Sample records for steady two-phase flow

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurablemore » regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.« less

  2. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    PubMed

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  3. Influence of capillary end effects on steady-state relative permeability estimates from direct pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto

    2017-12-01

    We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.

  4. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  5. Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce

    2000-01-01

    A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.

  6. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less

  7. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures.

    PubMed

    Kostanyan, Artak E; Shishilov, Oleg N

    2018-06-01

    Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Modelisation de l'instabilite fluidelastique d'un faisceau de tubes soumis a un ecoulement diphasique transverse

    NASA Astrophysics Data System (ADS)

    Sawadogo, Teguewinde

    This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)

  9. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  10. Multi-phase imaging of intermittency at steady state using differential imaging method by X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.

    2017-12-01

    To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative permeability data and fw-Sw relationship obtained by our experiment at pore scale are compared with the data collected from experiments which were conducted at core scale, and they match well.

  11. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  12. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  13. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  14. The dynamic two-fluid model OLGA; Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendiksen, K.H.; Maines, D.; Moe, R.

    1991-05-01

    Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less

  15. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  16. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  17. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  18. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  19. On discharge from poppet valves: effects of pressure and system dynamics

    NASA Astrophysics Data System (ADS)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  20. Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.

    PubMed

    Ryzhov, Eugene A

    2017-11-01

    The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.

  1. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.

    PubMed

    Fielding, S M; Marenduzzo, D; Cates, M E

    2011-04-01

    We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society

  2. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  3. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  4. X-ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Lin, Qingyang; Bijeljic, Branko; Blunt, Martin J.

    2017-12-01

    We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0 × 10-7 and 7.5 × 10-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high-precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.

  5. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  6. Stall flutter experiment in a transonic oscillating linear cascade

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Buggele, A. E.; Michalson, G. M.

    1981-01-01

    Two dimensional biconvex airfoils were oscillated at reduced frequencies up to 0.5 based on semi-chord and a free stream Mach number of 0.80 to simulate transonic stall flutter in rotors. Steady-state periodicity was confirmed through end-wall pressure measurements, exit flow traverses, and flow visualization. The initial flow visualization results from flutter tests indicated that the oscillating shock on the airfoils lagged the airfoil motion by as much as 80 deg. These initial data exhibited an appreciable amount of scatter; however, a linear fit of the results indicated that the greatest shock phase lag occurred at a positive interblade phase angle. Photographs of the steady-state and unsteady flow fields reveal some of the features of the lambda shock wave on the suction surface of the airfoils.

  7. Hydrogeology of well-field areas near Tampa, Florida; Phase I, development and documentation of a two-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.

    1981-01-01

    A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)

  8. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  9. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  10. The drift force on an object in an inviscid weakly-varying rotational flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallis, G.B.

    The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.

  11. Experiment data for determination of uncertainty of two-phase mass flow rate in a Semiscale Mod-3 system spool piece at Karlsruhe Kernforschungzentrum. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, A.G.

    1979-06-01

    Steady state, steam-water testing of a Semiscale Mod-3 system instrumented spool piece was accomplished in the Gesellschaft fur Kernforschung (GfK) facility at Karlsruhe Kernforschungzentrum, West Germany. The testing was undertaken to determine the accuracy of spool piece, two-phase mass flow rate, inferential measurements by comparison with upstream single-phase reference measurements. Other two-phase measurements were also made to aid in understanding the flow conditions and to implement data reduction. A total of 132 single- and two-phase test points were acquired, covering pressures from 0.4 to 7.5 MPa, flow rates from 0.5 to 4.9 kg/s, and two-phase mixture qualities from 1.0 tomore » 83% in the 66.7 mm inside diameter spool piece. The report includes a detailed description of the hardware and software and a tabulation of the data.« less

  12. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  13. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  14. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guntur, S.; Schreck, S.; Sorensen, N. N.

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) themore » National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.« less

  16. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Yang, Chin Tien

    1998-01-01

    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  17. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    NASA Astrophysics Data System (ADS)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  18. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  19. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less

  20. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  1. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    PubMed

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  2. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-01

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  3. An Approach to Estimate the Flow Through an Irregular Fracture

    NASA Astrophysics Data System (ADS)

    Liu, Q. Q.; Fan, H. G.

    2011-09-01

    A new model to estimate the flow in a fracture has been developed in this paper. This model used two sinusoidal-varying walls with different phases to replace the flat planes in the cubic law model. The steady laminar flow between non-symmetric sinusoidal surfaces was numerically solved. The relationships between the effective hydraulic apertures and the phase retardation for different amplitudes and wavelengths are investigated respectively. Finally, a formula of the effective hydraulic aperture of the fracture was carried out based on the numerical results.

  4. Fast X-ray imaging of cavitating flows

    DOE PAGES

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko; ...

    2017-10-20

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  5. Fast X-ray imaging of cavitating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  6. Development of flow in a square mini-channel: Effect of flow oscillation

    NASA Astrophysics Data System (ADS)

    Lobo, Oswald Jason; Chatterjee, Dhiman

    2018-04-01

    In this research paper, we present a numerical prediction of steady and fully oscillatory flows in a square mini-channel connected between two plenums. Flow separation occurs at the contraction of the plenum into the channel which causes an asymmetry in the development of flow in the entrance region. The entrance length and recirculation length are found, for both steady and fully oscillatory flows. It is shown that the maximum entrance length decreases with an increase in the oscillating frequency while the maximum recirculation length and recirculation area increase with an increase in oscillating frequency. The phase of a velocity signal is shown to be a strong function of its location. The phase difference between the velocities with respect to the different points along the centerline and those at the middle of the channel show a significant dependence on the driving frequency. There is a significant variation in the phase angles of the velocity signals computed between a point near the wall and that at the centerline. This phase difference decreases along the channel length and does not change beyond the entrance length. This feature can then be used to determine the maximum entrance length, which is otherwise problematic to ascertain in the case of fully oscillatory flows. The entrance length, thus obtained, is compared with that obtained from the velocity profile consideration and shows good similarity. The phase difference between pressure and velocity is also brought out in this work.

  7. Dividing phases in two-phase flow and modeling of interfacial drag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumo, T.; Rajamaeki, M.

    1997-07-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities ofmore » disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.« less

  8. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  9. Theoretical research of helium pulsating heat pipe under steady state conditions

    NASA Astrophysics Data System (ADS)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  10. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  11. New analytical solutions to the two-phase water faucet problem

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-06-17

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  12. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  13. Numerical Analysis of Dusty-Gas Flows

    NASA Astrophysics Data System (ADS)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  14. Parametres pour l'instabilite fluidelastique: Derivees de stabilite et amortissement diphasique

    NASA Astrophysics Data System (ADS)

