NTRS)
Stephenson, James H.; Greenwood, Eric
2015-01-01
Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.
Transient Approximation of SAFE-100 Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Reid, Robert S.
2005-01-01
Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.
Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts.
Rascón, Brenda; Harrison, Jon F
2005-11-01
Resting insects are extremely tolerant of hypoxia. However, oxygen requirements increase dramatically during flight. Does the critical atmospheric P (O)(2) (P(c)) increase strongly during flight, or does increased tracheal conductance allow even flying insects to possess large safety margins for oxygen delivery? We tested the effect of P(O)(2) on resting and flying CO(2) emission, as well as on flight behavior and vertical force production in flying locusts, Schistocerca americana. The P(c) for CO(2) emission of resting animals was less than 1 kPa, similar to prior studies. The P(c) for flight bout duration was between 10 and 21 kPa, the P(c) for vertical force production was between 3 and 5 kPa, and the P(c) for CO(2) emission was between 10 and 21 kPa. Our study suggests that the P(c) for steady-state oxygen consumption is between 10 and 21 kPa (much higher than for resting animals), and that tracheal oxygen stores allowed brief flights in 5 and 10 kPa P(O)(2) atmospheres to occur. Thus, P(c) values strongly increased during flight, consistent with the hypothesis that the excess oxygen delivery capacity observed in resting insects is substantially reduced during flight.
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Comparison of analysis and flight test data for a drone aircraft with active flutter suppression
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Pototzky, A. S.
1981-01-01
This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.
Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment
NASA Technical Reports Server (NTRS)
Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.
1989-01-01
In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.
Eye development and the appearance and maintenance of corneal transparency
NASA Technical Reports Server (NTRS)
Conrad, G. W.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)
1992-01-01
Embryonic development of the eye, including the cornea, depends on the appearance and steady maintenance of intraocular pressure. The eye is a gravity-sensitive organ, as evidence by changes in pupil diameter during parabolic flight. The cornea is largely a paracrystal of extracellular matrix. The extent to which it will polymerize normally in microgravity has yet to be determined.
Flight Investigation of a 20-Inch-Diameter Steady-Flow Ram Jet
1948-01-14
toward the center, thereby enriching that region t o a canbuetible mixture a t low over- all f uel-air r a t i06 ,~ The flame length a t a...combustion chamber and the nozzle above the exhaust flame. The via ible flame length f o r a given fuel-air ratio steadily decreased with increasing
1947-07-01
HF..-I.T THA.:\\SFER 0.:\\ THE SnlfACE TDJPER.Hl’RE Of ... BODY OF RE’·OLt·TIO.:\\ 471 o~~---~~~--~~~~~--~~~~--~ 1.2 1.6 2.0 2,4 2.8 3.2 Moch number
SERT 2 1979 extended flight thruster system performance
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Ignaczak, L. R.
1979-01-01
Steady state tests of the thruster 2 system on the SERT 2 spacecraft are presented. A direct thrust measurement was obtained for the ion thruster during operations to increase the spacecraft spin rate to maintain spacecraft attitude stability. The continued restart tests of thruster 1 and a report on the general status of all spacecraft systems including the main solar array are presented.
Effects of bleed air extraction on thrust levels on the F404-GE-400 turbofan engine
NASA Technical Reports Server (NTRS)
Yuhas, Andrew J.; Ray, Ronald J.
1992-01-01
A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.
Efficient sensitivity analysis and optimization of a helicopter rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Chopra, Inderjit
1989-01-01
Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.
Unsteady transonic potential flow over a flexible fuselage
NASA Technical Reports Server (NTRS)
Gibbons, Michael D.
1993-01-01
A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.
Ishihara, Daisuke; Horie, T; Denda, Mitsunori
2009-01-01
In this study, the passive pitching due to wing torsional flexibility and its lift generation in dipteran flight were investigated using (a) the non-linear finite element method for the fluid-structure interaction, which analyzes the precise motions of the passive pitching of the wing interacting with the surrounding fluid flow, (b) the fluid-structure interaction similarity law, which characterizes insect flight, (c) the lumped torsional flexibility model as a simplified dipteran wing, and (d) the analytical wing model, which explains the characteristics of the passive pitching motion in the simulation. Given sinusoidal flapping with a frequency below the natural frequency of the wing torsion, the resulting passive pitching in the steady state, under fluid damping, is approximately sinusoidal with the advanced phase shift. We demonstrate that the generated lift can support the weight of some Diptera.
An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Mcnulty, Michael J.
1985-01-01
For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasi-steady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62-m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. By computerized symbolic manipulation, an analytical model is developed in substall to predict stability margins with mode indentification. It also predicts substall and stall regions to help explain the correlation between theory and data. The correlation shows both the strengths and weaknesses of the data and theory, and promotes further insights into areas in which further study is needed in substall and stall.
In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography
NASA Astrophysics Data System (ADS)
Szewczyk, Mariusz; Smusz, Robert; de Groot, Klaus; Meyer, Joerg; Kucaba-Pietal, Anna; Rzucidlo, Pawel
2017-04-01
Infrared thermography (IRT) has been well established in wind tunnel and flight tests for the last decade. Former applications of IRT were focused, in nearly all cases, on steady measurements. In the last years, requirements of unsteady IRT measurements (up to 10 Hz) have been formulated, but the problem of a very slow thermal response of common materials of wind tunnel models or airplane components has to be overcome by finding a surface modification with a fast thermal response (low heat capacity, low thermal conductivity and high thermal diffusivity). Therefore, lab investigations of potential material combinations and flight tests with a ‘low cost’ aircraft, i.e. a glider with a modified wing surface, were conducted. In order to induce unsteady conditions (rapid change of laminar-turbulent boundary layer transition), special maneuvers of a glider during IRT measurements were performed.
Natural environment application for NASP-X-30 design and mission planning
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Brown, S. C.; Batts, G. W.
1993-01-01
The NASA/MSFC Mission Analysis Program has recently been utilized in various National Aero-Space Plane (NASP) mission and operational planning scenarios. This paper focuses on presenting various atmospheric constraint statistics based on assumed NASP mission phases using established natural environment design, parametric, threshold values. Probabilities of no-go are calculated using atmospheric parameters such as temperature, humidity, density altitude, peak/steady-state winds, cloud cover/ceiling, thunderstorms, and precipitation. The program although developed to evaluate test or operational missions after flight constraints have been established, can provide valuable information in the design phase of the NASP X-30 program. Inputting the design values as flight constraints the Mission Analysis Program returns the probability of no-go, or launch delay, by hour by month. This output tells the X-30 program manager whether the design values are stringent enough to meet his required test flight schedules.
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status
NASA Technical Reports Server (NTRS)
Wagar, William
2000-01-01
The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.
NASA Technical Reports Server (NTRS)
Stevens, Joseph E.
1955-01-01
Free-flight tests of two rocket-propelled l/20-scale models of the Bell MX-776 missile have been conducted to obtain measurements of the aileron deflection required to counteract the induced rolling moments caused by combined angles of attack and sideslip and thus to determine whether the ailerons provided were capable of controlling the model at the attitudes produced by the test conditions. Inability to obtain reasonably steady-state conditions and superimposed high-frequency oscillations in the data precluded any detailed analysis of the results obtained from the tests. For these reasons, the data presented are limited largely to qualitative results.
NASA Technical Reports Server (NTRS)
Klemin, Alexander
1937-01-01
An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.
The role of finite-difference methods in design and analysis for supersonic cruise
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
SMC Standard: Evaluation and Test Requirements for Liquid Rocket Engines
2017-07-26
Run -Time Trends .................................................................................................... 53 7.2.4 Steady State Analytical...Administration, 2008. 22. M. Singh, J. Vargo, D. Schiffer and J. Dello, “Safe Diagram – A Design and Reliability Tool for Turbine Blading ,” Dresser-Rand...allowed starts and run ‐time including ground acceptance testing, on‐pad firings/aborts, and flight exposure. Part: A single piece (or two or more
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1983-01-01
An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.
1990-01-01
Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.
In-Flight Technique for Acquiring Mid- And Far-Field Sonic Boom Signatures
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.; Baize, Daniel G.; Maglieri, Domenic, J.
1999-01-01
Flight test experiments have been conducted to establish the feasibility of obtaining sonic boom signature measurements below a supersonic aircraft using the NASA Portable Automatic Triggering System (PATS) mounted in the USMC Pioneer Unmanned Aerial Vehicle (UAV). This study forms a part of the NASA sonic boom minimization activities, specifically the demonstration of persistence of modified boom signatures to very large distances in a real atmosphere. The basic objective of the measurement effort was to obtain a qualitative view of the sonic boom signature in terms of its shape, number of shocks, their locations, and their relative strength. Results suggest that the technique may very well provide quantitative information relative to mid-field and far-field boom signatures. The purpose of this presentation is to describe the arrangement and operation of this in-flight system and to present the resulting sonic boom measurements. Adaption and modification of two PATS to the UAV payload section are described and include transducer location, mounting arrangement and recording system isolation. Ground static runup, takeoff and landing, and cruise flight checkouts regarding UAV propeller and flow noise on the PATS automated triggering system and recording mode are discussed. For the proof-of-concept tests, the PATS instrumented UAV was flown under radar control in steady-level flight at the altitude of 8700 feet MSL and at a cruise speed of about 60 knots. The USN F-4N sonic boom generating aircraft was vectored over the UAV on reciprocal headings at altitudes of about 1 1,000 feet MSL and 13,000 feet MSL at about Mach 1. 15. Sonic boom signatures were acquired on both PATS for all six supersonic passes. Although the UAV propeller noise is clearly evident in all the measurements, the F-4 boom signature is clearly distinguishable and is typically N-wave in character with sharply rising shock fronts and with a mid-shock associated with the inlet-wing juncture. Consideration is being given to adapting the PATS/TJAV measurements technique to the NASA Learjet to determine feasibility of acquiring in-flight boom signatures in the altitude range of 10,000 feet to 40,000 feet.
A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight
Nabawy, Mostafa R. A.; Crowthe, William J.
2015-01-01
A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657
Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas
2012-01-01
In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.
New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing
NASA Astrophysics Data System (ADS)
Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian
2016-11-01
Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.
NASA Technical Reports Server (NTRS)
Boshar, John
1947-01-01
Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less
Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.
Carlyle, Jennilee K; Mochizuki, George
2018-02-01
Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Seldner, K.; Cwynar, D. S.
1977-01-01
A real time, hybrid computer simulation of a turbofan engine is described. Controls research programs involving that engine are supported by the simulation. The real time simulation is shown to match the steady state and transient performance of the engine over a wide range of flight conditions and power settings. The simulation equations, FORTRAN listing, and analog patching diagrams are included.
NASA Technical Reports Server (NTRS)
Sutton, L. R.
1975-01-01
A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included.
Mathematical model of the SH-3G helicopter
NASA Technical Reports Server (NTRS)
Phillips, J. D.
1982-01-01
A mathematical model of the Sikorsky SH-3G helicopter based on classical nonlinear, quasi-steady rotor theory was developed. The model was validated statically and dynamically by comparison with Navy flight-test data. The model incorporates ad hoc revisions which address the ideal assumptions of classical rotor theory and improve the static trim characteristics to provide a more realistic simulation, while retaining the simplicity of the classical model.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing
Sapir, Nir; Elimelech, Yossef
2017-01-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle—especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna’s hummingbird (Calypte anna). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing’s leading-edge differs from the attached vorticity structure that was typically found over insects’ wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies. PMID:28878971
Rocketdyne RBCC Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratckin, G.; Goldman, A.; Ortwerth, P.; Weisberg, S.
1999-01-01
Boeing Rocketdyne is pursuing the development of Rocket Based Combined Cycle (RBCC), propulsion systems as demonstrated by significant contract work in the hypersonic arena (ART, NASP, SCT, system studies) and over 12 years of steady company discretionary investment. The Rocketdyne concept is a fixed geometry integrated rocket, ramjet, scramjet which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals. seal purge gas, and closeout side attachments. Rocketdyne's experimental RBCC engine (Engine A5) was constructed under contract with the NASA Marshall Space Flight Center. Engine A5 models the complete flight engine flowpath consisting of an inlet, isolator, airbreathing combustor and nozzle. High performance rocket thrusters are integrated into the engine to enable both air-augmented rocket (AAR) and pure rocket operation. Engine A5 was tested in CASL's new FAST facility as an air-augmented rocket, a ramjet and a pure rocket. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. Rocket mode performance was above predictions. For the first time. testing also demonstrated transition from AAR operation to ramjet operation. This baseline configuration has also been shown, in previous testing, to perform well in the scramjet mode.
Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.
Achache, Yonathan; Sapir, Nir; Elimelech, Yossef
2017-08-01
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.
Estimates of effects of residual acceleration on USML-1 experiments
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
The purpose of this study effort was to develop analytical models to describe the effects of residual accelerations on the experiments to be carried on the first U.S. Microgravity Lab mission (USML-1) and to test the accuracy of these models by comparing the pre-flight predicted effects with the post-flight measured effects. After surveying the experiments to be performed on USML-1, it became evident that the anticipated residual accelerations during the USML-1 mission were well below the threshold for most of the primary experiments and all of the secondary (Glovebox) experiments and that the only set of experiments that could provide quantifiable effects, and thus provide a definitive test of the analytical models, were the three melt growth experiments using the Bridgman-Stockbarger type Crystal Growth Furnace (CGF). This class of experiments is by far the most sensitive to low level quasi-steady accelerations that are unavoidable on space craft operating in low earth orbit. Because of this, they have been the drivers for the acceleration requirements imposed on the Space Station. Therefore, it is appropriate that the models on which these requirements are based are tested experimentally. Also, since solidification proceeds directionally over a long period of time, the solidified ingot provides a more or less continuous record of the effects from acceleration disturbances.
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
Study of monopropellants for electrothermal thrusters
NASA Technical Reports Server (NTRS)
Kuenzly, J. D.
1974-01-01
A 333 mN electrothermal thruster designed to use MIL-grade hydrazine was demonstrated to be suitable for operation with low freezing point monopropellants containing hydrazine azide, monomethylhydrazine, unsymmetrical-dimethylhydrazine and ammonia. The steady-state specific impulse was greater than 200 sec for all propellants. The pulsed-mode specific impulse for an azide blend exceeded 175 sec for pulse widths greater than 50 msec; propellants containing carbonaceous species delivered 175 sec pulsed-mode specific impulses for pulse widths greater than 100 msec. Longer thrust chamber residence times were required for the carbonaceous propellants; the original thruster design was modified by increasing the characteristic chamber length and screen packing density. Specific recommendations were made for the work required to design and develop flight worthy thrusters, including methods to increase propellant dispersal at injection, thruster geometry changes to reduce holding power levels and methods to initiate the rapid decomposition of the carbonaceous propellants.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.
1998-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.
Bifurcation theory applied to aircraft motions
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1985-01-01
Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (subcritical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with experiments.
