Sample records for steady state case

  1. Evaporation rate of nucleating clusters.

    PubMed

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  2. Differences between automatically detected and steady-state fractional flow reserve.

    PubMed

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  3. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...

  4. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  5. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    PubMed

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Longtime dynamics of the PDE model for the motion toward light of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Taranets, R.; Chugunova, M.

    2018-03-01

    We study stationary solutions and longtime dynamics of the PDE model for cyanobacteria motion, which was recently proposed by Chavy-Waddy and Kolokolnikov (2016 Nonlinearity 29 3174). For different values of the parameter α, which controls the extent of the aggregate, we analyse a family of corresponding steady states and their stability (considering symmetric and non-symmetric cases separately). We derive the rate of convergence toward steady states, show existence of weak nonnegative solutions, and we also discover that the value α = 3 is a special case for this PDE model. Using numerical simulations we compare different regimes and illustrate convergence toward steady states.

  7. Poissonian steady states: from stationary densities to stationary intensities.

    PubMed

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  8. Poissonian steady states: From stationary densities to stationary intensities

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  9. Information on estimating local government highway bonds

    DOT National Transportation Integrated Search

    1973-06-01

    The theory of traffic flow following a lane blockage on a multi-lane freeway has been developed. Numerical results have been obtained and are presented both for the steady state case where the traffic density remains constant and the non-steady state...

  10. A critical investigation of post-liquefaction strength and steady-state flow behavior of saturated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong, H.L.

    1988-01-01

    The first objective was to perform a critical evaluation of the recently proposed steady-state analysis methodology for evaluation of post-liquefaction stability of potentially liquefiable soils. This analysis procedure is based on direct comparison between the in-situ undrained residual (steady state) strength of soils in an embankment or foundation, and the driving shear stresses in these soils. A laboratory investigation was performed to investigate factors affecting steady-state strengths, and also to evaluate the validity of assumptions involved in correcting the results of laboratory steady-state strength tests on undisturbed samples for effects of sampling disturbance in order to estimate in-situ strengths. Next,more » a field case study was performed using the steady-state analysis and testing methodologies to analyze Lower San Fernando Dam, which suffered a liquefaction-induced slope failure as a results of a 1971 earthquake. This leads to the second objective which was to extend the Lower San Fernando Dam case study to consideration of analysis methods used to evaluate the likelihood of triggering liquefaction during an earthquake. Finally, a number of the high quality undisturbed samples were subjected to undrained cyclic testing in order to repeat an earlier (1973) study of the use of cyclic tests data to predict liquefaction behavior at Lower San Fernando Dam.« less

  11. Steady-State Algorithmic Analysis M/M/c Two-Priority Queues with Heterogeneous Rates.

    DTIC Science & Technology

    1981-04-21

    ALGORITHMIC ANALYSIS OF M/M/c TWO-PRIORITY QUEUES WITH HETEROGENEOUS RATES by Douglas R. Miller An algorithm for steady-state analysis of M/M/c nonpreemptive ...practical algorithm for systems involving more than two priority classes. The preemptive case is simpler than the nonpreemptive case; an algorithm for it...priority nonpreemptive queueing system with arrival rates 1 and X2 and service rates V and p42 * The state space can be described as follows. Let xi,j,k be

  12. Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Langer, S.

    2016-01-01

    In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.

  13. Entropy criteria applied to pattern selection in systems with free boundaries

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-10-01

    The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

  14. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation.

    PubMed

    Xie, Haijian; Yan, Huaxiang; Feng, Shijin; Wang, Qiao; Chen, Peixiong

    2016-10-01

    One-dimensional mathematical model is developed to investigate the behavior of contaminant transport in landfill composite liner system considering coupled effect of consolidation, diffusion, and degradation. The first- and second-type bottom boundary conditions are used to derive the steady-state and quasi-steady-state analytical solutions. The concentration profiles obtained by the proposed analytical solution are in good agreement with those obtained by the laboratory tests. The bottom concentration and flux of the soil liners can be greatly reduced when the degradation effect and porosity changing are considered. For the case under steady-state, the bottom flux and concentration for the case with t 1/2 =10 years can be 2.8 and 5.5 times lower than those of the case with t 1/2 =100 years, respectively. The bottom concentration and flux of the soil liners can be greatly reduced when the coefficient of volume compressibility decreases. For quasi-steady-state and with t 1/2 = 10 years, the bottom flux and concentration for the case with m v  = 0.02/MPa can be 17.4 and 21 times lower than the case with m v  = 0.5/MPa. This may be due to the fact that the true fluid velocity induced by consolidation is greater for the case with high coefficient of volume compressibility. The bottom flux for the case with single compacted clay liner (CCL) can be 1.5 times larger than that for the case with GMB/CCL considering diffusion and consolidation for DCM. The proposed analytical model can be used for verification of more complicated numerical models and assessment of the coupled effect of diffusion, consolidation, and degradation on contaminant transport in landfill liner systems.

  15. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  16. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    PubMed

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Transverse vibration and buckling of a cantilevered beam with tip body under constant axial base acceleration

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.

  18. The network of corporate clients: customer attrition at commercial banks

    NASA Astrophysics Data System (ADS)

    Lublóy, Á.; Szenes, M.

    2008-12-01

    Commercial banks might profit from the adoption of methods widely used in network theory. A decision making process might become biased if one disregards network effects within the corporate client portfolio. This paper models the phenomenon of customer attrition by generating a weighted and directed network of corporate clients linked by financial transactions. During the numerical study of the agent-based toy model we demonstrate that multiple steady states may exist. The statistical properties of the distinct steady states show similarities. We show that most companies of the same community choose the same bank in the steady state. In contrast to the case for the steady state of the Barabási-Albert network, market shares in this model equalize by network size. When modeling customer attrition in the network of 3 × 105 corporate clients, none of the companies followed the behavior of the initial switcher in three quarters of the simulations. The number of switchers exceeded 20 in 1% of the cases. In the worst-case scenario a total of 688 companies chose a competitor bank. Significant network effects have been discovered; high correlation prevailed between the degree of the initial switcher and the severity of the avalanche effect. This suggests that the position of the corporate client in the network might be much more important than the underlying properties (industry, size, profitability, etc) of the company.

  19. Fast cooling for a system of stochastic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongxin, E-mail: chen2468@umn.edu; Georgiou, Tryphon T., E-mail: tryphon@umn.edu; Pavon, Michele, E-mail: pavon@math.unipd.it

    2015-11-15

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedbackmore » control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and −logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.« less

  20. Bifurcations in the theory of current transfer to cathodes of DC discharges and observations of transitions between different modes

    NASA Astrophysics Data System (ADS)

    Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.

    2018-04-01

    General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.

  1. Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.

    PubMed

    Ryzhov, Eugene A

    2017-11-01

    The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.

  2. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.

  3. MATHEMATICAL ANALYSIS OF STEADY-STATE SOLUTIONS IN COMPARTMENT AND CONTINUUM MODELS OF CELL POLARIZATION

    PubMed Central

    ZHENG, ZHENZHEN; CHOU, CHING-SHAN; YI, TAU-MU; NIE, QING

    2013-01-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together these results furnish a detailed description of the factors that influence the tradeoff between a single correctly aligned but poorly polarized stable steady-state solution versus multiple more highly polarized stable steady-state solutions that may be incorrectly aligned with the external gradient. PMID:21936604

  4. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    NASA Astrophysics Data System (ADS)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  5. Characterization of the space shuttle reaction control system engine

    NASA Technical Reports Server (NTRS)

    Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.

    1972-01-01

    A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.

  6. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  7. Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate.

    PubMed

    Peng, Zhilong; Chen, Shaohua

    2015-04-01

    Inspired by the experimental observation that the maximum peeling force of elastic films on rigid substrates does not always emerge at the steady-state peeling stage, but sometimes at the initial one, a theoretical model is established in this paper, in which not only the effect of the film's bending stiffness on the peeling force is considered, but also the whole peeling process, from the initiation of debonding to the steady-state stage, is characterized. Typical peeling force-displacement curves and deformed profiles of the film reappear for the whole peeling process. For the case of a film with relatively large bending stiffness, the maximum peeling force is found arising at the initial peeling stage and the larger the stiffness of the film, the larger the maximum peeling force is. With the peeling distance increasing, the peeling force is reduced from the maximum to a constant at the steady-state stage. For the case of a film with relatively small stiffness, the peeling force increases monotonically at the initial stage and then achieves a constant as the maximum at the steady-state stage. Furthermore, the peeling forces in the steady-state stage are compared with those of the classical Kendall model. All the theoretical predictions agree well with the existing experimental and numerical observations, from which the maximum peeling force can be predicted precisely no matter what the stiffness of the film is. The results in this paper should be very helpful in the design and assessment of the film-substrate interface.

  8. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  9. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  10. Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.

  11. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  12. Exact results for the finite time thermodynamic uncertainty relation

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreekanth K.; Krishnamurthy, Supriya

    2018-03-01

    We obtain exact results for the recently discovered finite-time thermodynamic uncertainty relation, for the dissipated work W d , in a stochastically driven system with non-Gaussian work statistics, both in the steady state and transient regimes, by obtaining exact expressions for any moment of W d at arbitrary times. The uncertainty function (the Fano factor of W d ) is bounded from below by 2k_BT as expected, for all times τ, in both steady state and transient regimes. The lower bound is reached at τ=0 as well as when certain system parameters vanish (corresponding to an equilibrium state). Surprisingly, we find that the uncertainty function also reaches a constant value at large τ for all the cases we have looked at. For a system starting and remaining in steady state, the uncertainty function increases monotonically, as a function of τ as well as other system parameters, implying that the large τ value is also an upper bound. For the same system in the transient regime, however, we find that the uncertainty function can have a local minimum at an accessible time τm , for a range of parameter values. The large τ value for the uncertainty function is hence not a bound in this case. The non-monotonicity suggests, rather counter-intuitively, that there might be an optimal time for the working of microscopic machines, as well as an optimal configuration in the phase space of parameter values. Our solutions show that the ratios of higher moments of the dissipated work are also bounded from below by 2k_BT . For another model, also solvable by our methods, which never reaches a steady state, the uncertainty function, is in some cases, bounded from below by a value less than 2k_BT .

  13. Dynamic elementary mode modelling of non-steady state flux data.

    PubMed

    Folch-Fortuny, Abel; Teusink, Bas; Hoefsloot, Huub C J; Smilde, Age K; Ferrer, Alberto

    2018-06-18

    A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment. Two methods are introduced here: dynamic elementary mode analysis (dynEMA) and dynamic elementary mode regression discriminant analysis (dynEMR-DA). The former is an extension of the recently proposed principal elementary mode analysis (PEMA) method from steady state to non-steady state scenarios. The latter is a discriminant model that permits to identify which dynEMs behave strongly different depending on the experimental conditions. Two case studies of Saccharomyces cerevisiae, with fluxes derived from simulated and real concentration data sets, are presented to highlight the benefits of this dynamic modelling. This methodology permits to analyse metabolic fluxes at early stages with the aim of i) creating reduced dynamic models of flux data, ii) combining many experiments in a single biologically meaningful model, and iii) identifying the metabolic pathways that drive the organism from one state to another when changing the environmental conditions.

  14. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  15. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    PubMed

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  16. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    NASA Astrophysics Data System (ADS)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  17. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  18. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.

    1977-01-01

    The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.

  19. A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    NASA Technical Reports Server (NTRS)

    Winterscheidt, Daniel L.

    1993-01-01

    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.

  20. On the relationship of steady states of continuous and discrete models arising from biology.

    PubMed

    Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka

    2012-12-01

    For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.

  1. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  2. Applicability of steady models for hot-star winds

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Poe, Clint H.; Castor, John I.

    1990-01-01

    Non-Sobolev models of radiatively driven stellar winds based on a pure-absorption approximation do not have a well-defined steady state. Here the implications of this for flow time-dependence are examined, showing that, under such circumstances, instabilities in the flow attain an absolute character that leads to intrinsic variability. In this case, steady solutions are inherently inapplicable because they do not represent physically realizable states. However, for actual hot-star winds, driving is principally by scattering, not pure absorption. In practice, the relatively weak force associated with slight asymmetries in the diffuse, scattered radiation field may play a crucial role in breaking the solution degeneracy and reducing the instability from an absolute to an advective character.

  3. Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors

    NASA Astrophysics Data System (ADS)

    Green, K.; Champneys, A. R.; Lieven, N. J.

    2006-04-01

    We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.

  4. Phononic heat transport in nanomechanical structures: steady-state and pumping

    NASA Astrophysics Data System (ADS)

    Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.

    2017-10-01

    We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.

  5. An optimizing start-up strategy for a bio-methanator.

    PubMed

    Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain

    2012-05-01

    This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.

  6. Steady state macroscopic model of the influence of water on the performances of a micro air-breathing fuel cell

    NASA Astrophysics Data System (ADS)

    Zeidan, M.; Turpin, Ch.; Cantin, F.; Astier, S.

    2011-05-01

    Water management is one of the most crucial issues to drive PEM fuel cells. The challenge is enhanced in the case of micro air-breathing proton exchange membrane fuel cells (μABFC): their thinness and their reduced surface indeed make their hydration state fast changing and very sensitive to the experimental conditions (temperature and relative humidity (RH)). It can lead to strong flooding or drying out issues. Firstly, this study highlights this sensitivity by various measurements. Then a steady state macroscopic model for the μABFC is proposed, focusing on the cathode, using a rather original approach for diffusion in porous media. Finally, a literal steady state formula for the water content is provided, and its influences on the performances of the μABFC are explicitly proposed. The model is parameterized and compared to measures in several atmospheric conditions.

  7. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  8. An evaluation of random analysis methods for the determination of panel damping

    NASA Technical Reports Server (NTRS)

    Bhat, W. V.; Wilby, J. F.

    1972-01-01

    An analysis is made of steady-state and non-steady-state methods for the measurement of panel damping. Particular emphasis is placed on the use of random process techniques in conjunction with digital data reduction methods. The steady-state methods considered use the response power spectral density, response autocorrelation, excitation-response crosspower spectral density, or single-sided Fourier transform (SSFT) of the response autocorrelation function. Non-steady-state methods are associated mainly with the use of rapid frequency sweep excitation. Problems associated with the practical application of each method are evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and two methods, the power spectral density and the single-sided Fourier transform methods, are selected as being the most suitable. These two methods are demonstrated experimentally, and it is shown that the power spectral density method is satisfactory under most conditions, provided that appropriate corrections are applied to account for filter bandwidth and background noise errors. Thus, the response power spectral density method is recommended for the measurement of the damping of panels exposed to a moving airflow.

  9. Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys

    NASA Astrophysics Data System (ADS)

    Bouchard, Dominique; Kirkaldy, John S.

    1997-08-01

    Various theoretical dendrite and cell spacing formulas have been tested against experimental data obtained in unsteady- and steady-state heat flow conditions. An iterative assessment strategy satisfactorily overcomes the circumstances that certain constitutive parameters are inadequately established and/or highly variable and that many of the data sets, in terms of gradients, velocities, and/or cooling rates, are unreliable. The accessed unsteady- and steady-state observations on near-terminal binary alloys for primary and secondary spacings were first examined within conventional power law representations, the deduced exponents and confidence limits for each alloy being tabularly recorded. Through this analysis, it became clear that to achieve predictive generality the many constitutive parameters must be included in a rational way, this being achievable only through extant or new theoretical formulations. However, in the case of primary spacings, all formulas, including our own, failed within the unsteady heat flow algorithm while performing adequately within their steady-state context. An earlier untested, heuristically derived steady-state formula after modification, λ _1 = 120 ( {{16X_0^{{1/2}} G_0 (\\varepsilon σ )T_M D}/{(1 - k)mΔ H G R}} )^{{1/2}} ultimately proved its utility in the unsteady regime, and so it is recommended for purposes of predictions for general terminal alloys. For secondary spacings, a Mullins and Sekerka type formula proved from the start to be adequate in both unsteady- and steady-state heat flows, and so it recommends itself in calibrated form, λ _2 = 12π ( {{4σ }/{X_0 (1 - k)^2 Δ H}( {D/R} )^2 } )^{{1/3}}

  10. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    NASA Technical Reports Server (NTRS)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  11. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2003-10-07

    The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.

  12. Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon

    2010-01-01

    The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.

  13. Analysis of the passive stabilization of the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Siegel, S. H.; Vishwanath, N. S.

    1977-01-01

    The nominal Long Duration Exposure Facility (LDEF) configurations and the anticipated orbit parameters are presented. A linear steady state analysis was performed using these parameters. The effects of orbit eccentricity, solar pressure, aerodynamic pressure, magnetic dipole, and the magnetically anchored rate damper were evaluated to determine the configuration sensitivity to variations in these parameters. The worst case conditions for steady state errors were identified, and the performance capability calculated. Garber instability bounds were evaluated for the range of configuration and damping coefficients under consideration. The transient damping capabilities of the damper were examined, and the time constant as a function of damping coefficient and spacecraft moment of inertia determined. The capture capabilities of the damper were calculated, and the results combined with steady state, transient, and Garber instability analyses to select damper design parameters.

  14. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    NASA Astrophysics Data System (ADS)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  15. Responses of many-species predator-prey systems to perturbations

    NASA Astrophysics Data System (ADS)

    Esmaily, Shadi; Pleimling, Michel

    2015-03-01

    We study the responses of many-species predator-prey systems, both in the well-mixed case as well as on a two-dimensional lattice, to permanent and transient perturbations. In the case of a weak transient perturbation the system returns to the original steady state, whereas a permanent perturbation pushes the system into a new steady state. Using Monte Carlo simulations, we monitor the approach to stationarity after a perturbation through a variety of quantities, as for example time-dependent particle densities and correlation functions. Different types of perturbations are studied, ranging from a change in reaction rates to the injection of additional individuals into the system, the latter perturbation mimicking immigration. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  16. Explicit equilibria in a kinetic model of gambling

    NASA Astrophysics Data System (ADS)

    Bassetti, F.; Toscani, G.

    2010-06-01

    We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.

  17. Unsteady thermal blooming of intense laser beams

    NASA Astrophysics Data System (ADS)

    Ulrich, J. T.; Ulrich, P. B.

    1980-01-01

    A four dimensional (three space plus time) computer program has been written to compute the nonlinear heating of a gas by an intense laser beam. Unsteady, transient cases are capable of solution and no assumption of a steady state need be made. The transient results are shown to asymptotically approach the steady-state results calculated by the standard three dimensional thermal blooming computer codes. The report discusses the physics of the laser-absorber interaction, the numerical approximation used, and comparisons with experimental data. A flowchart is supplied in the appendix to the report.

  18. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  19. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia.

    PubMed

    Yang, Yuxiao; Shanechi, Maryam M

    2016-12-01

    Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  20. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  1. Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce

    2000-01-01

    A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.

  2. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  3. Order reduction for a model of marine bacteriophage evolution

    NASA Astrophysics Data System (ADS)

    Pagliarini, Silvia; Korobeinikov, Andrei

    2017-02-01

    A typical mechanistic model of viral evolution necessary includes several time scales which can differ by orders of magnitude. Such a diversity of time scales makes analysis of these models difficult. Reducing the order of a model is highly desirable when handling such a model. A typical approach applied to such slow-fast (or singularly perturbed) systems is the time scales separation technique. Constructing the so-called quasi-steady-state approximation is the usual first step in applying the technique. While this technique is commonly applied, in some cases its straightforward application can lead to unsatisfactory results. In this paper we construct the quasi-steady-state approximation for a model of evolution of marine bacteriophages based on the Beretta-Kuang model. We show that for this particular model the quasi-steady-state approximation is able to produce only qualitative but not quantitative fit.

  4. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.; ,

    1985-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.

  5. Natural gas operations: considerations on process transients, design, and control.

    PubMed

    Manenti, Flavio

    2012-03-01

    This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension

    NASA Astrophysics Data System (ADS)

    Malakar, Kanaya; Jemseena, V.; Kundu, Anupam; Vijay Kumar, K.; Sabhapandit, Sanjib; Majumdar, Satya N.; Redner, S.; Dhar, Abhishek

    2018-04-01

    We investigate the motion of a run-and-tumble particle (RTP) in one dimension. We find the exact probability distribution of the particle with and without diffusion on the infinite line, as well as in a finite interval. In the infinite domain, this probability distribution approaches a Gaussian form in the long-time limit, as in the case of a regular Brownian particle. At intermediate times, this distribution exhibits unexpected multi-modal forms. In a finite domain, the probability distribution reaches a steady-state form with peaks at the boundaries, in contrast to a Brownian particle. We also study the relaxation to the steady-state analytically. Finally we compute the survival probability of the RTP in a semi-infinite domain with an absorbing boundary condition at the origin. In the finite interval, we compute the exit probability and the associated exit times. We provide numerical verification of our analytical results.

  7. Composing problem solvers for simulation experimentation: a case study on steady state estimation.

    PubMed

    Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M

    2014-01-01

    Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.

  8. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: a theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2014-09-01

    Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.

  9. Integration of plume and puff diffusion models/application of CFD

    NASA Astrophysics Data System (ADS)

    Mori, Akira

    The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.