    Charreton, Constant

    Heat exchangers and steam generators are crucial components in nuclear power plants. Water heated by nuclear fission is flowing through thousands of tubes inside a steam generator. Heat is transmitted to a second water network, external to the tubes. Steam is generated from the water of the secondary to power the turbines that produce electrical power. In this process, two-phase cross flow across the tubes causes several excitation phenomena. Vibration induced on the tubes can compromise the structural integrity of the steam generator, and can lead to power plant shutdowns. Better understanding of parameters at stake would lead to improved power plant safety and reliability. Fluidelastic instability is without doubt one of the most destructive vibration phenomena. It causes the steam generator tubes to collide against one another. This can lead to premature wear on the tubes, cracks due to fatigue and eventually, leaks leading to radioactive water contamination. Therefore, predicting conditions leading to fluidelastic instability would allow to control the damage on the tubes. In this thesis, we aim at identifying the key parameters to predict fluidelastic instability. To do so, a theoretical approach is based on the quasi-steady model. It is shown that the equation used to predict fluidelastic instability comprises two parameters that are hard to characterize. There is, on one hand, the derivative of the lift coefficient on a cylinder, and damping on the other hand. The main objective of this project is to measure these parameters experimentally. Knowing that the sign of the lift coefficient derivative is a sufficient indicator of fluidelastic instability, this derivative was measured. The experiments were carried out on the center tube of an array. The flow is single-phase and values of Reynolds number are low to moderate, thus filling a gap in the literature. Indeed, the lift coefficient derivative is known for high values of the Reynolds number only. Meanwhile, numerical methods are developed. They are based on the direct resolution of Navier-Stokes equations with the finite-element method, and on potential flow theory. Results for the lift coefficient derivative are compared to the measurements. Furthermore, the influence of geometric parameters of the array are investigated. The trend in the results show that the derivative of the lift coefficient becomes Reynolds independent for high values. From the literature and the measurements, a relationship is proposed for the lift coefficient derivative with respect to the Reynolds number. Values are injected in the quasi-steady model to predict the critical velocity for the onset of instability of a single flexible tube. Stability maps for various Reynolds numbers are proposed, using typical values for the tube damping. However, the maps do not compare well with critical velocities found in the literature for high values of the Reynolds number. Stability tests would be necessary to confirm the validity of the maps for low Reynolds, as fluidelastic has never been investigated in this range of Reynolds number. Yet, for high values of the Reynolds number, it seems like the quasi-steady model fails to predict the behavior of the experiments. An accurate value for the total damping of a tube is required to locate instability results on a map. However, in steam generators subjected to two-phase flow, damping on a tube is much more important than for single-phase flow. Yet, its origin is unknown. Therefore, we measured two-phase damping for internal flow using a specific test section. Indeed, a few studies on two-phase flow suggest that the damping mechanism is the same for a tube in cross-flow and for a tube subjected to internal flow. The present study focuses on the physics underlying the two-phase damping mechanism. The test bench consists of a sliding rigid tube subjected to upward internal two-phase flow. It essentially is a mass-spring system subjected to a transverse sinusoidal force. The damping is extracted from the frequency response function of the tube. Meanwhile, gas phase motion is characterized through video processing of the oscillating tube. The relative amplitude of the gas phase is related to two-phase flow damping values via a model of the forces acting on the bubbles. Varying excitation parameters such as frequency and excitation force confirms that two-phase damping is a viscous (velocity dependent) dissipation mechanism. Its direct relation with flow pattern transitions was confirmed. Furthermore, the combination of the videos and the analytical model suggests that the power dissipated by the drag force on the bubbles is significant in the two-phase damping mechanism. However, the model over-predicts the amplitude of the gas phase. This suggests that pseudo-turbulence generated by the motion of the tube is to be considered. The results of this study form an experimental database that can be used as input for fluidelastic instability models. Particularly, two-phase flow experiments will eventually help validating numerical methods, regarding the damping as well as the behavior of the gas phase. This work contributes to modeling and understanding two-phase flow induced vibration.

  15. Partial liquid-penetration inside a deep trench by film flowing over it

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  16. Flow structure in the near wake of a horizontal axis marine current turbine under steady and unsteady inflow conditions

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Lust, Ethan; Flack, Karen

    2015-11-01

    Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.

  17. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

  18. Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.

    PubMed

    Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G

    2018-06-01

    To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  20. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  1. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    NASA Astrophysics Data System (ADS)

    Stubos, A. K.; Satik, C.; Yortsos, Y. C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  2. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    NASA Astrophysics Data System (ADS)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  3. Methods for calculating conjugate problems of heat transfer

    NASA Astrophysics Data System (ADS)

    Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.

    Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.

  4. Results from a scaled reactor cavity cooling system with water at steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less

  5. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Shaha, Poly Rani; Rudro, Sajal Kanti; Poddar, Nayan Kumar; Mondal, Rabindra Nath

    2016-07-01

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn's and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn's but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.

  6. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn,more » for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.« less

  7. Modeling of two-phase porous flow with damage

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2009-12-01

    Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.

  8. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  9. Hydrogeology of well-field areas near Tampa, Florida; Phase 2, development and documentation of a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)

  10. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  11. Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Michel, B.; Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille; Herbert, E.

    2014-12-15

    We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow ismore » partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.« less

  12. The bridge permeameter; An alternative method for single-phase, steady-state permeability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, D.C.; Warpinski, N.R.

    Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome andmore » expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.« less

  13. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    NASA Astrophysics Data System (ADS)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  14. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.

  15. Stability limits of unsteady open capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

    This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

  16. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  17. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  18. Steady state and a general scale law of deformation

    NASA Astrophysics Data System (ADS)

    Huang, Yan

    2017-07-01

    Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.

  19. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  20. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  1. Impact of conditions at start-up on thermovibrational convective flow.

    PubMed

    Melnikov, D E; Shevtsova, V M; Legros, J C

    2008-11-01

    The development of thermovibrational convection in a cubic cell filled with high Prandtl number liquid (isopropanol) is studied. Direct nonlinear simulations are performed by solving three-dimensional Navier-Stokes equations in the Boussinesq approximation. The cell is subjected to high frequency periodic oscillations perpendicular to the applied temperature gradient under zero gravity. Two types of vibrations are imposed: either as a sine or cosine function of time. It is shown that the initial vibrational phase plays a significant role in the transient behavior of thermovibrational convective flow. Such knowledge is important to interpret correctly short-duration experimental results performed in microgravity, among which the most accessible are drop towers ( approximately 5s) and parabolic flights ( approximately 20s) . It is obtained that under sine vibrations, the flow reaches steady state within less than one thermal time. Under cosine acceleration, this time is 2 times longer. For cosine excitations, the Nusselt number is approximately 10 times smaller in comparison with the sine case. Besides, in the case of cosine, the Nusselt number oscillates with double frequency. However, at the steady state, time-averaged and oscillatory characteristics of the flow are independent of the vibrational start-up. The only feature that always differs the two cases is the phase difference between the velocity, temperature, and accelerations. We have found that due to nonlinear response of the system to the imposed vibrations, the phase shift between velocity and temperature is never equal exactly to pi2 , at least in weightlessness. Thus, heat transport always exists from the beginning of vibrations, although it might be weak.

  2. Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine

    NASA Astrophysics Data System (ADS)

    Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.; Sotnikov, A. A.

    2012-09-01

    Numerical technique was developed for simulation of cavitating flows through the flow passage of a hydraulic turbine. The technique is based on solution of steady 3D Navier—Stokes equations with a liquid phase transfer equation. The approch for setting boundary conditions meeting the requirements of cavitation testing standard was suggested. Four different models of evaporation and condensation were compared. Numerical simulations for turbines of different specific speed were compared with experiment.

  3. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  4. A Burning Rate Emulator (BRE) for Study in Microgravity

    NASA Technical Reports Server (NTRS)

    Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.

    2015-01-01

    A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.

  5. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  6. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  7. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  8. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.

    PubMed

    Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E

    2010-10-01

    Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.

  9. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  10. Switching moving boundary models for two-phase flow evaporators and condensers

    NASA Astrophysics Data System (ADS)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  11. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    NASA Astrophysics Data System (ADS)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  12. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    PubMed

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.

  13. Phase-plane analysis of the totally asymmetric simple exclusion process with binding kinetics and switching between antiparallel lanes

    PubMed Central

    Kuan, Hui-Shun; Betterton, Meredith D.