Bifurcation theory applied to aircraft motions
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1985-01-01
The bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (critical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with the experiments.
Experimental and Analytical Performance of a Dual Brayton Power Conversion System
NASA Technical Reports Server (NTRS)
Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl
2009-01-01
The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.
Quantum thermodynamics of nanoscale steady states far from equilibrium
NASA Astrophysics Data System (ADS)
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
NASA Technical Reports Server (NTRS)
Scudder, N F
1935-01-01
The investigation of the effect of mass distribution on the spinning of airplanes initiated with tests on the NY-1 airplane has been continued by tests on another airplane in order to increase the scope of the information and to observe particularly the behavior of an airplane that shows considerable change in sideslip angle for its various conditions of spinning. The XN2Y-1 naval training biplane was used for the present tests in which changes of ballast along the longitudinal and lateral axes and changes of aileron, stabilizer, and elevator settings were made. The effects of these changes on the steady spin were measured in flight.
Comparison of analysis and flight test data for a drone aircraft with active flutter suppression
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Pototzky, A. S.
1981-01-01
A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.
NASA Technical Reports Server (NTRS)
Aulisio, Michael V.; Pinero, Luis R.; White, Brandon L.; Hickman, Tyler A.; Bontempo, James J.; Hertel, Thomas A.; Birchenough, Arthur G.
2016-01-01
A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.
Reliability Assessment for Low-cost Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Freeman, Paul Michael
Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.
Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping
NASA Astrophysics Data System (ADS)
Finoki, Edouard
This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.
Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)
NASA Technical Reports Server (NTRS)
Mauro, Stephanie
2013-01-01
The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.
Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)
NASA Technical Reports Server (NTRS)
Mauro, Stephanie
2013-01-01
The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1986-01-01
The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.
Hawkmoth flight stability in turbulent vortex streets.
Ortega-Jimenez, Victor Manuel; Greeter, Jeremy S M; Mittal, Rajat; Hedrick, Tyson L
2013-12-15
Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L.; Lazar, James
1951-01-01
A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.
Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo
2009-01-01
Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured
Numerical Modeling of Solidification in Space With MEPHISTO-4. Part 2
NASA Technical Reports Server (NTRS)
Simpson, James E.; Yoa, Minwu; deGroh, Henry C., III; Garimella, V. Suresh
1998-01-01
A pre-flight analysis of the directional solidification of BiSn with MEPHISTO-4 is presented. Simplified Bridgman growth under microgravity conditions is simulated using a two dimensional finite element model. This numerical model is a single domain, pseudo-steady state model, and includes the effects of both thermal and solutal convection. The results show that for all orientations of the applied steady state gravity vector, of magnitude 1 micro-g, the directional solidification process remains diffusion controlled. The maximum convective velocity was found to be 4.424 x 10(exp -5) cm/s for the horizontal Bridgman growth configuration. This value is an order of magnitude lower than the growth velocity. The maximum and minimum values or solute concentration in the liquid at the crystal-melt interface were 13.867 at.% and 13.722 at.%, respectively. This gives a radial segregation value of xi = 1.046% at the interface. A secondary objective of this work was to compare the results obtained to those that consider thermal convection only (no solutal convection). It was found that the convective flow patterns in simulations which included solutal convection were significantly different from those which ignored solutal convection. The level of radial segregation predicted by the current simulations is an order of magnitude lower than that found in simulations which ignore solutal convection. The final aim was to investigate the effect of g-jitter on the crystal growth process. A simulation was performed to calculate the system response to a 1 second, 100 micro-g gravity impulse acting normal to the direction of growth. This pulse is consistent with that induced by Orbiter thruster firings. The results obtained indicate that such a gravity pulse causes an increase in the level of radial solute segregation at the interface from the steady state values. The maximum value of solute concentration in the liquid was found to be 13.888 at.%, the minimum value calculated was 13.706 at.%, yielding a radial segregation value of xi = 1.31% at the interface. These values occurred 126 seconds after the pulse terminated. Thus it is anticipated that the process will remain diffusion controlled even when subjected to such g-jitter.
Optimal Quasi-steady Plasma Thruster system characteristics.
NASA Technical Reports Server (NTRS)
Ludwig, D. E.; Kelly, A. J.
1972-01-01
The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.
2011-01-01
The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.
NASA Astrophysics Data System (ADS)
Sidibe, Souleymane
The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.
Numerical Analysis of a Radiant Heat Flux Calibration System
NASA Technical Reports Server (NTRS)
Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.
1998-01-01
A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.
Experimental study of the flight envelope and research of safety requirements for hang-gliders
NASA Technical Reports Server (NTRS)
Laburthe, C.
1979-01-01
The flight mechanic computations were computed, providing both the flight envelopes with all sorts of limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aeroelasticity, etc... The particular problem of luffing dives was thoroughly analyzed, and two kinds of causes were exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed a strong link with fabric tension, as expected through Nielsen's and Twaites' theory. Fabric tension strongly depending upon aeroelasticity, that parameter was found to be the most effective design one for positive stability. Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a bit suprising, with a common maximum value of approximately 55 deg of bank angle for a steady turn.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
Initial Flight Test Evaluation of the F-15 ACTIVE Axisymmetric Vectoring Nozzle Performance
NASA Technical Reports Server (NTRS)
Orme, John S.; Hathaway, Ross; Ferguson, Michael D.
1998-01-01
A full envelope database of a thrust-vectoring axisymmetric nozzle performance for the Pratt & Whitney Pitch/Yaw Balance Beam Nozzle (P/YBBN) is being developed using the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft. At this time, flight research has been completed for steady-state pitch vector angles up to 20' at an altitude of 30,000 ft from low power settings to maximum afterburner power. The nozzle performance database includes vector forces, internal nozzle pressures, and temperatures all of which can be used for regression analysis modeling. The database was used to substantiate a set of nozzle performance data from wind tunnel testing and computational fluid dynamic analyses. Findings from initial flight research at Mach 0.9 and 1.2 are presented in this paper. The results show that vector efficiency is strongly influenced by power setting. A significant discrepancy in nozzle performance has been discovered between predicted and measured results during vectoring.
Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.
Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A
2000-01-01
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
NASA Technical Reports Server (NTRS)
Papazian, J. M.; Wilcox, W. R.
1977-01-01
The behavior of bubbles at a dendritic solidification interface was studied during the coasting phase of a sounding rocket flight. Sequential photographs of the gradient freeze experiment showed nucleation, growth and coalescence of bubbles at the moving interface during both the low-gravity and one-gravity tests. In the one-gravity test the bubbles were observed to detach from the interface and float to the top of the melt. However, in the low-gravity tests no bubble detachment from the interface or steady state bubble motion occurred and large voids were grown into the crystal. These observations are discussed in terms of the current theory of thermal migration of bubbles and in terms of their implications on the space processing of metals.
Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects
NASA Technical Reports Server (NTRS)
Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.
2009-01-01
Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.
NASA Technical Reports Server (NTRS)
Cohen, B.; Cohen, N.; Helwig, D.; Solomon, D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Raphan, T.
1994-01-01
This technical paper discusses the following: (1) The VOR of two rhesus monkeys was studied before and after 14 days of spaceflight to determine effects of microgravity on the VOR. Horizontal, vertical and roll eye movements were recorded in these and six other monkeys implanted with scleral search coils. Animals were rotated about a vertical axis to determine the gain of the horizontal, vertical and roll VOR. They were rotated about axes tilted from the vertical (off-vertical axis rotation, OVAR) to determine steady state gains and effects of gravity on modulations in eye position and eye velocity. They were also tested for tilt dumping of post-rotatory nystagmus. (2) The gain of the horizontal VOR was close to unity when animals were tested 15 and 18 hours after flight. VOR gain values were similar to those registered before flight. If the gain of the horizontal VOR changes in microgravity, it must revert to normal soon after landing. (3) Steady state velocities of nystagmus induced by off-vertical axis rotation (OVAR) were unchanged by adaptation to microgravity, and the phase of the modulations was similar before and after flight. However, modulations in horizontal eye velocity had more variation after landing and were on mean about 50% larger for angles of tilt of the axis of rotation between 50 and 90?/s after flight. This difference was similar in both animals and was significant. (4) A striking finding was that tilt dumping was lost in the one animal tested for this function. This loss persisted for several days after return. This is reminiscent of the loss of response to pitch while rotating in the M-131 experiments of Skylab, and must be studied in detail in future spaceflights. (5) Thus, two major findings emerged from these studies: after spaceflight the modulation of horizontal eye velocity was larger during OVAR, and one animal lost its ability to tilt-dump its nystagmus. Both findings are consistent with the postulate that adaptation to microgravity causes alterations in the way that otolith information is processed in the central nervous system. The experiments lay the groundwork for studying the vertical and roll VOR before and after future space flights, as well as for studying modulations in vertical and roll eye position during OVAR and tilt dumping.
High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)
2001-01-01
Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.
Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control
NASA Technical Reports Server (NTRS)
1995-01-01
Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.
Highlights of Transient Plume Impingement Model Validation and Applications
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
2007-12-04
central nevous system , consisting of a self- excited neuronal network. Even in the absence of any sensory inputs this network will 4 produce, in two...is not necessary in smaller systems . Introduction Conventional aircraft can be designed such that steady-state aerodynamics apply. Thus, it is...active damping by visual inputs, whereas the same is not necessary in smaller systems . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
DOE Office of Scientific and Technical Information (OSTI.GOV)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
14 CFR 23.77 - Balked landing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pounds or less maximum weight must be able to maintain a steady gradient of climb at sea level of at... acrobatic category turbine engine-powered airplane must be able to maintain a steady gradient of climb of at....73(b). (c) Each commuter category airplane must be able to maintain a steady gradient of climb of at...
Computational analysis of forebody tangential slot blowing on the high alpha research vehicle
NASA Technical Reports Server (NTRS)
Gee, Ken
1994-01-01
Current and future fighter aircraft can maneuver in the high-angle-of-attack flight regime while flying at low subsonic and transonic freestream Mach numbers. However, at any flight speed, the ability of the vertical tails to generate yawing moment is limited in high-angle-of-attack flight. Thus, any system designed to provide the pilot with additional side force and yawing moment must work in both low subsonic and transonic flight. However, previous investigations of the effectiveness of forebody tangential slot blowing in generating the desired control forces and moments have been limited to the low subsonic freestream flow regime. In order to investigate the effectiveness of tangential slot blowing in transonic flight, a computational fluid dynamics analysis was carried out during the grant period. Computational solutions were obtained at three different freestream Mach numbers and at various jet mass flow ratios. All results were obtained using the isolated F/A-18 forebody grid geometry at 30.3 degrees angle of attack. One goal of the research was to determine the effect of freestream Mach number on the effectiveness of forebody tangential slot blowing in generating yawing moment. The second part of the research studied the force onset time lag associated with blowing. The time required for the yawing moment to reach a steady-state value from the onset of blowing may have an impact on the implementation of a pneumatic system on a flight vehicle.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1974-01-01
Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2014-01-01
Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.
NASA Technical Reports Server (NTRS)
Miller, Steven A.
2014-01-01
Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Zinnecker, Alicia
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey Thomas; Zinnecker, Alicia Mae
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.
Relevance of system size to the steady-state properties of tapped granular systems.
Gago, Paula A; Maza, Diego; Pugnaloni, Luis A
2015-03-01
We investigate the steady-state packing fraction ϕ and force moment tensor Σ of quasi-two-dimensional granular columns subjected to tapping. Systems of different height h and width L are considered. We find that ϕ and Σ, which describe the macroscopic state of the system, are insensitive to L for L>50d (with d the grain diameter). However, results for granular columns of different heights cannot be conciliated. This suggests that comparison between results of different laboratories on this type of experiments can be done only for systems of same height. We show that a parameter ɛ=1+(Aω)2/(2gh), with A and ω the amplitude and frequency of the tap and g the acceleration of gravity, can be defined to characterize the tap intensity. This parameter is based on the effective flight of the granular bed, which takes into account the h dependency. When ϕ is plotted as a function of ɛ, the data collapses for systems of different h. However, this parameter alone is unable to determine the steady state to be reached since different Σ can be observed for a given ɛ if different column heights are considered.
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
Flow and Force Equations for a Body Revolving in a Fluid
NASA Technical Reports Server (NTRS)
Zahm, A. F.
1979-01-01
A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.
TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation
NASA Technical Reports Server (NTRS)
Lin, Edward I.
1992-01-01
The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.
An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less
Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.
2011-01-01
The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.
NASA Astrophysics Data System (ADS)
Bluman, James Edward
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
The FX/90: A proposal in response to a low Reynolds Number station keeping mission
NASA Technical Reports Server (NTRS)
Wirthman, David; Palmer, Julie; Gleixner, Aaron; Russell, Scott; Nevala, Tom; Nosek, Mark
1990-01-01
The FX/90 is a remotely piloted vehicle designed to fly at Reynolds numbers below 2 x 10 to the 5th power. Several applications exist for this type of flight, such as low altitude flight of very small aircraft. The design presented here allows investigation into the unique problems involved in low Reynolds number flight, which will, in turn, further understanding of this flight regime. The aircraft will operate in a steady flight environment, free from significant atmospheric turbulence and weather effects. The F-90 has a 39 in. fuselage which is constructed of balsa and plywood. The landing gear for the aircraft is a detachable carriage on which the aircraft rests. The aerodynamic planform is a rectangular wing (no taper or sweep) with a chord of 9 in., a wingspan of 72 in., and is constructed entirely out of styrofoam. The propulsion system is a puller configuration mounted on the front of the fuselage. It consists of an Astro 05 engine and a 10-6 two bladed propeller. Control of the aircraft is accomplished through the use of two movable control surfaces: elevators for pitch control, and a rudder for yaw control. The aircraft is soundly constructed, highly maneuverable, and adequately powered. Furthermore, the investigation into alternative technologies, most notably the styrofoam wing and the detachable landing gear, holds promise to improve the performance of the aircraft.
Internal sensations as a source of fear: exploring a link between hypoxia and flight phobia.
Vanden Bogaerde, Anouk; De Raedt, Rudi
2013-01-01
Although flight phobia is very common in the general population, knowledge of the underlying mechanisms is limited. The aim of the current study is to determine whether hypoxia is selectively associated with flight anxiety. We wanted to explore levels of oxygen saturation (SpO2) and the associated subjective somatic sensations in flight phobics and controls. The data collected in this study were obtained from 103 participants: 54 had flight phobia, 49 were controls. SpO2 as well as a subjective report of somatic sensations and anxiety were measured during short haul flights, both at ground level and at cruising altitude. Results indicated that both flight phobics and controls showed a comparable clinical significant decrease in SpO2 from sea level to cruising altitude. Next, at ground level the flight phobic group reported more somatic sensations, most likely due to the elevated levels of anxiety at that point. However, at cruising altitude the flight phobic group still reported more somatic sensations while the level of anxiety was no longer significantly different from controls. This finding points to altered symptom perception in flight phobia and stresses the importance of somatic sensations in this particular phobia.