  10. Brief Communication: A Simplified Approach to Transient Convective Droplet Evaporation and Burning

    NASA Technical Reports Server (NTRS)

    Madooglu, K.; Karagozian, A. R.

    1994-01-01

    Empirical correlations for evaporation rates from single fuel droplets have existed since the 1930s. These correlations, which will be referred to in this article as Froessling/Ranz-Marshall types of correlations, are appropriate to the special cases of steady-state evaporation in the absence of chemical reaction. In a previous article by the authors, the quasi-steady evaporation and burning processes associated with a fuel drop in a convective environment are examined through a droplet model based on the boundary layer approach. For droplet Reynolds numbers of practical interest, this model produces very reasonable steady state as well as quasi-time-dependent droplet simulations, requiring relatively short computational times and yielding good agreement with the above-mentioned empirical correlations. The steady-state case, however, is usually relevant to practical combustor situations only when the drop has reached a nearly uniform temperature since the heating process of the drop cannot be considered to be quasi-steady. In the present study, the transient heating process of the droplet interior during evaporation and/or burning is taken into account, and thus calculations pertaining to the entire life-time of the droplet are carried out. It is of particular interest here to obtain simplified correlations to describe the transient behavior of evaporating and burning droplets; these may be incorporated with greater ease into spray calculations. Accordingly, we have chosen to use stagnation conditions in the present model in a modification of the Froessling/Ranz-Marshall correlations. These modified correlations, incorporating an effective transfer number, produce a fairly accurate representation of droplet evaporation and burning, while requiring only one tenth the computational effort used in a full boundary layer solution.

  11. Adaptive relaxation for the steady-state analysis of Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham

    1994-01-01

    We consider a variant of the well-known Gauss-Seidel method for the solution of Markov chains in steady state. Whereas the standard algorithm visits each state exactly once per iteration in a predetermined order, the alternative approach uses a dynamic strategy. A set of states to be visited is maintained which can grow and shrink as the computation progresses. In this manner, we hope to concentrate the computational work in those areas of the chain in which maximum improvement in the solution can be achieved. We consider the adaptive approach both as a solver in its own right and as a relaxation method within the multi-level algorithm. Experimental results show significant computational savings in both cases.

  12. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    NASA Astrophysics Data System (ADS)

    Hazan, Aurélien

    2017-05-01

    We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  13. Transient self-amplified Cerenkov radiation with a short pulse electron beam

    NASA Astrophysics Data System (ADS)

    Poole, B. R.; Blackfield, D. T.; Camacho, J. F.

    2009-08-01

    An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes.

  14. Navier-Stokes Flow Past a Rigid Body: Attainability of Steady Solutions as Limits of Unsteady Weak Solutions, Starting and Landing Cases

    NASA Astrophysics Data System (ADS)

    Hishida, Toshiaki; Maremonti, Paolo

    2017-11-01

    Consider the Navier-Stokes flow in 3-dimensional exterior domains, where a rigid body is translating with prescribed translational velocity - h(t)u_∞ with constant vector u_∞ \\in R^3{\\setminus }{0}. Finn raised the question whether his steady solutions are attainable as limits for t→ ∞ of unsteady solutions starting from motionless state when h(t)=1 after some finite time and h(0)=0 (starting problem). This was affirmatively solved by Galdi et al. (Arch Ration Mech Anal 138:307-318, 1997) for small u_∞. We study some generalized situation in which unsteady solutions start from large motions being in L^3 . We then conclude that the steady solutions for small u_∞ are still attainable as limits of evolution of those fluid motions which are found as a sort of weak solutions. The opposite situation, in which h(t)=0 after some finite time and h(0)=1 (landing problem), is also discussed. In this latter case, the rest state is attainable no matter how large u_∞ is.

  15. Navier-Stokes Flow Past a Rigid Body: Attainability of Steady Solutions as Limits of Unsteady Weak Solutions, Starting and Landing Cases

    NASA Astrophysics Data System (ADS)

    Hishida, Toshiaki; Maremonti, Paolo

    2018-06-01

    Consider the Navier-Stokes flow in 3-dimensional exterior domains, where a rigid body is translating with prescribed translational velocity - h(t)u_∞ with constant vector u_∞ \\in R^3{\\setminus }{0}. Finn raised the question whether his steady solutions are attainable as limits for t→ ∞ of unsteady solutions starting from motionless state when h(t)=1 after some finite time and h(0)=0 (starting problem). This was affirmatively solved by Galdi et al. (Arch Ration Mech Anal 138:307-318, 1997) for small u_∞. We study some generalized situation in which unsteady solutions start from large motions being in L^3. We then conclude that the steady solutions for small u_∞ are still attainable as limits of evolution of those fluid motions which are found as a sort of weak solutions. The opposite situation, in which h(t)=0 after some finite time and h(0)=1 (landing problem), is also discussed. In this latter case, the rest state is attainable no matter how large u_∞ is.

  16. Effects of cell geometry on reversible vesicular transport

    NASA Astrophysics Data System (ADS)

    Karamched, Bhargav R.; Bressloff, Paul C.

    2017-02-01

    A major question in cell biology concerns the biophysical mechanism underlying delivery of newly synthesized macromolecules to specific targets within a cell. A recent modeling paper investigated this phenomenon in the context of vesicular delivery to en passant synapses in neurons (Bressloff and Levien 2015 Phys. Rev. Lett.). It was shown how reversibility in vesicular delivery to synapses could play a crucial role in achieving uniformity in the distribution of resources throughout an axon, which is consistent with experimental observations in C. elegans and Drosophila. In this work we generalize the previous model by investigating steady-state vesicular distributions on a Cayley tree, a disk, and a sphere. We show that for irreversible transport on a tree, branching increases the rate of decay of the steady-state distribution of vesicles. On the other hand, the steady-state profiles for reversible transport are similar to the 1D case. In the case of higher-dimensional geometries, we consider two distinct types of radially-symmetric microtubular network: (i) a continuum and (ii) a discrete set. In the continuum case, we model the motor-cargo dynamics using a phenomenologically-based advection-diffusion equation in polar (2D) and spherical (3D) coordinates. On the other-hand, in the discrete case, we derive the population model from a stochastic model of a single motor switching between ballistic motion and diffusion. For all of the geometries we find that reversibility in vesicular delivery to target sites allows for a more uniform distribution of vesicles, provided that cargo-carrying motors are not significantly slowed by their cargo. In each case we characterize the loss of uniformity as a function of the dispersion in velocities.

  17. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  18. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    DTIC Science & Technology

    2016-08-29

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  19. Neuronal plasticity and thalamocortical sleep and waking oscillations

    PubMed Central

    Timofeev, Igor

    2011-01-01

    Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960

  20. Extrasolar giant magnetospheric response to steady-state stellar wind pressure at 10, 5, 1, and 0.2 AU

    NASA Astrophysics Data System (ADS)

    Tilley, Matt; Harnett, Erika; Winglee, Robert

    2016-10-01

    A three-dimensional, multifluid simulation of a giant planet's magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semi-major axes - 10, 5, 1 and 0.2 AU. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semi-major axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 AU and 5 AU cases which reach a state of mass loss equilibrium more slowly than the 1 AU or 0.2 AU cases. The compression of the magnetosphere in the 1 AU and 0.2 AU cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents (FAC), associated with auroral radio emissions, are shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus which could contribute to altered transit signals, suggesting that for planets in warmer (> 0.1 AU) orbits, planetary magnetic field strengths and possibly exomoons - via the plasma torus - could be observable with future missions.

  1. Extrasolar Giant Magnetospheric Response to Steady-state Stellar Wind Pressure at 10, 5, 1, and 0.2 au

    NASA Astrophysics Data System (ADS)

    Tilley, Matt A.; Harnett, Erika M.; Winglee, Robert M.

    2016-08-01

    A three-dimensional, multifluid simulation of a giant planet’s magnetospheric interaction with steady-state stellar wind from a Sun-like star was performed for four different orbital semimajor axes—10, 5, 1, and 0.2 au. We simulate the effect of the increasing, steady-state stellar wind pressure related to the planetary orbital semimajor axis on the global magnetospheric dynamics for a Saturn-like planet, including an Enceladus-like plasma torus. Mass-loss processes are shown to vary with orbital distance, with the centrifugal interchange instability displayed only in the 10 and 5 au cases, which reach a state of mass-loss equilibrium more slowly than the 1 or 0.2 au cases. The compression of the magnetosphere in the 1 and 0.2 au cases contributes to the quenching of the interchange process by increasing the ratio of total plasma thermal energy to corotational energy. The strength of field-aligned currents, associated with auroral radio emissions, is shown to increase in magnitude and latitudinal coverage with a corresponding shift equatorward from increased dynamic ram pressure experienced in the hotter orbits. Similar to observed hot Jovian planets, the warm exo-Saturn simulated in the current work shows enhanced ion density in the magnetosheath and magnetopause regions, as well as the plasma torus, which could contribute to altered transit signals, suggesting that for planets in warmer (>0.1 au) orbits, planetary magnetic field strengths and possibly exomoons—via the plasma torus—could be observable with future missions.

  2. State Support of Higher Education: From Expansion to Steady State to Decline, 1969 to 1989, Including an Illinois Case Study. MacArthur/Spencer Series Number 9.

    ERIC Educational Resources Information Center

    Hines, Edward R.; And Others

    Trends in state higher education funding over a 20-year period from 1969 to 1989 were studied. The four analysis objectives were to: examine aggregate state tax appropriations for higher education annually from 1969 to 1989 in the 50 states; analyze state tax appropriations in each state on a per capita basis; compare state tax appropriations per…

  3. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    DTIC Science & Technology

    2016-05-18

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  4. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population

    NASA Astrophysics Data System (ADS)

    Jemseena, V.; Gopalakrishnan, Manoj

    2015-05-01

    Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011), 10.1016/j.cell.2011.10.037] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.

  5. Circulating DNA: a potential marker of sickle cell crisis.

    PubMed

    Vasavda, Nisha; Ulug, Pinar; Kondaveeti, Sheila; Ramasamy, Karthik; Sugai, Taku; Cheung, Gordon; Rees, David C; Awogbade, Moji; Bannister, Sybil; Cunningham, Juliette; Menzel, Stephan; Thein, Swee Lay

    2007-10-01

    Free circulating DNA is present in the plasma of healthy subjects, and is elevated in conditions characterized by increased cell death, such as cancer and physical trauma. Analysis of circulating DNA in plasma could provide a useful biomarker in sickle cell disease (SCD) in view of the increased cell turnover through chronic ongoing haemolysis, recurrent vaso-occlusion and inflammation. Plasma DNA was determined by real-time quantitative polymerase chain reaction (PCR) amplification of the beta-globin gene (HBB) in 154 patients with SCD [105 haemoglobin (Hb)SS, 46 HbSC and three HbS/beta(0) thalassaemia] and 53 ethnically matched controls. Blood samples were obtained from all patients in steady state; 21 of the 154 patients were also sampled during admission to hospital for acute pain. Median concentration of circulating plasma DNA in acute pain was more than 10-fold that in steady state and in controls - 10070 vs. 841 and 10070 vs. 933 genome equivalents/ml respectively (P < 0.0001, in both cases). During steady state, patients had plasma DNA levels similar to controls. Plasma DNA levels in SCD correlated with C-reactive protein levels (P < 0.005) and total white cell counts (P < 0.05) in steady state. The study shows that plasma DNA concentration may have potential as a biomarker in sickle cell patients.

  6. Role of step stiffness and kinks in the relaxation of vicinal (001) with zigzag [110] steps

    NASA Astrophysics Data System (ADS)

    Mahjoub, B.; Hamouda, Ajmi BH.; Einstein, TL.

    2017-08-01

    We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉 steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps. In this study we show how this leads to different relaxation dynamics as well as to different steady state configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-bond breaking processes for 〈100〉-steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of 〈110〉-zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step effective interactions.

  7. The orbital PDF: general inference of the gravitational potential from steady-state tracers

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Wang, Wenting; Cole, Shaun; Frenk, Carlos S.

    2016-02-01

    We develop two general methods to infer the gravitational potential of a system using steady-state tracers, I.e. tracers with a time-independent phase-space distribution. Combined with the phase-space continuity equation, the time independence implies a universal orbital probability density function (oPDF) dP(λ|orbit) ∝ dt, where λ is the coordinate of the particle along the orbit. The oPDF is equivalent to Jeans theorem, and is the key physical ingredient behind most dynamical modelling of steady-state tracers. In the case of a spherical potential, we develop a likelihood estimator that fits analytical potentials to the system and a non-parametric method (`phase-mark') that reconstructs the potential profile, both assuming only the oPDF. The methods involve no extra assumptions about the tracer distribution function and can be applied to tracers with any arbitrary distribution of orbits, with possible extension to non-spherical potentials. The methods are tested on Monte Carlo samples of steady-state tracers in dark matter haloes to show that they are unbiased as well as efficient. A fully documented C/PYTHON code implementing our method is freely available at a GitHub repository linked from http://icc.dur.ac.uk/data/#oPDF.

  8. Double layers without current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  9. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.

    PubMed

    Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan

    2012-02-01

    Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

  10. Stability of Elevated-qmin Steady-State Scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.

    2016-10-01

    Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.

  11. Uncertainty analysis for the steady-state flows in a dual throat nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q.-Y.; Gottlieb, David; Hesthaven, Jan S.

    2005-03-20

    It is well known that the steady state of an isentropic flow in a dual-throat nozzle with equal throat areas is not unique. In particular there is a possibility that the flow contains a shock wave, whose location is determined solely by the initial condition. In this paper, we consider cases with uncertainty in this initial condition and use generalized polynomial chaos methods to study the steady-state solutions for stochastic initial conditions. Special interest is given to the statistics of the shock location. The polynomial chaos (PC) expansion modes are shown to be smooth functions of the spatial variable x,more » although each solution realization is discontinuous in the spatial variable x. When the variance of the initial condition is small, the probability density function of the shock location is computed with high accuracy. Otherwise, many terms are needed in the PC expansion to produce reasonable results due to the slow convergence of the PC expansion, caused by non-smoothness in random space.« less

  12. Flows in a tube structure: Equation on the graph

    NASA Astrophysics Data System (ADS)

    Panasenko, Grigory; Pileckas, Konstantin

    2014-08-01

    The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.

  13. Complete analysis of steady and transient missile aerodynamic/propulsive/plume flowfield interactions

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.

    1992-07-01

    The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.

  14. Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.

    The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.

  15. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  16. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  17. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  18. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    PubMed

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  19. Non-Markovian Complexity in the Quantum-to-Classical Transition

    PubMed Central

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-01-01

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

  20. An efficient nonlinear relaxation technique for the three-dimensional, Reynolds-averaged Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. S.

    1993-01-01

    An efficient implicit method for the computation of steady, three-dimensional, compressible Navier-Stokes flowfields is presented. A nonlinear iteration strategy based on planar Gauss-Seidel sweeps is used to drive the solution toward a steady state, with approximate factorization errors within a crossflow plane reduced by the application of a quasi-Newton technique. A hybrid discretization approach is employed, with flux-vector splitting utilized in the streamwise direction and central differences with artificial dissipation used for the transverse fluxes. Convergence histories and comparisons with experimental data are presented for several 3-D shock-boundary layer interactions. Both laminar and turbulent cases are considered, with turbulent closure provided by a modification of the Baldwin-Barth one-equation model. For the problems considered (175,000-325,000 mesh points), the algorithm provides steady-state convergence in 900-2000 CPU seconds on a single processor of a Cray Y-MP.

  1. On the precision of quasi steady state assumptions in stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Adams, Rhys; Castellani, Gastone C.; Shouval, Harel Z.

    2012-07-01

    Many biochemical networks have complex multidimensional dynamics and there is a long history of methods that have been used for dimensionality reduction for such reaction networks. Usually a deterministic mass action approach is used; however, in small volumes, there are significant fluctuations from the mean which the mass action approach cannot capture. In such cases stochastic simulation methods should be used. In this paper, we evaluate the applicability of one such dimensionality reduction method, the quasi-steady state approximation (QSSA) [L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem. Z 49, 333369 (1913)] for dimensionality reduction in case of stochastic dynamics. First, the applicability of QSSA approach is evaluated for a canonical system of enzyme reactions. Application of QSSA to such a reaction system in a deterministic setting leads to Michaelis-Menten reduced kinetics which can be used to derive the equilibrium concentrations of the reaction species. In the case of stochastic simulations, however, the steady state is characterized by fluctuations around the mean equilibrium concentration. Our analysis shows that a QSSA based approach for dimensionality reduction captures well the mean of the distribution as obtained from a full dimensional simulation but fails to accurately capture the distribution around that mean. Moreover, the QSSA approximation is not unique. We have then extended the analysis to a simple bistable biochemical network model proposed to account for the stability of synaptic efficacies; the substrate of learning and memory [J. E. Lisman, "A mechanism of memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase," Proc. Natl. Acad. Sci. U.S.A. 82, 3055-3057 (1985)], 10.1073/pnas.82.9.3055. Our analysis shows that a QSSA based dimensionality reduction method results in errors as big as two orders of magnitude in predicting the residence times in the two stable states.

  2. Anisotropic magnetotail equilibrium and convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.N.

    This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less

  3. Frequency response of a thermocouple wire: Effects of axial conduction

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1990-01-01

    Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties.

  4. Analysis of Classes of Singular Steady State Reaction Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Son, Byungjae

    We study positive radial solutions to classes of steady state reaction diffusion problems on the exterior of a ball with both Dirichlet and nonlinear boundary conditions. We study both Laplacian as well as p-Laplacian problems with reaction terms that are p-sublinear at infinity. We consider both positone and semipositone reaction terms and establish existence, multiplicity and uniqueness results. Our existence and multiplicity results are achieved by a method of sub-supersolutions and uniqueness results via a combination of maximum principles, comparison principles, energy arguments and a-priori estimates. Our results significantly enhance the literature on p-sublinear positone and semipositone problems. Finally, we provide exact bifurcation curves for several one-dimensional problems. In the autonomous case, we extend and analyze a quadrature method, and in the nonautonomous case, we employ shooting methods. We use numerical solvers in Mathematica to generate the bifurcation curves.

  5. Improving the FLORIS wind plant model for compatibility with gradient-based optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew

    The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less

  6. Disruption of the auditory response to a regular click train by a single, extra click.

    PubMed

    Lütkenhöner, Bernd; Patterson, Roy D

    2015-06-01

    It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms. The silent period between two stimulus sequences was 310-390 ms (uniformly distributed) so that one stimulation cycle lasted, on average, 1250 ms. Five different click rates between 20 and 60 Hz were examined. The disturbance caused by the extra click was revealed by subtracting the estimated steady-state response from the joint response to the click series and the extra click. The early peaks of the single-click response effectively coincide with same-polarity peaks of the 20-Hz steady-state response. Nevertheless, prediction of the latter from the former proved impossible. However, the 40-Hz steady-state response can be predicted reasonably well from the 20-Hz steady-state response. Somewhat surprisingly, the amplitude of the evoked response to the extra click grew when the click rate of the train was increased from 20 to 30 Hz; the opposite effect would have been expected from research on adaptation. The smaller amplitude at lower click rates might be explained by forward suppression. In this case, the apparent escape from suppression at higher rates might indicate that the clicks belonging to the periodic train are being integrated into an auditory stream, possibly in much the same manner as in classical stream segregation experiments.

  7. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  8. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.

  9. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  10. A study on the steady-state solutions of a Bursian diode in the presence of transverse magnetic field, when the electrons of the injected beam are turned back partially or totally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanik, Sourav; Chakrabarti, Nikhil; Kuznetsov, V. I.

    2015-11-15

    The properties of a steady-state planar vacuum diode driven by a cold electron beam have been investigated in the presence of an external transverse magnetic field, employing both the Eulerian and the Lagrangian formalism. With the help of a numerical scheme, the features of the steady-state solutions have been explored in the Eulerian frame, particularly for the case that corresponds to the potential distributions with a virtual cathode. However, exact analytical formulae for the potential and velocity profiles within the inter-electrode region have been derived with the Lagrangian description. In contrast to the previous work [Phys. Plasmas 22, 042110 (2015)],more » here we have emphasized the situation when electrons are reflected back to the emitter by the magnetic field. Both partial and complete reflection of the electrons due to the magnetic field have been taken into account. Using the emitter electric field as a characteristic parameter, steady-state solutions have been evaluated for specific values of diode length, applied voltage, and magnetic field strength. It has been shown that, due to the inclusion of the magnetic field, a new region of non-unique solutions appears. An external magnetic field seems to have a profound effect in controlling fast electronic switches based on the Bursian diode.« less

  11. Estimating systemic exposure to levonorgestrel from an oral contraceptive.

    PubMed

    Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge

    2017-04-01

    The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-h steady-state area under the curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-h steady-state AUC of a particular OC. We conducted a 13-sample, 24-h pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30-mcg ethinyl estradiol and 150-mcg levonorgestrel (LNG) in 17 normal-weight healthy White women and a single-dose 9-sample study of the same OC after a 1-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. The 13-sample steady-state 24-h LNG AUC was highly correlated with the steady-state 24-h trough value [r=0.95; 95% confidence interval (0.85, 0.98)] and with the steady-state 6-, 8-, 12- and 16-h values (0.92≤r≤0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-h AUC value [r=0.70; 95% CI (0.27, 0.90) and 0.77; 95% CI (0.40, 0.92), respectively]. Single time-point concentrations at steady state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. A single time-point LNG concentration at steady state is an excellent proxy for complete and resource-intensive steady-state AUC measurement. The trough level after two single doses is a fair proxy for steady-state AUC. These results provide practical tools to facilitate large studies to investigate the relationship between systemic LNG exposure and side effects in a real-life setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enhancing emotional-based target prediction

    NASA Astrophysics Data System (ADS)

    Gosnell, Michael; Woodley, Robert

    2008-04-01

    This work extends existing agent-based target movement prediction to include key ideas of behavioral inertia, steady states, and catastrophic change from existing psychological, sociological, and mathematical work. Existing target prediction work inherently assumes a single steady state for target behavior, and attempts to classify behavior based on a single emotional state set. The enhanced, emotional-based target prediction maintains up to three distinct steady states, or typical behaviors, based on a target's operating conditions and observed behaviors. Each steady state has an associated behavioral inertia, similar to the standard deviation of behaviors within that state. The enhanced prediction framework also allows steady state transitions through catastrophic change and individual steady states could be used in an offline analysis with additional modeling efforts to better predict anticipated target reactions.