    2016-01-01

    Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model. By studying the phase-space flows, we determine the model’s fixed points and their changes with parameters. Phases previously identified for the single-lane model occur for low switching rate between lanes. We predict a multiple coexistence phase due to additional fixed points that appear as the switching rate increases: switching moves motors from the higher-density to the lower-density lane, causing local jamming and creating multiple domain walls. We determine the phase diagram of the model for both symmetric and general boundary conditions. PMID:27627345

  14. Experimental study of the oscillating flow characteristics for a regenerator in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Ju, Yonglin; Jiang, Yan; Zhou, Yuan

    A dynamic experimental apparatus was designed and constructed to investigate oscillating flow characteristics in a regenerator subjected to a periodically reversing flow established by means of a self-made linear compressor. Detailed experimental data of oscillating pressure drops and phase shift characteristics for regenerators in a high frequency pulse tube cryocooler with an operating frequency of 50 Hz were given. The correlation equations for the maximum and cycle-averaged friction factors in terms of Reynolds numbers and dimensionless distance X were obtained. It was found that the value of the cycle-averaged pressure drop in the oscillating flow across the regenerator is two to three times higher than that of a steady flow at the same Reynolds numbers based on the cross-sectional mean velocity. In addition, the relationship of the phase shifts between the velocity and pressure wave is also discussed.

  15. Aspects of wellbore heat transfer during two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, A.R.; Kabir, C.S.

    1994-08-01

    Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less

  16. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  17. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Hsieh, T.

    1985-01-01

    Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.

  18. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  19. Mathematical modeling of two phase stratified flow in a microchannel with curved interface

    NASA Astrophysics Data System (ADS)

    Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.

    2017-11-01

    Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.

  20. Similarity laws of lunar and terrestrial volcanic flows

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsu, Y.; Okeefe, J. A.

    1977-01-01

    A mathematical model of a one dimensional, steady duct flow of a mixture of a gas and small solid particles (rock) was analyzed and applied to the lunar and the terrestrial volcanic flows under geometrically and dynamically similar conditions. Numerical results for the equilibrium two phase flows of lunar and terrestrial volcanoes under similar conditions are presented. The study indicates that: (1) the lunar crater is much larger than the corresponding terrestrial crater; (2) the exit velocity from the lunar volcanic flow may be higher than the lunar escape velocity but the exit velocity of terrestrial volcanic flow is much less than that of the lunar case; and (3) the thermal effects on the lunar volcanic flow are much larger than those of the terrestrial case.

  1. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2018-03-01

    We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

  2. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  3. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: explanation based on fundamental hypothesis of three-phase theory.

    PubMed

    Kerner, Boris S

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  4. Comparison of simplified models in the prediction of two phase flow in pipelines

    NASA Astrophysics Data System (ADS)

    Jerez-Carrizales, M.; Jaramillo, J. E.; Fuentes, D.

    2014-06-01

    Prediction of two phase flow in pipelines is a common task in engineering. It is a complex phenomenon and many models have been developed to find an approximate solution to the problem. Some old models, such as the Hagedorn & Brown (HB) model, have been highlighted by many authors to give very good performance. Furthermore, many modifications have been applied to this method to improve its predictions. In this work two simplified models which are based on empiricism (HB and Mukherjee and Brill, MB) are considered. One mechanistic model which is based on the physics of the phenomenon (AN) and it still needs some correlations called closure relations is also used. Moreover, a drift flux model defined in steady state that is flow pattern dependent (HK model) is implemented. The implementation of these methods was tested using published data in the scientific literature for vertical upward flows. Furthermore, a comparison of the predictive performance of the four models is done against a well from Campo Escuela Colorado. Difference among four models is smaller than difference with experimental data from the well in Campo Escuela Colorado.

  5. Conversion of a micro, glow-ignition, two-stroke engine from nitromethane-methanol blend fuel to military jet propellant (JP-8)

    NASA Astrophysics Data System (ADS)

    Wiegand, Andrew L.

    The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.

  6. The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2017-11-01

    Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.

  7. Counter-current convection in a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Robinson, Marguerite

    2018-05-01

    Volcanoes of Strombolian type are able to maintain their semi-permanent eruptive states through the constant convective recycling of magma within the conduit leading from the magma chamber. In this paper we study the form of this convection using an analytic model of degassing two-phase flow in a vertical channel. We provide solutions for the flow at small Grashof and large Prandtl numbers, and we suggest that permanent steady-state counter-current convection is only possible if an initial bubbly counter-current flow undergoes a régime transition to a churn-turbulent flow. We also suggest that the magma in the chamber must be under-pressured in order for the flow to be maintained, and that this compromises the assumed form of the flow.

  8. Sediment Vertical Flux in Unsteady Sheet Flows

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Jenkins, J. T.; Liu, P. L.

    2002-12-01

    In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.

  9. Nanoscale simple-fluid behavior under steady shear.

    PubMed

    Yong, Xin; Zhang, Lucy T

    2012-05-01

    In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.

  10. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    PubMed

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  11. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  12. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    PubMed

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  13. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.

  14. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less

  15. RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, G.; Epiney, A. S.

    2012-07-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less

  16. Microfluidic circuit analysis II: implications of ion conservation for microchannels connected in series.

    PubMed

    Biscombe, Christian J C; Davidson, Malcolm R; Harvie, Dalton J E

    2012-01-01

    A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In this regime, a thermal image provides a consistent estimate of the flow rate if the external cooling conditions are reasonably well constrained.

  18. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  19. Further analytical study of hybrid rocket combustion

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.

  20. Acceleration methods for multi-physics compressible flow

    NASA Astrophysics Data System (ADS)

    Peles, Oren; Turkel, Eli

    2018-04-01

    In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation rocket motor. The numerical examples in this work include transonic flow about a RAE2822 airfoil, about a M6 Onera wing, NACA0012 airfoil at very low Mach number, two-phase flow inside a Ballistic evaluation motor (BEM), a turbulent reactive shear layer and a time dependent Sod's tube problem.

  1. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space

    NASA Technical Reports Server (NTRS)

    Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.

    2001-01-01

    In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.

  2. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  3. Observations of the boiling process from a downward-facing torispherical surface: Confirmatory testing of the heavy water new production reactor flooded cavity design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Simpson, R.B.

    1995-06-01

    Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.

  4. Boundary condition computational procedures for inviscid, supersonic steady flow field calculations

    NASA Technical Reports Server (NTRS)

    Abbett, M. J.

    1971-01-01

    Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.

  5. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  6. Emulation of Condensed Fuel Flames Using a Burning Rate Emulator (BRE) in Microgravity

    NASA Technical Reports Server (NTRS)

    Markan, A.; Quintiere, J. G.; Sunderland, P. B.; De Ris, J. L.; Stocker, D. P.

    2017-01-01

    The Burning Rate Emulator (BRE) is a gaseous fuel burner developed to emulate the burning of condensed phase fuels. The current study details several tests at the NASA Glenn 5-s drop facility to test the BRE technique in microgravity conditions. The tests are conducted for two burner diameters, 25 mm and 50 mm respectively, with methane and ethylene as the fuels. The ambient pressure, oxygen content and fuel flow rate are additional parameters. The microgravity results exhibit a nominally hemispherical flame with decelerating growth and quasi-steady heat flux after about 5 seconds. The BRE burner was evaluated with a transient analysis to assess the extent of steady-state achieved. The burning rate and flame height recorded at the end of the drop are correlated using two steady-state purely diffusive models. A higher burning rate for the bigger burner as compared to theory indicates the significance of gas radiation. The effect of the ambient pressure and oxygen concentration on the heat of gasification are also examined.