Wang, Yang; Zhang, Xiao-Jian; Chen, Yu-Qiao; Lu, Pin-Pin; Chen, Chao
2009-11-01
This study investigated the growth characteristics of iron bacteria on cast iron and relationship between suspended and attached iron bacteria. The steady-state growth of iron bacteria would need 12 d and iron bacteria level in effluents increased 1 lg. Hydraulics influence on iron bacteria level and detachment rate of steady-state attached iron bacteria was not significant. But it could affect the time of attached iron bacteria on cast-iron coupons reaching to steady state. When the chlorine residual was 0.3 mg/L, the iron bacteria growth could be controlled effectively and suspended and attached iron bacteria levels both decreased 1 lg. When the chlorine residual was more than 1.0 mg/L, it could not inactivate the iron bacteria of internal corrosion scale yet. There was little effect on inhibiting the iron bacteria growth that the chlorine residual was 0.05 mg/L in drinking water quality standard of China. The iron bacteria on coupons reached to steady state without disinfectant and then increased the chlorine residual to 1.25 mg/L, the attached iron bacteria level could decrease 2 lg to 3 lg. Under steady-state, the suspended iron bacteria levels were linearly dependent on the attached iron bacteria. The control of iron bacteria in drinking water distribution systems was advanced: maintaining the chlorine residual (0.3 mg/L), flushing the pipeline with high dosage disinfectant, adopting corrosion-resistant pipe materials and renovating the old pipe loop.
Unsteady Gas Dynamics Problems Related to Flight Vehicles
1979-05-01
vertical-axis wind turbines typified by the Darrieus machine (see Cha’. !. Ref. R9 and R10). When cUL.figured in the zero-bending- moment Tropeq.-!n...Performance Data for the Darrieus Wind Turbine with NASA 0012 Blades," Sandia Labs Energy Report, SAND 76-0130, May 1976. R11. Steele, C.R., "Application of...aspect!ratio wings proved often to be unfavorable. Improved steady and unsteady theories were published for the loading of vertical-axis wind turbines
Solving the optimal attention allocation problem in manual control
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.
Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Keller, Donald F.; Ivanco, Thomas G.
2010-01-01
A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from the Ares I-X GWL model test was used in the determination of worst-case loads for the analysis of Ares I-X FTV design wind conditions. Finally, this paper includes a brief discussion of the limited full-scale GWL data acquired during the rollout and on-pad stay of the Ares I-X FTV that was launched from KSC on October 28, 2009.
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.
1991-01-01
Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined.
RHETT/EPDM Performance Characterization
NASA Technical Reports Server (NTRS)
Haag, T.; Osborn, M.
1998-01-01
The 0.6 kW Electric Propulsion Demonstration Module (EPDM) flight thruster system was tested in a large vacuum facility for performance measurements and functional checkout. The thruster was operated at a xenon flow rate of 3.01 mg/s, which was supplied through a self-contained propellant system. All power was provided through a flight-packaged power processing unit, which was mounted in vacuum on a cold plate. The thruster was cycled through 34 individual startup and shutdown sequences. Operating periods ranged from 3 to 3600 seconds. The system responded promptly to each command sequence and there were no involuntary shutdowns. Direct thrust measurements indicated that steady state thrust was temperature sensitive, and varied from a high of 41.7 mN at 16 C, to a low of 34.8 mN at 110 C. Short duration thruster firings showed rapid response and good repeatability.
The Development of a Handbook for Astrobee F Performance and Stability Analysis
NASA Technical Reports Server (NTRS)
Wolf, R. S.
1982-01-01
An astrobee F performance and stability analysis is presented, for use by the NASA Sounding Rocket Division. The performance analysis provides information regarding altitude, mach number, dynamic pressure, and velocity as functions of time since launch. It is found that payload weight has the greatest effect on performance, and performance prediction accuracy was calculated to remain within 1%. In addition, to assure sufficient flight stability, a predicted rigid-body static margin of at least 8% of the total vehicle length is required. Finally, fin cant angle predictions are given in order to achieve a 2.5 cycle per second burnout roll rate, based on obtaining 75% of the steady roll rate. It is noted that this method can be used by flight performance engineers to create a similar handbook for any sounding rocket series.
Concepts and effects of damping in isolators
NASA Technical Reports Server (NTRS)
Kerley, J.
1984-01-01
A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.
Response of a small-turboshaft-engine compression system to inlet temperature distortion
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Klann, G. A.; Little, J. K.
1984-01-01
An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Sliwa, Steven M.; Lallman, Frederick J.
1989-01-01
Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods.
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoffield, Don
2015-03-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight
NASA Technical Reports Server (NTRS)
Friedmann, P.; Tong, P.
1972-01-01
Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.
Flap-lag-torsional dynamics of helicopter rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Crespodasilva, M. R. M.
1986-01-01
A perturbation/numerical methodology to analyze the flap-lead/lag motion of a centrally hinged spring restrained rotor blade that is valid for both hover and for forward flight was developed. The derivation of the nonlinear differential equations of motion and the analysis of the stability of the steady state response of the blade were conducted entirely in a Symbolics 3670 Machine using MACSYMA to perform all the lengthy symbolic manipulations. It also includes generation of the fortran codes and plots of the results. The Floquet theory was also applied to the differential equations of motion in order to compare results with those obtained from the perturbation analysis. The results obtained from the perturbation methodology and from Floquet theory were found to be very close to each other, which demonstrates the usefullness of the perturbation methodology. Another problem under study consisted in the analysis of the influence of higher order terms in the response and stability of a flexible rotor blade in forward flight using Computerized Symbolic Manipulation and a perturbation technique to bypass the Floquet theory. The derivation of the partial differential equations of motion is presented.
Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes
NASA Technical Reports Server (NTRS)
Wadge, G.
1982-01-01
Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.
Reverse Engineering Crosswind Limits - A New Flight Test Technique?
NASA Technical Reports Server (NTRS)
Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.
2013-01-01
During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.
Lessons Learned from the Wide Field Camera 3 Flight Correlation
NASA Technical Reports Server (NTRS)
Peabody, Hume L.; Stavely, Richard A.; Townsend, Jackie; Abel, Josh; Mandi, Joe; Bast, William
2010-01-01
The Wide Field Camera 3 (WFC3) instrument was installed into the Hubble Space Telescope (HST) as part of the activities for STS (Space Transportation System)-125 (HST Servicing Mission 4). Initial model predictions for power and radiator temperature were not in good agreement with flight data during a relatively hot, stable period, with the flight power and temperatures being significantly higher than predictions. Significant efforts were undertaken to identify the causes of the discrepancies and to resolve the flight model correlation problems as the thermal vacuum test correlation indicated good agreement. The WFC3 thermal design performance has proven difficult to accurately predict, since the power dissipation on the radiator typically increases as the radiator temperature increases, due to a Thermo Electric Cooler (TEC) attached to the this radiator. This self beating continues until the radiative emissive capability is met for a given temperature, and only then does the system find a quasi-steady regime. Various other factors may also contribute to the radiator temperature, such as backloadlng from the observatory itself and the planet, local high-absorptivity regions near fasteners/holes, and temperature varying parasitic heat leaks from the instrument itself to the radiator. Each of these effects in turn may increase the radiator temperature, and furthermore the demand on the TEC.
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin
In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.
Orion Handling Qualities During ISS Proximity Operations and Docking
NASA Technical Reports Server (NTRS)
Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Brazzel, Jack; Spehar, Pete
2011-01-01
NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking.
Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J
2016-01-18
Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.
Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.
2016-01-01
Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170
Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li
2002-01-01
Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.
2000-01-01
Numerical modeling was Undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities claiming solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level (q) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA founded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10(exp -4) g(sub o) (g(sub o) = 9.8 m/square s) maximum melt convection was obtained for an orientation of 90 deg. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.
Geochemical and Geophysical Analysis of Holocene-aged Sediments from Southeastern Tulare Lake, CA
NASA Astrophysics Data System (ADS)
Prosser, L.; Jackson, B.; Roza, J.
2015-12-01
Tulare Lake is located in the San Joaquin Valley of California west of the Sierra Nevada mountains (Preston, 1981). The Poso Canal trench locality is located in the southeastern portion of Tulare Lake in the Ton Tachi lake plane south of the Atwell Island sand spit. This area was chosen because these sediments lie beneath a road bed that predates agricultural tilling, preserving late-Holocene lake sediments. Sediments from trench TL13-7C were sampled for geophysical and geochemical analyses in order to create a higher resolution lake-level history during the late-Holocene than had been possible using only lithologic descriptions. The new record is comprised of grain size, clay percentage, carbon/nitrogen (C/N) ratios, total inorganic carbon (TIC), total organic carbon (TOC), and nitrogen (N) analyses taken at 2-cm intervals over 181-cm of section comprising four lithologic units. From oldest to youngest, Unit 1A consists of relatively equal and steady percentages of clay, silt, and sand, and relatively low C/N ratios, TIC, TOC, and N, suggesting an unproductive lake and relatively deep lake levels at this high elevation site. Fluctuating C/N ratios, a steady decrease in clay percentage, and a steady increase in sand percentage in Unit 1B suggests periods of flooding and fluctuating lake levels and eventually shallow evaporative lake conditions, as evidenced by a considerable and sudden increase in TIC (to 4.51%) in Unit 2. In addition to the drastic change in TIC, Unit 2 shows evidence of a large influx of terrestrial organic matter perhaps transported by floods by an increase in sand percentage and two pronounced spikes in C/N ratios to 38 and 65 (Meyers and Lallier-Verges, 1999). Unit 3 shows low but steady levels of clay and sand percentages, and higher but steady levels of silt. Levels of TIC, TOC, C/N, and N are all steady, with relatively higher levels of TOC and N, which are indicators of high lake level and productivity (Cohen, 2003). Unit 4 is very similar to Unit 3, however toward the upper region of the unit, sand percentages increased with a slight increase in TIC, suggesting a relatively shallower lake. This record will be used to test lake-level models for Tulare Lake put forth by Blunt and Negrini (in press) and Jackson (2015).
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.
Single-Pilot Workload Management in Entry-Level Jets
2013-09-01
under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang ELJ level 5 flight training device at CAMI. Eight of the pilots were Mustang owner...Instrument Landing System IFR ............Instrument Flight Rules IMC ...........Instrument Meteorological Conditions ISA...pilots flew an experimental flight with two legs involving high workload management under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang
NASA Technical Reports Server (NTRS)
Nagabhushanam, J.; Gaonkar, Gopal H.; Mcnulty, Michael J.
1987-01-01
Experiments have been performed with a 1.62 m diameter hingeless rotor in a wind tunnel to investigate flap-lag stability of isolated rotors in forward flight. The three-bladed rotor model closely approaches the simple theoretical concept of a hingeless rotor as a set of rigid, articulated flap-lag blades with offset and spring restrained flap and lag hinges. Lag regressing mode stability data was obtained for advance ratios as high as 0.55 for various combinations of collective pitch and shaft angle. The prediction includes quasi-steady stall effects on rotor trim and Floquet stability analyses. Correlation between data and prediction is presented and is compared with that of an earlier study based on a linear theory without stall effects. While the results with stall effects show marked differences from the linear theory results, the stall theory still falls short of adequate agreement with the experimental data.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Reduction of Weather-Related Terminal Area Delays in the Free-Flight Era
NASA Technical Reports Server (NTRS)
Johnson, Sally C.; Chin, David K.; Rovinsky, Robert B.; Kostiuk, Peter F.; Lee, David A.; Hemm, Robert V.; Wingrove, Earl R., III
1996-01-01
While much of the emphasis of the free-flight movement has been concentrated on reducing en-route delays, airport capacity is a major bottleneck in the current airspace system, particularly during bad weather. According to the Air Transport Association (ATA) Air Carrier Delay Reports, ground delays (gate-hold, taxi-in, and taxi-out) comprise 75 percent of total delays. It is likely that the projected steady growth in traffic will only exacerbate these losses. Preliminary analyses show that implementation of the terminal area technologies and procedures under development in NASA s Terminal Area Productivity program can potentially save the airlines at least $350M annually in weather-related delays by the year 2005 at Boston Logan and Detroit airports alone. This paper briefly describes the Terminal Area Productivity program, outlines the costhenefit analyses that are being conducted in support of the program, and presents some preliminary analysis results.
HIRDLS Cryocooler Subsystem on-orbit Performance
NASA Astrophysics Data System (ADS)
Lock, J.; Stack, R.; Glaister, D. S.; Gully, W.
2006-04-01
This paper describes the HIRDLS (High Resolution Dynamic Limb Sounder) Cryocooler Subsystem (CSS) and its on-orbit flight performance. The HIRDLS Instrument was launched on July 15, 2004 as part of the NASA GSFC EOS Aura platform. Ball Aerospace provided the CSS, which includes the long life Stirling cryocooler (cooling at 59 K), cold plumbing to connect the cooler to the instrument Detector Subsystem, an ambient radiator to reject the cooler dissipation, and a vacuum enclosure system that enabled bench top ground testing. As of August 20, 2005, the cryocooler has over 9,000 hours of continuous operation with performance that exceeds requirements. Of note is that the CSS has experienced virtually no change in performance, including no indication of external contamination related degradation that has been evident on several other cryocooler systems in space flights. This steady performance can be attributed to the multi-layer insulation (MLI) based insulation design, which will be described in the paper.
Multivariable control altitude demonstration on the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.
1979-01-01
The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.
NASA Astrophysics Data System (ADS)
Lin, Jack; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
Transient measurements of impedance spectroscopy and electrical time-of-flight (TOF) techniques were used for the evaluation of carrier propagation dependence on applied potentials in a pentacene organic field effect transistor (OFET). These techniques are based on carrier propagation, thus isolates the effect of charge density. The intrinsic mobility which is free from contact resistance effects was obtained by measurement of various channel lengths. The obtained intrinsic mobility shows good correspondence with steady-state current-voltage measurement's saturation mobility. However, their power law relations on mobility vs applied potential resulted in different exponents, suggesting different carrier propagation mechanisms, which is attributable to filling of traps or space charge field in the channel region. The hypothesis was verified by a modified electrical TOF experiment which demonstrated how the accumulated charges in the channel influence the effective mobility.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
ACSYNT inner loop flight control design study
NASA Technical Reports Server (NTRS)
Bortins, Richard; Sorensen, John A.
1993-01-01
The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between aircraft and flight control system design parameters.
1995-08-01
R.T.N. Chen: A survey of nonuniform 22) R.Houwink, A.E.P.Veldman: steady and inflow models for rotorcraft flight unsteady separated flow computations for...grid with con- see [17]). Because of the cylindrical nature of the stant grid sizes. If an arbitrary nonuniform grid is flow of a hovering rotor an O-H...research distributed around the blade section (figure 4) within a lairing at DRA Bedford on the DRA’s Aeromechanics Lynx Control which extends from 80
Approach path control for powered-lift STOL aircraft
NASA Technical Reports Server (NTRS)
Clymer, D. J.; Flora, C. C.