  13. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.

    PubMed

    Tejima, Hajime; Nishigaki, Masahide; Fujita, Yasuyuki; Matsumoto, Akihiro; Takeda, Nobuo; Takaoka, Masaki

    2007-01-01

    Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.

  14. Measurement and Perturbation of Morphogen Lifetime: Effects on Gradient Shape

    PubMed Central

    Drocco, Jeffrey A.; Grimm, Oliver; Tank, David W.; Wieschaus, Eric

    2011-01-01

    Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation. PMID:22004733

  15. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  16. Availability Analysis of Dual Mode Systems

    DOT National Transportation Integrated Search

    1974-04-01

    The analytical procedures presented define a method of evaluating the effects of failures in a complex dual-mode system based on a worst case steady-state analysis. The computed result is an availability figure of merit and not an absolute prediction...

  17. The evolution of an unsteady translating nonlinear rossby-wave critical layer

    NASA Astrophysics Data System (ADS)

    Haynes, Peter H.; Cowley, Stephen J.

    When a monochromatic Rossby wave is forced on a flow which is slowly varying in time, the location of the critical line, where the phase speed of the wave is equal to that of the flow, also slowly changes. It is shown that this translation can play an important role in the vorticity balance near the critical line. The behavior of the translating critical layer is analyzed for various values of y, a parameter which measures the relative importance of nonlinear advection and translation. First, the vorticity equation in the critical layer is solved numerically in an important special case, where the velocity field in the critical layer is independent of the vorticity distribution and constant in time. The solutions reveal a number of new aspects of the behavior which are introduced by the translation, including the formation of a wake behind the critical layer, and the possibility of "trapping" of fluid particles in the critical layer if y exceeds a threshold value. Viewed in a frame of reference moving with the critical line the vorticity distribution may tend to a steady state, except in a "vorticity front" far downstream in the wake. If streamlines in the critical layer are open this steady state may be a predominantly inviscid one; if they are closed a steady state is possible only with non-zero dissipation. For both the unsteady and steady flows the translation allows the "logarithmic phase jump" across the critical layer, 4, to be non-zero and negative. Hence, even when the viscosity is vanishingly small, the critical layer can act as a strong "absorber" of Eliassen-Palm wave activity. Second, steady-state solutions are obtained numerically for a case when the velocity field in the critical layer is not independent of the vorticity distribution there. The interaction restricts the formation of closed streamlines, and an asymptotic open-streamline solution for large y can be found. The critical layer again acts an absorber of wave activity, but with decreasing eNectiveness as y increases.

  18. Intervention in gene regulatory networks with maximal phenotype alteration.

    PubMed

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  19. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  20. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  1. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  2. Steady States, Fluctuation-Dissipation Theorems and Homogenization for Reversible Diffusions in a Random Environment

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Piatnitski, A.

    2018-04-01

    Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.

  3. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  4. Part-2: Analytical Expressions of Concentrations of Glucose, Oxygen, and Gluconic Acid in a Composite Membrane for Closed-Loop Insulin Delivery for the Non-steady State Conditions.

    PubMed

    Mehala, N; Rajendran, L; Meena, V

    2017-02-01

    A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.

  5. Computational studies of steady-state sound field and reverberant sound decay in a system of two coupled rooms

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2007-09-01

    The acoustical properties of an irregularly shaped room consisting of two connected rectangular subrooms were studied. An eigenmode method supported by a numerical implementation has been used to predict acoustic characteristics of the coupled system, such as the distribution of the sound pressure in steady-state and the reverberation time. In the theoretical model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thusthey were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and eigenfrequencies were computed numerically via application of a forced oscillator method with a finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of the enclosure was demonstrated in numerical simulations where different distributions of absorbing materials on the walls of the subrooms and various positions of the sound source were assumed. Calculation results have shown that for large differences in the absorption coefficient in the subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state and a large increase in the reverberation time.

  6. Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO4

    NASA Astrophysics Data System (ADS)

    Lamb, Joshua; Orendorff, Christopher J.; Amine, Khalil; Krumdick, Gregory; Zhang, Zhengcheng; Zhang, Lu; Gozdz, Antoni S.

    2014-02-01

    This work investigated the performance and abuse tolerance of cells protected using the redox shuttle 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butylbenzene. The thermal efficiencies were evaluated using isothermal battery calorimetry. Cells containing the overcharge shuttle were observed to reach a steady state value of approximately 3.8 V, with a small variance in direct proportion to the applied current. In all cases the heat output from the cells was measured to reach ∼90% of the total input power. The heat output was also measured using isothermal calorimetry. At higher rates of overcharge, the data shows that the cell containing the shuttle rapidly reaches a steady state voltage, while the temperature increases until a moderately high steady state temperature is reached. The control cell meanwhile rapidly increases in both applied voltage and cell temperature until cell failure. Two cells in series were taken deliberately out of balance individually, then charged as a single pack to observe the time needed to bring the cells into balance with one another.

  7. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  8. Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; Flayac, Hugo; Savona, Vincenzo

    2015-08-01

    We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales as a power law with the bond dimension. The method brings considerable advantage when compared to the integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain, under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a nondegenerate steady state.

  9. Estimating Systemic Exposure to Levonorgestrel from an Oral Contraceptive

    PubMed Central

    Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge

    2017-01-01

    Objective The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-hour steady-state area-under-the-curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-hour steady-state AUC of a particular OC. Study Design We conducted a 13-sample, 24-hour pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30 μg ethinyl estradiol and 150 μg levonorgestrel (LNG) in 17 normal-weight healthy white women, and a single-dose 9-sample study of the same OC after a one-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. Results The 13-sample steady-state 24-hour LNG AUC was highly correlated with the steady-state 24-hour trough value (r = 0.95; 95% CI [0.85, 0.98]) and with the steady-state 6, 8, 12 and 16-hour values (0.92 ≤ r ≤ 0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-hour AUC value (r = 0.70; 95% CI [0.27, 0.90] and 0.77; 95% CI [0.40, 0.92], respectively). Conclusions Single time-point concentrations at steady-state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. PMID:28041990

  10. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  11. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  12. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  13. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at low frequencies but decrease the natural frequency of the wire. The phase angle data are also distorted for imperfect junctions.

  14. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  15. Generic pure quantum states as steady states of quasi-local dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Karuvade, Salini; Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza

    2018-04-01

    We investigate whether a generic pure state on a multipartite quantum system can be the unique asymptotic steady state of locality-constrained purely dissipative Markovian dynamics. In the tripartite setting, we show that the problem is equivalent to characterizing the solution space of a set of linear equations and establish that the set of pure states obeying the above property has either measure zero or measure one, solely depending on the subsystems’ dimension. A complete analytical characterization is given when the central subsystem is a qubit. In the N-partite case, we provide conditions on the subsystems’ size and the nature of the locality constraint, under which random pure states cannot be quasi-locally stabilized generically. Also, allowing for the possibility to approximately stabilize entangled pure states that cannot be exact steady states in settings where stabilizability is generic, our results offer insights into the extent to which random pure states may arise as unique ground states of frustration-free parent Hamiltonians. We further argue that, to a high probability, pure quantum states sampled from a t-design enjoy the same stabilizability properties of Haar-random ones as long as suitable dimension constraints are obeyed and t is sufficiently large. Lastly, we demonstrate a connection between the tasks of quasi-local state stabilization and unique state reconstruction from local tomographic information, and provide a constructive procedure for determining a generic N-partite pure state based only on knowledge of the support of any two of the reduced density matrices of about half the parties, improving over existing results.

  16. Illustrating the Steady-State Condition and the Single-Molecule Kinetic Method with the NMDA Receptor

    ERIC Educational Resources Information Center

    Kosman, Daniel J.

    2009-01-01

    The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…

  17. Three is much more than two in coarsening dynamics of cyclic competitions

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Gunnarson, Ivar; Pedersen, Buster Niels; Rosiek, Christian Anker; Sneppen, Kim

    2016-04-01

    The classical game of rock-paper-scissors has inspired experiments and spatial model systems that address the robustness of biological diversity. In particular, the game nicely illustrates that cyclic interactions allow multiple strategies to coexist for long-time intervals. When formulated in terms of a one-dimensional cellular automata, the spatial distribution of strategies exhibits coarsening with algebraically growing domain size over time, while the two-dimensional version allows domains to break and thereby opens the possibility for long-time coexistence. We consider a quasi-one-dimensional implementation of the cyclic competition, and study the long-term dynamics as a function of rare invasions between parallel linear ecosystems. We find that increasing the complexity from two to three parallel subsystems allows a transition from complete coarsening to an active steady state where the domain size stays finite. We further find that this transition happens irrespective of whether the update is done in parallel for all sites simultaneously or done randomly in sequential order. In both cases, the active state is characterized by localized bursts of dislocations, followed by longer periods of coarsening. In the case of the parallel dynamics, we find that there is another phase transition between the active steady state and the coarsening state within the three-line system when the invasion rate between the subsystems is varied. We identify the critical parameter for this transition and show that the density of active boundaries has critical exponents that are consistent with the directed percolation universality class. On the other hand, numerical simulations with the random sequential dynamics suggest that the system may exhibit an active steady state as long as the invasion rate is finite.

  18. Balanced Steady-State Free Precession (bSSFP) from an effective field perspective: Application to the detection of chemical exchange (bSSFPX).

    PubMed

    Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E; Vinogradov, Elena

    2017-02-01

    Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Steady state and a general scale law of deformation

    NASA Astrophysics Data System (ADS)

    Huang, Yan

    2017-07-01

    Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.

  20. Phased array ghost elimination (PAGE) for segmented SSFP imaging with interrupted steady-state.

    PubMed

    Kellman, Peter; Guttman, Michael A; Herzka, Daniel A; McVeigh, Elliot R

    2002-12-01

    Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation.

  1. Airfoil stall interpreted through linear stability analysis

    NASA Astrophysics Data System (ADS)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  2. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2015-02-01

    Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.

  3. Nonuniformity of the chemical composition of a capillary discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharyan, A. E.; Bobrova, N. A.; Sasorov, P. V.

    A steady-state distribution of the concentration of two ion species in a capillary discharge plasma is studied using MHD equations for a plasma with a spatially nonuniform, time-dependent chemical composition. In our case, the set of equations is significantly simplified because of the steady-state character and symmetry of the problem. Even with such simplification, however, some results could be obtained only by numerical integration. The factors affecting the distribution of heavy ions are studied. It is shown that the distribution of the heavy impurity over the discharge cross section can be much more nonuniform than the distribution of the mainmore » component (hydrogen). A simple criterion for such a nonuniformity is obtained.« less

  4. Coupled Kardar-Parisi-Zhang Equations in One Dimension

    NASA Astrophysics Data System (ADS)

    Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert

    2013-11-01

    Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.

  5. Improving fast-ion confinement in high-performance discharges by suppressing Alfvén eigenmodes

    DOE PAGES

    Kramer, Geritt J.; Podestà, Mario; Holcomb, Christopher; ...

    2017-03-28

    Here, we show that the degradation of fast-ion confinement in steady-state DIII-D discharges is quantitatively consistent with predictions based on the effects of multiple unstable Alfven eigenmodes on beam-ion transport. Simulation and experiment show that increasing the radius where the magnetic safety factor has its minimum is effective in minimizing beam-ion transport. This is favorable for achieving high performance steady-state operation in DIII-D and future reactors. A comparison between the experiments and a critical gradient model, in which only equilibrium profiles were used to predict the most unstable modes, show that in a number of cases this model reproduces themore » measured neutron rate well.« less

  6. Challenges in Rotorcraft Acoustic Flight Prediction and Validation

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2003-01-01

    Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.

  7. Estimation of steady-state leakage current in polycrystalline PZT thin films

    NASA Astrophysics Data System (ADS)

    Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander

    2016-09-01

    Estimation of the steady state (or "true") leakage current Js in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents (Σ exp ) models are studied for current-time J (t) data fitting. Σ exp model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of Js estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.

  8. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  9. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    PubMed

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.

  10. Statistical Neurodynamics.

    NASA Astrophysics Data System (ADS)

    Paine, Gregory Harold

    1982-03-01

    The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better understanding of the behavior of these systems.

  11. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  12. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li

    2002-01-01

    Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.

  13. Deterministic Stress Modeling of Hot Gas Segregation in a Turbine

    NASA Technical Reports Server (NTRS)

    Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger

    1998-01-01

    Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.

  14. Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rioseco, Paola; Sarbach, Olivier

    2017-05-01

    We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite exerting kinetic pressure, behaves very differently than an isotropic perfect fluid, and providing a partial explanation for the known fact that the accretion rate is much lower than in the hydrodynamic case of Bondi-Michel accretion. Finally, we establish the asymptotic stability of the steady-state spherical flows by proving pointwise convergence results which show that a large class of (possibly nonstationary and nonspherical) initial conditions for the distribution function lead to solutions of the Liouville equation which relax in time to a steady-state, spherically symmetric configuration.

  15. Steady states and stability in metabolic networks without regulation.

    PubMed

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological relevance we illustrate the results on the examples of the TCA cycle, the mevalonate pathway and the Calvin cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rapid and safe learning of robotic gastrectomy for gastric cancer: multidimensional analysis in a comparison with laparoscopic gastrectomy.

    PubMed

    Kim, H-I; Park, M S; Song, K J; Woo, Y; Hyung, W J

    2014-10-01

    The learning curve of robotic gastrectomy has not yet been evaluated in comparison with the laparoscopic approach. We compared the learning curves of robotic gastrectomy and laparoscopic gastrectomy based on operation time and surgical success. We analyzed 172 robotic and 481 laparoscopic distal gastrectomies performed by single surgeon from May 2003 to April 2009. The operation time was analyzed using a moving average and non-linear regression analysis. Surgical success was evaluated by a cumulative sum plot with a target failure rate of 10%. Surgical failure was defined as laparoscopic or open conversion, insufficient lymph node harvest for staging, resection margin involvement, postoperative morbidity, and mortality. Moving average and non-linear regression analyses indicated stable state for operation time at 95 and 121 cases in robotic gastrectomy, and 270 and 262 cases in laparoscopic gastrectomy, respectively. The cumulative sum plot identified no cut-off point for surgical success in robotic gastrectomy and 80 cases in laparoscopic gastrectomy. Excluding the initial 148 laparoscopic gastrectomies that were performed before the first robotic gastrectomy, the two groups showed similar number of cases to reach steady state in operation time, and showed no cut-off point in analysis of surgical success. The experience of laparoscopic surgery could affect the learning process of robotic gastrectomy. An experienced laparoscopic surgeon requires fewer cases of robotic gastrectomy to reach steady state. Moreover, the surgical outcomes of robotic gastrectomy were satisfactory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Transient performance of fan engine with water ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1993-01-01

    In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.

  18. Interplay of coherent and dissipative dynamics in condensates of light

    NASA Astrophysics Data System (ADS)

    Radonjić, Milan; Kopylov, Wassilij; Balaž, Antun; Pelster, Axel

    2018-05-01

    Based on the Lindblad master equation approach we obtain a detailed microscopic model of photons in a dye-filled cavity, which features condensation of light. To this end we generalise a recent non-equilibrium approach of Kirton and Keeling such that the dye-mediated contribution to the photon–photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative dynamics. We describe the steady-state properties of the system by analysing the resulting equations of motion of both photonic and matter degrees of freedom. In particular, we discuss the existence of two limiting cases for steady states: photon Bose–Einstein condensate and laser-like. In the former case, we determine the corresponding dimensionless photon–photon interaction strength by relying on realistic experimental data and find a good agreement with previous theoretical estimates. Furthermore, we investigate how the dimensionless interaction strength depends on the respective system parameters. This paper is dedicated to the memory of Tobias Brandes

  19. Experiment for validation of fluid-structure interaction models and algorithms.

    PubMed

    Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D

    2017-09-01

    In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  20. High-velocity frictional properties of gabbro

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  1. Demonstration of the range over which the Langley Research Center digital computer charring ablation program (CHAP) can be used with confidence: Comparisons of CHAP predictions and test data for three ablation materials

    NASA Technical Reports Server (NTRS)

    Moyer, C. B.; Green, K. A.

    1972-01-01

    Comparisons of ablation calculations with the charring ablation computer code and ablation test data are presented over a wide range of environmental conditions in air for three materials: low-density nylon phenolic, Avcoat 5026-39HC/G, and a filled silicon elastomer. Heat fluxes considered range from over 500 Btu/sq ft-sec to less than 50 Btu/sq ft-sec. Pressures range from 0.5 atm to .004 atm. Enthalpies range from about 2000 Btu/lb to 18000 Btu/lb. Predictions of recession, pyrolysis penetration, and thermocouple responses are considered. Recession predictions for nylon phenolic are good as steady state is approached, but strongly transient cases are underpredicted. Pyrolysis penetrations and thermocouple responses are very well predicted. Recession amounts for Avcoat and silicone elastomer are less well predicted, although high heat flux cases near steady state are fairly satisfactory. Pyrolysis penetrations and thermocouple responses are very well predicted.

  2. Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2017-10-01

    We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.

  3. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  4. An Intuitive Approach to Steady-State Kinetics.

    ERIC Educational Resources Information Center

    Raines, Ronald T.; Hansen, David E.

    1988-01-01

    Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)

  5. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  6. Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    NASA Technical Reports Server (NTRS)

    Eick, Chris D.; Liu, Jong-Shang

    1998-01-01

    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.

  7. Heat conduction in cooling flows. [in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; David, L. P.

    1988-01-01

    It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.

  8. The stably stratified internal boundary layer for steady and diurnally varying offshore flow

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1987-03-01

    A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.

  9. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.

  10. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  11. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  12. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.

    PubMed

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-07-17

    In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  13. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    NASA Astrophysics Data System (ADS)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  14. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction stepsa)

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-01

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  15. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  16. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  17. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    NASA Astrophysics Data System (ADS)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  18. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan-Bill Cheung; Joy L. Rempe

    2004-06-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less

  19. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  20. The relationship between stochastic and deterministic quasi-steady state approximations.

    PubMed

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R

    2015-11-23

    The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.

  1. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hulse, R. J.; Rowley, R. L.; Wilding, W. V.

    2005-01-01

    Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

  2. Do's and don'ts in Fourier analysis of steady-state potentials.

    PubMed

    Bach, M; Meigen, T

    1999-01-01

    Fourier analysis is a powerful tool in signal analysis that can be very fruitfully applied to steady-state evoked potentials (flicker ERG, pattern ERG, VEP, etc.). However, there are some inherent assumptions in the underlying discrete Fourier transform (DFT) that are not necessarily fulfilled in typical electrophysiological recording and analysis conditions. Furthermore, engineering software-packages may be ill-suited and/or may not fully exploit the information of steady-state recordings. Specifically: * In the case of steady-state stimulation we know more about the stimulus than in standard textbook situations (exact frequency, phase stability), so 'windowing' and calculation of the 'periodogram' are not necessary. * It is mandatory to choose an integer relationship between sampling rate and frame rate when employing a raster-based CRT stimulator. * The analysis interval must comprise an exact integer number (e.g., 10) of stimulus periods. * The choice of the number of stimulus periods per analysis interval needs a wise compromise: A high number increases the frequency resolution, but makes artifact removal difficult; a low number 'spills' noise into the response frequency. * There is no need to feel tied to a power-of-two number of data points as required by standard FFT, 'resampling' is an easy and efficient alternative. * Proper estimates of noise-corrected Fourier magnitude and statistical significance can be calculated that take into account the non-linear superposition of signal and noise. These aspects are developed in an intuitive approach with examples using both simulations and recordings. Proper use of Fourier analysis of our electrophysiological records will reduce recording time and/or increase the reliability of physiologic or pathologic interpretations.