  7. Investigation of the complex electroviscous effects on electrolyte (single and multiphase) flow in porous medi.

    NASA Astrophysics Data System (ADS)

    Bolet, A. J. S.; Linga, G.; Mathiesen, J.

    2017-12-01

    Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.

  8. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  9. Steady film flow over a substrate with rectangular trenches forming air inclusions

    NASA Astrophysics Data System (ADS)

    Varchanis, S.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-12-01

    Film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or get pinned on the entrance and exit corners of the trench (Cassie state) or assume other configurations in between these two extremes. Such intermediate configurations are examined in the present study. They are bounded by a second gas-liquid interface inside the trench, which adheres to its walls forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively remeshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo-arc-length continuation. Two possible configurations of a single air inclusion inside the trench are examined: the inclusion either surrounds the upstream convex corner or is attached to the upstream trench wall. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis may occur when the liquid wetting of the upstream wall decreases abruptly, leading to drastically different flow patterns for the same parameter values. The interplay of inertia, viscous, gravity, and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of deformation of the outer free surface.

  10. On the possible cycles via the unified perspective of cryocoolers. Part A: The Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maytal, Ben-Zion; Pfotenhauer, John M.

    2014-01-29

    Joule-Thomson (JT) cryocoolers possess a self adjusting effect, which preserves the state of the returning stream from the evaporator as a saturated vapor. The heat load can be entirely absorbed at constant temperature by evaporation even for different sized heat exchangers. It is not possible for the steady state flow resulting from a gradual cool down to penetrate 'deeper' into the two-phase dome, and produce a two phase return flow even with a heat exchanger of unlimited size. Such behavior was implicitly taken for granted in the literature but never clearly stated nor questioned and therefore never systematically proven. Themore » discussion provided below provides such a proof via the unified model of cryocoolers. This model portrays all cryocoolers as magnifiers of their respective elementary temperature reducing mechanism through the process of 'interchanging'.« less

  11. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    NASA Astrophysics Data System (ADS)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  12. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    NASA Astrophysics Data System (ADS)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  13. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  14. Tomographic PIV behind a prosthetic heart valve

    NASA Astrophysics Data System (ADS)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  15. Numerical study of the effects of icing on viscous flow over wings

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.

    1994-01-01

    An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved using a diagonal form of an alternating-direction implicit (ADI) approximate factorization procedure. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic-based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are less than 60 percent of that required for a full-blown Navier-Stokes analysis for steady flow applications and about 60 percent of the Navier-Stokes CPU times for unsteady flows in non-vector processing machines. Applications of the method are presented for a rectangular NACA 0012 wing in low subsonic steady flow at moderate and high angles of attack, and for an F-5 wing in steady and unsteady subsonic and transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to Navier-Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier-Stokes equations can be retained with a significant savings in computational time.

  16. Temporal evolution of age data under transient pumping conditions

    NASA Astrophysics Data System (ADS)

    Leray, S.; de Dreuzy, J.-R.; Aquilina, L.; Vergnaud-Ayraud, V.; Labasque, T.; Bour, O.; Le Borgne, T.

    2014-04-01

    While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution when starting a pumping. Our study is based on a model made up of a shallowly dipping aquifer overlain by a less permeable aquitard characteristic of the crystalline aquifer of Plœmeur (Brittany, France). Under a pseudo transient flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of CFC-11, CFC-12, CFC-113 and SF6. Apparent ages evolve because of the modifications of the flow pattern and because of the non-linear evolution of the tracer atmospheric concentrations. To identify the respective role of these two causes, we propose two successive analyses. We first convolute residence time distributions initially arising at different times at the same sampling time. We secondly convolute one residence time distribution at various sampling times. We show that flow pattern modifications control the apparent ages evolution in the first pumping year when the residence time distribution is modified from a piston-like distribution to a much broader distribution. In the first pumping year, the apparent age evolution contains transient information that can be used to better constrain hydrogeological systems and slightly compensate for the small number of tracers. Later, the residence time distribution hardly evolves and apparent ages only evolve because of the tracer atmospheric concentrations. In this phase, apparent age time-series do not reflect any evolution in the flow pattern.

  17. Limitations of the ideal phase-Doppler system: Extension to spatially and temporally inhomogeneous particle flows with an application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Marx, K. D.; Edwards, C. F.

    1992-12-01

    The effect of the single-particle constraint on the response of phase-Doppler instruments is determined for particle flows which are spatially nonuniform and time-dependent. Poisson statistics are applied to particle positions and arrival times within the phase-Doppler probe volume to determine the probability that a particle is measured successfully. It is shown that the single-particle constraint can be viewed as applying spatial and temporal filters to the particle flow. These filters have the same meaning as those that were defined previously for uniform, steady-state sprays, but in space- and time-dependent form. Criteria are developed for determining when a fully inhomogeneous analysis of a flow is required and when a quasi-steady analysis will suffice. A new bias due to particle arrival time displacement is identified and the conditions under which it must be considered are established. The present work provides the means to rigorously investigate the response of phase-Doppler measurement systems to transient sprays such as those which occur in diesel engines. To this end, the results are applied to a numerical simulation of a diesel spray. The calculated hypothetical response of the ideal instrument provides a quantitative demonstration of the regimes within which measurements can accurately be made in such sprays.

  18. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  19. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    NASA Astrophysics Data System (ADS)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  20. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2016-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  1. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  2. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE PAGES

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...

    2017-09-11

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  3. Numerical simulation of steady supersonic flow. [spatial marching

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Steger, J. L.

    1981-01-01

    A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.

  4. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  5. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  6. MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Maples, A. L.

    1985-01-01

    Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys.

  7. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  8. Intermittent strong transport of the quasi-adiabatic plasma state.

    PubMed

    Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon

    2018-06-05

    The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.

  9. Simulator predicts transient flow for Malaysian subsea pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inayat-Hussain, A.A.; Ayob, M.S.; Zain, A.B.M.

    1996-04-15

    In a step towards acquiring in-house capability in multiphase flow technology, Petronas Research and Scientific Services Sdn. Bhd., Kuala Lumpur, has developed two-phase flow simulation software for analyzing slow gas-condensate transient flow. Unlike its general-purpose contemporaries -- TACITE, OLGA, Traflow (OGJ, Jan. 3, 1994, p. 42; OGJ, Jan. 10, 1994, p. 52), and PLAC (AEA Technology, U.K.) -- ABASs is a dedicated software for slow transient flows generated during pigging operations in the Duyong network, offshore Malaysia. This network links the Duyong and Bekok fields to the onshore gas terminal (OGT) on the east coast of peninsular Malaysia. It predictsmore » the steady-state pressure drop vs. flow rates, condensate volume in the network, pigging dynamics including volume of produced slug, and the condensate build-up following pigging. The predictions of ABASs have been verified against field data obtained from the Duyong network. Presented here is an overview of the development, verification, and application of the ABASs software. Field data are presented for verification of the software, and several operational scenarios are simulated using the software. The field data and simulation study documented here will provide software users and developers with a further set of results on which to benchmark their own software and two-phase pipeline operating guidelines.« less

  10. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices.

    PubMed

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2016-11-23

    We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.

  11. Bridge permeameter

    DOEpatents

    Graf, Darin C.; Warpinski, Norman R.

    1996-01-01

    A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.

  12. Salt loaded heat pipes: steady-state operation and related heat and mass transport

    NASA Astrophysics Data System (ADS)

    Simakin, A.; Ghassemi, A.