1973-01-01
A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1984-01-01
Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.
NASA Technology Demonstrations Missions Program Overview
NASA Technical Reports Server (NTRS)
Turner, Susan
2011-01-01
The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry, more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Comparison of shock structure solutions using independent continuum and kinetic theory approaches
NASA Technical Reports Server (NTRS)
Fiscko, Kurt A.; Chapman, Dean R.
1988-01-01
A vehicle traversing the atmosphere will experience flight regimes at high altitudes in which the thickness of a hypersonic shock wave is not small compared to the shock standoff distance from the hard body. When this occurs, it is essential to compute accurate flow field solutions within the shock structure. In this paper, one-dimensional shock structure is investigated for various monatomic gases from Mach 1.4 to Mach 35. Kinetic theory solutions are computed using the Direct Simulation Monte Carlo method. Steady-state solutions of the Navier-Stokes equations and of a slightly truncated form of the Burnett equations are determined by relaxation to a steady state of the time-dependent continuum equations. Monte Carlo results are in excellent agreement with published experimental data and are used as bases of comparison for continuum solutions. For a Maxwellian gas, the truncated Burnett equations are shown to produce far more accurate solutions of shock structure than the Navier-Stokes equations.
Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Bres, Guillaume A.; Perez, Guillaume; Jones, Henry E.
2002-01-01
This paper presents the unique aspects of the development of an entirely new maneuver noise prediction code called PSU-WOPWOP. The main focus of the code is the aeroacoustic aspects of the maneuver noise problem, when the aeromechanical input data are provided (namely aircraft and blade motion, blade airloads). The PSU-WOPWOP noise prediction capability was developed for rotors in steady and transient maneuvering flight. Featuring an object-oriented design, the code allows great flexibility for complex rotor configuration and motion (including multiple rotors and full aircraft motion). The relative locations and number of hinges, flexures, and body motions can be arbitrarily specified to match the any specific rotorcraft. An analysis of algorithm efficiency is performed for maneuver noise prediction along with a description of the tradeoffs made specifically for the maneuvering noise problem. Noise predictions for the main rotor of a rotorcraft in steady descent, transient (arrested) descent, hover and a mild "pop-up" maneuver are demonstrated.
Flow and Force Equations for a Body Revolving in a Fluid
NASA Technical Reports Server (NTRS)
Zahm, A F
1930-01-01
Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.
Users guide: Steady-state aerodynamic-loads program for shuttle TPS tiles
NASA Technical Reports Server (NTRS)
Kerr, P. A.; Petley, D. H.
1984-01-01
A user's guide for the computer program that calculates the steady-state aerodynamic loads on the Shuttle thermal-protection tiles is presented. The main element in the program is the MITAS-II, Martin Marietta Interactive Thermal Analysis System. The MITAS-II is used to calculate the mass flow in a nine-tile model designed to simulate conditions duing a Shuttle flight. The procedures used to execute the program using the MITAS-II software are described. A list of the necessry software and data files along with a brief description of their functions is given. The format of the data file containing the surface pressure data is specified. The interpolation techniques used to calculate the pressure profile over the tile matrix are briefly described. In addition, the output from a sample run is explained. The actual output and the procedure file used to execute the program at NASA Langley Research Center on a CDC CYBER-175 are provided in the appendices.
Comparison of SANS instruments at reactors and pulsed sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.
1992-09-01
Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges untilmore » now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.« less
Extension of a three-dimensional viscous wing flow analysis
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.
Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie
2015-05-01
To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Hokeness, Mark Merrill
Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.
Assessment of noise in the airplane cabin environment.
Zevitas, Christopher D; Spengler, John D; Jones, Byron; McNeely, Eileen; Coull, Brent; Cao, Xiaodong; Loo, Sin Ming; Hard, Anna-Kate; Allen, Joseph G
2018-03-15
To measure sound levels in the aircraft cabin during different phases of flight. Sound level was measured on 200 flights, representing six aircraft groups using continuous monitors. A linear mixed-effects model with random intercept was used to test for significant differences in mean sound level by aircraft model and across each flight phase as well as by flight phase, airplane type, measurement location and proximity to engine noise. Mean sound levels across all flight phases and aircraft groups ranged from 37.6 to >110 dB(A) with a median of 83.5 dB(A). Significant differences in noise levels were also observed based on proximity to the engines and between aircraft with fuselage- and wing mounted engines. Nine flights (4.5%) exceeded the recommended 8-h TWA exposure limit of 85 dB(A) by the NIOSH and ACGIH approach, three flights (1.5%) exceeded the 8-h TWA action level of 85 dB(A) by the OSHA approach, and none of the flights exceeded the 8-h TWA action level of 90 dB(A) by the OSHA PEL approach. Additional characterization studies, including personal noise dosimetry, are necessary to document accurate occupational exposures in the aircraft cabin environment and identify appropriate response actions. FAA should consider applying the more health-protective NIOSH/ACGIH occupational noise recommendations to the aircraft cabin environment.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1979-01-01
Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.
RNA Binding Proteins Posttranscriptionally Regulate Genes Involved In Oncogenesis
2010-06-01
whose steady state mRNA levels may not significantly change, but which are tr anslationally active inside cancer cells. Potentially the...techniques have the potential to better delineate gene s whose steady state mRNA levels may not significantly change, but which are translationally active ...significantly change, but which are tr anslationally active inside cancer cells. Potentially the identification of such genes m ay offer novel therapeutic
AirMSPI Level 1B2 V006 New Data for the SPEX-PR Campaign
Atmospheric Science Data Center
2018-05-08
... Imager (AirMSPI) Level 1B2 data products for the SPEX engineering flights + Porter Ranch gas leak overflights (SPEX-PR) flight ... AirMSPI data contains all targets acquired during the SPEX engineering flights + Porter Ranch gas leak overflights (SPEX-PR) flight ...
Viking Afterbody Heating Computations and Comparisons to Flight Data
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.
2006-01-01
Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/cm2 for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/cm2, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8- species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.
Viking Afterbody Heating Computations and Comparisons to Flight Data
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.
2006-01-01
Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.
Body fluid regulation in micro-gravity differs from that on Earth: an overview.
Drummer, C; Gerzer, R; Baisch, F; Heer, M
2000-01-01
Similar to the response to central hypervolemic conditions on Earth, the shift of blood volume from the legs to the upper part of the body in astronauts entering micro-gravity should, in accordance with the Henry-Gauer mechanism, mediate diuresis and natriuresis. However, fluid balance and kidney function experiments during various space missions resulted in the surprising observation that the responses qualitatively differ from those observed during simulations of hypervolemia on Earth. There is some evidence that the attenuated responses of the kidney while entering weightlessness, and also later during space flight, may be caused by augmented fluid distribution to extravascular compartments compared to conditions on Earth. A functional decoupling of the kidney may also contribute to the observation that renal responses during exposure to micro-gravity are consistently weaker than those during simulation experiments before space flight. Deficits in body mass after landing have always been interpreted as an indication of absolute fluid loss early during space missions. However, recent data suggest that body mass changes during space flight are rather the consequences of hypocaloric nutrition and can be overcome by improved nutrition schemes. Finally, sodium-retaining humoral systems are activated during space flight and may contribute to a new steady-state of metabolic balances with a pronounced increase in body sodium compared to respective conditions on Earth. A revision of the classical "micro-gravity fluid shift" scheme is required.
H2 fueled flightweight ramjet construction and test
NASA Technical Reports Server (NTRS)
Malek, Albert
1992-01-01
The ACES Program began the investigation of regeneratively cooled ramjet engines for propelling aircraft at Mach 6 to 8 flight regimes while collecting and processing air for later use as oxidizer in rocket propulsion into an orbit flight mode. The Marquardt Company had as its prime task the design and demonstration of a ramjet capable of steady state operating using hydrogen as the regenerative coolant and with fuel flow limited to a theta = 1. Marquardt progressed from shell type combustors to advanced tubular combustion chambers in direct connect test rigs. The first tests were made with water cooled center bodies and plug nozzles using a pebble bed air heater to simulate flight air temperature. Later tests were made on completely H2 cooled flight weight V/G assemblies direct connected to a SUE burner heater. Design studies were also conducted on integrated systems for take-off capability using offset turbojets connected to 2-D or axisymmetric inlets. An 18 inch hypersonic ramjet evaluation scale model was designed based on the hot test results using a fully V/G inlet and exit nozzle. This thruster would provide 25000 lbs. of thrust with an estimated weight of 250 lbs. A V/G inlet would also incorporate an inlet seal for possible take-off thrust by rocket operation. Hypersonic ramjet construction features and chamber thrust development are discussed.
Unsteady bio-fluid dynamics in flying and swimming
NASA Astrophysics Data System (ADS)
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Chin, Suei; Lan, C. Edward
1990-01-01
Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.
USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears
NASA Technical Reports Server (NTRS)
Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic
1996-01-01
Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.
NASA's Space Launch System: Progress Report
NASA Technical Reports Server (NTRS)
Cook, Jerry; Lyles, Garry
2017-01-01
After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.
Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1992-01-01
The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.
Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator
NASA Technical Reports Server (NTRS)
Heath, Bruce E.; Crier, tomyka
2003-01-01
With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.
Effect of space flights on plasma hormone levels in man and in experimental animal
NASA Astrophysics Data System (ADS)
Macho, L.; Kvetňanský, R.; Vigaš, M.; Németh, S.; Popova, I.; Tigranian, R. A.; Noskov, V. B.; Serova, L.; Grigoriev, I. A.
An important increase of plasma hormone levels like insulin, TSH and aldosterone was observed in human subjects after space flights, however in the changes of plasma content of ACTH, cortisol, adrenaline and noradrenaline the individual variations were observed in relation to number and duration of space flight. For evaluation of the effects of these changes in plasma hormone levels on metabolic processes also the experiments with small animals subjected to space flights on a board of biosatellite of Cosmos series were running. An elevation of plasma levels of corticosterone, adrenaline, noradrenaline and insulin was found in rats after the space flights of duration from 7 to 20 days. It was demonstrated, that the increase of corticosterone in plasma is followed by the activation of enzymes involved in the aminoacid metabolism in rat liver (tyrosine aminotransferase, tryptophanpyrolase, alanine aminotransferase and aspartate aminotransferase). After a short recovery period (2 to 6 days) the plasma corticosterone concentration and also the activity of liver enzymes returned to control levels. The exposition of animals to stress stimuli during this recovery period showed higher response of corticosterone levels in flight rats as compared to intact controls. The increase of plasma catecholamine levels was not followed by elevation of lipolysis in adipose tissue. This is due to lower response of adipose tissue to catecholamine because a decrease of the stimulation of lipolysis by noradrenaline was observed in animals after space flight. The increase of insulin was not followed by adequate decrease of glucose concentration suggesting a disturbances in glucose utilization similarly as in cosmonauts after a long-term space flight. These results showed that changes in plasma hormone levels, observed after space flight, affected the regulation of metabolic processes in tissues.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
Quantitative controls on submarine slope failure morphology
Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.
1991-01-01
The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors
Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka
2016-05-15
Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance. © 2016. Published by The Company of Biologists Ltd.
Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms.
Williams, Jason B; Roberts, Stephen P; Elekonich, Michelle M
2008-06-01
Flying honey bees have among the highest mass-specific metabolic rates ever measured, suggesting that their flight muscles may experience high levels of oxidative stress during normal daily activities. We measured parameters of oxidative stress and antioxidant capacity in highly metabolic flight muscle and less active head tissue in cohorts of age-matched nurse bees, which rarely fly, and foragers, which fly several hours per a day. Naturally occurring foraging flight elicited an increase in flight muscle Hsp70 content in both young and old foragers; however catalase and total antioxidant capacity increased only in young flight muscle. Surprisingly, young nurse bees also showed a modest daily increase in Hsp70, catalase levels and antioxidant capacity, and these effects were likely due to collecting the young nurses soon after orientation flights. There were no differences in flight muscle carbonyl content over the course of daily activity and few differences in Hsp70, catalase, total antioxidant capacity and protein carbonyl levels in head tissue regardless of age or activity. In summary, honey bee flight likely produces high levels of reactive oxygen species in flight muscle that, when coupled with age-related decreases in antioxidant activity may be responsible for behavioral senescence and reduced longevity.
USAF bioenvironmental noise data handbook. Volume 148. T-37B in-flight crew noise
NASA Astrophysics Data System (ADS)
Hille, H. K.
1981-11-01
The T-37B is a USAF two-seat primary trainer aircraft. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported at one location for 19 different flight conditions and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.
Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure Validation Simulation Study
NASA Technical Reports Server (NTRS)
Murdoch, Jennifer L.; Bussink, Frank J. L.; Chamberlain, James P.; Chartrand, Ryan C.; Palmer, Michael T.; Palmer, Susan O.
2008-01-01
The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.
NASA Technical Reports Server (NTRS)
Cross, E. J., Jr.
1976-01-01
A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.
Entropy considerations applied to shock unsteadiness in hypersonic inlets
NASA Astrophysics Data System (ADS)
Bussey, Gillian Mary Harding
The stability of curved or rectangular shocks in hypersonic inlets in response to flow perturbations can be determined analytically from the principle of minimum entropy. Unsteady shock wave motion can have a significant effect on the flow in a hypersonic inlet or combustor. According to the principle of minimum entropy, a stable thermodynamic state is one with the lowest entropy gain. A model based on piston theory and its limits has been developed for applying the principle of minimum entropy to quasi-steady flow. Relations are derived for analyzing the time-averaged entropy gain flux across a shock for quasi-steady perturbations in atmospheric conditions and angle as a perturbation in entropy gain flux from the steady state. Initial results from sweeping a wedge at Mach 10 through several degrees in AEDC's Tunnel 9 indicates the bow shock becomes unsteady near the predicted normal Mach number. Several curved shocks of varying curvature are compared to a straight shock with the same mean normal Mach number, pressure ratio, or temperature ratio. The present work provides analysis and guidelines for designing an inlet robust to off- design flight or perturbations in flow conditions an inlet is likely to face. It also suggests that inlets with curved shocks are less robust to off-design flight than those with straight shocks such as rectangular inlets. Relations for evaluating entropy perturbations for highly unsteady flow across a shock and limits on their use were also developed. The normal Mach number at which a shock could be stable to high frequency upstream perturbations increases as the speed of the shock motion increases and slightly decreases as the perturbation size increases. The present work advances the principle of minimum entropy theory by providing additional validity for using the theory for time-varying flows and applying it to shocks, specifically those in inlets. While this analytic tool is applied in the present work for evaluating the stability of shocks in hypersonic inlets, it can be used for an arbitrary application with a shock.