  3. On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study.

    PubMed

    Lovelock, Kevin R J; Ejigu, Andinet; Loh, Sook Fun; Men, Shuang; Licence, Peter; Walsh, Darren A

    2011-06-07

    The electrochemical behaviour of ferrocenemethanol (FcMeOH) has been studied in a range of room-temperature ionic liquids (RTILs) using cyclic voltammetry, chronoamperomery and scanning electrochemical microscopy (SECM). The diffusion coefficient of FcMeOH, measured using chronoamperometry, decreased with increasing RTIL viscosity. Analysis of the mass transport properties of the RTILs revealed that the Stokes-Einstein equation did not apply to our data. The "correlation length" was estimated from diffusion coefficient data and corresponded well to the average size of holes (voids) in the liquid, suggesting that a model in which the diffusing species jumps between holes in the liquid is appropriate in these liquids. Cyclic voltammetry at ultramicroelectrodes demonstrated that the ability to record steady-state voltammograms during ferrocenemethanol oxidation depended on the voltammetric scan rate, the electrode dimensions and the RTIL viscosity. Similarly, the ability to record steady-state SECM feedback approach curves depended on the RTIL viscosity, the SECM tip radius and the tip approach speed. Using 1.3 μm Pt SECM tips, steady-state SECM feedback approach curves were obtained in RTILs, provided that the tip approach speed was low enough to maintain steady-state diffusion at the SECM tip. In the case where tip-induced convection contributed significantly to the SECM tip current, this effect could be accounted for theoretically using mass transport equations that include diffusive and convective terms. Finally, the rate of heterogeneous electron transfer across the electrode/RTIL interface during ferrocenemethanol oxidation was estimated using SECM, and k(0) was at least 0.1 cm s(-1) in one of the least viscous RTILs studied.

  4. The Influence of Airmass Histories on Radical Species during POLARIS

    NASA Technical Reports Server (NTRS)

    Pierson, J. M.; Kawa, S. R.; Salawitch, R. J.; Hanisco, T. F.; Lanzendorf, E. J.; Perkins, K. K.; Gao, R. S.; Cohen, R. C.

    1999-01-01

    The Goddard trajectory chemistry model was used with ER-2 aircraft data to test our current knowledge of radical photochemistry during the POLARIS (Polar Ozone Loss in the Arctic Region In Summer) campaign. The results of the trajectory chemistry model with and without trajectories are used to identify cases where steady state does not accurately describe the measurements. Over the entire mission, using trajectory chemistry reduces the variability in the modeled NO(x) comparisons to data by 25% with respect to the same model simulating steady state. Although the variability is reduced, NO(x)/NO(y) trajectory model results were found to be systematically low relative to the observations by 20-30% as seen in previous studies. Using new rate constants for reactions important in NO(y) partitioning improves the agreement of NO(x)/NO(y) with the observations but a 5-10% bias still exists. OH and HO2 individually are underpredicted by 15% of the standard steady state model and worsen with the new rate constants. Trajectory chemistry model results of OH/HO2 were systematically low by 10-20% but improve using the new rates constants because of the explicit dependence on NO. This suggests that our understanding of NO(x) is accurate to the 20% level and HO(x) chemistry is accurate to the 30% level in the lower stratosphere or better for the POLARIS regime. The behavior of the NO(x) and HO(x) comparisons to data using steady state versus trajectory chemistry and with updated rate coefficients is discussed in ten-ns of known chemical mechanisms and lifetimes.

  5. Contribution of highway capital to industry and national productivity growth

    DOT National Transportation Integrated Search

    1973-10-01

    The report contains the authors initial efforts aimed at extending the steady state freeway model for optimizing freeway traffic flow to a non-steady state model. The steady-state model does not allow reaction to continuously changing conditions whic...

  6. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  7. Verification of transport equations in a general purpose commercial CFD code.

    NASA Astrophysics Data System (ADS)

    Melot, Matthieu; Nennemann, Bernd; Deschênes, Claire

    2016-11-01

    In this paper, the Verification and Validation methodology is presented. This method aims to increase the reliability and the trust that can be placed into complex CFD simulations. The first step of this methodology, the code verification is presented in greater details. The CFD transport equations in steady state, transient and Arbitrary Eulerian Lagrangian (ALE, used for transient moving mesh) formulations in Ansys CFX are verified. It is shown that the expected spatial and temporal order of convergence are achieved for the steady state and the transient formulations. Unfortunately this is not completely the case for the ALE formulation. As for a lot of other commercial and in-house CFD codes, the temporal convergence of the velocity is limited to a first order where a second order would have been expected.

  8. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  9. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  10. Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case

    NASA Astrophysics Data System (ADS)

    Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.

    2016-11-01

    This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.

  11. Church and State Relations: A Pragmatic Conduit for Empowering the Girl Child through Secondary School Education. A Case Study of Adventist Girls' Senior High School (ADGISS) Ntonso Ashanti, Ghana

    ERIC Educational Resources Information Center

    Oti-Agyen, Philip

    2017-01-01

    The paper focuses on the steady development of the Adventist Girls Senior High School (ADGISS) Ntonso Ashanti, Ghana. It specifically discusses the teething challenges that bedeviled the School and the concerted efforts by transformational leaders, both within the Seventh-Day Adventist (SDA) church and the State to ensure the accelerated…

  12. Patterns and Limitations of Urban Human Mobility Resilience under the Influence of Multiple Types of Natural Disaster

    PubMed Central

    Wang, Qi; Taylor, John E.

    2016-01-01

    Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population’s vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals’ movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers. PMID:26820404

  13. Patterns and Limitations of Urban Human Mobility Resilience under the Influence of Multiple Types of Natural Disaster.

    PubMed

    Wang, Qi; Taylor, John E

    2016-01-01

    Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population's vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals' movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers.

  14. Critical threshold behavior for steady-state internal transport barriers in burning plasmas.

    PubMed

    García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M

    2008-06-27

    Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.

  15. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    PubMed

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers

    NASA Astrophysics Data System (ADS)

    de S. Teixeira, Renan; S. de B. Alves, Leonardo

    2017-12-01

    Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases shows that they enable convergence toward solutions that are unstable to stationary and oscillatory disturbances, with either a single or multiple frequency content. Finally, comparisons with SFD are also performed, showing significant reduction in computer cost for complex flows by using the implicit multi-step MGM schemes.

  17. NASA/FAA Tailplane Icing Program: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  18. Generalized classes of continuous symmetries in two-mode Dicke models

    NASA Astrophysics Data System (ADS)

    Moodie, Ryan I.; Ballantine, Kyle E.; Keeling, Jonathan

    2018-03-01

    As recently realized experimentally [Nature (London) 543, 87 (2017), 10.1038/nature21067], one can engineer models with continuous symmetries by coupling two cavity modes to trapped atoms via a Raman pumping geometry. Considering specifically cases where internal states of the atoms couple to the cavity, we show an extended range of parameters for which continuous symmetry breaking can occur, and we classify the distinct steady states and time-dependent states that arise for different points in this extended parameter regime.

  19. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  20. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    PubMed

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.

  1. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?

  2. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.

  4. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  5. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  6. Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji; Hara, Naoyuki

    2018-05-01

    This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.

  7. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  8. Quantum thermodynamics of nanoscale steady states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  9. Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks

    PubMed Central

    Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277

  10. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  11. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  12. X-ray spectral analysis of the steady states of GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy G.

    2016-04-01

    Of the black hole binaries (BHBs) discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner disk radius, remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion 80 % of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results combine to suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical BHBs.

  13. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  14. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  15. Theoretical peak performance and optical constraints for the deflection of an S-type asteroid with a continuous wave laser

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2017-03-01

    This paper presents a theoretical model to evaluate the thrust generated by a continuous wave (CW) laser, operating at moderate intensity (<100 GW/m2), ablating an S-type asteroid made of Forsterite. The key metric to assess the performance of the laser system is the thrust coupling coefficient which is given by the ratio between thrust and associated optical power. Three different models are developed in the paper: a one dimensional steady state model, a full 3D steady state model and a one dimensional model accounting for transient effects resulting from the tumbling motion of the asteroid. The results obtained with these models are used to derive key requirements and constraints on the laser system that allow approaching the ideal performance in a realistic case.

  16. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    PubMed

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  17. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  18. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    PubMed

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Modeling stochastic noise in gene regulatory systems

    PubMed Central

    Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung

    2014-01-01

    The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368

  20. On the nature of liquid junction and membrane potentials.

    PubMed

    Perram, John W; Stiles, Peter J

    2006-09-28

    Whenever a spatially inhomogeneous electrolyte, composed of ions with different mobilities, is allowed to diffuse, charge separation and an electric potential difference is created. Such potential differences across very thin membranes (e.g. biomembranes) are often interpreted using the steady state Goldman equation, which is usually derived by assuming a spatially constant electric field. Through the fundamental Poisson equation of electrostatics, this implies the absence of free charge density that must provide the source of any such field. A similarly paradoxical situation is encountered for thick membranes (e.g. in ion-selective electrodes) for which the diffusion potential is normally interpreted using the Henderson equation. Standard derivations of the Henderson equation appeal to local electroneutrality, which is also incompatible with sources of electric fields, as these require separated charges. We analyse self-consistent solutions of the Nernst-Planck-Poisson equations for a 1 : 1-univalent electrolyte to show that the Goldman and Henderson steady-state membrane potentials are artefacts of extraneous charges created in the reservoirs of electrolyte solution on either side of the membrane, due to the unphysical nature of the usual (Dirichlet) boundary conditions assumed to apply at the membrane-electrolyte interfaces. We also show, with the aid of numerical simulations, that a transient electric potential difference develops in any confined, but initially non-uniform, electrolyte solution. This potential difference ultimately decays to zero in the real steady state of the electrolyte, which corresponds to thermodynamic equilibrium. We explain the surprising fact that such transient potential differences are well described by the Henderson equation by using a computer algebra system to extend previous steady-state singular perturbation theories to the time-dependent case. Our work therefore accounts for the success of the Henderson equation in analysing experimental liquid-junction potentials.

  1. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and amore » silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.« less

  2. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  3. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  4. A Two-Stage Approach for Improving the Convergence of Least-Mean-Square Adaptive Decision-Feedback Equalizers in the Presence of Severe Narrowband Interference

    NASA Astrophysics Data System (ADS)

    Batra, Arun; Zeidler, James R.; Beex, A. A. Louis

    2007-12-01

    It has previously been shown that a least-mean-square (LMS) decision-feedback filter can mitigate the effect of narrowband interference (L.-M. Li and L. Milstein, 1983). An adaptive implementation of the filter was shown to converge relatively quickly for mild interference. It is shown here, however, that in the case of severe narrowband interference, the LMS decision-feedback equalizer (DFE) requires a very large number of training symbols for convergence, making it unsuitable for some types of communication systems. This paper investigates the introduction of an LMS prediction-error filter (PEF) as a prefilter to the equalizer and demonstrates that it reduces the convergence time of the two-stage system by as much as two orders of magnitude. It is also shown that the steady-state bit-error rate (BER) performance of the proposed system is still approximately equal to that attained in steady-state by the LMS DFE-only. Finally, it is shown that the two-stage system can be implemented without the use of training symbols. This two-stage structure lowers the complexity of the overall system by reducing the number of filter taps that need to be adapted, while incurring a slight loss in the steady-state BER.

  5. Control surface hinge moment prediction using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Simpson, Christopher David

    The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.

  6. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  7. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...

  8. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  9. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  10. Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Baeza, Luis; Martínez-Casas, José; Carballeira, Javier

    2014-05-01

    In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models connected in a feedback loop in order to account for both the short-term dynamic vehicle-track interaction and the long-term damage. The time-domain vehicle-track interaction model comprises a flexible rotating wheel set model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state three-dimensional wheel-rail contact model, based on the variational theory by Kalker. Wear calculation is performed with Archard's wear model by using the contact parameters obtained with the non-Hertzian and non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheel set is negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 110 mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 156 mm when the vehicle velocity is 198 km/h.

  11. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to abrupt switch-off, G1 is the initial rate of decay of the pump field, and G2 is the final rate of decay of the pump field. Hence, it is possible to determine all the parameters from a single ring-down scan, provided that the measurements taken in that scan are sufficiently accurate and complete.

  12. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  13. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  14. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1982-01-01

    Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.

  15. Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Chien, Chih-Chun

    2017-09-01

    Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.

  16. Modeling biofiltration of VOC mixtures under steady-state conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzis, B.C.; Wojdyla, S.M.; Zarook, S.M.

    1997-06-01

    Treatment of air streams contaminated with binary volatile organic compound (VOC) mixtures in classical biofilters under steady-state conditions of operation was described with a general mathematical model. The model accounts for potential kinetic interactions among the pollutants, effects of oxygen availability on biodegradation, and biomass diversification in the filter bed. While the effects of oxygen were always taken into account, two distinct cases were considered for the experimental model validation. The first involves kinetic interactions, but no biomass differentiation, used for describing data from biofiltration of benzene/toluene mixtures. The second case assumes that each pollutant is treated by a differentmore » type of biomass. Each biomass type is assumed to form separate patches of biofilm on the solid packing material, thus kinetic interference does not occur. This model was used for describing biofiltration of ethanol/butanol mixtures. Experiments were performed with classical biofilters packed with mixtures of peat moss and perlite (2:3, volume:volume). The model equations were solved through the use of computer codes based on the fourth-order Runge-Kutta technique for the gas-phase mass balances and the method of orthogonal collocation for the concentration profiles in the biofilms. Good agreement between model predictions and experimental data was found in almost all cases. Oxygen was found to be extremely important in the case of polar VOCs (ethanol/butanol).« less

  17. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  18. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  19. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  20. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  1. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...

  2. SOL effects on the pedestal structure in DIII-D discharges

    DOE PAGES

    Sontag, Aaron C.; Chen, Xi; Canik, John; ...

    2017-05-24

    SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less

  3. SOL effects on the pedestal structure in DIII-D discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Aaron C.; Chen, Xi; Canik, John

    SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less

  4. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension

    PubMed Central

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-01-01

    New Findings What is the central question of this study? The relationship between changes in cerebral blood flow and arterial carbon dioxide tension is used to assess cerebrovascular function. Hypercapnia is generally evoked by two methods, i.e. steady-state and transient increases in carbon dioxide tension. In some cases, the hypercapnia is immediately preceded by a period of hypocapnia. It is unknown whether the cerebrovascular response differs between these methods and whether a period of hypocapnia blunts the subsequent response to hypercapnia. What is the main finding and its importance? The cerebrovascular response is similar between steady-state and transient hypercapnia. However, hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension () is assessed during steady-state or transient changes in . This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in ; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension () middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus ) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in . The linear regression for CBFV versus (P = 0.65) and CVCI versus (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus (P < 0.01) and CVCI versus (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in is similar regardless of the employed methodology to induce changes in and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. PMID:25172891

  5. Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Ganahl, Martin; Evertz, Hans Gerd; Arrigoni, Enrico; von der Linden, Wolfgang

    2013-07-01

    We study the time evolution and steady state of the charge current in a single-impurity Anderson model, using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state current. Among these quenches we identify those favorable for extracting steady-state observables. The period of short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝Δ-1 is the major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is explored by considering a damping term in the time evolution.

  6. Application of the finite element groundwater model FEWA to the engineered test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, P.M.; Davis, E.C.

    1985-09-01

    A finite element model for water transport through porous media (FEWA) has been applied to the unconfined aquifer at the Oak Ridge National Laboratory Solid Waste Storage Area 6 Engineered Test Facility (ETF). The model was developed in 1983 as part of the Shallow Land Burial Technology - Humid Task (ONL-WL14) and was previously verified using several general hydrologic problems for which an analytic solution exists. Model application and calibration, as described in this report, consisted of modeling the ETF water table for three specialized cases: a one-dimensional steady-state simulation, a one-dimensional transient simulation, and a two-dimensional transient simulation. Inmore » the one-dimensional steady-state simulation, the FEWA output accurately predicted the water table during a long period in which there were no man-induced or natural perturbations to the system. The input parameters of most importance for this case were hydraulic conductivity and aquifer bottom elevation. In the two transient cases, the FEWA output has matched observed water table responses to a single rainfall event occurring in February 1983, yielding a calibrated finite element model that is useful for further study of additional precipitation events as well as contaminant transport at the experimental site.« less

  7. Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas.

    PubMed

    Gamayun, O; Lychkovskiy, O; Cheianov, V

    2014-09-01

    A kinetic theory describing the motion of an impurity particle in a degenerate Tonks-Girardeau gas is presented. The theory is based on the one-dimensional Boltzmann equation. An iterative procedure for solving this equation is proposed, leading to the exact solution in a number of special cases and to an approximate solution with the explicitly specified precision in a general case. Previously we reported that the impurity reaches a nonthermal steady state, characterized by an impurity momentum p(∞) depending on its initial momentum p(0) [E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, Phys. Rev. A 89, 041601(R) (2014)]. In the present paper the detailed derivation of p(∞)(p(0)) is provided. We also study the motion of an impurity under the action of a constant force F. It is demonstrated that if the impurity is heavier than the host particles, m(i)>m(h), damped oscillations of the impurity momentum develop, while in the opposite case, m(i)

  8. Experimental investigation on a high head model Francis turbine during load rejection

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Bergan, C.; Cervantes, M. J.; Gandhi, B. K.; Dahlhaug, O. G.

    2016-11-01

    Francis-99 is a set of workshop aiming to determine the state of the art of high head model Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as to promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) was concerned with steady state operation. The second workshop will focus on transient operations such as load variation and start-stop. In the present work, 2-D particle image velocimetry (PIV) with synchronized pressure measurements performed in the draft tube cone of the Francis-99 test case during load rejection is presented. Pressure sensors were mounted in the vaneless space and draft tube cone to estimate the instantaneous pressure fluctuations while operating the turbine from the best efficiency point (9.8°) to part load (6.7°) with the presence of a rotating vortex rope (RVR). The time-resolved velocity and pressure data are presented in this paper showing the transition in the turbine from one state to another.

  9. Congenital heart disease in adults: Quantitative and qualitative evaluation of IR FLASH and IR SSFP MRA techniques using a blood pool contrast agent in the steady state and comparison to first pass MRA.

    PubMed

    Febbo, Jennifer A; Galizia, Mauricio S; Murphy, Ian G; Popescu, Andrada; Bi, Xiaoming; Turin, Alexander; Collins, Jeremy; Markl, Michael; Edelman, Robert R; Carr, James C

    2015-10-01

    To evaluate magnetic resonance angiography sequences during the contrast steady-state (SS-MRA) using inversion recovery (IR) with fast low-angle shot (IR-FLASH) or steady-state free precession (IR-SSFP) read-outs, following the injection of a blood-pool contrast agent, and compare them to first-pass MR angiography (FP-MRA) in adults with congenital heart disease (CHD). Twenty-three adult patients with CHD who underwent both SS-MRA and FP-MRA using a 1.5-T scanner were retrospectively identified. Signal-to-noise and contrast-to-noise ratios were obtained at eight locations within the aorta and pulmonary vessels.. Image quality and the presence of artifacts were subjectively assessed by two radiologists. The presence of pathology was noted and given a confidence score. There was no difference in vessel dimensions among the sequences. IR-SSFP showed better image quality and fewer artifacts than IR-FLASH and FP-MRA. Confidence scores were significantly higher for SS-MRA compared to FP-MRA. Seven cases (30.4%) had findings detected at SS-MRA that were not detected at FP-MRA, and 2 cases (8.7%) had findings detected by IR-SSFP only. SS-MRA of the thoracic vasculature using a blood pool contrast agent offers superior image quality and reveals more abnormalities compared to standard FP-MRA in adults with CHD, and it is best achieved with an IR-SSFP sequence. These sequences could lead to increased detection rates of abnormalities and provide a simpler protocol image acquisition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  11. Time density curve analysis for C-arm FDCT PBV imaging.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2016-04-01

    Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed 'ideal steady-state' for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. © The Author(s) 2016.

  12. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  13. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  14. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  15. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.

    2013-12-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  16. Third quantization

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Prosen, Tomaž

    2010-12-01

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.

  17. Third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos; Prosen, Tomaz

    2010-12-23

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Somemore » applications, mainly to non-equilibrium steady states, will be mentioned.« less

  18. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Subasi, Yigit; Jarzynski, Christopher

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.

  19. Electromagnetic Pulse/Transient Threat Testing of Protection Devices for Amateur/Military Affiliate Radio System Equipment. Volume 2

    DTIC Science & Technology

    1985-10-31

    4-45 4-1 SPC =. NTiC)NS I SPIKEGUARD SUPPRESSORS NANOSECOND TRANSIENT PROTECTION MODELS AVAILABLE FOR ,u * COAXIAL LINES...molded epoxy casc 4-40 General1- ~ *Sewiconductor4*industries,, Inc. Squats D oE.!v! MAXIMUM RATINGS DESCRIPTION coNro CASE 19 * Steady State POWr I

  20. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Jerome, Joseph; Osher, Stanley

    1989-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  1. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  2. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers.