    2003-10-01

    Fluids in the deep-seated zones (3.5-4.5 km) of active geothermal zones are known to have increased salinity and acidity that can enhance interaction with surrounding porous rocks. A possible mechanism for brine generation is the separation of the rising magmatic fluid into a gas-like and a liquid-like component. This work illustrates the main features of this mechanism by investigating the conditions for heat pipe convection of natural brines in hydrothermal systems. The well-established heat pipe regime for convection of two-phase pure water (vapor-liquid) in a porous column is extended to the case of boiling brines. In particular, the NaCl-H 2O system is used to model the 1-D reactive flow with dissolution-precipitation in geothermal reservoirs. The quasi steady-state equations of the conservation of matter, Darcy's law for the gas and liquid phases, and the heat balance equation have been examined while neglecting the temporal variation of porosity. A semi-analytical procedure is used to solve these equations for a two-phase fluid in equilibrium with a solid salt. The solution is in the form of the dependence of liquid volume fraction as a function of temperature for different heat fluxes. The solution is separated into two isolated regions by the temperature T=596°C, at the maximum fluid pressure for three-phase (H-L-V) equilibrium. In the case of unsaturated two-phase flow at the reference permeability of porous rocks (3·10 -16 m 2), the maximum heat flux that can be transferred through the porous column via convection is analytically estimated to be 4.3 W/m 2. This is close to the corresponding value for the three-phase case that is numerically calculated to be 6 W/m 2. Due to dissolution (partial leaching of oxide components by acid condensates) and precipitation of salt at the boiling front, heat transfer in a heat pipe in soluble media occurs in a direction opposite to the associated mass transfer. This can cause deep hydrothermal karsting that is manifested as surface subsidence at rates of about several cm/yr as observed in some active geothermal fields.

  13. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  14. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  15. Observation of Droplet Size Oscillations in a Two Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal

    2004-11-01

    It is well known that complex fluids exhibit strong couplings between their microstructure and the flow field. Such couplings may lead to unusual non linear rheological behavior. Because energy is constantly brought to the system, richer dynamic behavior such as non linear oscillatory or chaotic response is expected. We report on the observation of droplet size oscillations at fixed shear rate. At low shear rates, we observe two steady states for which the droplet size results from a balance between capillary and viscous stress. For intermediate shear rates, the droplet size becomes a periodic function of time. We propose a phenomenological model to account for the observed phenomenon and compare numerical results to experimental data.

  16. Reynolds Number Effects on Helicopter Rotor Hub Flow

    NASA Astrophysics Data System (ADS)

    Reich, David; Willits, Steve; Schmitz, Sven

    2015-11-01

    The 12 inch diameter water tunnel at the Pennsylvania State University Applied Research Laboratory was used with the objective of quantifying effects of Reynolds number scaling on drag and shed wake of model helicopter rotor hub flows. Hub diameter-based Reynolds numbers ranged from 1.06 million to 2.62 million. Measurements included steady and unsteady hub drag, as well as Particle Image Velocimetry. Results include time-averaged, phase-averaged, and spectral analysis of the drag and wake flow-field. A strong dependence of steady and unsteady drag on Reynolds number was noted, alluding to the importance of adequate Reynolds scaling for model helicopter rotor hubs that exhibit interaction between various bluff bodies.

  17. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph

    2018-01-01

    A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.

  18. Performance of the supercritical helium cooling loop for the JET divertor cryopump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Mayaux, C.; Barth, K.

    1996-12-31

    A supercritical helium cooling loop for the two JET divertor cryopumps has been tested, commissioned and is operational practically uninterrupted for over one year. Operation experience under a number of different boundary and transient conditions have been obtained. The flow of the supercritical helium (6 g/s, 2.7 bar) is driven by the main compressor of the JET helium refrigerator passing a heat exchanger where it is subcooled to 4.1 K before entering the two cryopumps which are an assembly of two 60 m long and 20 mm diameter corrugated stainless steel tubes. By using a dedicated cold ejector which ismore » driven by the main flow and where the expansion from 12 bar to 2.7 bar takes place increases the flow of supercritical helium up to {approximately}17 g/s. The steady state thermal load to the cooling loop of the cryopump is < 80 W but during transient conditions in particular due to nuclear heating in the active phase of JET considerably higher transient heat loads can be accepted by the loop. Details about the steady state and transient thermal conditions as well as the cooldown and warm up behavior of the loop and the interaction of the supercritical loop with the operation of other plant equipment will be discussed in the paper.« less

  19. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less

  20. Microbubble transport through a bifurcating vessel network with pulsatile flow.

    PubMed

    Valassis, Doug T; Dodde, Robert E; Esphuniyani, Brijesh; Fowlkes, J Brian; Bull, Joseph L

    2012-02-01

    Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

  1. A new Lagrangian random choice method for steady two-dimensional supersonic/hypersonic flow

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Hui, W. H.

    1991-01-01

    Glimm's (1965) random choice method has been successfully applied to compute steady two-dimensional supersonic/hypersonic flow using a new Lagrangian formulation. The method is easy to program, fast to execute, yet it is very accurate and robust. It requires no grid generation, resolves slipline and shock discontinuities crisply, can handle boundary conditions most easily, and is applicable to hypersonic as well as supersonic flow. It represents an accurate and fast alternative to the existing Eulerian methods. Many computed examples are given.

  2. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-01

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  3. Numerical simulation and analysis of the flow in a two-staged axial fan

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.

    2016-05-01

    In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.

  4. Bridge permeameter

    DOEpatents

    Graf, D.C.; Warpinski, N.R.

    1996-08-13

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  5. Bridge permeameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, D.C.; Warpinski, N.R.

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  6. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  7. The effect of unsteadiness on the time-mean thermal loads in a turbine stage

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Celestina, M. L.; Adamczyk, J. J.

    1993-01-01

    Two steady numerical analysis methods and one unsteady method are used to study the viscous three-dimensional flow in the middle stage of the Pratt & Whitney alternate design Space Shuttle Main Engine fuel turbine. The principal characteristic of this flow is that the secondary flows generated in the rotor blade reconfigure a radial inlet total temperature distortion into one with a pitchwise exit hot streak distortion. Secondary flows in the following vane redistribute the radial variation while unsteadiness causes a segregation of hot and cold flow from the hot streak within the vane. Such redistribution and segregation can lead to unexpected thermal loads and reduced durability. The physical phenomena and the ability of a steady analysis to capture them are investigated by performing a numerical experiment whereby the results of the two steady analysis methods are compared to the time-mean of the unsteady simulation. The flow physics related to the segregation and mixing of total temperature are discussed.

  8. Two-lane traffic-flow model with an exact steady-state solution.

    PubMed

    Kanai, Masahiro

    2010-12-01

    We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution; hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters that indicate, respectively, driver's driving-lane preference and passing-lane priority. Due to the additional parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an observational data, and we thus estimate these parameters. We conclude that the proposed model successfully produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.

  9. Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1993-03-10

    A number of activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: Progress is being made on the development of a black oil three-phase simulator which will allow the use of a generalized Voronoi grid in the plane perpendicular to a horizontal well. The available analytical solutions in the literature for calculating productivity indices (Inflow Performance) of horizontal wells have been reviewed. The pseudo-steady state analytic model of Goode and Kuchuk has been applied to an examplemore » problem. A general mechanistic two-phase flow model is under development. The model is capable of predicting flow transition boundaries for a horizontal pipe at any inclination angle. It also has the capability of determining pressure drops and holdups for all the flow regimes. A large code incorporating all the features of the model has been programmed and is currently being tested.« less

  10. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  11. Study of the Mixing Regimes of a Fluid and a Nanofluid in a T-shaped Micromixer

    NASA Astrophysics Data System (ADS)

    Lobasov, A. S.; Minakov, A. V.; Rudyak, V. Ya.