Wind-Tunnel Investigation of the Horizontal Motion of a Wing Near the Ground
NASA Technical Reports Server (NTRS)
Serebrisky, Y. M.; Biachuev, S. A.
1946-01-01
By the method of images the horizontal steady motion of a wing at small heights above the ground was investigated in the wind tunnel, A rectangular wing with Clark Y-H profile was tested with and without flaps. The distance from the trailing edge of the wing to the ground was varied within the limits 0.75 less than or = s/c less than or = 0.25. Measurements were made of the lift, the drag, the pitching moment, and the pressure distribution at one section. For a wing without flaps and one with flaps a considereble decrease in the lift force and a,drop in the drag was obtained at angles of attack below stalling. The flow separation near the ground occurs at smaller angles of attack than is the case for a great height above the ground. At horizontal steady flight for practical values of the height above the ground the maximum lift coefficient for the wing without flaps changes little, but markedly decreases for the wing with flaps. Analysis of these phenomena involves the investigation of the pressure distribution. The pressure distribution curves showed that the changes occurring near the ground are not equivalent to a change in the angle of attack. At the lower surface of the section a very strong increase in the pressures is observed. The pressure changes on the upper surface at angles of attack below stalling are insignificant and lead mainly to an increase in the unfavorable pressure gradient, resulting in the earlier occurrence of separation. For a wing with flaps at large angles of attack for distances from the trailing edge of the flap to the ground less than 0.5 chord, the flow between the wing end the ground is retarded so greatly that the pressure coefficient at the lower surface of the section is very near its limiting value (P = 1), and any further possibility of increase in the pressure is very small. In the application an approximate computation procedure is given of the change of certain aerodynamic characteristics for horizontal steady flight near the ground.
Reduced head steadiness in whiplash compared with non-traumatic neck pain.
Woodhouse, Astrid; Liljebäck, Pål; Vasseljen, Ottar
2010-01-01
While sensorimotor alterations have been observed in patients with neck pain, it is uncertain whether such changes distinguish whiplash-associated disorders from chronic neck pain without trauma. The aim of this study was to investigate head steadiness during isometric neck flexion in subjects with chronic whiplash-associated disorders (WAD), those with chronic non-traumatic neck pain and healthy subjects. Associations with fatigue and effects of pain and dizziness were also investigated. Head steadiness in terms of head motion velocity was compared in subjects with whiplash (n=59), non-traumatic neck pain (n=57) and healthy controls (n=57) during 2 40-s isometric neck flexion tests; a high load test and a low load test. Increased velocity was expected to reflect decreased head steadiness. The whiplash group showed significantly decreased head steadiness in the low load task compared with the other 2 groups. The difference was explained largely by severe levels of neck pain and dizziness. No group differences in head steadiness were found in the high load task. Reduced head steadiness during an isometric holding test was observed in a group of patients with whiplash-associated disorders. Decreased head steadiness was related to severe pain and dizziness.
Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues
2017-07-01
Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.
USAARL NUH-60FS Acoustic Characterization
2016-11-01
Performance Division (APPD) previously acoustically characterized the Black Hawk flight simulator (NUH-60FS). Since that characterization, the NUH-60FS...greater than one for higher-level speakers. Black Hawk flight simulator, noise level, third octave band level UNCLAS UNCLAS UNCLAS SAR 52 Loraine St. Onge...Research Laboratory NUH-60FS Black Hawk Flight Simulator
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
In Search of the Physics: NASA's Approach to Airframe Noise
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Lockard, David P.; Streett, Craig L.
1999-01-01
An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on small-scale models with part-span flaps and full-span flaps are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off-surface (5 holeprobe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels. Experiments in the Low Turbulence Pressure Tunnel (LTPT) included Reynolds number variations up to flight conditions. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds-Averaged Navier-Stokes codes modeled the steady aspects of the flows. Excellent comparisons with surface and off-surface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flow fields to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of the results are given.
Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.
2010-01-01
Background: Immunity, latent herpesvirus reactivation, physiological stress and circadian rhythms were assessed during six month spaceflight onboard ISS. Blood and saliva samples were collected early, mid and late in-flight and returned for immediate analysis. Mid-point study data (10 of 17 planned subjects) will be presented. Results: Some shifts in leukocyte distribution occurred during flight, including alterations in CD8+ T cell maturation. General T cell function was consistently reduced early in-flight. Levels CD8+/IFNg+ producing T cells were depressed early in-flight, and immediately upon landing. Persistent mitogen-dependant reductions were observed in IFNg, IL-17a, IL-10, TNFa and IL-6 production. Monocyte production of IL-10 was reduced, whereas IL-8 levels were increased. Levels of mRNA for the TNFa, IL-6 and IFNg were transiently elevated early in-flight, and the dynamics of TNF and IL-6 gene expression were somewhat antagonistic to their corresponding receptors during flight. The number of virus-specific CD8+ T-cells was measured using MHC tetramers, while their function was measured using intracellular cytokine analysis following peptide stimulation. Both the number and function of EBV-specific cells decreased during flight as compared to preflight levels. The number of CMV-specific T-cells generally increased as the mission progressed while their function was variable. Viral (EBV) load in blood was elevated postflight. Anti-EBV VCA antibodies were significantly elevated by R+0; anti-EA antibodies were not significantly elevated at landing; and anti-CMV antibodies were somewhat elevated during flight. Higher levels of salivary EBV DNA were found during flight. VZV DNA reactivation occurred in 50 % of astronauts during flight, continuing for up to 30 days post-flight. CMV was shed in 35 % the in-flight and 30% of postflight urine samples of the crewmembers. There was generally a higher level of cortisol as measured in urine and saliva in the astronauts during flight, but plasma cortisol was relatively unchanged during flight. Circadian rhythm of salivary cortisol was altered during flight. Conclusion. Some alterations in immunity do not resolve during six month spaceflight, consequentially resulting in persistent herpesvirus reactivation. Ongoing immune dysregulation may represent specific clinical risks for exploration-class space missions.
General Theory of the Steady Motion of an Airplane
NASA Technical Reports Server (NTRS)
De Bothezat, George
1921-01-01
The writer points out briefly the history of the method proposed for the study of steady motion of an airplane, which is different from other methods now used. M. Paul Painleve has shown how convenient the drag-lift curve was for the study of airplane steady motion. The author later added to the drift-lift curve the curve called the "speed curve" which permits a direct checking of the speed of the airplane under all flying conditions. But the speed curve was plotted in the same quadrant as the drag-lift curve. Later, with the progressive development of aeronautical science, and with the continually increasing knowledge concerning engines and propellers, the author was brought to add the three other quadrants to the original quadrant, and thus was obtained the steady motion chart which is described in detail in this report. This charts permits one to read directly for a given airplane its horizontal speed at any altitude, its rate of climb at any altitude, its apparent inclination to the horizon at any moment, its ceiling, its propeller thrust, revolutions, efficiency, and power absorbed, that is the complete set of quantities involved in the subject, and to follow the variations of all these quantities both for variable altitude and for variable throttle. The chart also permits one to follow the variation of all of the above in flight as a function of the lift coefficient and of the speed. The author also discusses the interaction of the airplane and propeller through the slipstream and the question of the properties of the engine-propeller system and its dependence upon the properties of the engine considered alone and of the propeller considered alone. There is also a discussion of a standard atmosphere.
Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.
1997-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.
Performance analysis and dynamic modeling of a single-spool turbojet engine
NASA Astrophysics Data System (ADS)
Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin
2017-01-01
The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.
Thermal Management Tools for Propulsion System Trade Studies and Analysis
NASA Technical Reports Server (NTRS)
McCarthy, Kevin; Hodge, Ernie
2011-01-01
Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.
Liquid Hydrogen Zero-Boiloff Testing and Analysis for Long-Term Orbital Storage
NASA Astrophysics Data System (ADS)
Hastings, L. J.; Hedayat, A.; Bryant, C. B.; Flachbart, R. H.
2004-06-01
Advancement of cryocooler and passive insulation technologies in recent years has improved the prospects for zero-boiloff (ZBO) storage of cryogenic fluids. The ZBO concept involves the use of a cryocooler/radiator system to balance storage system incoming and extracted energy such that zero boiloff (no venting) occurs. A large-scale demonstration of the ZBO concept was conducted using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB) along with a commercial cryocooler unit. The liquid hydrogen (LH2) was withdrawn from the tank, passed through the cryocooler heat exchanger, and then the chilled liquid was sprayed back into the tank through a spray bar. The spray bar recirculation system was designed to provide destratification independent of ullage and liquid positions in a zero-gravity environment. The insulated MHTB tank, combined with the vacuum chamber conditions, enabled orbital storage simulation. ZBO was demonstrated for fill levels of 95%, 50%, and 25%. At each fill level, a steady-state boiloff test was performed prior to operating the cryocooler to establish the baseline heat leak. Control system logic based on real-time thermal data and ullage pressure response was implemented to automatically provide a constant tank pressure. A comparison of test data and analytical results is presented in this paper.
Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya
2008-01-01
This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Dennon, S. R.
1986-01-01
A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.
Provisional standards of radiation safety during flights
NASA Technical Reports Server (NTRS)
1977-01-01
Radiation effects during space flights are discussed in the context of the sources and dangers of such radiation and the radiobiological prerequisites for establishing safe levels of radiation dosage. Standard safe levels of radiation during space flight are established.
Analysis of in-flight acoustic data for a twin-engined turboprop airplane
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Wilby, E. G.
1988-01-01
Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.
Wei, Binnian; Mohan, Krishnan R.; Weisel, Clifford P.
2011-01-01
Pyrethroid insecticides have been used for disinsection of commercial aircrafts. However, little is known about the pyrethroids exposure of flight attendants. The objective of the study was to assess pyrethroids exposure of flight attendants working on commercial aircrafts through monitoring the urinary pyrethroids metabolite levels. Eighty four urine samples were collected from 28 flight attendants, 18 – 65 years of age, with seventeen working on planes that were non-disinsected, and eleven working on planes that had been disinsected. Five urinary metabolites of pyrethroids were measured using gas chromatographic–mass spectrometric method: 3-phenoxybenzoic acid (3-PBA), cis-/trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclo-propane carboxylic acid (cis-/trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclo-propane-1-carboxylic acid (cis-Br2CA) and 4-fluoro-3-phenoxybenzoic acid (4F-3-PBA). Flight attendants working on disinsected planes had significantly higher urinary levels of 3-PBA, cis- and trans-Cl2CA in pre, post- and 24hr-post flight samples than those on planes which did not report having been disinsected. Urinary levels of cis-Br2CA and 4F-3-PBA did not show significant differences between the two groups. Flight attendants working on international flights connected to Australia had higher urinary levels of 3-PBA, cis- and trans-Cl2CA than those on either domestic and other international flights flying among Asia, Europe and North America. Post-disinsection duration (number of days from disinsection date to flight date) was the most significant factor affecting the urinary pyrethroid metabolites levels of 3-PBA, cis- and trans-Cl2CA of the group flying on disinsected aircraft. It was concluded that working on commercial aircrafts disinsected by pyrethroids resulted in elevated body burden of 3-PBA, cis- and trans-Cl2CA. PMID:21937269
NASA Astrophysics Data System (ADS)
Rogers, Robert; Uhlhorn, Eric
2008-11-01
Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.
High-current plasma contactor neutralizer system
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.
1989-01-01
A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.; Hodges, Dewey H.
1987-01-01
The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.
Proceedings of the Aero-Optics Symposium on Electromagnetic Wave Propagation from Aircraft
NASA Technical Reports Server (NTRS)
1980-01-01
Wind-tunnel and flight experiments concerning natural and induced turbulence around an airplane and the effects on propagation characteristics of an emitter mounted in the airplane are described. Some of the papers are concerned with phase distortion of the propagating radiation, and others deal with mechanical jitter of the optical elements when exposed to open-cavity turbulence. The results include both aerodynamic and optical measurements and a consideration of the relationship between the two. Primary emphasis is on the dynamic disturbances, but theoretical and experimental evaluations of steady-state distortions are also presented.
Aircraft measurement of radio frequency noise at 121.5 MHz, 243 MHz and 406 MHz
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1977-01-01
An airborne survey measurement of terrestrial radio-frequency noise over U.S. metropolitan areas was carried out at 121.5, 243 and 406 MHz with horizontal-polarization monopole antennas. Flights were at 25,000 feet altitude. Radio-noise measurements, expressed in equivalent antenna-noise temperature, indicate a steady-background noise temperature of 572,000 K, at 121.5 MHz, during daylight over New York City. This data is helpful in compiling radio-noise temperature maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
1988-01-01
A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.
Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies
NASA Technical Reports Server (NTRS)
Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas
2006-01-01
Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.
Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2
Sundquist, E.T.
1991-01-01
Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.
Role of Corticosteroids in Bone Loss During Space Flight
NASA Technical Reports Server (NTRS)
Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.
2007-01-01
T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Turpin, Alicia A.
2006-01-01
Three non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration s (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE s were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA
Adaptive envelope protection methods for aircraft
NASA Astrophysics Data System (ADS)
Unnikrishnan, Suraj
Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control/command inputs to track a limit parameter safe-response profile near the limit boundary. The method is evaluated using software-in-the-loop and flight evaluations on the Georgia Tech unmanned rotorcraft platform---GTMax. The thesis also develops and evaluates an extension for calculating control margins based on restricting limit parameter response aggressiveness near the limit boundary.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Circulating DNA: a potential marker of sickle cell crisis.
Vasavda, Nisha; Ulug, Pinar; Kondaveeti, Sheila; Ramasamy, Karthik; Sugai, Taku; Cheung, Gordon; Rees, David C; Awogbade, Moji; Bannister, Sybil; Cunningham, Juliette; Menzel, Stephan; Thein, Swee Lay
2007-10-01
Free circulating DNA is present in the plasma of healthy subjects, and is elevated in conditions characterized by increased cell death, such as cancer and physical trauma. Analysis of circulating DNA in plasma could provide a useful biomarker in sickle cell disease (SCD) in view of the increased cell turnover through chronic ongoing haemolysis, recurrent vaso-occlusion and inflammation. Plasma DNA was determined by real-time quantitative polymerase chain reaction (PCR) amplification of the beta-globin gene (HBB) in 154 patients with SCD [105 haemoglobin (Hb)SS, 46 HbSC and three HbS/beta(0) thalassaemia] and 53 ethnically matched controls. Blood samples were obtained from all patients in steady state; 21 of the 154 patients were also sampled during admission to hospital for acute pain. Median concentration of circulating plasma DNA in acute pain was more than 10-fold that in steady state and in controls - 10070 vs. 841 and 10070 vs. 933 genome equivalents/ml respectively (P < 0.0001, in both cases). During steady state, patients had plasma DNA levels similar to controls. Plasma DNA levels in SCD correlated with C-reactive protein levels (P < 0.005) and total white cell counts (P < 0.05) in steady state. The study shows that plasma DNA concentration may have potential as a biomarker in sickle cell patients.
Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method
NASA Technical Reports Server (NTRS)
Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.
1977-01-01
The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.
NASA Technical Reports Server (NTRS)
Turner, Howard L.; Cooper, George E.
1948-01-01
A brief investigation was made of the longitudinal-stability characteristics of a YF-84A airplane (Army Serial No. 45-79488). The airplane developed a pitching-up tendency at approximately 0.80 Mach number which necessitated large push forces and down-elevator deflections for further increases in speed. In steady turns at 35,000 feet with the center of gravity at 28.3 percent mean aerodynamic chord for normal accelerations up to the maximum test value, the control-force gradients were excessive at Mach numbers over 0.78. Airplane buffeting did not present a serious problem in accelerated or unaccelerated flight at 15,000 and 35,000 feet up to the maximum test Mach number of 0.84. It is believed that excessive control force would be the limiting factor in attaining speeds in excess of 0.84 Mach number, especially at altitudes below 35,000 feet.
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Jones, W. L.; Heidelberg, L. J.; Homyak, L.
1980-01-01
To enable accurate simulation of in-flight fan tone noise during ground static tests, four devices intended to reduce inflow disturbances and turbulence were tested with a JT15D-1 turbofan engine. These inflow control devices (ICD's) consisted of honeycomb/screen structures mounted over the engine inlet. The ICD's ranged from 1.6 to 4 fan diameters in size, and differed in shape and fabrication method. All the ICD's significantly reduced the BPF tone in the far-field directivity patterns, but the smallest ICD's apparently introduced propagating modes which could be recognized by additional lobes in the speeds; at supersonic fan tip speed the smallest ICD's had some measurable loss, but the largest had no loss. Data from a typical transducer show that the unsteady inflow distortion modes (turbulence) were eliminated or significantly reduced when either of the ICD's was installed. However, some steady inflow distortion modes remained.
NASA Technical Reports Server (NTRS)
Jennings, W. P.; Olsen, N. L.; Walter, M. J.
1976-01-01
The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included.
Stage Separation Failure: Model Based Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley
2010-01-01
Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
NASA Technical Reports Server (NTRS)
Kimball, G., Jr.
1980-01-01
A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.
Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle
NASA Technical Reports Server (NTRS)
Jain, A. C.; Woods, G. H.
1988-01-01
Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.
About mobility thickness dependence in molecularly doped polymers
NASA Astrophysics Data System (ADS)
Tyutnev, A. P.; Weiss, D. S.; Saenko, V. S.; Pozhidaev, E. D.
2017-09-01
We have investigated the dependence of hole mobility on thickness in free-standing films of bisphenol-A-polycarbonate (PC) doped with 30 wt% p-diethylaminobenzaldehyde diphenylhydrazone (DEH). Carrier generation in a time-of-flight (TOF) experiment was achieved through direct ionization of dopant molecules by electron impact using an electron gun supplying pulses of monoenergetic electrons in the range of 2-50 keV. The position of dopant ionization depends upon the electron energy and three TOF variants have been recently developed and used in this study. We have found that the hole mobility generally decreased with increasing film thickness with concomitant acceleration of the post-flight current decay indicating that the transport process approaches the steady-state regime, this process happening slightly faster than our model predicts. Numerical calculations have been compared with experimental data. The results are discussed in detail. The way to reconcile ostensibly contradictory interpretations of our results and those commonly reported in literature relying on photo injection technique has been proposed.
Universal stratospheric balloon gradiometer
NASA Astrophysics Data System (ADS)
Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay
The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG, which should be not less than 10 m. A brief description of this instrument is provided in the report. The SBMG is certified for the use in Russia for "zero-pressure" balloon "VAL 120" capable of drifting at about 30 km height. The obtained data are used in solving the problems of deep sounding of the Earth’s crust magnetic structure - an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. Examples of the experiments (data) obtained by SBMG (including along the 9000 km flight track), as a new opportunities in geomagnetism for researchers that could use this device, are shown here. To avoid magnetic noise the sensor of the upper magnetometer is located at 35 meters above the main suspension basket of the balloon (in the small magnetic noise place). As we know, people have a problem to find such places (with a relatively low level of magnetic noise) at other types of balloons. So, for the other types of balloons we have developed and investigated balloon gradiometer with sensors located at a distance of 50 m down from the main suspension basket of the balloon. This decision is optimal for the "superpressure" balloons. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each of three instrumental containers (uniformly placed along a vertical 6 km line) may be reaching 50 kg. More than ten testing flights (1986-2013) at stratospheric altitudes (20-30 km) have proven the reliability of this system.
NASA Technical Reports Server (NTRS)
Kirby, Mark S.; Hansman, R. John
1988-01-01
Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.
Steady-state entanglement activation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
Jets over Labrador and Quebec: noise effects on human health.
Rosenberg, J
1991-01-01
OBJECTIVE: To determine whether the noise from low-level flights over Labrador and Quebec is harmful to human health. DATA SOURCE AND SELECTION: Search of MEDLINE for articles on the effect of noise, particularly impulse noise associated with low-level flights, and a search of the references from identified articles. DATA SYNTHESIS: The noise levels from low-level flights could affect hearing acuity. However, the more important consequences appear to be stress-mediated physiologic effects, especially cardiovascular ones, and psychologic distress, particularly in children. Subjective perception of control over the noise has been found to mitigate some physiologic effects. CONCLUSION: There is sufficient evidence to show that the noise from low-level flights is harmful to human health. PMID:2007238
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2012 CFR
2012-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2010 CFR
2010-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2011 CFR
2011-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2013 CFR
2013-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2014 CFR
2014-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu
2016-02-01
We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
Adult Sickle Cell Anaemia Patients in Bone Pain Crisis have Elevated Pro-Inflammatory Cytokines
Alagbe, Adekunle Emmanuel; Aworanti, Oladapo Wale
2018-01-01
Background and Objectives Inflammatory markers that influence bone pain crisis (BPC) and other complications of sickle cell anaemia (SCA) are numerous and play various roles. This study determined the plasma levels of tumour necrosis factor (TNF) - α, interleukin - 8 (IL-8), and endothelin - 1 (ET-1) in adult SCA patients during BPC and in steady state. In addition, the plasma levels of these cytokines were correlated with the severity of BPC of the patients. Methods and Materials Sixty adult SCA patients (30 during BPC and 30 during steady state) and 30 haemoglobin A controls were enrolled for this cross-sectional study. The severity of BPC was assessed clinically, and questionnaires were filled. Plasma levels of TNF- α, IL-8 and ET-1 were quantified by ELISA, and haematological parameters were determined using a 5-part auto-analyzer. Plasma levels were correlated with the severity of bone pain crisis. Results were considered statistically significant if p<0.05. Results Plasma TNF-α, IL-8, and ET-1 were significantly elevated in the BPC group than in the steady state group and the controls. Plasma TNF-α, IL-8 and ET-1 were markedly higher in the severe BPC groups than the steady state and control groups, There was a positive correlation between TNF-α and ET-1 in the bone pain crisis group. Conclusion Elevated levels of plasma TNF-α, IL-8, and ET-1 further establish the chronic inflammatory state in SCA and equally affirm their significant contribution, not only to pathogenesis but also to the severity of pain in SCA. PMID:29531654
2005-05-01
4. TITLE AND SUBTITLE Final Environmental Assessment for Low-Level Flight Testing, Evaluation, and Training, Edwards Air Force Base 5a. CONTRACT...NAME(S) AND ADDRESS(ES) Air Force Flight Test Center,Environmental Management Directorate,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The U.S. Air Force Flight Test
Flight performance of actively foraging honey bees is reduced by a common pathogen
Wells, Trish; Wolf, Stephan; Nicholls, Elizabeth; Groll, Helga; Lim, Ka S.; Clark, Suzanne J.; Swain, Jennifer; Osborne, Juliet L.
2016-01-01
Summary Sudden and severe declines in honey bee (Apis mellifera) colony health in the US and Europe have been attributed, in part, to emergent microbial pathogens, however, the mechanisms behind the impact are unclear. Using roundabout flight mills, we measured the flight distance and duration of actively foraging, healthy‐looking honey bees sampled from standard colonies, before quantifying the level of infection by Nosema ceranae and Deformed Wing Virus complex (DWV) for each bee. Neither the presence nor the quantity of N. ceranae were at low, natural levels of infection had any effect on flight distance or duration, but presence of DWV reduced flight distance by two thirds and duration by one half. Quantity of DWV was shown to have a significant, but weakly positive relation with flight distance and duration, however, the low amount of variation that was accounted for suggests further investigation by dose‐response assays is required. We conclude that widespread, naturally occurring levels of infection by DWV weaken the flight ability of honey bees and high levels of within‐colony prevalence are likely to reduce efficiency and increase the cost of resource acquisition. Predictions of implications of pathogens on colony health and function should take account of sublethal effects on flight performance. PMID:27337097
A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark
2017-01-01
The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark
2016-01-01
The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.
NASA Technical Reports Server (NTRS)
Banks, P. M.; Raitt, W. J.; Denig, W. F.
1982-01-01
In March, 1981, electron beam experiments were conducted in a large space simulation chamber using equipment destined to be flown aboard NASA's Office of Space Science-1 pallet (OSS-1). Two major flight experiments were involved. They include the Vehicle Charging and Potential (VCAP) experiment and the Plasma Diagnostics Package (PDP). Apparatus connected with VCAP included a Fast Pulse Electron Gun (FPEG), and a Charge and Current Probe (CCP). A preliminary view is provided of the results obtained when the electron emissions were held steady over relatively long periods of time such that steady state conditions could be obtained with respect to the electron beam interaction with the neutral gases and plasma of the vacuum chamber. Of particular interest was the plasma instability feature known as the Beam Plasma Discharge. For the present experiments the FPEG was used in a dc mode with a range of currents of 2 to 80 mA at a beam energy of 970 eV. Attention is given to the emissions of VLF and HF noise associated with the dc beam.
Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.
1954-01-01
An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.
Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels.
Brembs, Björn; Christiansen, Frauke; Pflüger, Hans Joachim; Duch, Carsten
2007-10-10
Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight behavior by genetic and pharmacological manipulation in Drosophila. Octopamine is not the natural signal for flight initiation because flies lacking octopamine [tyramine-beta-hydroxylase (TbetaH) null mutants] can fly. However, they show profound differences with respect to flight initiation and flight maintenance compared with wild-type controls. The morphology, kinematics, and development of the flight machinery are not impaired in TbetaH mutants because wing-beat frequencies and amplitudes, flight muscle structure, and overall dendritic structure of flight motoneurons are unaffected in TbetaH mutants. Accordingly, the flight behavior phenotypes can be rescued acutely in adult flies. Flight deficits are rescued by substituting octopamine but also by blocking the receptors for tyramine, which is enriched in TbetaH mutants. Conversely, ablating all neurons containing octopamine or tyramine phenocopies TbetaH mutants. Therefore, both octopamine and tyramine systems are simultaneously involved in regulating flight initiation and maintenance. Different sets of rescue experiments indicate different sites of action for both amines. These findings are consistent with a complex system of multiple amines orchestrating the control of motor behaviors on multiple levels rather than single amines eliciting single behaviors.
Casto, Kristen L; Casali, John G
2013-06-01
This study was designed to determine the effects of hearing loss, aviation headset type, flight workload complexity, and communication signal quality on pilots' performance in an army rotary-wing flight simulator. To maintain flight status, army aviators who do not meet current audiometric standards require a hearing loss waiver, which is based on speech intelligibility in quiet conditions. Because hearing loss characteristics of hearing-impaired aviators can vary greatly, and because performance is likely also influenced by degree of flight workload and communication demand, it was expected that performance among hearing-impaired aviators would also vary. Participants were 20 army helicopter pilots. Pilots flew three flights in a full motion-based helicopter simulator,with a different headset configuration and varying flight workload levels and communication signal quality characterizing each flight. Objective flight performance parameters of heading, altitude, and airspeed deviation and air traffic control command read-backs were measured. Statistically significant results suggest that high levels of flight workload, especially in combination with poor communications signal quality, lead to deficits in flight performance and speech intelligibility. These results support a conclusion that factors other than hearing thresholds and speech intelligibility in quiet should be considered when evaluating helicopter pilots' flight safety. The results also support a recommendation that hearing-impaired pilots use assistive communication technology and not fly with strictly passive headsets. The combined effects of flight environment with individual hearing levels should be considered when making recommendations concerning continued aviation flight status and those concerning communications headsets used in high-noise cockpits.
Measurements of certain environmental tobacco smoke components on long-range flights.
Drake, J W; Johnson, D E
1990-06-01
In December 1987, 10 portable nicotine and respirable particle measuring instruments were employed on 4 Boeing 747 flights, placed in all passenger classes and zones, in randomly selected non-perimeter seats, to assess environmental tobacco smoke (ETS). Measurements integrated the nicotine particle concentrations over the duration of the 5-h Tokyo-Hong Kong-Tokyo flights and over each half of the 14-h New York City-Tokyo flights. Number of cigarettes smoked per minute in sample areas explained a significant proportion of variability in the observed nicotine and respirable particle levels. The all-daytime Tokyo-Hong Kong-Tokyo flights with a different seating configuration showed higher levels of ETS variables. The cause cannot be identified from the six flight segments studied. Levels of ETS observed in these 747-100 and -200 flights (with all air conditioning packs operating) were lower than those observed in narrow body 727/737 aircraft, on short flights, in prior related tests. The 747's five air conditioning zones are reasonably effective in keeping ETS within the respective zones, and discharging it with relatively little entry into non-smoking areas.