    PubMed

    Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I

    2007-08-01

    The rotation of a single spheroid in a planar Couette flow as a model for simple shear flow is numerically simulated with the distributed Lagrangian multiplier based fictitious domain method. The study is focused on the effects of inertia on the orbital behavior of prolate and oblate spheroids. The numerical orbits are found to be well described by a simple empirical model, which states that the rate of the spheroid rotation about the vorticity axis is a sinusoidal function of the corresponding projection angle in the flow-gradient plane, and that the exponential growth rate of the orbit function is a constant. The following transitions in the steady state with increasing Reynolds number are identified: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid; and Jeffery orbit, log rolling, inclined rolling, and motionless state for an oblate spheroid. In addition, it is shown that the orbit behavior is sensitive to the initial orientation in the case of strong inertia and there exist different steady states for certain shear Reynolds number regimes.

  3. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...

  4. Min-By-Min Respiratory Exchange and Oxygen Uptake Kinetics During Steady-State Exercise in Subjects of High and Low Max VO2

    ERIC Educational Resources Information Center

    Weltman, Arthur; Katch, Victor

    1976-01-01

    No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)

  5. Quantitative controls on submarine slope failure morphology

    USGS Publications Warehouse

    Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.

    1991-01-01

    The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors

  6. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.

  7. Detection-enhanced steady state entanglement with ions.

    PubMed

    Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J

    2014-07-25

    Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.

  8. Effect of chordwise forces and deformations and deformations due to steady lift on wing flutter

    NASA Technical Reports Server (NTRS)

    Boyd, W. N.

    1977-01-01

    This investigation explores the effects of chordwise forces and deformations and steady-state deformation due to lift on the static and dynamic aeroelastic stability of a uniform cantilever wing. Results of this analysis are believed to have practical applications for high-performance sailplanes and certain RPV's. The airfoil cross section is assumed to be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-aft bending, and torsion are considered. A differential equation model is developed, which included the nonlinear elastic bending-torsion coupling that accompanies even moderate deflections. A linearized expansion in small time-dependent deflections is made about a steady flight condition. The stability determinant of the linearized system then contains coefficients that depend on steady displacements. Loads derived from two-dimensional incompressible aerodynamic theory are used to obtain the majority of the results, but cases using three-dimensional subsonic compressible theory are also studied. The stability analysis is carried out in terms of the dynamically uncoupled natural modes of vibration of the uniform cantilever.

  9. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  10. Steady-state probability density function of the phase error for a DPLL with an integrate-and-dump device

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1986-01-01

    The steady-state behavior of a particular type of digital phase-locked loop (DPLL) with an integrate-and-dump circuit following the phase detector is characterized in terms of the probability density function (pdf) of the phase error in the loop. Although the loop is entirely digital from an implementation standpoint, it operates at two extremely different sampling rates. In particular, the combination of a phase detector and an integrate-and-dump circuit operates at a very high rate whereas the loop update rate is very slow by comparison. Because of this dichotomy, the loop can be analyzed by hybrid analog/digital (s/z domain) techniques. The loop is modeled in such a general fashion that previous analyses of the Real-Time Combiner (RTC), Subcarrier Demodulator Assembly (SDA), and Symbol Synchronization Assembly (SSA) fall out as special cases.

  11. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  12. Phase transformation of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Korolev, Alexei; Isaac, George

    2003-01-01

    The glaciation time of a mixed-phase cloud due to the Wegener-Bergeron-Findeisen mechanism is calculated using an adiabatic one-dimensional numerical model for the cases of zero, ascending, descending and oscillating vertical velocities. The characteristic values of the glaciation time are obtained for different concentrations of ice particles and liquid-water content. Steady state is not possible for the ice-water content/total water content ratio in a uniformly vertically moving mixed-phase parcel. The vertical oscillation of a cloud parcel may result in a periodic evaporation and activation of liquid droplets in the presence of ice particles during infinite time. After a certain time, the average ice-water content and liquid-water content reach a steady state. This phenomenon may explain the existence of long-lived mixed-phase stratiform layers. The obtained results are important for understanding the mechanisms of formation and life cycle of mixed-phase clouds.

  13. A rational eating model of binges, diets and obesity.

    PubMed

    Dragone, Davide

    2009-07-01

    This paper addresses the rapid diffusion of obesity and the existence of different individual patterns of food consumption between non-dieters and chronic dieters. I propose a rational eating model where a forward-looking agent optimizes the intertemporal satisfaction from eating, taking into account the cost of changing consumption habits and the negative health consequences of having a non-optimal body weight. Consistent with the evidence, I show that the intertemporal maximization problem leads to a condition of overweightness, and that heterogeneity in the individual relevance of habits in consumption can determine the observed differences in the individual intertemporal patterns of food consumption and body weight. Sufficient conditions for determining when the convergence to the steady state implies oscillations or is monotonic are given. In the former case, the agent optimally alternates diets and binges until the steady state is reached, in the latter a regular intertemporal pattern of food consumption is optimal.

  14. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants.

    PubMed

    Flexas, Jaume; Escalona, José Mariano; Evain, Sebastian; Gulías, Javier; Moya, Ismaël; Osmond, Charles Barry; Medrano, Hipólito

    2002-02-01

    Water stress experiments were performed with grapevines (Vitis vinifera L.) and other C3 plants in the field, in potted plants in the laboratory, and with detached leaves. It was found that, in all cases, the ratio of steady state chlorophyll fluorescence (Fs) normalized to dark-adapted intrinsic fluorescence (Fo) inversely correlated with non-photochemical quenching (NPQ). Also, at high irradiance, the ratio Fs/Fo was positively correlated with CO2 assimilation in air, with electron transport rate calculated from fluorescence, and with stomatal conductance, but no clear correlation was observed with qP. The significance of these relationships is discussed. The ratio Fs/Fo, measured with a portable instrument (PAM-2000) or with a remote sensing FIPAM system, provides a good method for the early detection of water stress, and may become a useful guide to irrigation requirements.

  15. A Boundary Condition Relaxation Algorithm for Strongly Coupled, Ablating Flows Including Shape Change

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.

    2011-01-01

    Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.

  16. An investigation of chaotic Kolmogorov flows

    NASA Technical Reports Server (NTRS)

    Platt, N.; Sirovich, L.; Fitzmaurice, N.

    1990-01-01

    A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.

  17. Predicting switched-bias response from steady-state irradiations

    NASA Astrophysics Data System (ADS)

    Fleetwood, D. M.; Winokur, P. S.; Riewe, L. C.

    1990-12-01

    A novel semiempirical model of radiation-induced charge neutralization is presented. This model is combined with 12 heuristic guidelines derived from studies of oxide- and interface-trap charge (Delta Vot and Delta Vit) buildup and annealing to develop a method to predict MOS switched-bias response from steady-state irradiations, with no free parameters. For n-channel MOS devices, predictions of Delta Vot, Delta Vit, and mobility degradation differ from experimental values through irradiation by less than 30 percent in all cases considered. This is demonstrated for gate oxides with widely varying Delta Vot and Delta Vit and for parasitic field oxides. Preliminary results suggest that n-channel MOS Delta Vot annealing and Delta Vit buildup following switched-bias irradiation and through switched-bias annealing also may be predicted with less than 30 percent error. The p-channel MOS response at high frequencies is more difficult to predict.

  18. Steady-state MR imaging sequences: physics, classification, and clinical applications.

    PubMed

    Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M

    2008-01-01

    Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.

  19. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert; Garcia, Roberto (Technical Monitor)

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX (liquid oxygen) manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducting for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis will be presented. C efficiency was very high (approximately 100%) at the middle of the throttle-able range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Analysis of the dynamic throttling data indicates that the injector may experience transient conditions that effect pressure drop and performance when compared to steady state results.

  20. Time density curve analysis for C-arm FDCT PBV imaging

    PubMed Central

    Byrne, James V

    2016-01-01

    Introduction Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Methods Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Results Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. Conclusion For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed ‘ideal steady-state’ for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. PMID:26769736

  1. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.

  2. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical meaning of deficiency not only for first-moment conditions but for all orders in fluctuations.

  3. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  4. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    DTIC Science & Technology

    2017-06-01

    design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle

  5. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    NASA Technical Reports Server (NTRS)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  6. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  7. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  8. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m/s over a volumetric water content range from 0.1938 to 0.4311 m3/m3. Using these measured properties, the water content estimated from geophysical measurements has been used to identify the unsaturated hydraulic conductivity indicative of the steady component of the aquifer recharge rate at Canosa.

  9. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  10. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    DOE PAGES

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO 2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure p CO, to a strongly-correlated near-O-covered steady-state for low p CO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low p CO.

  11. The steady-state visual evoked potential in vision research: A review

    PubMed Central

    Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno

    2015-01-01

    Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451

  12. Magnetohydrodynamic drag reduction and its efficiency

    NASA Astrophysics Data System (ADS)

    Shatrov, V.; Gerbeth, G.

    2007-03-01

    We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.

  13. Control of cancer-related signal transduction networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2013-03-01

    Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.

  14. Simulation of the hybrid and steady state advanced operating modes in ITER

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.

    2007-09-01

    Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.

  15. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  16. The first-principle coupled calculations using TMCC and CFX for the pin-wise simulation of LWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Wang, K.

    2012-07-01

    The coupling of neutronics and thermal-hydraulics plays an important role in the reactor safety, core design and operation of nuclear power facilities. This paper introduces the research on the coupling of Monte Carlo method and CFD method, specifically using TMCC and CFX. The methods of the coupling including the coupling approach, data transfer, mesh mapping and transient coupling scheme are studied firstly. The coupling of TMCC and CFX for the steady state calculations is studied and described for the single rod model and the 3 x 3 Rod Bundle model. The calculation results prove that the coupling method is feasiblemore » and the coupled calculation can be used for steady state calculations. However, the oscillation which occurs during the coupled calculation indicates that this method still needs to be improved for the accuracy. Then the coupling for the transient calculations is also studied and tested by two cases of the steady state and the lost of heat sink. The preliminary results of the transient coupled calculations indicates that the transient coupling with TMCC and CFX is able to simulate the transients but instabilities are occurring. It is also concluded that the transient coupling of TMCC and CFX needs to be improved due to the limitation of computational resource and the difference of time scales. (authors)« less

  17. Analysis of lunar regolith thermal energy storage

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1991-01-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  18. Dissipative dark matter halos: The steady state solution

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  19. Symmetry limit theory for cantilever beam-columns subjected to cyclic reversed bending

    NASA Astrophysics Data System (ADS)

    Uetani, K.; Nakamura, Tsuneyoshi

    THE BEHAVIOR of a linear strain-hardening cantilever beam-column subjected to completely reversed plastic bending of a new idealized program under constant axial compression consists of three stages: a sequence of symmetric steady states, a subsequent sequence of asymmetric steady states and a divergent behavior involving unbounded growth of an anti-symmetric deflection mode. A new concept "symmetry limit" is introduced here as the smallest critical value of the tip-deflection amplitude at which transition from a symmetric steady state to an asymmetric steady state can occur in the response of a beam-column. A new theory is presented for predicting the symmetry limits. Although this transition phenomenon is phenomenologically and conceptually different from the branching phenomenon on an equilibrium path, it is shown that a symmetry limit may theoretically be regarded as a branching point on a "steady-state path" defined anew. The symmetry limit theory and the fundamental hypotheses are verified through numerical analysis of hysteretic responses of discretized beam-column models.

  20. A general theory of kinetics and thermodynamics of steady-state copolymerization.

    PubMed

    Shu, Yao-Gen; Song, Yong-Shun; Ou-Yang, Zhong-Can; Li, Ming

    2015-06-17

    Kinetics of steady-state copolymerization has been investigated since the 1940s. Irreversible terminal and penultimate models were successfully applied to a number of comonomer systems, but failed for systems where depropagation is significant. Although a general mathematical treatment of the terminal model with depropagation was established in the 1980s, a penultimate model and higher-order terminal models with depropagation have not been systematically studied, since depropagation leads to hierarchically-coupled and unclosed kinetic equations which are hard to solve analytically. In this work, we propose a truncation method to solve the steady-state kinetic equations of any-order terminal models with depropagation in a unified way, by reducing them into closed steady-state equations which give the exact solution of the original kinetic equations. Based on the steady-state equations, we also derive a general thermodynamic equality in which the Shannon entropy of the copolymer sequence is explicitly introduced as part of the free energy dissipation of the whole copolymerization system.

  1. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    PubMed

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  2. Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis

    PubMed Central

    Chapple, Richard H.; Tseng, Yu-Jung; Hu, Tianyuan; Kitano, Ayumi; Takeichi, Makiko; Hoegenauer, Kevin A.

    2018-01-01

    Characterization of hematopoietic stem cells (HSCs) has advanced largely owing to transplantation assays, in which the developmental potential of HSCs is assessed generally in nonhomeostatic conditions. These studies established that adult HSCs extensively contribute to multilineage hematopoietic regeneration upon transplantation. On the contrary, recent studies performing lineage tracing of HSCs under homeostatic conditions have shown that adult HSCs may contribute far less to steady-state hematopoiesis than would be anticipated based on transplantation assays. Here, we used 2 independent HSC-lineage–tracing models to examine the contribution of adult HSCs to steady-state hematopoiesis. We show that adult HSCs contribute robustly to steady-state hematopoiesis, exhibiting faster efflux toward the myeloid lineages compared with lymphoid lineages. Platelets were robustly labeled by HSCs, reaching the same level of labeling as HSCs by 1 year of chase. Our results support the view that adult HSCs contribute to the continuous influx of blood cells during steady-state hematopoiesis. PMID:29848758

  3. Steady State Condition in the Measurement of VO2and VCO2by Indirect Calorimetry.

    PubMed

    Cadena, M; Sacristan, E; Infante, O; Escalante, B; Rodriguez, F

    2005-01-01

    Resting Metabolic Rate (RMR) is computed using VO2and VCO2short time 15-minute window measurement with Indirect Calorimetry (IC) instruments designed with mixing chamber. Steady state condition using a 10% variation coefficient criteria is the main objective to achieve metabolic long time prediction reliability. This study address how susceptible is the steady state VO2, VCO2measurement condition to the clino-orthostatic physiological maneuver. 30 young healthy subjects were analyzed. Only 18 passed the 10% variation coefficient inclusive criteria. They were exposed to 10 minutes clino-stage and 10 minutes orthostage. The hypothesis tests show not statistical significance (p< 0.1) in the average and variance analysis. It is concluded that the steady state is not influenced by the patient position IC test, probably because IC mixing chamber instruments are insensitive to detect a mayor physiological dynamics changes that can modify the steady state definition.

  4. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  5. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  6. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    NASA Technical Reports Server (NTRS)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  7. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  8. Thermodynamic feature of a Brownian heat engine operating between two heat baths.

    PubMed

    Asfaw, Mesfin

    2014-01-01

    A generalized theory of nonequilibrium thermodynamics for a Brownian motor operating between two different heat baths is presented. Via a simple paradigmatic model, we not only explore the thermodynamic feature of the engine in the regime of the nonequilibrium steady state but also study the short time behavior of the system for either the isothermal case with load or, in general, the nonisothermal case with or without load. Many elegant thermodynamic theories can be checked via the present model. Furthermore the dependence of the velocity, the efficiency, and the performance of the refrigerator on time t is examined. Our study reveals a current reversal due to time t. In the early system relaxation period, the model works neither as a heat engine nor as a refrigerator and only after a certain period of time does the model start functioning as a heat engine or as a refrigerator. The performance of the engine also improves with time and at steady state the engine manifests a higher efficiency or performance as a refrigerator. Furthermore the effect of energy exchange via the kinetic energy on the performance of the heat engine is explored.

  9. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    PubMed

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  10. A Poisson-like closed-form expression for the steady-state wealth distribution in a kinetic model of gambling

    NASA Astrophysics Data System (ADS)

    Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.

    2017-08-01

    An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.

  11. The relationship between skin aging and steady state ultraweak photon emission as an indicator of skin oxidative stress in vivo.

    PubMed

    Gabe, Y; Osanai, O; Takema, Y

    2014-08-01

    Ultraweak photon emission (UPE) is one potential method to evaluate the oxidative status of the skin in vivo. However, little is known about how the daily oxidative stress of the skin is related to skin aging-related alterations in vivo. We characterized the steady state UPE and performed a skin survey. We evaluated the skin oxidative status by UPE, skin elasticity, epidermal thickness and skin color on the inner upper arm, the outer forearm, and the buttock of 70 Japanese volunteers. The steady state UPE at the three skin sites increased with age. Correlation analysis revealed that the steady state UPE only from the buttock was related to skin elasticity, which showed age-dependent changes. Moreover, analysis by age group indicated that b* values of the inner upper arm of subjects in their 20s were inversely correlated with UPE as occurred in buttock skin. In contrast, photoaged skin did not show a clear relationship with steady state UPE because the accumulation of sun-exposure might influence the sensitivity to oxidative stress. These results suggest that steady state UPE reflects not only intrinsic skin aging and cutaneous color but also the current oxidative status independent of skin aging. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Perception of steady-state vowels and vowelless syllables by adults and children

    NASA Astrophysics Data System (ADS)

    Nittrouer, Susan

    2005-04-01

    Vowels can be produced as long, isolated, and steady-state, but that is not how they are found in natural speech. Instead natural speech consists of almost continuously changing (i.e., dynamic) acoustic forms from which mature listeners recover underlying phonetic form. Some theories suggest that children need steady-state information to recognize vowels (and so learn vowel systems), even though that information is sparse in natural speech. The current study examined whether young children can recover vowel targets from dynamic forms, or whether they need steady-state information. Vowel recognition was measured for adults and children (3, 5, and 7 years) for natural productions of /dæd/, /dUd/ /æ/, /U/ edited to make six stimulus sets: three dynamic (whole syllables; syllables with middle 50-percent replaced by cough; syllables with all but the first and last three pitch periods replaced by cough), and three steady-state (natural, isolated vowels; reiterated pitch periods from those vowels; reiterated pitch periods from the syllables). Adults scored nearly perfectly on all but first/last three pitch period stimuli. Children performed nearly perfectly only when the entire syllable was heard, and performed similarly (near 80%) for all other stimuli. Consequently, children need dynamic forms to perceive vowels; steady-state forms are not preferred.

  13. A stability analysis of the power-law steady state of marine size spectra.

    PubMed

    Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J

    2011-10-01

    This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.

  14. EEMD-Based Steady-State Indexes and Their Applications to Condition Monitoring and Fault Diagnosis of Railway Axle Bearings

    PubMed Central

    Fan, Wei; Tsui, Kwok-Leung; Lin, Jianhui

    2018-01-01

    Railway axle bearings are one of the most important components used in vehicles and their failures probably result in unexpected accidents and economic losses. To realize a condition monitoring and fault diagnosis scheme of railway axle bearings, three dimensionless steadiness indexes in a time domain, a frequency domain, and a shape domain are respectively proposed to measure the steady states of bearing vibration signals. Firstly, vibration data collected from some designed experiments are pre-processed by using ensemble empirical mode decomposition (EEMD). Then, the coefficient of variation is introduced to construct two steady-state indexes from pre-processed vibration data in a time domain and a frequency domain, respectively. A shape function is used to construct a steady-state index in a shape domain. At last, to distinguish normal and abnormal bearing health states, some guideline thresholds are proposed. Further, to identify axle bearings with outer race defects, a pin roller defect, a cage defect, and coupling defects, the boundaries of all steadiness indexes are experimentally established. Experimental results showed that the proposed condition monitoring and fault diagnosis scheme is effective in identifying different bearing health conditions. PMID:29495446

  15. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  16. Steady State Advanced Tokamak (SSAT): The mission and the machine

    NASA Astrophysics Data System (ADS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.

  17. Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.

    PubMed

    Lawn, Philip

    2011-02-01

    Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.

  18. Understanding emotional transitions: the interpersonal consequences of changing emotions in negotiations.

    PubMed

    Filipowicz, Allan; Barsade, Sigal; Melwani, Shimul

    2011-09-01

    Research on the interpersonal functions of emotions has focused primarily on steady-state emotion rather than on emotional transitions, the movement between emotion states. The authors examined the influence of emotional transitions on social interactions and found that emotional transitions led to consistently different outcomes than their corresponding steady-state emotions. Across 2 computer-mediated negotiations and a face-to-face negotiation, participants negotiating with partners who displayed a "becoming angry" (happy to angry) emotional transition accepted worse negotiation outcomes yet formed better relational impressions of their partners than participants negotiating with partners who displayed steady-state anger. This relationship was mediated through 2 mechanisms: attributional and emotional contagion processes. The "becoming happy" (angry to happy) emotional transition as compared with steady-state happiness was not significantly related to differences in negotiation outcomes but was significantly related to differences in relational impressions, where perceivers of the "becoming happy" emotional transition gave their partners lower relational impression ratings than perceivers of steady-state happiness. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  19. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  20. Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1990-01-01

    The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.

  1. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  2. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less

  3. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  4. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    PubMed

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  5. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    PubMed

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  6. Dissipative production of a maximally entangled steady state of two quantum bits.

    PubMed

    Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J

    2013-12-19

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  7. Large Colloids in Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Stratford, K.; Gray, A.; Lintuvuori, J. S.