    2018-01-01

    In the present paper, the regimes of flow and mixing of water and a nanofluid with aluminum oxide nanoparticles in a T-shaped microchannel have been studied numerically. The Reynolds number was varied from 10 to 400, and the volume concentration of nanoparticles was varied from 0 to 10%. Nanofluids with mean sizes of particles from 50 to 150 nm were considered. The viscosity coefficient of the nanofluid was taken from experimental data. In all cases, it exceeded the viscosity coefficient of water and depended on not only the concentration of nanoparticles, but also on their sizes, and the viscosity of the nanofluid with smaller particles was higher than the viscosity of the nanofluid with large particles. It has been established that there exist regimes of steady irrotational flow, steady vortex flow with two horseshoe vortices, and steady flow with two vortices in the mixing channel. It has been shown that when the flow goes from the regime with horseshoe vortices to the flow conditions with two single vortices, the mixing efficiency increases several times. It has been established that the flow conditions and the mixing efficiency largely depend on the volume concentration of particles and their sizes.

  12. Load flow and state estimation algorithms for three-phase unbalanced power distribution systems

    NASA Astrophysics Data System (ADS)

    Madvesh, Chiranjeevi

    Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.

  13. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  14. Fast dynamos with finite resistivity in steady flows with stagnation points

    NASA Technical Reports Server (NTRS)

    Lau, Yun-Tung; Finn, John M.

    1993-01-01

    Results are presented of a kinematic fast dynamo problem for two classes of steady incompressible flows: the ABC flow and the spatially aperiodic flow of Lau and Finn (1992). The numerical method used to find the solutions is described, together with convergence studies with respect to the time step and the number of points N of the spatial grid. It is shown that the growth rate and frequency can be extrapolated to N = infinity. Results are presented indicating that fast kinematic dynamos can exist in both these flows and that chaotic flow is a necessary condition. It was found that, for the ABC flow with A = B = C, there are two dynamo modes: an oscillating mode and a purely growing mode.

  15. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Yan; Liu, Haihu; Li, Qing

    2016-08-15

    In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less

  16. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  17. Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Langer, S.

    2016-01-01

    In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.

  18. Direct numerical simulation of turbulent channel flow with spanwise alternatively distributed strips control

    NASA Astrophysics Data System (ADS)

    Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng

    2018-05-01

    The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.

  19. Undamped transverse oscillations of coronal loops as a self-oscillatory process

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Anfinogentov, S. A.; Nisticò, G.; Lee, D.-H.

    2016-06-01

    Context. Standing transverse oscillations of coronal loops are observed to operate in two regimes: rapidly decaying, large amplitude oscillations and undamped small amplitude oscillations. In the latter regime the damping should be compensated by energy supply, which allows the loop to perform almost monochromatic oscillations with almost constant amplitude and phase. Different loops oscillate with different periods. The oscillation amplitude does not show dependence on the loop length or the oscillation period. Aims: We aim to develop a low-dimensional model explaining the undamped kink oscillations as a self-oscillatory process caused by the effect of negative friction. The source of energy is an external quasi-steady flow, for example, supergranulation motions near the loop footpoints or external flows in the corona. Methods: We demonstrate that the interaction of a quasi-steady flow with a loop can be described by a Rayleigh oscillator equation that is a non-linear ordinary differential equation, with the damping and resonant terms determined empirically. Results: Small-amplitude self-oscillatory solutions to the Rayleigh oscillator equation are harmonic signals of constant amplitude, which is consistent with the observed properties of undamped kink oscillations. The period of self-oscillations is determined by the frequency of the kink mode. The damping by dissipation and mode conversion is compensated by the continuous energy deposition at the frequency of the natural oscillation. Conclusions: We propose that undamped kink oscillations of coronal loops may be caused by the interaction of the loops with quasi-steady flows, and hence are self-oscillations, which is analogous to producing a tune by moving a bow across a violin string.

  20. Convection patterns in a liquid metal under an imposed horizontal magnetic field.

    PubMed

    Yanagisawa, Takatoshi; Hamano, Yozo; Miyagoshi, Takehiro; Yamagishi, Yasuko; Tasaka, Yuji; Takeda, Yasushi

    2013-12-01

    We performed laboratory experiments of Rayleigh-Bénard convection with liquid gallium under various intensities of a uniform imposed horizontal magnetic field. An ultrasonic velocity profiling method was used to visualize the spatiotemporal structure of the flows with simultaneous monitoring of the temperature fluctuations in the liquid gallium layer. The explored Rayleigh numbers Ra range from the critical value for onset of convection to 10(5); the Chandrasekhar number Q covers values up to 1100. A regime diagram of the convection patterns was established in relation to the Ra and Q values for a square vessel with aspect ratio 5. We identified five flow regimes: (I) a fluctuating large-scale pattern without rolls, (II) weakly constrained rolls with fluctuations, (III) a continuous oscillation of rolls, (IV) repeated roll number transitions with random reversals of the flow direction, and (V) steady two-dimensional (2D) rolls. These flow regimes are classified by the Ra/Q values, the ratio of the buoyancy to the Lorentz force. Power spectra from the temperature time series indicate that regimes I and II have the features of developed turbulence, while the other regimes do not. The region of steady 2D rolls (Busse balloon) extends to high Ra values in the present setting by a horizontal magnetic field and regime V is located inside the Busse balloon. Concerning the instabilities of the steady 2D rolls, regime III is the traveling wave convection developed from the oscillatory instability. Regime IV can be regarded as a state of phase turbulence, which is induced by intermittent occurrences of the skewed-varicose instability.

  1. Unexpected trapping of particles at a T junction.

    PubMed

    Vigolo, Daniele; Radl, Stefan; Stone, Howard A

    2014-04-01

    A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology.

  2. Unexpected trapping of particles at a T junction

    PubMed Central

    Vigolo, Daniele; Radl, Stefan; Stone, Howard A.

    2014-01-01

    A common element in physiological flow networks, as well as most domestic and industrial piping systems, is a T junction that splits the flow into two nearly symmetric streams. It is reasonable to assume that any particles suspended in a fluid that enters the bifurcation will leave it with the fluid. Here we report experimental evidence and a theoretical description of a trapping mechanism for low-density particles in steady and pulsatile flows through T-shaped junctions. This mechanism induces accumulation of particles, which can form stable chains, or give rise to significant growth of bubbles due to coalescence. In particular, low-density material dispersed in the continuous phase fluid interacts with a vortical flow that develops at the T junction. As a result suspended particles can enter the vortices and, for a wide range of common flow conditions, the particles do not leave the bifurcation. Via 3D numerical simulations and a model of the two-phase flow we predict the location of particle accumulation, which is in excellent agreement with experimental data. We identify experimentally, as well as confirm by numerical simulations and a simple force balance, that there is a wide parameter space in which this phenomenon occurs. The trapping effect is expected to be important for the design of particle separation and fractionation devices, as well as used for better understanding of system failures in piping networks relevant to industry and physiology. PMID:24639547

  3. Generating high Reynolds-number flows.

    NASA Technical Reports Server (NTRS)

    Russell, D. A.

    1972-01-01

    Present test facilities are seriously limited regarding investigations involving high Reynolds numbers due to financial considerations. Quasi-steady testing facilities offer a practical immediate solution to the problem of high-Re testing. A familiar example is the blowdown wind tunnel, but even more flexibility and economy may be provided by using shock-tube devices. The Ludwieg tube is the shock-tube device most often proposed as a means of generating high-Re flows. Two-stage nozzles may be used with a Ludwieg tube. Quasi-steady facilities will be useful only if the available test time exceeds that required to establish steady flow.