Gao, Na; Aono, Hikaru; Liu, Hao
2011-02-07
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rao, Arun S; Thakar, Sumit; Sai Kiran, Narayanam Anantha; Aryan, Saritha; Mohan, Dilip; Hegde, Alangar S
2018-01-01
Three-dimensional (3D) time of flight (TOF) imaging is the current gold standard for noninvasive, preoperative localization of lenticulostriate arteries (LSAs) in insular gliomas; however, the utility of this modality depends on tumor intensity. Over a 3-year period, 48 consecutive patients with insular gliomas were prospectively evaluated. Location of LSAs and their relationship with the tumor were determined using a combination of contrast-enhanced coronal 3D TOF magnetic resonance angiography and coronal 3D constructive interference in steady state (CISS) sequences. These findings were analyzed with respect to extent of tumor resection and early postoperative motor outcome. Tumor was clearly visualized in 29 (60.4%) patients with T1-hypointense tumors using 3D TOF and in all patients using CISS sequences. Using combined 3D TOF and CISS, LSA-tumor interface was well seen in 47 patients, including all patients with T1-heterointense or T1-isointense tumors. Extent of resection was higher in the LSA-pushed group compared with the LSA-encased group. In the LSA-encased group, 6 (12.5%) patients developed postoperative hemiparesis; 2 (4.2%) cases were attributed to LSA injury. Contrast-enhanced 3D TOF can delineate LSAs in almost all insular gliomas but is limited in identifying the LSA-tumor interface. This limitation can be overcome by addition of analogous CISS sequences that delineate the LSA-tumor interface regardless of tumor intensity. Combined 3D TOF and 3D CISS is a useful tool for surgical planning and safer resections of insular tumors and may have added surgical relevance when included as an intraoperative adjunct. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
Ozone production in the New York City urban plume
NASA Astrophysics Data System (ADS)
Kleinman, Lawrence I.; Daum, Peter H.; Imre, Dan G.; Lee, Jai H.; Lee, Yin-Nan; Nunnermacker, Linda J.; Springston, Stephen R.; Weinstein-Lloyd, Judith; Newman, Leonard
2000-06-01
In the summer of 1996 the Department of Energy G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated O3 levels in the northeastern United States. Measurements of O3, O3 precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the O3 formation process and its dependence on ambient levels of NOx and volatile organic compounds (VOCs). Four flights are discussed in detail. On two of these flights, winds were from the W-SW, which is the typical direction for an O3 episode. On the other two flights, winds were from the NW, which puts a cleaner area upwind of the city. The data presented include plume and background values of O3, CO, NOx, and NOy concentration and VOC reactivity. On the W-SW flow days O3 reached 110 ppb. According to surface observations the G-1 intercepted the plume close to the region where maximum O3 occurred. At this point the ratio NOx/NOy was 20-30%, indicating an aged plume. Plume values of CO/NOy agree to within 20% with emission estimates from the core of the New York City metropolitan area. Steady state photochemical calculations were performed using observed or estimated trace gas concentrations as constraints. According to these calculations the local rate of O3 production P(O3) in all four plumes is VOC sensitive, sometimes strongly so. The local sensitivity calculations show that a specified fractional decrease in VOC concentration yields a similar magnitude fractional decrease in P(O3). Imposing a decrease in NOx, however, causes P(O3) to increase. The question of primary interest from a regulatory point of view is the sensitivity of O3 concentration to changes in emissions of NOx and VOCs. A qualitative argument is given that suggests that the total O3 formed in the plume, which depends on the entire time evolution of the plume, is also VOC sensitive. Indicator ratios O3/NOz and H2O2/NOz mainly support the conclusion that plume O3 is VOC sensitive.
Influence of ketamine on regional brain glucose use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, D.W.; Mans, A.M.; Biebuyck, J.F.
1988-08-01
The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic,more » steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.« less
Zeng, Xi-Lei; Thumati, Naresh R.; Fleisig, Helen B.; Hukezalie, Kyle R.; Savage, Sharon A.; Giri, Neelam; Alter, Blanche P.; Wong, Judy M.Y.
2012-01-01
X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that retroviral expression of recombinant TER, together with expression of recombinant telomerase reverse transcriptase, restored telomere maintenance and proliferative capacity in X-DC patient cells. Using rare X-DC isoforms (▵L37 and A386T dyskerin), we showed that telomere maintenance defects observed in X-DC are solely due to decreased steady-state levels of TER. Disease-associated reductions in steady-state TER levels cause deficiencies in telomere maintenance. Here, we confirm these findings in other primary X-DC patient cell lines coding for the most common (A353V dyskerin) and more clinically severe (K314R and A353V dyskerin) X-DC isoforms. Using cell lines derived from these patients, we also examined the steady-state levels of other hinge-ACA motif RNAs and did not find differences in their in vivo accumulations. We show, for the first time, that purified telomerase holoenzyme complexes from different X-DC cells have normal catalytic activity. Our data confirm that dyskerin promotes TER stability in vivo, endorsing the development of TER supplementation strategies for the treatment of X-DC. PMID:22058290
Flying in a flock comes at a cost in pigeons.
Usherwood, James R; Stavrou, Marinos; Lowe, John C; Roskilly, Kyle; Wilson, Alan M
2011-06-22
Flying birds often form flocks, with social, navigational and anti-predator implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual 'cluster' flock? Here we use data from innovative back-mounted Global Positioning System (GPS) and 6-degrees-of-freedom inertial sensors to show that pigeons (1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; (2) increase flap frequency with increases in all conventional aerodynamic power requirements; and (3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock. Indeed, the increased flap frequency, whether due to direct aerodynamic interactions or requirements for increased stability or control, suggests a considerable energetic cost to flight in a tight cluster flock.
Flying in a flock comes at a cost in pigeons
Usherwood, James R.; Stavrou, Marinos; Lowe, John C.; Roskilly, Kyle; Wilson, Alan M.
2011-01-01
Flying birds often form flocks, with social1, navigational2 and anti-predator3 implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements4, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation5. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual ‘cluster’ 6,7 flock? Here, we use data from innovative back-mounted GPS and 6 degree of freedom inertial sensors to show that pigeons 1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; 2) increase flap frequency with increases in all conventional aerodynamic power requirements; and 3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock; indeed, the increased flap frequency – whether due to direct aerodynamic interactions or requirements for increased stability or control – suggests a considerable energetic cost to flight in a tight cluster flock. PMID:21697946
Low-gravity sensing of liquid/vapor interface and transient liquid flow
NASA Astrophysics Data System (ADS)
Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.
1987-03-01
The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.
Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.
2000-01-01
A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.
Generation of the pitch moment during the controlled flight after takeoff of fruitflies.
Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao
2017-01-01
In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.
Optimal orientation in flows: providing a benchmark for animal movement strategies.
McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem
2014-10-06
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.
Optimal orientation in flows: providing a benchmark for animal movement strategies
McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem
2014-01-01
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213
Lessons Learned in Building the Ares Projects
NASA Technical Reports Server (NTRS)
Sumrall, John Phil
2010-01-01
Since being established in 2005, the Ares Projects at Marshall Space Flight Center have been making steady progress designing, building, testing, and flying the next generation of exploration launch vehicles. Ares is committed to rebuilding crucial capabilities from the Apollo era that made the first human flights to the Moon possible, as well as incorporating the latest in computer technology and changes in management philosophy. One example of an Apollo-era practice has been giving NASA overall authority over vehicle integration activities, giving civil service engineers hands-on experience in developing rocket hardware. This knowledge and experience help make the agency a "smart buyer" of products and services. More modern practices have been added to the management tool belt to improve efficiency, cost effectiveness, and institutional knowledge, including knowledge management/capture to gain better insight into design and decision making; earned value management, where Ares won a NASA award for its practice and implementation; designing for operability; and Lean Six Sigma applications to identify and eliminate wasted time and effort. While it is important to learn technical lessons like how to fly and control unique rockets like the Ares I-X flight test vehicle, the Ares management team also has been learning important lessons about how to manage large, long-term projects.
NASA Technical Reports Server (NTRS)
Sallee, G. P.; Martin, R. L.
1980-01-01
The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389
Cassell, S; Furst, D; Dromgoole, S; Paulus, H
1979-04-01
When the total daily drug dose was individualized to produce a steady-state serum salicylate concentration between 20 and 35 mg/dl, clinically acceptable fluctuations of serum concentrations occurred during both twice daily and three times daily administration. In 6 rheumatoid arthritis patients receiving choline magnesium trisalicylate, mean steady-state serum levels were the same, and the ranges of hourly mean concentrations during 8 and 12 hour dosage intervals were 19 to 27 mg/dl and 17 to 30 mg/dl, respectively. Changing the dosing interval from 8 to 12 hours required a 50% increase in the fractional doses, but resulted in an increase of only 3 mg/dl in mean peak concentration and a ddecrease of 1 mg/dl in mean minimum concentration.
NASA Technical Reports Server (NTRS)
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
Simultaneous measurement of glucose transport and utilization in the human brain
Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.
2011-01-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
Kaufmann, Christian; Brown, Mark R.
2008-01-01
The role of adipokinetic hormones (AKHs) in the regulation of carbohydrate and lipid metabolism and flight performance was evaluated for females of the African malaria mosquito, Anopheles gambiae. Injection of various dosages of synthetic Anoga-AKH-I increased carbohydrate levels in the haemolymph and reduced glycogen reserves in sugar-fed females but did not affect lipid levels. Anoga-AKH-I enhanced the flight performance of both intact and decapitated sugar-fed females, during a 4 hour flight period. Anoga-AKH-II had no effect on carbohydrate or lipid levels or flight performance, thus its function remains unknown. Targeted RNA-interference lowered Anoga-AKH receptor expression in sugar-fed females, consequently injections of Anoga-AKH-I failed to mobilize glycogen reserves. Taken together, these results show that a primary role for the neurohormone, Anoga-AKH-I, is to elevate trehalose levels in the haemolymph of female mosquitoes. PMID:18062987
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
E057: Renal Stone Risk Assessment During Space Flight: Assessment and Countermeasure Validation
NASA Technical Reports Server (NTRS)
Whitson, Peggy A.; Pietrzyk, Robert A.; Jones, Jeffrey A.; Sams, Clarence F.
2001-01-01
Exposure to the microgravity environment results in many metabolic and physiological changes to humans. Body fluid volumes, electrolyte levels, and bone and muscle undergo changes as the human body adapts to the weightless environment. Changes in the urinary biochemistry occur as early as flight day 3-4 in the short duration Shuttle crewmembers. Significant decreases were observed both in fluid intake and urinary output. Other significant changes were observed in the urinary pH, calcium, potassium and uric acid levels. During Shuttle missions, the risk of calcium oxalate stone formation increased early in the flight, continued at elevated levels throughout the flight and remained in the increased risk range on landing day. The calcium phosphate risk was significantly increased early in-flight and remained significantly elevated throughout the remainder of the mission. Results from the long duration Shuttle-Mir missions followed a similar trend. Most long duration crewmembers demonstrated increased urinary calcium levels despite lower dietary calcium intake. Fluid intake and urine volumes were significantly lower during the flight than during the preflight. The calcium oxalate risk was increased relative to the preflight levels during the early in-flight period and continued in the elevated risk range for the remainder of the space flight and through two weeks postflight. Calcium phosphate risk for these long duration crewmembers increased during flight and remained in the increased risk range throughout the flight and following landing. The complexity, expense and visibility of the human space program require that every effort be made to protect the health of the crewmembers and ensure the success of the mission. Results from our early investigations clearly indicate that exposure to the microgravity environment of space significantly increases the risk of renal stone formation. The early studies have indicated specific avenues for development of countermeasures for the increased renal stone risk observed during and following space flight. Increased hydration and implementation of pharmacological countermeasures are being tested for their efficacy in mitigating the in-flight risk of renal stones. Maintaining the health and well-being of crewmembers during space flight requires a means of minimizing potential detrimental health effects of microgravity. The formation of a renal stone during flight obviously has severe consequences for the affected crewmember as well as the success of the mission.
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products
NASA Astrophysics Data System (ADS)
Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.
We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting similar behavior to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established, reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10-400 nm) in every experiment and with an optical particle counter (OPC, 0.1-2.0 μm) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM 1.1) ranged from 10 to >300 μg m -3 and yields ranged from 5% to 37%. Steady-state nucleation rates and SOA mass formation rates were ˜10 cm -3 s -1 and ˜10 μg m -3 min -1, respectively.
Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.
2008-01-01
We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particlemore » sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.« less
Estimating systemic exposure to levonorgestrel from an oral contraceptive.
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge
2017-04-01
The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-h steady-state area under the curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-h steady-state AUC of a particular OC. We conducted a 13-sample, 24-h pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30-mcg ethinyl estradiol and 150-mcg levonorgestrel (LNG) in 17 normal-weight healthy White women and a single-dose 9-sample study of the same OC after a 1-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. The 13-sample steady-state 24-h LNG AUC was highly correlated with the steady-state 24-h trough value [r=0.95; 95% confidence interval (0.85, 0.98)] and with the steady-state 6-, 8-, 12- and 16-h values (0.92≤r≤0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-h AUC value [r=0.70; 95% CI (0.27, 0.90) and 0.77; 95% CI (0.40, 0.92), respectively]. Single time-point concentrations at steady state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. A single time-point LNG concentration at steady state is an excellent proxy for complete and resource-intensive steady-state AUC measurement. The trough level after two single doses is a fair proxy for steady-state AUC. These results provide practical tools to facilitate large studies to investigate the relationship between systemic LNG exposure and side effects in a real-life setting. Copyright © 2017 Elsevier Inc. All rights reserved.
A psychophysiological assessment of operator workload during simulated flight missions
NASA Technical Reports Server (NTRS)
Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf
1987-01-01
The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.
Implementing a Workforce Development Pipeline
NASA Technical Reports Server (NTRS)
Hix, Billy
2002-01-01
Research shows that the number of highly trained scientists and engineers has continued a steady decline during the 1990's. Furthermore, at the high school level, almost 40% of the total high school graduates are seeking technical skills in preparation of entering the workforce directly. The decrease of students in technology and science programs, along with the lack of viable vocational programs, haunts educators and businesses alike. However, MSFC (Marshall Space Flight Center) has the opportunity to become a leading edge model of workforce development by offering a unified program of apprenticeships, workshops, and educational initiatives. These programs will be designed to encourage young people of all backgrounds to pursue the fields of technology and science, to assist research opportunities, and to support teachers in the systemic changes that they are facing. The emphasis of our program based on grade levels will be: Elementary Level: Exposure to the workforce. Middle School: Examine the workforce. High School and beyond: Instruct the workforce. It is proposed that MSFC create a well-integrated Workforce Development Pipeline Program. The program will act to integrate the many and varied programs offered across MSFC directorates and offices. It will offer a clear path of programs for students throughout middle school, high school, technical training, and college and universities. The end result would consist of technicians, bachelors degrees, masters degrees, and PhDs in science and engineering fields entering the nation's workforce, with a focus on NASA's future personnel needs.
RLV-TD Flight Measured Aeroacoustic Levels and its Comparison with Predictions
NASA Astrophysics Data System (ADS)
Manokaran, K.; Prasath, M.; Venkata Subrahmanyam, B.; Ganesan, V. R.; Ravindran, Archana; Babu, C.
2017-12-01
The Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a wing body configuration successfully flight tested. One of the important flight measurements is the acoustic levels. There were five external microphones, mounted on the fuselage-forebody, wing, vertical tail, inter-stage (ITS) and core base shroud to measure the acoustic levels from lift-off to splash down. In the ascent phase, core base shroud recorded the overall maximum at both lift-off and transonic conditions. In-flight noise levels measured on the wing is second highest, followed by fuselage and vertical tail. Predictions for flight trajectory compare well at all locations except for vertical tail (4.5 dB). In the descent phase, maximum measured OASPL occurs at transonic condition for the wing, followed by vertical tail and fuselage. Predictions for flight trajectory compare well at all locations except for wing (- 6.0 dB). Spectrum comparison is good in the ascent phase compared to descent phase. Roll Reaction control system (RCS) thruster firing signature is seen in the acoustic measurements on the wing and vertical tail during lift-off.