    2015-12-01

    We describe a coarse-grained Landau-de Gennes model of liquid crystals (LCs) including hydrodynamics based on the Beris-Edwards equations. The model is employed to study the impact of large colloids on the long range LC defect structure in the cholesteric LC blue phases. `Large' here means that the particle size is comparable to the cholesteric pitch, the length scale on which the LC order undergoes a helical twist. We investigate the case of a single particle, with either normal or degenerate planar anchoring, placed initially in an equilibrium blue phase LC. It is found that in some cases, well defined steady disclination structure emerges at the particle surface, while in other cases no clear steady state is reached in the simulations, and disclination reorganisation appears to proliferate through the bulk LC. These systems are of potential interest in the context of using LCs to template self-assembly of colloid structure, e.g., for opto-electronic devices. Computationally, we demonstrate a parallel approach using mixed message-passing and threaded model on graphical processing units allows effective and efficient progress for this problem.

  8. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

    PubMed

    Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong

    2014-02-01

    We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.

  9. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.

  10. Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids.

    PubMed

    Lovelock, Kevin R J; Cowling, Frances N; Taylor, Alasdair W; Licence, Peter; Walsh, Darren A

    2010-04-08

    The electrochemical properties of a series of room temperature ionic liquids (RTILs) were studied using voltammetric methods and scanning electrochemical microscopy (SECM). The RTILs consisted of 1-alkyl-3-methylimidazolium cations, [C(n)C(1)Im](+), and either bis[(trifluoromethyl)sulfonyl]imide anions, [Tf(2)N](-), or hexafluorophosphate anions, [PF(6)](-). The effect of RTIL viscosity on mass transfer dynamics within each RTIL was studied electrochemically using ferrocene as a redox probe. In the case of the [C(n)C(1)Im][Tf(2)N] RTILs, the viscosity was altered by changing the alkyl chain length. [C(4)C(1)Im][PF(6)] was used for comparison as its viscosity is significantly higher than that of the [C(n)C(1)Im][Tf(2)N] RTILs. The RTIL viscosity affected the ability to record steady-state voltammograms at ultramicroelectrodes (UMEs). For example, it was possible to record steady-state voltammograms at scan rates up to 10 mV s(-1) in [C(2)C(1)Im][Tf(2)N] using 1.5 mum radius disk UMEs, but non-steady-state behavior was observed at 50 mV s(-1). However, at 12.5 microm radius UMEs, steady-state voltammetry was only observed at 1 mV s(-1) in [C(2)C(1)Im][Tf(2)N]. The RTIL viscosity also affected the ability to record SECM feedback approach curves that agreed with conventional SECM theory. In the most viscous [C(n)C(1)Im][Tf(2)N] RTILs, feedback approach curves agreed with conventional theory only when very slow tip approach speeds were used (0.1 microm s(-1)). These observations were interpreted using the Peclet number, which describes the relative contributions of convective and diffusive mass transfer to the tip surface. By recording feedback approach curves in each RTIL at a range of tip approach speeds, we describe the experimental conditions that must be met to perform SECM in imidazolium-based RTILs. The rate of heterogeneous electron transfer across the RTIL/electrode interface was also studied using SECM and the standard heterogeneous electron transfer rate constant, k(0), for ferrocene oxidation recorded in each RTIL was higher than that determined previously using voltammetric methods.

  11. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.

    PubMed

    Chaudhuri, Pinaki; Horbach, Jürgen

    2014-10-01

    Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.

  12. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  13. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  14. A descriptive model of resting-state networks using Markov chains.

    PubMed

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  15. The Effect of Simulated Lunar Dust on the Absorptivity, Emissivity, and Operating Temperature on AZ-93 and Ag/FEP Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Panko, Scott R.; Rogers, Kerry J.; Larkin, Elizabeth M. G.

    2008-01-01

    JSC-1AF lunar simulant has been applied to AZ-93 and AgFEP thermal control surfaces on aluminum or composite substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator and cooled in a 30 K coldbox. Thermal modeling was used to determine the absorptivity ( ) and emissivity ( ) of the thermal control surfaces in both their clean and dusted states. Then, a known amount of power was applied to the samples while in the coldbox and the steady state temperatures measured. It was found that even a submonolayer of simulated lunar dust can significantly degrade the performance of both white paint and second-surface mirror type thermal control surfaces under these conditions. Contrary to earlier studies, dust was found to affect as well as . Dust lowered the emissivity by as much as 16 percent in the case of AZ-93, and raised it by as much as 11 percent in the case of AgFEP. The degradation of thermal control surface by dust as measured by / rose linearly regardless of the thermal control coating or substrate, and extrapolated to degradation by a factor 3 at full coverage by dust. Submonolayer coatings of dust were found to not significantly change the steady state temperature at which a shadowed thermal control surface will radiate.

  16. Results of the ETV-1 breadboard tests under steady-state and transient conditions. [conducted in the NASA-LeRC Road Load Simulator

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Dustin, M. O.

    1981-01-01

    Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.

  17. Experimental investigation of cryogenic oscillating heat pipes.

    PubMed

    Jiao, A J; Ma, H B; Critser, J K

    2009-07-01

    A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased.

  18. Experimental investigation of cryogenic oscillating heat pipes

    PubMed Central

    Jiao, A.J.; Ma, H.B.; Critser, J.K.

    2010-01-01

    A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased. PMID:20585410

  19. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    NASA Technical Reports Server (NTRS)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.

  20. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.

    1974-01-01

    This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf. PMID:4846767

  1. Three-dimensional constructive interference in steady-state magnetic resonance imaging in syringomyelia: advantages over conventional imaging.

    PubMed

    Roser, Florian; Ebner, Florian H; Danz, Søren; Riether, Felix; Ritz, Rainer; Dietz, Klaus; Naegele, Thomas; Tatagiba, Marcos S

    2008-05-01

    Neuroradiology has become indispensable in detecting the pathophysiology in syringomyelia. Constructive interference in steady-state (CISS) magnetic resonance (MR) imaging can provide superior contrast at the sub-arachnoid tissue borders. As this region is critical in preoperative evaluation, the authors hypothesized that CISS imaging would provide superior assessment of syrinx pathology and surgical planning. Based on records collected from a database of 130 patients with syringomyelia treated at the authors' institution, 59 patients were prospectively evaluated with complete neuroradiological examinations. In addition to routine acquisitions with FLAIR, T1- and T2-weighted, and contrast-enhanced MR imaging series, the authors obtained sagittal cardiac-gated sequences to visualize cerebrospinal fluid (CSF) pulsations and axial 3D CISS MR sequences to detect focal arachnoid webs. Statistical qualitative and quantitative evaluations of spinal cord/CSF contrast, spinal cord/CSF delineation, motion artifacts, and artifacts induced by pulsatile CSF flow were performed. The 3D CISS MR sequences demonstrated a contrast-to-noise ratio significantly better than any other routine imaging sequence (p < 0.001). Moreover, 3D CISS imaging can detect more subarachnoid webs and cavitations in the syrinx than T2-weighted MR imaging with less flow-void artifact. The limitation of 3D CISS imaging is a susceptibility to motion artifacts that can cause reduced spatial resolution. Lengthy acquisition times for axial segments can be reduced with multiplanar reconstruction of 3D CISS-generated sagittal images. Constructive interference in steady-state imaging is the MR sequence of choice in the preoperative evaluation of syringomyelia, allowing significantly higher detection rates of focal subarachnoid webs, whereas standard T2-weighted MR imaging shows turbulent CSF flow voids. Constructive interference in steady-state MR imaging enables the neurosurgeon to accurately identify cases requiring decompression for obstructed CSF. Motion artifacts can be eliminated with technical variations.

  2. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  3. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    PubMed

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P < 0.0001) with a concomitant increase in tidal volume from 499 ± 206 to 1,177 ± 497 ml (P < 0.001). Consequently, steady-state MSNA was decreased by 31% (P < 0.005). In patients without respiratory modulation, there were no significant changes in respiratory frequency, tidal volume, and steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  4. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  5. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  6. Steady states of a diode with counterstreaming electron and positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A.

    2016-10-15

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  7. Steady states of a diode with counterstreaming electron and positron beams

    NASA Astrophysics Data System (ADS)

    Ender, A. Ya.; Kuznetsov, V. I.; Gruzdev, A. A.

    2016-10-01

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  8. Transient and steady-state performance of a single turbojet combustor with four different fuel nozzles

    NASA Technical Reports Server (NTRS)

    Mccafferty, Richard J; Donlon, Richard H

    1955-01-01

    Acceleration and steady-state performance of a tubular combustor was evaluated at two simulated altitudes with four different fuel nozzles. Temperature response lag was observed with all the nozzles. Except for rich-limit blowout, the only combustion failures observed during acceleration were with a fuel nozzle that gave an interrupted flow delivery during the acceleration. This same nozzle, because of superior fuel atomization, gave the highest steady-state combustion efficiencies.

  9. Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions

    PubMed Central

    Prabhu, Rupal; Altman, Elliot

    2012-01-01

    The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753

  10. Multiple Steady States of Buoyancy Induced Flow in Cold Water and Their Stability.

    NASA Astrophysics Data System (ADS)

    El-Henawy, Ibrahim Mahmoud

    In Chapters 1 and 2 the physical background and the literature related to buoyancy-induced flows are reviewed. An accurate representation, based upon experimental data, of the motion-causing buoyancy force, in the vicinity of maximum density in pure water at low temperatures, is used. This representation is an accurate and quite simple formulation due to Gebhart and Mollendorf (1977). Using the representation, we study, numerically, Chapter 3, a model for the laminar, boundary-layer flow arising from natural convection adjacent to a vertical isothermal flat surface submerged in quiescent cold water. The results demonstrate for the first time the existence of multiple steady-state solutions in a natural convection flow. The existence of these new multiple steady-state solutions led to an investigation of their stability. This is carried out in Chapter 4 by a mathematical method, different from that of the usual hydrodynamic stability approach, Lin (1955) and Razinand and Reid (1982). Three real eigenvalue and eigenvector pairs corresponding to the new steady-state -solutions were found. Each of these eigenvalues changes its algebraic sign at a particular limit point (point of vertical tangency, nose, knee) in the bifurcation diagrams found in Chapter 3. The results indicate that the new steady-state solutions are unstable and that the previously found steady-state solutions, Carey, Gebhart, and Mollendorf (1980), may be stable.

  11. Prospective evaluation of haemoglobin oxygen saturation at rest and after exercise in paediatric sickle cell disease patients

    PubMed Central

    Campbell, Andrew; Minniti, Caterina P.; Nouraie, Mehdi; Arteta, Manuel; Rana, Sohail; Onyekwere, Onyinye; Sable, Craig; Ensing, Gregory; Dham, Niti; Luchtman-Jones, Lori; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Gordeuk, Victor R.

    2009-01-01

    Summary Low steady state haemoglobin oxygen saturation in patients with sickle cell anaemia has been associated with the degree of anaemia and haemolysis. How much pulmonary dysfunction contributes to low saturation is not clear. In a prospective study of children and adolescents with sickle cell disease aged 3–20 years at steady state and matched controls, 52% of 391 patients versus 24% of 63 controls had steady state oxygen saturation <99% (P < 0·0001), 9% of patients versus no controls had saturation <95% (P = 0·008) and 8% of patients versus no controls had exercise-induced reduction in saturation ≥3%. Decreasing haemoglobin concentration (P ≤ 0·001) and increasing haemolysis (P ≤ 0·003) but not pulmonary function tests were independent predictors of both lower steady-state saturation and exercise-induced reduction in saturation. Neither history of stroke nor history of acute chest syndrome was significantly associated with lower steady-state oxygen saturation or exercise-induced reduction in saturation. Tricuspid regurgitation velocity was higher in patients with lower steady state haemoglobin oxygen saturation (P = 0·003) and with greater decline in oxygen saturation during the six-minute walk (P = 0·022). In conclusion, lower haemoglobin oxygen saturation is independently associated with increasing degrees of anaemia and haemolysis but not pulmonary function abnormalities among children and adolescents with sickle cell disease. PMID:19694721

  12. Nitrogen Can Alleviate the Inhibition of Photosynthesis Caused by High Temperature Stress under Both Steady-State and Flecked Irradiance.

    PubMed

    Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong

    2017-01-01

    Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.

  13. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

    PubMed

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-02-01

    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

  14. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.

    1992-01-01

    1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Network Speech Systems Technology Program.

    DTIC Science & Technology

    1980-09-30

    ognized that the lumped-speaker approximation could be extended even more generally to include cases of combined circuit-switched speech and packet...based on these tables. The first function is an im- portant element of the more general task of system control for a switched network, which in...programs are in preparation, as described below, for both steady-state evaluation and dynamic performance simulation of the algorithm in general

  16. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  17. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  18. Group analysis of dynamics equations of self-gravitating polytropic gas

    NASA Astrophysics Data System (ADS)

    Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.

    2018-06-01

    The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.

  19. Smooth Approximation l 0-Norm Constrained Affine Projection Algorithm and Its Applications in Sparse Channel Estimation

    PubMed Central

    2014-01-01

    We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588

  20. [Study on balance group in steady-state extraction process of Chinese medicine and experimental verification to Houttuynia cordata].

    PubMed

    Liu, Wenlong; Zhang, Xili; He, Fuyuan; Zhang, Ping; Wang, Haiqin; Wu, Dezhi; Chen, Zuohong

    2011-11-01

    To establish and experimental verification the mathematical model of the balance groups that is the steady-state of traditional Chinese medicine in extraction. Using the entropy and genetic principles of statistics, and taking the coefficient of variation of GC fingerprint which is the naphtha of the Houttuynia cordata between strains in the same GAP place as a pivot to establish and verify the mathematical model was established of the balance groups that is the steady-state of traditional Chinese medicine in extraction. A mathematical model that is suitable for the balance groups of the steady-state of traditional Chinese medicine and preparation in extraction, and the balance groups which is 29 683 strains (approximately 118.7 kg) were gained with the same origin of H. cordata as the model drug. Under the GAP of quality control model, controlling the stability of the quality through further using the Hardy-Weinberg balance groups of the H. cordata between strains, the new theory and experiment foundation is established for the steady-state of traditional Chinese medicine in extraction and quality control.

  1. Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.

    PubMed

    Semenov, Yuri S; Novozhilov, Artem S

    2015-08-01

    We reformulate the eigenvalue problem for the selection-mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations. Copyright © 2015. Published by Elsevier Inc.

  2. Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.

    PubMed

    Garcia, Alejandro L; Wagner, Wolfgang

    2003-11-01

    In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.

  3. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  4. Effect of antacids on predicted steady-state cimetidine concentrations.

    PubMed

    Russell, W L; Lopez, L M; Normann, S A; Doering, P L; Guild, R T

    1984-05-01

    The purpose of this study was to evaluate effects of antacids on predicted steady-state concentrations of cimetidine. Ten healthy volunteers received in random order one week apart, cimetidine and cimetidine and antacid suspension. Blood was obtained at specified times and analyzed for cimetidine. Bioavailability was assessed by comparison of peak concentration, time to peak concentration, area under the curve, and time spent over 0.5 micrograms/ml. Single-dose data were extrapolated to steady-state using computer simulation. Concurrent administration of antacid suspension reduced parameters of bioavailability approximately 30%. When steady-state conditions were simulated, concentrations of cimetidine greater than or equal to 0.5 micrograms/ml were maintained for the entire dosing interval in seven of 10 subjects. These data suggest that temporal separation of cimetidine and antacid suspension may be unnecessary.

  5. Interplay of interaction and disorder in the steady state of an open quantum system

    NASA Astrophysics Data System (ADS)

    Xu, Xiansong; Guo, Chu; Poletti, Dario

    2018-04-01

    Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.

  6. Exact results for Schrödinger cats in driven-dissipative systems and their feedback control

    NASA Astrophysics Data System (ADS)

    Minganti, Fabrizio; Bartolo, Nicola; Lolli, Jared; Casteels, Wim; Ciuti, Cristiano

    2016-05-01

    In quantum optics, photonic Schrödinger cats are superpositions of two coherent states with opposite phases and with a significant number of photons. Recently, these states have been observed in the transient dynamics of driven-dissipative resonators subject to engineered two-photon processes. Here we present an exact analytical solution of the steady-state density matrix for this class of systems, including one-photon losses, which are considered detrimental for the achievement of cat states. We demonstrate that the unique steady state is a statistical mixture of two cat-like states with opposite parity, in spite of significant one-photon losses. The transient dynamics to the steady state depends dramatically on the initial state and can pass through a metastable regime lasting orders of magnitudes longer than the photon lifetime. By considering individual quantum trajectories in photon-counting configuration, we find that the system intermittently jumps between two cats. Finally, we propose and study a feedback protocol based on this behaviour to generate a pure cat-like steady state.

  7. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  8. Mathematical Analysis of Vehicle Delivery Scale of Bike-Sharing Rental Nodes

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Liu, J.; Liu, L.

    2018-04-01

    Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has reached to the conclusion that limit state (steady state) probability of the bike-sharing Markov chain only exists and is independent of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing companies to optimize the scale and scheduling of nodes.

  9. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  10. Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Wang, Qi; Zhang, Zengyan

    In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.

  11. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  12. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    NASA Astrophysics Data System (ADS)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  13. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When represented in a color-color diagram, state assignments appear to map to ``A, B and C'' (Belloni et al. 2000) regions that govern fast variability cycles in GRS 1915+105 demonstrating a compelling link between short and long time scales in its phenomenology.

  14. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms. [for junction diodes simulation

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Osher, Stanley; Jerome, Joseph

    1991-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially nonoscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guntur, S.; Schreck, S.; Sorensen, N. N.

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) themore » National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.« less

  16. ESTIMATING SYSTEMIC EXPOSURE TO ETHINYL ESTRADIOL FROM AN ORAL CONTRACEPTIVE

    PubMed Central

    WESTHOFF, Carolyn L.; PIKE, Malcolm C.; TANG, Rosalind; DINAPOLI, Marianne N.; SULL, Monica; CREMERS, Serge

    2015-01-01

    Objectives This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive to steady-state values, and to assess whether any simpler measures could provide an adequate proxy of the ‘gold standard’ 24-hour steady-state area-under-the-curve. Identifying a simple, less expensive, measure of systemic ethinyl estradiol exposure would be useful for larger studies designed to assess the relationship between an individual’s ethinyl estradiol exposure and her side effects. Study Design We conducted a 13 samples over 24 hours pharmacokinetic analysis on day 1 and day 21 of the first cycle of a monophasic oral contraceptive containing 30 mcg ethinyl estradiol and 150 mcg levonorgestrel in 17 non-obese healthy white women. We also conducted an abbreviated single dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of full 13-sample steady-state pharmacokinetic analysis with results calculated using fewer samples (9 or 5) and following the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. Results The area-under-the-curve, maximum (Cmax), and 24-hour (C24) values were similar following the two single oral contraceptive doses (area-under-the-curve, r = 0.92). The steady-state 13-sample 24-hour area-under-the-curve was highly correlated with the average 9-sample area-under-the-curve after the two single doses (r = 0.81, p = 0.0002). This correlation remained the same if the number of samples was reduced to 4, taken at time 1, 2.5, 4 and 24 hours. The C24 at steady-state was highly correlated with the 24-hour steady-state area-under-the-curve (r = 0.92, p < 0.0001). The average of the C24 values following the two single doses was also quite highly correlated with the steady-state area-under-the-curve (r = 0.72, p = 0.0026). Conclusions Limited blood sampling, including results from two single doses, gave highly correlated estimates of an oral contraceptive user’s steady-state ethinyl estradiol exposure. PMID:25511238

  17. Estimating systemic exposure to ethinyl estradiol from an oral contraceptive.

    PubMed

    Westhoff, Carolyn L; Pike, Malcolm C; Tang, Rosalind; DiNapoli, Marianne N; Sull, Monica; Cremers, Serge

    2015-05-01

    This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive with steady-state values and to assess whether any simpler measures could provide an adequate proxy of the "gold standard" 24-hour steady-state area under the curve (AUC) value. Identification of a simple, less expensive measure of systemic ethinyl estradiol exposure would be useful for larger studies that are designed to assess the relationship between an individual's ethinyl estradiol exposure and side-effects. We collected 13 samples over 24 hours for pharmacokinetic analysis on days 1 and 21 of the first cycle of a monophasic oral contraceptive that contained 30 μg ethinyl estradiol and 150 μg levonorgestrel in 17 nonobese healthy white women. We also conducted an abbreviated single-dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of a full 13-sample steady-state pharmacokinetic analysis with results that had been calculated with the use of fewer samples (9 or 5) and after the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. The AUC, maximum, and 24-hour values were similar after the 2 single oral contraceptive doses (AUC; r=0.92). The steady-state 13-sample 24-hour AUC value was correlated highly with the average 9-sample AUC value after the 2 single doses (r=0.81; P=.0002). This correlation remained the same if the number of single-dose samples was reduced to 4, taken at time 1, 2.5, 4, and 24 hours. The 24-hour value at steady-state was correlated highly with the 24-hour steady-state AUC value (r=0.92; P<.0001). The average of the 24-hour values after the 2 single doses was also correlated quite highly with the steady-state AUC value (r=0.72; P=.0026). Limited blood sampling, including results from 2 single doses, gave highly correlated estimates of an oral contraceptive user's steady-state ethinyl estradiol exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A Solution Adaptive Technique Using Tetrahedral Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2000-01-01

    An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.