  4. Computation of steady nozzle flow by a time-dependent method

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1974-01-01

    The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.

  5. Detonation propagation in annular arcs of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  6. Numerical prediction of Pelton turbine efficiency

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Mežnar, P.; Lipej, A.

    2010-08-01

    This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-ω SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.

  7. Exergy optimization in a steady moving bed heat exchanger.

    PubMed

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.

  8. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ƒ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).

  9. Flow behavior of colloidal rodlike viruses in the nematic phase.

    PubMed

    Lettinga, M Paul; Dogic, Zvonimir; Wang, Hao; Vermant, Jan

    2005-08-16

    The behavior of a colloidal suspension of rodlike fd viruses in the nematic phase, subjected to steady state and transient shear flows, is studied. The monodisperse nature of these rods combined with relatively small textural contribution to the overall stress make this a suitable model system to investigate the effects of flow on the nonequilibrium phase diagram. Transient rheological experiments are used to determine the critical shear rates at which director tumbling, wagging, and flow-aligning occurs. The present model system enables us to study the effect of rod concentration on these transitions. The results are in quantitatively agreement with the Doi-Edwards-Hess model. Moreover, we observe that there is a strong connection between the dynamic transitions and structure formation, which is not incorporated in theory.

  10. Gas separation and bubble behavior at a woven screen

    NASA Astrophysics Data System (ADS)

    Conrath, Michael; Dreyer, Michael E.

    Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.

  11. Steady and unsteady fluidised granular flows down slopes

    NASA Astrophysics Data System (ADS)

    Jessop, D. E.; Hogg, A. J.; Gilbertson, M. A.; Schoof, C.

    2017-09-01

    Fluidisation is the process by which the weight of a bed of particles is supported by a gas flow passing through it from below. When fluidised materials flow down an incline, the dynamics of the motion differ from their non-fluidised counterparts because the granular agitation is no longer required to support the weight of the flowing layer. Instead, the weight is borne by the imposed gas flow and this leads to a greatly increased flow mobility. In this paper, a framework is developed to model this two phase motion by incorporating a kinetic theory description for the particulate stresses generated by the flow. In addition to calculating numerical solutions for fully developed flows, it is shown that for sufficiently thick flows there is often a local balance between the production and dissipation of the granular temperature. This phenomenon permits an asymptotic reduction of the full governing equations and the identification of a simple state in which the volume fraction of the flow is uniform. The results of the model are compared with new experimental measurements of the internal velocity profiles of steady granular flows down slopes. The distance covered with time by unsteady granular flows down slopes and along horizontal surfaces and their shapes are also measured and compared with theoretical predictions developed for flows that are thin relative to their streamwise extent. For the horizontal flows, it was found that resistance from the sidewalls was required in addition to basal resistance to capture accurately the unsteady evolution of the front position and the depth of the current and for situations in which side-wall drag dominates, similarity solutions are found for the experimentally-measured motion.

  12. Deterministic Stress Modeling of Hot Gas Segregation in a Turbine

    NASA Technical Reports Server (NTRS)

    Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger

    1998-01-01

    Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.

  13. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    PubMed

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  14. FFT analysis of sensible-heat solar-dynamic receivers

    NASA Astrophysics Data System (ADS)

    Lund, Kurt O.

    The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.

  15. The Relationship between Appendage Geometry and Propeller Blade Unsteady Forces.

    DTIC Science & Technology

    1987-11-01

    unsteady thrust and torque for a given propeller geometry. The results indicate that unsteady force reduction can be obtained by modification of the flow ... unsteady force calculation methods available are: 1) quasi-steady using uniform flow ; 2) quasi-steady using lifting-line theory; 3) two-dimensional... experimental data and the calculated unsteady forces that both the flow field near the body surface and behind the appendage tip must be

  16. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Lorence, Christopher B.; Hall, Kenneth C.

    1995-01-01

    A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.

  17. Unsteady Performance of Finite-Span Pitching Propulsors in Mixtures of Side-by-Side and In-Line Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2016-11-01

    Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.

  18. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  19. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    PubMed

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  20. Computations of Flow over a Hump Model Using Higher Order Method with Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2005-01-01

    Turbulent separated flow over a two-dimensional hump is computed by solving the RANS equations with k - omega (SST) turbulence model for the baseline, steady suction and oscillatory blowing/suction flow control cases. The flow equations and the turbulent model equations are solved using a fifth-order accurate weighted essentially. nonoscillatory (WENO) scheme for space discretization and a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. Qualitatively the computed pressure distributions exhibit the same behavior as those observed in the experiments. The computed separation regions are much longer than those observed experimentally. However, the percentage reduction in the separation region in the steady suction case is closer to what was measured in the experiment. The computations did not predict the expected reduction in the separation length in the oscillatory case. The predicted turbulent quantities are two to three times smaller than the measured values pointing towards the deficiencies in the existing turbulent models when they are applied to strong steady/unsteady separated flows.

  1. Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.

    2015-06-15

    Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less

  2. A Report from the Thermal Science Research Center (TSRC)

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1998-01-01

    A vertical flow loop was designed and assembled to determine the local (circumferential and axial) and mean wall temperature distributions for single-phase and two-phase (subcooled and saturated) downward flow in both uniformly-heated and single-side heated vertical channels. Freon-11 was used as the working fluid in order to directly relate and compare the results with a previous experimental campaign which employed this same working fluid. For a given steady-state experiment, the following parameters were held constant: (1) exit pressure, (2) inlet temperature, and (3) mass velocity. For a given configuration of the 2.2 m long cylindrical channel test section, which had a 1.2 m long heated section, the applied heat rate was varied from zero through successive quasi-steady states to a level which corresponded to localized film boiling in the test section. The measurements showed that the boiling curve changes significantly at higher mass velocities with respect to both the circumferential and axial directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential direction. The measurements point to the existence of a dry-out phenomenon occurring at multiple levels of the applied heat for the single-side heated channel. In comparing the heat transfer for horizontal channel flow with a vertically downward flow, the results show that significantly lower heat transfer occurs in the horizontal flow. However, this trend reverses as both the Reynolds number and the applied heat rate increase. Both the Liu-Winterton and Shah correlations were compared with the experimental data. The Shah correlation predicted the uniformly heated tube data better. When a thermal hydraulic diameter approach was used for the single-side heated case, the data at upstream locations for Z/L less than 0.5 was bounded above by the Liu-Winterton correlation and below by the Shah correlation. At Z/L = 0.5, the Shah correlation bounded the data; and for Z/L greater than 0.5, both correlations overpredicted the data with the Shah correlation being closest to the data. The present results indicate that additional correlational development is needed. In addressing some of the advanced space thermal management objectives concerning accommodating high heat fluxes in non-uniformly heated systems, a large battery of experiments 88 have been completed where local two-dimensional wall temperature variations were measured for both single-phase and two-phase flow in a single-side heated circular tube. As noted above, the results show significant axial and circumferential variations. Accurately accounting for such variations can result in optimized future advanced space, enhanced (high heat flux) thermal management systems.

  3. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    PubMed Central

    Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando

    2013-01-01

    Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950

  4. Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.

    PubMed

    Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J

    2014-03-01

    Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.

  5. Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Tsuji, T.