Ground and flight test results of a total main rotor isolation system
NASA Technical Reports Server (NTRS)
Halwes, Dennis R.
1987-01-01
A six degree-of-freedom (DOF) isolation system using six LIVE units has been installed under an Army/NASA contract on a Bell 206LM helicopter. This system has been named the Total Rotor Isolation System, or TRIS. To determine the effectiveness of TRIS in reducing helicopter vibration, a flight verification study was conducted at Bell's Flight Research Center in Arlington, Texas. The flight test data indicate that the 4/rev vibration level at the pilot's seat were suppressed below the 0.04g level throughout the transition envelope. Flight tests indicate over 95% suppression of vibration level from the rotor hub to the pilot's seat. The TRIS installation was designed with a decoupled control system and has shown a significant improvement in aircraft flying qualities, such that it permitted the trimmed aircraft to be flown hands-off for a significant period of time, over 90 seconds. The TRIS flight test program has demonstrated a system that greatly reduces vibration levels of a current-generation helicopter, while significantly improving the flying qualities to a point where stability augmentation is no longer a requirement.
A new method for flight test determination of propulsive efficiency and drag coefficient
NASA Technical Reports Server (NTRS)
Bull, G.; Bridges, P. D.
1983-01-01
A flight test method is described from which propulsive efficiency as well as parasite and induced drag coefficients can be directly determined using relatively simple instrumentation and analysis techniques. The method uses information contained in the transient response in airspeed for a small power change in level flight in addition to the usual measurement of power required for level flight. Measurements of pitch angle and longitudinal and normal acceleration are eliminated. The theoretical basis for the method, the analytical techniques used, and the results of application of the method to flight test data are presented.
Psychophysiological measures of cognitive workload in laboratory and flight
NASA Technical Reports Server (NTRS)
Wilson, Glenn F.; Badeau, Albert
1993-01-01
Psychophysiological data have been recorded during different levels of cognitive workload in laboratory and flight settings. Cardiac, eye blink, and brain data have shown meaningful changes as a function of the levels of mental workload. Increased cognitive workload is generally associated with increased heart rates, decreased blink rates and eye closures, and decreased evoked potential amplitudes. However, comparisons of laboratory and flight data show that direct transference of laboratory findings to the flight environment is not possible in many cases. While the laboratory data are valuable, a data base from flight is required so that 'real world' data can be properly interpreted.
Some anomalies between wind tunnel and flight transition results
NASA Technical Reports Server (NTRS)
Harvey, W. D.; Bobbitt, P. J.
1981-01-01
A review of environmental disturbance influence and boundary layer transition measurements on a large collection of reference sharp cone tests in wind tunnels and of recent transonic-supersonic cone flight results have previously demonstrated the dominance of free-stream disturbance level on the transition process from the beginning to end. Variation of the ratio of transition Reynolds number at onset-to-end with Mach number has been shown to be consistently different between flight and wind tunnels. Previous correlations of the end of transition with disturbance level give good results for flight and large number of tunnels, however, anomalies occur for similar correlation based on transition onset. Present cone results with a tunnel sonic throat reduced the disturbance level by an order of magnitude with transition values comparable to flight.
Compton, Peggy; Ling, Walter; Chiang, C Nora; Moody, David E; Huber, Alice; Ling, Debbie; Charuvastra, Charles
2007-06-01
Although buprenorphine is approved for use in the outpatient treatment of opioid addiction in 2 tablet formulations, a monoproduct containing buprenorphine only (Subutex) and a buprenorphine/naloxone combination product (Suboxone), much of the clinical data that support the approval by the U.S. Food and Drug Administration were generated by using a sublingual liquid. To interpret the literature in prescribing parameters for tablet buprenorphine, this study was designed to determine steady state buprenorphine plasma levels for the 2 formulations and to assess the relative bioavailability of each. A randomized, double-blind, crossover study with dose increases was conducted during a 12-week period at an outpatient treatment clinic. Of the 184 subjects initially randomized to treatment, 133 (72.3%) were evaluated for the steady-state trough plasma concentration, 16 (8.7%) for relative bioavailability, and 31 (16.8%) for dose proportionality. At steady state, differences in the trough plasma concentrations of buprenorphine between the 2 formulations were found across all the dose levels. Average plasma concentration (Cavg) of the tablet at twice the milligram dose of the liquid was twice that of the liquid; intersubject variability was greater for the tablet. At double the dose of tablet, there is no difference in steady state plasma concentrations. The bioavailability seems equivalent for the 2 formulations across all the dose levels.
NASA Technical Reports Server (NTRS)
Nordheim, A. W.
1985-01-01
The erythropoiesis modeling performed in support of the Body Fluid and Blood Volume Regulation tasks is described. The mathematical formulation of the species independent model, the solutions to the steady state and dynamic versions of the model, and the individual species specific models for the human, squirrel monkey, rat and mouse are outlined. A detailed sensitivity analysis of the species independent model response to parameter changes and how those responses change from species to species is presented. The species to species response to a series of simulated stresses directly related to blood volume regulation during space flight is analyzed.
Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces
NASA Technical Reports Server (NTRS)
Stanford, Bret K.
2015-01-01
This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.
A mathematical simulation model of the CH-47B helicopter, volume 1
NASA Technical Reports Server (NTRS)
Weber, J. M.; Liu, T. Y.; Chung, W.
1984-01-01
A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion.
Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.
NASA Astrophysics Data System (ADS)
Hage, W.; Meyer, R.; Bechert, D. W.
1997-11-01
In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.
Control of a 30 cm diameter mercury bombardment thruster
NASA Technical Reports Server (NTRS)
Terdan, F. F.; Bechtel, R. T.
1973-01-01
Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.
ODIN system technology module library, 1972 - 1973
NASA Technical Reports Server (NTRS)
Hague, D. S.; Watson, D. A.; Glatt, C. R.; Jones, R. T.; Galipeau, J.; Phoa, Y. T.; White, R. J.
1978-01-01
ODIN/RLV is a digital computing system for the synthesis and optimization of reusable launch vehicle preliminary designs. The system consists of a library of technology modules in the form of independent computer programs and an executive program, ODINEX, which operates on the technology modules. The technology module library contains programs for estimating all major military flight vehicle system characteristics, for example, geometry, aerodynamics, economics, propulsion, inertia and volumetric properties, trajectories and missions, steady state aeroelasticity and flutter, and stability and control. A general system optimization module, a computer graphics module, and a program precompiler are available as user aids in the ODIN/RLV program technology module library.
Common spaceborne multicomputer operating system and development environment
NASA Technical Reports Server (NTRS)
Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.
1994-01-01
A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.
Activity of the sympathoadrenal system in cosmonauts during 25-day space flight on station Mir
NASA Astrophysics Data System (ADS)
Kvetňanský, R.; Noskov, V. B.; Blazicek, P.; Gharib, C.; Popova, I. A.; Gauquelin, G.; Macho, L.; Guell, A.; Grigoriev, A. I.
The activity of the sympathoadrenal system in cosmonauts was studied by measuring plasma and urinary catecholamines and their metabolites and conjugates. The appliance Plasma 02 was used for collecting, processing, and storing blood and urine samples from the cosmonauts during the course of a 25-day flight on board the station Mir. Plasma and urine concentrations of adrenaline (A), noradrenaline (NA), and dopamine (DA) as well as urinary levels of vanillylmandelic acid (VMA) and homovanillic acid (HVA), and plasma levels of catecholamine sulphates were determined before, during and after the space flight. Plasma NA levels were slightly elevated on day 9 and plasma A on day 20, whereas plasma DA levels were unchanged. However, most of the changes were within the normal range of control values. Sulphates of plasma catecholamines did not change during flight but they were significantly elevated after landing. Urinary levels of A, NA, DA, VMA, and HVA were comparable with preflight values but were elevated at the different intervals studied after landing. The results obtained suggest that in the short period of about 9 days of the cosmonaut's stay in space the sympathoadrenal system was slightly activated indicating a mild stressful influence of the initial period of flight. This short-term space flight compared to long-term flight did not as markedly activate the sympathoadrenal system during the process of re-adaptation to Earth's gravity after landing. Our data suggest that weightlessness is not a stressful factor activating the sympathoadrenal system but it sensitizes the responsiveness of this system during the re-adaptation period after space flight.
Chapple, Richard H.; Tseng, Yu-Jung; Hu, Tianyuan; Kitano, Ayumi; Takeichi, Makiko; Hoegenauer, Kevin A.
2018-01-01
Characterization of hematopoietic stem cells (HSCs) has advanced largely owing to transplantation assays, in which the developmental potential of HSCs is assessed generally in nonhomeostatic conditions. These studies established that adult HSCs extensively contribute to multilineage hematopoietic regeneration upon transplantation. On the contrary, recent studies performing lineage tracing of HSCs under homeostatic conditions have shown that adult HSCs may contribute far less to steady-state hematopoiesis than would be anticipated based on transplantation assays. Here, we used 2 independent HSC-lineage–tracing models to examine the contribution of adult HSCs to steady-state hematopoiesis. We show that adult HSCs contribute robustly to steady-state hematopoiesis, exhibiting faster efflux toward the myeloid lineages compared with lymphoid lineages. Platelets were robustly labeled by HSCs, reaching the same level of labeling as HSCs by 1 year of chase. Our results support the view that adult HSCs contribute to the continuous influx of blood cells during steady-state hematopoiesis. PMID:29848758
Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man
NASA Technical Reports Server (NTRS)
Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1985-01-01
An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.
A new thermally driven refrigeration system with environmental benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garris, C.A. Jr.; Hong, W.J.; Mavriplis, C.
1998-07-01
The pressure-exchange ejector offers the possibility of attaining a breakthrough in the level of performance of ejectors by means of utilizing non-dissipative non-steady flow mechanisms. Yet, the device retains much of the mechanical simplicity of conventional steady-flow ejectors. If such a substantial improvement in performance is demonstrated, its application to ejector refrigeration will be very important. Such a development would provide significant benefits for the environment in terms of both CFC usage reduction and greenhouse gas reduction. The current paper will discuss in detail the concept of pressure-exchange ejector refrigeration, compare it with existing technologies, and discuss the potential impactmore » that might be derived if certain levels of ejector performance can be achieved. Since the limiting issue on the system performance is in the fluid dynamics of non-steady flow induction, research issues and recent progress will be discussed.« less
Modelling and simulation of Holocene marine terrace development in Boso Peninsula, central Japan
NASA Astrophysics Data System (ADS)
Noda, Akemi; Miyauchi, Takahiro; Sato, Toshinori; Matsu'ura, Mitsuhiro
2018-04-01
In the southern part of Boso Peninsula, central Japan, we can observe a series of well-developed Holocene marine terraces. We modeled the development of these marine terraces by considering sea-level fluctuation and steady land uplift. The evolution of coastal landform is generally described as follows: altitude change = - erosion + deposition - sea-level rise + land uplift. In this study, the erosion rate is supposed to be proportional to the dissipation rate of wave energy, and the deposition rate of eroded materials to decay exponentially as they are transported seaward. The rate of sea-level rise is given by the time derivative of a sea-level curve obtained from the sediment core records of oxygen isotope ratios. Steady plate subduction generally brings about steady crustal uplift/subsidence independently of earthquake occurrence, and so the land-uplift rate is regarded as time independent on a long-term average. Our simulation results show that a pair of sea cliff and abrasion platform is efficiently formed about a stationary point of the sea-level curve. The Holocene sea-level curve has four peaks and three troughs, and so basically seven terraces are formed one by one during the past 10,000 yr. However, when the land-uplift rate is low, most of the terraces formed at older times sink in the sea. When the land-uplift rate is high, the overlap and/or reverse of older and younger terraces occur frequently, and so the correspondence between the age and present altitude of terraces is not necessarily one-to-one. Taking the land-uplift rate to be 3-4 mm/yr, we can reproduce a series of well-developed Holocene marine terraces in Boso Peninsula independently of coseismic uplifts. From these simulation results, we may conclude that the Holocene marine terraces in Boso Peninsula were developed as a result of the composite process of sea-level fluctuation and steady coastal uplift.
Al Najjar, Salwa; Adam, Soheir; Ahmed, Nessar; Qari, Mohamed
2017-01-01
Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.
ERIC Educational Resources Information Center
Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.
2015-01-01
Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Helicopter Flight Procedures for Community Noise Reduction
NASA Technical Reports Server (NTRS)
Greenwood, Eric
2017-01-01
A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.
Simultaneous measurement of glucose transport and utilization in the human brain.
Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin
2011-11-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.
14 CFR 23.201 - Wings level stall.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.201 Wings level... airplane stalls. (b) The wings level stall characteristics must be demonstrated in flight as follows...
Pilot In-Trail Procedure Validation Simulation Study
NASA Technical Reports Server (NTRS)
Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.
2008-01-01
A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.
Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.
Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wethington, Susan M; Chiu, George T C; Deng, Xinyan
2016-11-15
Hummingbirds are nature's masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the 'helicopter model' that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species. © 2016. Published by The Company of Biologists Ltd.
Hindlimb motion during steady flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.
Cheney, Jorn A; Ton, Daniel; Konow, Nicolai; Riskin, Daniel K; Breuer, Kenneth S; Swartz, Sharon M
2014-01-01
In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wingbeat cycle; 2) whether amplitude of ankle motion is dependent upon flight speed; 3) how tension in the wing membrane pulls the ankle; and 4) whether wing membrane tension is responsible for driving ankle motion. We flew five individuals of the lesser dog-faced fruit bat, Cynopterus brachyotis (Family: Pteropodidae), in a wind tunnel and documented kinematics of the forelimb, hip, ankle, and trailing edge of the wing membrane. Based on kinematic analysis of hindlimb and forelimb movements, we found that: 1) during downstroke, the ankle moved ventrally and during upstroke the ankle moved dorsally; 2) there was considerable variation in amplitude of ankle motion, but amplitude did not correlate significantly with flight speed; 3) during downstroke, tension generated by the wing membrane acted to pull the ankle dorsally, and during upstroke, the wing membrane pulled laterally when taut and dorsally when relatively slack; and 4) wing membrane tension generally opposed dorsoventral ankle motion. We conclude that during forward flight in C. brachyotis, wing membrane tension does not power hindlimb motion; instead, we propose that hindlimb movements arise from muscle activity and/or inertial effects.
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space
Ertl, Andrew C; Diedrich, André; Biaggioni, Italo; Levine, Benjamin D; Robertson, Rose Marie; Cox, James F; Zuckerman, Julie H; Pawelczyk, James A; Ray, Chester A; Buckey, Jay C; Lane, Lynda D; Shiavi, Richard; Gaffney, F Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C Gunnar; Eckberg, Dwain L; Baisch, Friedhelm J; Robertson, David
2002-01-01
Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (± s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post–flight days 1 or 2 (n = 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels. PMID:11773339
Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr;
2002-01-01
Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels.
Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase.
Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin
2017-01-01
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.
Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase
Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin
2017-01-01
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz. PMID:29021745