  19. Factors affecting the CD34+ cell yields from the second donations of healthy donors: The steady-state lymphocyte count is a good predictive factor.

    PubMed

    Guo, Zhi-Ping; Wang, Tao; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Huang, Xiao-Jun; Chang, Ying-Jun

    2016-12-01

    A second allogeneic hematopoietic stem-cell transplantation and donor lymphocyte infusion using cells from the same donor is a therapeutic option in the case of stem-cell graft failure or disease relapse, but little is known about the factors associated with the CD34 + cell yields from second donations. One-hundred healthy donors who underwent a second mobilization treatment and peripheral blood stem-cell (PBSC) collection were studied. For both mobilization processes, 5 µg of granulocyte colony-stimulating factor per kg per day was administered. The blood counts of the donors were monitored during the processes. The second donations from the same donors provided lower apheresis yields than did the initial collections. The number of CD34 + cells collected from normal donors after a second cycle of PBSC mobilization was associated with their steady-state lymphocyte counts and the intertransplantation interval. Female sex negatively affected the CD34 + cell yields. The cutoff value for the steady-state absolute lymphocyte count was 2.055 × 10 9 /L. To harvest greater numbers of CD34 + cells from second collections, male donors and those with intervals of longer than 9 months between donations should be selected. The lymphocyte counts prior to the first donations may predict the content of CD34 + cells in the allografts prepared using the second donations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of approximate solutions to the phonon Boltzmann transport equation with the relaxation time approximation: Spherical harmonics expansions and the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Christenson, J. G.; Austin, R. A.; Phillips, R. J.

    2018-05-01

    The phonon Boltzmann transport equation is used to analyze model problems in one and two spatial dimensions, under transient and steady-state conditions. New, explicit solutions are obtained by using the P1 and P3 approximations, based on expansions in spherical harmonics, and are compared with solutions from the discrete ordinates method. For steady-state energy transfer, it is shown that analytic expressions derived using the P1 and P3 approximations agree quantitatively with the discrete ordinates method, in some cases for large Knudsen numbers, and always for Knudsen numbers less than unity. However, for time-dependent energy transfer, the PN solutions differ qualitatively from converged solutions obtained by the discrete ordinates method. Although they correctly capture the wave-like behavior of energy transfer at short times, the P1 and P3 approximations rely on one or two wave velocities, respectively, yielding abrupt, step-changes in temperature profiles that are absent when the angular dependence of the phonon velocities is captured more completely. It is shown that, with the gray approximation, the P1 approximation is formally equivalent to the so-called "hyperbolic heat equation." Overall, these results support the use of the PN approximation to find solutions to the phonon Boltzmann transport equation for steady-state conditions. Such solutions can be useful in the design and analysis of devices that involve heat transfer at nanometer length scales, where continuum-scale approaches become inaccurate.

  1. Hyperthermia with implanted electrodes.

    PubMed

    Brezovich, I A; Young, J H

    1981-01-01

    A general solution is given for the steady state form of the heat conduction equation applied to a simple tumor model which is imagined as being heated by means of electrical currents flowing between metallic electrodes. The model assumes a homogeneous tumor with no bloodflow. The solution for the special case of constant temperature and potential at the surface of the heated volume is examined in detail. The solution shows that there exists, independent of the particular tumor and electrode geometry, a close relationship between the steady state temperature distribution and the electrical potential. Among the more important implications of this relationship are that equipotential surfaces within the heated volume are also isothermal surfaces and that no areas of excessive heat at or near any sharp edges or corners of the electrodes should develop, despite the high electric field intensity. Based on the theory, a procedure is outlined which might greatly facilitate the determination of temperature distributions in phantoms. Finally, the usefulness and the limitations of the theoretical models in clinical hyperthermia are discussed.

  2. Evolution of passive movement in advective environments: General boundary condition

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zhao, Xiao-Qiang

    2018-03-01

    In a previous work [16], Lou et al. studied a Lotka-Volterra competition-diffusion-advection system, where two species are supposed to differ only in their advection rates and the environment is assumed to be spatially homogeneous and closed (no-flux boundary condition), and showed that weaker advective movements are more beneficial for species to win the competition. In this paper, we aim to extend this result to a more general situation, where the environmental heterogeneity is taken into account and the boundary condition at the downstream end becomes very flexible including the standard Dirichlet, Neumann and Robin type conditions as special cases. Our main approaches are to exclude the existence of co-existence (positive) steady state and to provide a clear picture on the stability of semi-trivial steady states, where we introduced new ideas and techniques to overcome the emerging difficulties. Based on these two aspects and the theory of abstract competitive systems, we achieve a complete understanding on the global dynamics.

  3. Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2010-01-01

    Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.

  4. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  5. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits

    PubMed Central

    Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio

    2013-01-01

    We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.

  6. Effects of auditory selective attention on chirp evoked auditory steady state responses.

    PubMed

    Bohr, Andreas; Bernarding, Corinna; Strauss, Daniel J; Corona-Strauss, Farah I

    2011-01-01

    Auditory steady state responses (ASSRs) are frequently used to assess auditory function. Recently, the interest in effects of attention on ASSRs has increased. In this paper, we investigated for the first time possible effects of attention on AS-SRs evoked by amplitude modulated and frequency modulated chirps paradigms. Different paradigms were designed using chirps with low and high frequency content, and the stimulation was presented in a monaural and dichotic modality. A total of 10 young subjects participated in the study, they were instructed to ignore the stimuli and after a second repetition they had to detect a deviant stimulus. In the time domain analysis, we found enhanced amplitudes for the attended conditions. Furthermore, we noticed higher amplitudes values for the condition using frequency modulated low frequency chirps evoked by a monaural stimulation. The most difference between attended and unattended modality was exhibited at the dichotic case of the amplitude modulated condition using chirps with low frequency content.

  7. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  8. Fluid front morphologies in gap-modulated Hele-Shaw cells

    NASA Astrophysics Data System (ADS)

    Díaz-Piola, Lautaro; Planet, Ramon; Campàs, Otger; Casademunt, Jaume; Ortín, Jordi

    2017-09-01

    We consider the displacement of an inviscid fluid (air) by a viscous fluid (oil) in a narrow channel with gap-thickness modulations. The interfacial dynamics of this problem is strongly nonlocal and exhibits competing effects from capillarity and permeability. We derive analytical predictions of steady-state front morphologies, which are exact at linear level in the case of a persistent modulation in the direction of front advancement. The theoretical predictions are in good agreement with experimental measurements of steady-state front morphologies obtained in a Hele-Shaw cell with modulations of the channel depth, consisting on three parallel tracks of reduced depth, for small gap modulations. The relative average distance between theoretical and experimental fronts in the region around the central track is smaller than about 4 % , provided that the height of the tracks is less than 13 % of the total channel depth and the local distortion of the front height h is small enough (|∇ h |<0.8 ) for the linear approximation to hold.

  9. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bsebsu, F.M.; Abotweirat, F.; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulicmore » design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)« less

  10. The Influences of Airmass Histories on Radical Species During POLARIS

    NASA Technical Reports Server (NTRS)

    Pierson, James M.; Kawa, S. R.

    1998-01-01

    The POLARIS mission focused on understanding the processes associated with the decrease of polar stratospheric ozone from spring to fall at high latitudes. This decrease is linked primarily to in situ photochemical destruction by reactive nitrogen species, NO and NO2, which also control other catalytic loss cycles. Steady state models have been used to test photochemistry and radical behavior but are not always adequate in simulating radical species observations. In some cases, air mass history can be important and trajectory models give an improved simulation of the radical species. Trajectory chemistry models, however, still consistently underestimate NO and NO2 abundances compared to measurements along the ER-2 flight track. The Goddard chemistry on trajectory model has been used to test updated rate constants for NO2 + OH, NO2 + O and OH + HNO3, key reactions that affect NO and NO2 abundances. We present comparisons between the modified Goddard chemistry on trajectory model, the JPL steady state model and observations from selected flights.

  11. Darwin and the geological controversies over the steady-state worldview in the 1830s.

    PubMed

    Gohau, Gabriel

    2014-01-01

    In the first part of this paper, I will show that although Darwin's geological works only covered the first years of his scientific career, these played a non-negligible role in the earth sciences of the mid-nineteenth century. His intellectual proximity with Charles Lyell often made him his disciple. This is indeed the case with respect to debates over 'gradual' soil movements and 'catastrophic' soil movements, and for 'steady-state' cycles as opposed to 'directionalistic' ones. This being said, it is also true that in South America Darwin saw geological processes which were incompatible with Lyell's explanations. It must therefore be recognized that Darwin held a middle-of-the-road position between uniformitarianism (Lyell) and catastrophism (Humbolt and von Buch), at least as far as some geological questions were concerned. In the second part of the paper, debates on geological issues during Darwin's active years will be put in the methodological context of the Scientific Revolution of the seventeenth century. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra.

    PubMed

    Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick

    2016-12-21

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.

  13. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  14. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  15. Creation and protection of entanglement in systems out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Bellomo, Bruno; Antezza, Mauro

    2013-11-01

    We investigate the creation of entanglement between two quantum emitters interacting with a realistic common stationary electromagnetic field out of thermal equilibrium. In the case of two qubits we show that the absence of equilibrium allows the generation of steady entangled states, which is inaccessible at thermal equilibrium and is realized without any further external action on the two qubits. We first give a simple physical interpretation of the phenomenon in a specific case and then we report a detailed investigation on the dependence of the entanglement dynamics on the various physical parameters involved. Sub- and super-radiant effects are discussed, and qualitative differences in the dynamics concerning both creation and protection of entanglement according to the initial two-qubit state are pointed out.

  16. The role of boundary variability in polycrystalline grain-boundary diffusion

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2015-01-01

    We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.

  17. The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-09-01

    An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.

  18. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic System T-MATS

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  19. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  20. Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.

    PubMed

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2014-12-12

    Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.

  1. Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; McClymer, J. P.

    2004-01-01

    The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.

  2. Acetylcholine-activated ionic currents in parasympathetic neurons of bullfrog heart.

    PubMed

    Tateishi, N; Kim, D K; Akaike, N

    1990-05-01

    1. The electrical and pharmacologic properties of acetylcholine (ACh)-induced current (IACh) were studied in the parasympathetic neurons isolated from bullfrog heart with the use of the concentration-clamp technique, which allows intracellular perfusion and rapid change of external solution within 2 ms under the single-electrode voltage-clamp condition. 2. The IACh consisted of an initial transient peak component and a successive steady-state plateau component. Both currents increased in a sigmoidal fashion with increasing ACh concentration. The dissociation constant (Kd value) and the Hill coefficient for each component were 2.2 X 10(-5) M and 1.6, respectively. 3. In the K(+)-free solution, the reversal potential (EACh) of IACh was close to the Na+ equilibrium potential (ENa). The current-voltage (I-V) relation showed inward rectification at positive potentials. 4. Nicotine mimicked only the peak component of IACh. However both peak and steady-state components were blocked nonselectively by the nicotinic blockers d-tubocurarine and hexamethonium. 5. Carbamylcholine (CCh) mimicked the steady-state component of IACh. The steady-state component was selectively inhibited by atropine at concentrations 1,000 times lower than that required for inhibition of the peak component. The steady state was blocked equally by either pirenzepine (M1 blocker) or AF-DX-116 (M2 blocker). 6. It was concluded that the IACh consisted of a peak component having double exponential activation and inactivation, mediated through the nicotinic actions, and a steady-state component having no inactivation, mediated through the muscarinic action.

  3. Auditory steady-state response in cochlear implant patients.

    PubMed

    Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo

    2018-03-19

    Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children.

    PubMed

    Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L

    2004-01-01

    Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.

  5. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    PubMed

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.

    PubMed

    Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang

    2018-01-22

    Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.

  7. Basin stability measure of different steady states in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  8. Do screws and screw holes affect osteolysis in cementless cups using highly crosslinked polyethylene? A 7 to 10-year follow-up case-control study.

    PubMed

    Taniguchi, N; Jinno, T; Takada, R; Koga, D; Ando, T; Okawa, A; Haro, H

    2018-05-01

    The use of screws and the presence of screw holes may cause acetabular osteolysis and implant loosening in cementless total hip arthroplasty (THA) using conventional polyethylene. In contrast, this issue is not fully understood using highly crosslinked polyethylene (HXLPE), particularly in large comparative study. Therefore, we performed a case-control study to assess the influence of screw usage and screw holes on: (1) implant fixation and osteolysis and (2) polyethylene steady-state wear rate, using cases with HXLPE liners followed up for 7-10 years postoperatively. The screw usage and screw holes adversely affect the implant fixation and incidence of wear-related osteolysis in THA with HXLPE. We reviewed 209 primary cementless THAs performed with 26-mm cobalt-chromium heads on HXLPE liners. To compare the effects of the use of screws and the presence of screw holes, the following groups were established: (1) with-screw (n=140); (2) without-screw (n=69); (3) no-hole (n=27) and (4) group in which a cup with screw holes, but no screw was used (n=42). Two adjunct groups (no-hole cups excluded) were established to compare the differences in the two types of HXLPE: (5) remelted group (n=100) and (6) annealed group (n=82). Implant stability and osteolysis were evaluated by plain radiography and computed tomography. The wear rate from 1 year to the final evaluation was measured using plain X-rays and PolyWare Digital software. All cups and stems achieved bony fixation. On CT-scan, no acetabular osteolysis was found, but there were 3 cases with a small area of femoral osteolysis. The mean steady-state wear rate of each group was (1) 0.031±0.022, (2) 0.033±0.035, (3) 0.031±0.024, (4) 0.029±0.018, (5) 0.030±0.018 and (6) 0.034±0.023mm/year, respectively. A comparison of the effects of screw usage or screw holes found no significant between-group differences in the implant stability, prevalence of osteolysis [no acetabular osteolysis and 3/209 at femoral side (1.4%)] and steady-state wear rate. This study suggests that there are no adverse effects on the results of THA with HXLPE from the use of cups with screw holes and the use of screws for cup fixation. Level III retrospective case-control study. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Bubble propagation in Hele-Shaw channels with centred constrictions

    NASA Astrophysics Data System (ADS)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    2018-04-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred occlusion (termed a rail) is introduced to provide a small axially uniform depth constriction. For bubbles wide enough to span the channel, the system’s behaviour is similar to that of semi-infinite fingers and a symmetric static solution is stable. Here, we focus on smaller bubbles, in which case the symmetric static solution is unstable and the static bubble is displaced towards one of the deeper regions of the channel on either side of the rail. Using a combination of experiments and numerical simulations of a depth-averaged model, we show that a bubble propagating axially due to a small imposed flow rate can be stabilised in a steady symmetric mode centred on the rail through a subtle interaction between stabilising viscous forces and destabilising surface tension forces. However, for sufficiently large capillary numbers Ca, the ratio of viscous to surface tension forces, viscous forces in turn become destabilising thus returning the bubble to an off-centred propagation regime. With decreasing bubble size, the range of Ca for which steady centred propagation is stable decreases, and eventually vanishes through the coalescence of two supercritical pitchfork bifurcations. The depth-averaged model is found to accurately predict all the steady modes of propagation observed experimentally, and provides a comprehensive picture of the underlying steady bifurcation structure. However, for sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady propagating state of changed topology.

  10. Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems.

    PubMed

    Yuste, S Bravo; Borrego, R; Abad, E

    2010-02-01

    We consider various anomalous d -dimensional diffusion problems in the presence of an absorbing boundary with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-square displacement is given by r(2) proportional, variant t(gamma)(00 , the emergence of such series in the long-time domain is a specific feature of subdiffusion problems. We present a method to regularize such series, and, in some cases, validate the procedure by using alternative techniques (Laplace transform method and numerical simulations). In the normal diffusion case, we find that the signature of the initial condition on the approach to the steady state rapidly fades away and the solution approaches a single (the main) decay mode in the long-time regime. In remarkable contrast, long-time memory of the initial condition is present in the subdiffusive case as the spatial part Psi1(r) describing the long-time decay of the solution to the steady state is determined by a weighted superposition of all spatial modes characteristic of the normal diffusion problem, the weight being dependent on the initial condition. Interestingly, Psi1(r) turns out to be independent of the anomalous diffusion exponent gamma .

  11. RANS Simulations using OpenFOAM Software

    DTIC Science & Technology

    2016-01-01

    Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex

  12. Research on transient thermal process of a friction brake during repetitive cycles of operation

    NASA Astrophysics Data System (ADS)

    Slavchev, Yanko; Dimitrov, Lubomir; Dimitrov, Yavor

    2017-12-01

    Simplified models are used in the classical engineering analyses of the friction brake heating temperature during repetitive cycles of operation to determine basically the maximum and minimum brake temperatures. The objective of the present work is to broaden and complement the possibilities for research through a model that is based on the classical scheme of the Newton's law of cooling and improves the studies by adding a disturbance function for a corresponding braking process. A general case of braking in non-periodic repetitive mode is considered, for which a piecewise function is defined to apply pulse thermal loads to the system. Cases with rectangular and triangular waveforms are presented. Periodic repetitive braking process is also studied using a periodic rectangular waveform until a steady thermal state is achieved. Different numerical methods such as the Euler's method, the classical fourth order Runge-Kutta (RK4) and the Runge-Kutta-Fehlberg 4-5 (RKF45) are used to solve the non-linear differential equation of the model. The constructed model allows during pre-engineering calculations to be determined effectively the time for reaching the steady thermal state of the brake, to be simulated actual braking modes in vehicles and material handling machines, and to be accounted for the thermal impact when performing fatigue calculations.

  13. Pharmacokinetic Steady-States Highlight Interesting Target-Mediated Disposition Properties.

    PubMed

    Gabrielsson, Johan; Peletier, Lambertus A

    2017-05-01

    In this paper, we derive explicit expressions for the concentrations of ligand L, target R and ligand-target complex RL at steady state for the classical model describing target-mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate that graphing the steady-state values of ligand, target and ligand-target complex, we obtain striking and often singular patterns, which yield a great deal of insight and understanding about the underlying processes. Deriving explicit expressions for the dependence of L, R and RL on the infusion rate, and displaying graphs of the relations between L, R and RL, we give qualitative and quantitive information for the experimentalist about the processes involved. Understanding target turnover is pivotal for optimising these processes when target-mediated drug disposition (TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that the evolution of the three concentration profiles towards their respective steady-states can be quite complex, especially for lower infusion rates. We also show how parameter estimates obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target and complex. The latter may serve as a template for future experimental designs.

  14. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less

  15. Noncontrast-enhanced renal angiography using multiple inversion recovery and alternating TR balanced steady-state free precession.

    PubMed

    Dong, Hattie Z; Worters, Pauline W; Wu, Holden H; Ingle, R Reeve; Vasanawala, Shreyas S; Nishimura, Dwight G

    2013-08-01

    Noncontrast-enhanced renal angiography techniques based on balanced steady-state free precession avoid external contrast agents, take advantage of high inherent blood signal from the T 2 / T 1 contrast mechanism, and have short steady-state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady-state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background T 1 species while allowing for adjustable inflow times; alternating pulse repetition time steady-state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three-dimensional as well as projective two-dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique. © 2012 Wiley Periodicals, Inc.

  16. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  17. Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Debasish; Chaudhuri, Abhishek

    2012-02-01

    Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für PhysikEPJAFV1434-600110.1007/BF01391621 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors.

  18. Steady-state entanglement activation in optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  19. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  20. Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.

    PubMed

    Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J

    2014-03-01

    Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.

  1. Effect of Steady-State Faldaprevir on the Pharmacokinetics of Steady-State Methadone and Buprenorphine-Naloxone in Subjects Receiving Stable Addiction Management Therapy

    PubMed Central

    Joseph, David; Schobelock, Michael J.; Riesenberg, Robert R.; Vince, Bradley D.; Webster, Lynn R.; Adeniji, Abidemi; Elgadi, Mabrouk

    2014-01-01

    The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC0–24,ss), the steady-state maximum concentration of the drug in plasma (Cmax,ss), and the steady-state concentration of the drug in plasma at 24 h (C24,ss) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637922.) PMID:25385094

  2. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running.

    PubMed

    Wahl, Patrick; Zwingmann, Lukas; Manunzio, Christian; Wolf, Jacob; Bloch, Wilhelm

    2018-05-18

    This study evaluated the accuracy of the lactate minimum test, in comparison to a graded-exercise test and established threshold concepts (OBLA and mDmax) to determine running speed at maximal lactate steady state. Eighteen subjects performed a lactate minimum test, a graded-exercise test (2.4 m·s -1 start,+0.4 m·s -1 every 5 min) and 2 or more constant-speed tests of 30 min to determine running speed at maximal lactate steady state. The lactate minimum test consisted of an initial lactate priming segment, followed by a short recovery phase. Afterwards, the initial load of the subsequent incremental segment was individually determined and was increased by 0.1 m·s -1 every 120 s. Lactate minimum was determined by the lowest measured value (LM abs ) and by a third-order polynomial (LM pol ). The mean difference to maximal lactate steady state was+0.01±0.14 m·s -1 (LM abs ), 0.04±0.15 m·s -1 (LM pol ), -0.06±0.31 m·s 1 (OBLA) and -0.08±0.21 m·s 1 (mDmax). The intraclass correlation coefficient (ICC) between running velocity at maximal lactate steady state and LM abs was highest (ICC=0.964), followed by LM pol (ICC=0.956), mDmax (ICC=0.916) and OBLA (ICC=0.885). Due to the higher accuracy of the lactate minimum test to determine maximal lactate steady state compared to OBLA and mDmax, we suggest the lactate minimum test as a valid and meaningful concept to estimate running velocity at maximal lactate steady state in a single session for moderately up to well-trained athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  3. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    PubMed Central

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  4. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    PubMed

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  5. Control of Turing patterns and their usage as sensors, memory arrays, and logic gates

    NASA Astrophysics Data System (ADS)

    Muzika, František; Schreiber, Igor

    2013-10-01

    We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.

  6. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving formore » the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.« less

  7. Experimental validation of an ultrasonic flowmeter for unsteady flows

    NASA Astrophysics Data System (ADS)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  8. Jovian vortices by simulated annealing

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.; Flierl, G. R.; Swaminathan, R. V.

    2017-11-01

    We explore the conditions required for isolated vortices to exist in sheared zonal flows and the stability of the underlying zonal winds. This is done using the standard 2-layer quasigeostrophic model with the lower layer depth becoming infinite; however, this model differs from the usual layer model because the lower layer is not assumed to be motionless but has a steady configuration of alternating zonal flows. Steady state vortices are obtained by a simulated annealing computational method introduced in, generalized and applied in in fluid flow, and used in the context of magnetohydrodynamics in. Various cases of vortices with a constant potential vorticity anomaly atop zonal winds and the stability of the underlying winds are considered using a mix of computational and analytical techniques. U.S. Department of Energy Contract DE-FG05-80ET-53088.

  9. An Operational Definition of the Steady State in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Barnsley, E. A.

    1990-01-01

    The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)

  10. Vibration testing and analysis using holography

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.

  11. Limiting Forces on Transit Trucks in Steady-State Curving

    DOT National Transportation Integrated Search

    1981-05-01

    This study develops conservative bounds on wheel/rail forces and flange forces for several types of rigid and flexible trucks in steady-state curving conditions. The approximate analysis presented provides closed-form relations for estimating forces,...

  12. The effect of solute additions on the steady-state creep behavior of dispersion-strengthened aluminum.

    NASA Technical Reports Server (NTRS)

    Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.

    1971-01-01

    The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.

  13. Steady-state performance analysis of fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.

    2009-01-01

    This paper presents a full steady-state analysis of a fiber-optic ring resonator (FORR). Although in the literature the steady-state response of the FORR has been described, a detailed description of the same is not available. As an understanding of the different steady-state characteristics of the FORR is required to appreciate its characteristic response, in this paper, the expressions for the output and loop intensities, phase angles of the fields, conditions for resonance, output and loop intensities at resonance and off-resonance, finesse, and group delay of the FORR are given for different ideal and practical operating conditions of the resonator. Graphical plots of all the above characteristics are given, by highlighting the important results. The information presented in this paper will be helpful in explaining and understanding the pulse response of the resonator used in different applications of FORR.

  14. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    DOE PAGES

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less

  15. Steady-state solutions of a diffusive energy-balance climate model and their stability

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1975-01-01

    A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.

  16. SUPRATHERMAL SOLAR WIND ELECTRONS AND LANGMUIR TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sunjung; Yoon, Peter H.; Choe, G. S.

    2016-09-01

    The steady-state model recently put forth for the solar wind electron velocity distribution function during quiet time conditions, was originally composed of three population electrons (core, halo, and superhalo) with the core remaining nonresonant with any plasma waves while the halo and superhalo separately maintained steady-state resonance with whistler- and Langmuir-frequency range fluctuations, respectively. However, a recent paper demonstrates that whistler-range fluctuations in fact have no significant contribution. The present paper represents a consummation of the model in that a self-consistent model of the suprathermal electron population, which encompasses both the halo and the superhalo, is constructed solely on themore » basis of the Langmuir fluctuation spectrum. Numerical solutions to steady-state particle and wave kinetic equations are obtained on the basis of an initial trial electron distribution and Langmuir wave spectrum. Such a finding offers a self-consistent explanation for the observed steady-state electron distribution in the solar wind.« less

  17. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation

    PubMed

    Spicer; Keller; Pratsinis

    1996-12-01

    The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.

  18. Topological properties of a self-assembled electrical network via ab initio calculation

    NASA Astrophysics Data System (ADS)

    Stephenson, C.; Lyon, D.; Hübler, A.

    2017-02-01

    Interacting electrical conductors self-assemble to form tree like networks in the presence of applied voltages or currents. Experiments have shown that the degree distribution of the steady state networks are identical over a wide range of network sizes. In this work we develop a new model of the self-assembly process starting from the underlying physical interaction between conductors. In agreement with experimental results we find that for steady state networks, our model predicts that the fraction of endpoints is a constant of 0.252, and the fraction of branch points is 0.237. We find that our model predicts that these scaling properties also hold for the network during the approach to the steady state as well. In addition, we also reproduce the experimental distribution of nodes with a given Strahler number for all steady state networks studied.

  19. The Steady-State Transport of Oxygen through Hemoglobin Solutions

    PubMed Central

    Keller, K. H.; Friedlander, S. K.

    1966-01-01

    The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608

  20. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  1. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  2. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  3. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  4. Influence of the hypercycle on the error threshold: a stochastic approach.

    PubMed

    García-Tejedor, A; Sanz-Nuño, J C; Olarrea, J; Javier de la Rubia, F; Montero, F

    1988-10-21

    The role of fluctuations on the error threshold of the hypercycle has been studied by a stochastic approach on a very simplified model. For this model, the master equation was derived and its unique steady state calculated. This state implies the extinction of the system. But the actual time necessary to reach the steady state may be astronomically long whereas for times of experimental interest the system could be near some quasi-stationary states. In order to explore this possibility a Gillespie simulation of the stochastic process has been carried out. These quasi-stationary states correspond to the deterministic steady states of the system. The error threshold shifts towards higher values of the quality factor Q. Moreover, information about the fluctuations around the quasi-stationary states is obtained. The results are discussed in relation to the deterministic states.

  5. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  6. Steady state numerical solutions for determining the location of MEMS on projectile

    NASA Astrophysics Data System (ADS)

    Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.

    2018-03-01

    This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.

  7. Global Magnetospheric Evolution Effected by Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi

    2016-04-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  8. Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    No, Jincheol; Choe, Gwangson; Park, Geunseok

    2014-05-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  9. A visual study of radial inward choked flow of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.

  10. Using steady-state equations for transient flow calculation in natural gas pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, R.N.; Zhou, P.

    1984-04-02

    Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.

  11. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  12. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    PubMed

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  13. Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model

    NASA Technical Reports Server (NTRS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1995-01-01

    Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.

  14. Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy.

    PubMed

    Attard, Phil

    2005-04-15

    The concept of second entropy is introduced for the dynamic transitions between macrostates. It is used to develop a theory for fluctuations in velocity, and is exemplified by deriving Onsager reciprocal relations for Brownian motion. The cases of free, driven, and pinned Brownian particles are treated in turn, and Stokes' law is derived. The second entropy analysis is applied to the general case of thermodynamic fluctuations, and the Onsager reciprocal relations for these are derived using the method. The Green-Kubo formulas for the transport coefficients emerge from the analysis, as do Langevin dynamics.

  15. Investigation of different modeling approaches for computational fluid dynamics simulation of high-pressure rocket combustors

    NASA Astrophysics Data System (ADS)

    Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O.; Karl, S.; Hannemann, K.

    2016-07-01

    The paper summarizes technical results and first highlights of the cooperation between DLR and Airbus Defence and Space (DS) within the work package "CFD Modeling of Combustion Chamber Processes" conducted in the frame of the Propulsion 2020 Project. Within the addressed work package, DLR Göttingen and Airbus DS Ottobrunn have identified several test cases where adequate test data are available and which can be used for proper validation of the computational fluid dynamics (CFD) tools. In this paper, the first test case, the Penn State chamber (RCM1), is discussed. Presenting the simulation results from three different tools, it is shown that the test case can be computed properly with steady-state Reynolds-averaged Navier-Stokes (RANS) approaches. The achieved simulation results reproduce the measured wall heat flux as an important validation parameter very well but also reveal some inconsistencies in the test data which are addressed in this paper.

  16. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.

  17. Estimation of aquifer radionuclide concentrations by postprocessing of conservative tracer model results

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Vandersteen, K.; Rogiers, B.

    2012-04-01

    Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.

  18. Enceladus is not in Steady State

    NASA Astrophysics Data System (ADS)

    Cheunchitra, T.; Stevenson, D. J.

    2016-12-01

    Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice shell can be thicker on average if there is net freezing at present but in that case it is difficult to explain the observed topography and gravity. A more likely scenario is that Enceladus has more melting beneath the poles than the current freezing (if any) beneath the equator. In that non-steady state model, the current ice thickness can be compatible with all current data.

  19. Calibration of steady-state car-following models using macroscopic loop detector data.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...

  20. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...

  1. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...

  2. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...

  3. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...

  4. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...

  5. Regimes of radiative and nonradiative transitions in transport through an electronic system in a photon cavity reaching a steady state

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-01-01

    We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  6. CLASSICAL AREAS OF PHENOMENOLOGY: Temporal behaviour of open-circuit photovoltaic solitons

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Zhi; Lu, Ke-Qing; Cheng, Guang-Hua; Li, Ke-Hao; Zhang, Yi-Qi; Zhang, Yu-Hong; Zhang, Yan-Peng

    2009-07-01

    Based on the time-dependent band-transport model in a photorefractive medium, dark open-circuit photovoltaic (PV) solitons are investigated both theoretically and experimentally. Compared with those of the time-independent models, our theoretical results revealed that quasi-steady-state and steady-state PV solitons can both be obtained. Our results also revealed that when r < 1 (r is the normalized intensity at infinity), the full width at half maximum (FWHM) of solitons decreases monotonically to a constant value; when r > 1, however, the FWHM of solitons first decreases to a minimum before it increases to a constant value. Moreover, the FWHM of steady solitons decreases with increasing intensity ratio for r < 1, and increases with increasing intensity ratio for r > 1. We further observed dark PV solitons in experiments, and recorded their evolution. These results indicated that steady solitons can be observed at low optical power, while quasi-steady-state solitons can only be generated at higher optical power. Good agreement is found between theory and experiment.

  7. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.

  8. Impact of material heterogeneity on solute transport behavior in the unsaturated zone of the Calcaire de Beauce aquifer (France)

    NASA Astrophysics Data System (ADS)

    Viel, Emelie; Coquet, Yves

    2016-04-01

    Since a few decades, the Calcaire de Beauce aquifer is contaminated with nitrate. The nitrate dynamics in the aquifer and in the surface soil are quite well understood, but its transport through the vadose zone remains largely unknown. When models fail to simulate nitrate concentrations in wells, preferential flow or physical non-equilibrium transport in soil and in the vadose zone is usually put forward to explain this failure. To study transport processes in the vadose zone of the Calcaire de Beauce aquifer, undisturbed cores (30 cm length and 20 cm diameter) have been taken below the deepest soil horizon. At the field scale, the vadose zone is composed of powdery limestone spatially very heterogeneous, and including a variable amount of coarse elements. Two columns were selected: column "6" is made of very fine homogeneous limestone whereas column "8" is very heterogeneous with a large proportion of coarse elements. Elution experiments have been performed on both columns. A tracer (Br- or DFBA) in a solution of 5 mM CaCl2 was spread as a pulse on the top of the column with a rainfall simulator. Input flow rate was kept constant for steady state cases, or suddenly closed for flux interruption cases. Outflow was collected as a function of time for tracer concentration measurement. The collected fractions were analyzed by HPLC (High-performance liquid chromatography) with a UV detector. Three types of experiments took place: • For steady state experiments, three rainfall rates, respectively 4, 8, and 16 mm/h, have been used to study the occurrence of immobile water in the columns. The tracer was injected during 120 min followed by CaCl2 tracer-free solution at same flow rate. • For flux-interruption experiments, only the 4 and 8 mm/h rainfall rates were used. The tracer was injected during 120 min, input and output fluxes were then stopped and restarted seven days later with the same flow rate. • For drainage experiments, only the 4 and 8 mm/h rainfall rates were used as well. The tracer was injected during 120 min, input flux was stopped while output flux continued to occur under the -25 cm matric head bottom boundary condition. Flux restarted seven days later with the same flow rate or another flow rate. STANMOD was used for each BTC to estimate transport parameters assuming steady state flux. The standard CDE was suitable for column 6 steady-state experiments, but the MIM had to be used to describe properly the BTCs of column 8. In this column, the immobile water fraction represented 38 %. Flux interruption experiments showed that the form of the BTC for Column 6 was not disturbed for the 4 and 8 mm/h input flux, whereas the form of BTC for Column 8 had significantly changed with a visible steeper increase after an interruption time compared to the corresponding steady state experiment. This difference of behavior could be related to the difference in limestone material. The immobile water fraction was found to be significant only for columns made of heterogeneous limestone.

  9. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  10. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  11. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  12. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  13. Thermalization without eigenstate thermalization hypothesis after a quantum quench.

    PubMed

    Mori, Takashi; Shiraishi, Naoto

    2017-08-01

    Nonequilibrium dynamics of a nonintegrable system without the eigenstate thermalization hypothesis is studied. It is shown that, in the thermodynamic limit, this model thermalizes after an arbitrary quantum quench at finite temperature, although it does not satisfy the eigenstate thermalization hypothesis. In contrast, when the system size is finite and the temperature is low enough, the system may not thermalize. In this case, the steady state is well described by the generalized Gibbs ensemble constructed by using highly nonlocal conserved quantities. We also show that this model exhibits prethermalization, in which the prethermalized state is characterized by nonthermal energy eigenstates.

  14. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  15. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  16. Methods of Ex Situ and In Situ Investigations of Structural Transformations: The Case of Crystallization of Metallic Glasses.

    PubMed

    Miglierini, Marcel B; Procházka, Vít; Vrba, Vlastimil; Švec, Peter; Janičkovič, Dušan; Matúš, Peter

    2018-06-07

    We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57 Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.

  17. Nature of the Congested Traffic and Quasi-steady States of the General Motor Models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2015-03-01

    We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.

  18. Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which results in two-dimensional diffusion with cross terms. A diffusion scheme is proposed and validated to resolve this dynamics in (Pφ,E) phase-space.

  19. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.

  20. The Politics of the Steady State

    ERIC Educational Resources Information Center

    Taylor, Charles

    1978-01-01

    A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)

  1. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.

    PubMed

    Rotskoff, Grant M

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  2. Efficiency trade-offs of steady-state methods using FEM and FDM. [iterative solutions for nonlinear flow equations

    NASA Technical Reports Server (NTRS)

    Gartling, D. K.; Roache, P. J.

    1978-01-01

    The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.

  3. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  4. Response of a small-turboshaft-engine compression system to inlet temperature distortion

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Klann, G. A.; Little, J. K.

    1984-01-01

    An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.

  5. Mean field treatment of heterogeneous steady state kinetics

    NASA Astrophysics Data System (ADS)

    Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy

    2017-10-01

    We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.

  6. Nonthermal steady states after an interaction quench in the Falicov-Kimball model.

    PubMed

    Eckstein, Martin; Kollar, Marcus

    2008-03-28

    We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction parameter using nonequilibrium dynamical mean-field theory. For different interaction quenches between the homogeneous metallic and insulating phases the system relaxes to a nonthermal steady state on time scales on the order of variant Planck's over 2pi/bandwidth, showing collapse and revival with an approximate period of h/interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical description of the final steady state by means of generalized Gibbs ensembles.

  7. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.

    PubMed

    Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F

    2012-11-01

    Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.

  8. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation.

    PubMed

    Manesso, Erica; Teles, José; Bryder, David; Peterson, Carsten

    2013-03-06

    A very high number of different types of blood cells must be generated daily through a process called haematopoiesis in order to meet the physiological requirements of the organism. All blood cells originate from a population of relatively few haematopoietic stem cells residing in the bone marrow, which give rise to specific progenitors through different lineages. Steady-state dynamics are governed by cell division and commitment rates as well as by population sizes, while feedback components guarantee the restoration of steady-state conditions. In this study, all parameters governing these processes were estimated in a computational model to describe the haematopoietic hierarchy in adult mice. The model consisted of ordinary differential equations and included negative feedback regulation. A combination of literature data, a novel divide et impera approach for steady-state calculations and stochastic optimization allowed one to reduce possible configurations of the system. The model was able to recapitulate the fundamental steady-state features of haematopoiesis and simulate the re-establishment of steady-state conditions after haemorrhage and bone marrow transplantation. This computational approach to the haematopoietic system is novel and provides insight into the dynamics and the nature of possible solutions, with potential applications in both fundamental and clinical research.

  9. Can high fields save the tokamak? The challenge of steady-state operation for low cost compact reactors

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine

    2016-10-01

    The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?

  10. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.

    PubMed

    Zavidij, Oksana; Ball, Claudia R; Herbst, Friederike; Oppel, Felix; Fessler, Sylvia; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno

    2012-09-01

    Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis. Copyright © 2012 AlphaMed Press.

  11. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  12. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  13. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  14. Visual and auditory steady-state responses in attention-deficit/hyperactivity disorder.

    PubMed

    Khaleghi, Ali; Zarafshan, Hadi; Mohammadi, Mohammad Reza

    2018-05-22

    We designed a study to investigate the patterns of the steady-state visual evoked potential (SSVEP) and auditory steady-state response (ASSR) in adolescents with attention-deficit/hyperactivity disorder (ADHD) when performing a motor response inhibition task. Thirty 12- to 18-year-old adolescents with ADHD and 30 healthy control adolescents underwent an electroencephalogram (EEG) examination during steady-state stimuli when performing a stop-signal task. Then, we calculated the amplitude and phase of the steady-state responses in both visual and auditory modalities. Results showed that adolescents with ADHD had a significantly poorer performance in the stop-signal task during both visual and auditory stimuli. The SSVEP amplitude of the ADHD group was larger than that of the healthy control group in most regions of the brain, whereas the ASSR amplitude of the ADHD group was smaller than that of the healthy control group in some brain regions (e.g., right hemisphere). In conclusion, poorer task performance (especially inattention) and neurophysiological results in ADHD demonstrate a possible impairment in the interconnection of the association cortices in the parietal and temporal lobes and the prefrontal cortex. Also, the motor control problems in ADHD may arise from neural deficits in the frontoparietal and occipitoparietal systems and other brain structures such as cerebellum.

  15. Beyond the dynamic density functional theory for steady currents: application to driven colloidal particles in a channel.

    PubMed

    Tarazona, P; Marini Bettolo Marconi, Umberto

    2008-04-28

    Motivated by recent studies on the dynamics of colloidal solutions in narrow channels, we consider the steady state properties of an assembly of noninteracting particles subject to the action of a traveling potential moving at a constant speed, while the solvent is modeled by a heat bath at rest in the laboratory frame. Here, since the description we propose takes into account the inertia of the colloidal particles, it is necessary to consider the evolution of both positions and momenta and study the governing equation for the one-particle phase-space distribution. First, we derive the asymptotic form of its solutions as an expansion in Hermite polynomials and their generic properties, such as the force and energy balance, and then we particularize our study to the case of an inverted parabolic potential barrier. We numerically obtain the steady state density and temperature profile and show that the expansion is rapidly convergent for large values of the friction constant and small drifting velocities. On the one hand, the present results confirm the previous studies based on the dynamic density functional theory (DDFT): On the other hand, when the friction constant is large, it display effects such as the presence of a wake behind the barrier and a strong inhomogeneity in the temperature field which are beyond the DDFT description.

  16. Calculation of subsonic and supersonic steady and unsteady aerodynamic forces using velocity potential aerodynamic elements

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1976-01-01

    Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

  17. Numerical analysis of steady and transient natural convection in an enclosed cavity

    NASA Astrophysics Data System (ADS)

    Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul

    2017-06-01

    The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.

  18. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadge, G.

    Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in termsmore » of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.« less

  20. FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozawa, Takaya; Kozasa, Takashi, E-mail: takaya.nozawa@ipmu.jp

    2013-10-10

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO{sub 3} grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f{sub con,{sub ∞}}, and average radius a{sub ave,{sub ∞}} of newly formed grainsmore » in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ{sub coll} is much smaller than the timescale τ{sub sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f{sub con,{sub ∞}} and a larger a{sub ave,{sub ∞}}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ{sub sat}/τ{sub coll} ∼> 30 during the formation of dust, and find that f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} are uniquely determined by Λ{sub on} at the onset time t{sub on} of dust formation. The approximation formulae for f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} as a function of Λ{sub on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.« less

Top