    2017-01-01

    Given the world's growing demand for energy, a combination of geological CO2 sequestration and enhanced oil recovery (EOR) technologies is currently regarded as a promising solution, as it would provide a means of reducing carbon emissions into the atmosphere while also leading to the economic benefit of simultaneously recovering oil. The optimization of injection strategies to maximize CO2 storage and increase the oil recovery factors requires complicated pore-scale flow information within a reservoir system consisting of coexisting oil, water, and CO2 phases. In this study, an immiscible three-phase lattice-Boltzmann (LB) model was developed to investigate the complicated flow state with interaction between water, oil, and CO2 systems in porous media. The two main mechanisms of oil remobilization, namely, double-drainage and film flow, can be captured by our model. The estimation of three-phase relative permeability is proposed using the digital rock physics (DRP) simulations. The results indicate that the relative permeability of CO2 as calculated using our steady state method is not sensitive to the initial oil fraction if the oil distribution is originally uniform. Baker's (1988) empirical model was tested and found to be able to provide a good prediction of the three-phase relative permeability data. Our numerical method provides a new tool for accurately predicting three-phase relative permeability data directly based on micro-CT rock images.

  6. Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Verdon, Joseph M.

    1991-01-01

    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.

  7. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less

  8. Electric fields yield chaos in microflows

    PubMed Central

    Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.

    2012-01-01

    We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251

  9. Influence of pulsatile flow on LDL transport in the arterial wall.

    PubMed

    Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun

    2007-10-01

    The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.

  10. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  11. Steady flow in a rotating sphere with strong precession

    NASA Astrophysics Data System (ADS)

    Kida, Shigeo

    2018-04-01

    The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

  12. A Lattice Boltzmann Framework for the simulation of boiling hydrodynamics in BWRs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, P. K.; Tentner, A.; Uddin, R.

    2008-01-01

    Multi phase and multi component flows are ubiquitous in nature as well as in many man-made processes. A specific example is the Boiling Water Reactor (BWR) core, in which the coolant enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of geometrical patterns of the co-existing phases depending on the local system conditions. Modeling of such flows currently relies on empirical correlations (for example, in the simulation of bubble nucleation, bubble growth and coalescence, and inter-phase surface topologymore » transitions) that hinder the accurate simulation of two-phase phenomena using Computational Fluid Dynamics (CFD) approaches. The Lattice Boltzmann Method (LBM) is in rapid development as a modeling tool to understand these macro-phenomena by coupling them with their underlying micro-dynamics. This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for BWRs are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 oC. Consequently, coexisting phases with large density ratios (up to {approx}1000) may be simulated. Two-phase models in the 200-300 C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.« less

  13. Pore scale Assessment of Heat and Mass transfer in Porous Medium Using Phase Field Method with Application to Soil Borehole Thermal Storage (SBTES) Systems

    NASA Astrophysics Data System (ADS)

    Moradi, A.

    2015-12-01

    To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions. Based on these results, the equivalent time for steady-state heat transfer is much larger than the equivalent time for steady-state multiphase flow for a given pressure differential. Moreover, the wetting phase flow and consequently heat transfer appear to be sensitive to contact angle and porosity of the domain.

  14. Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2017-01-01

    We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129

  15. Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.

    1981-01-01

    Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.

  16. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.

  17. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: applications to cerebral autoregulation.

    PubMed

    Chen, Zhi; Hu, Kun; Stanley, H Eugene; Novak, Vera; Ivanov, Plamen Ch

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.

  18. Flow induced vibrations in the SSME injector heads

    NASA Technical Reports Server (NTRS)

    Lepore, Frank A.

    1991-01-01

    A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.

  19. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.

  20. Modeling microflow and stirring around a microrotor in creeping flow using a quasi-steady-state analysis.

    PubMed

    Vuppu, Anil K; Garcia, Antonio A; Saha, Sanjoy K; Phelan, Patrick E; Hayes, Mark A; Calhoun, Ronald

    2004-06-01

    The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique.

  1. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  2. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  3. Calculation of steady and unsteady transonic flow using a Cartesian mesh and gridless boundary conditions with application to aeroelasticity

    NASA Astrophysics Data System (ADS)

    Kirshman, David

    A numerical method for the solution of inviscid compressible flow using an array of embedded Cartesian meshes in conjunction with gridless surface boundary conditions is developed. The gridless boundary treatment is implemented by means of a least squares fitting of the conserved flux variables using a cloud of nodes in the vicinity of the surface geometry. The method allows for accurate treatment of the surface boundary conditions using a grid resolution an order of magnitude coarser than required of typical Cartesian approaches. Additionally, the method does not suffer from issues associated with thin body geometry or extremely fine cut cells near the body. Unlike some methods that consider a gridless (or "meshless") treatment throughout the entire domain, multi-grid acceleration can be effectively incorporated and issues associated with global conservation are alleviated. The "gridless" surface boundary condition provides for efficient and simple problem set up since definition of the body geometry is generated independently from the field mesh, and automatically incorporated into the field discretization of the domain. The applicability of the method is first demonstrated for steady flow of single and multi-element airfoil configurations. Using this method, comparisons with traditional body-fitted grid simulations reveal that steady flow solutions can be obtained accurately with minimal effort associated with grid generation. The method is then extended to unsteady flow predictions. In this application, flow field simulations for the prescribed oscillation of an airfoil indicate excellent agreement with experimental data. Furthermore, it is shown that the phase lag associated with shock oscillation is accurately predicted without the need for a deformable mesh. Lastly, the method is applied to the prediction of transonic flutter using a two-dimensional wing model, in which comparisons with moving mesh simulations yield nearly identical results. As a result, applicability of the method to transient and vibrating fluid-structure interaction problems is established in which the requirement for a deformable mesh is eliminated.

  4. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Boyd, Joshua; Buick, James M.; Green, Simon

    2007-09-01

    The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear-dependent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are implemented and are used to compare two-dimensional Newtonian and non-Newtonian flows in the context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows, both models exhibit differences in velocity and shear, with the largest differences occurring at low Reynolds and Womersley numbers. Larger differences occur for the Casson model. In the curved pipe Carreau-Yasuda model, moderate differences are observed in the velocities in the central regions of the geometries, and the largest shear rate differences are observed near the geometry walls. These differences may be important for the study of atherosclerotic progression.

  5. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  6. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  7. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  8. An efficient and general numerical method to compute steady uniform vortices

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2011-07-01

    Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.

  9. Experimental studies of flow separation and stalling on two-dimensional airfoils at low speeds. Phase 2: Studies with Fowler flap extended

    NASA Technical Reports Server (NTRS)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1975-01-01

    Results were given on experimental studies of flow separation and stalling on a two-dimensional GA(W)-1 17 percent thick airfoil with an extended Fowler flap. Experimental velocity profiles obtained from a five tube probe survey with optimum flap gap and overlap setting (flap at 40 deg) are shown at various stations above, below, and behind the airfoil/flap combination for various angles of attack. The typical zones of steady flow, intermittent turbulence, and large scale turbulence were obtained from a hot wire anemometer survey and are depicted graphically for an angle of attack of 12.5 deg. Local skin friction distributions were obtained and are given for various angles of attack. Computer plots of the boundary layer profiles are shown for the case of the flap at 40 deg. Static pressure contours are also given. A GA(W)-2 section model was fabricated with 30 percent Fowler flaps and with pressure tabs.

  10. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Martín, Carlos; Arthern, Robert J.; Corr, Hugh F. J.; King, Edward C.

    2016-09-01

    We date a recent ice-flow reorganization of an ice divide in the Weddell Sea Sector, West Antarctica, using a novel combination of inverse methods and ice-penetrating radars. We invert for two-dimensional ice flow within an ice divide from data collected with a phase-sensitive ice-penetrating radar while accounting for the effect of firn on radar propagation and ice flow. By comparing isochronal layers simulated using radar-derived flow velocities with internal layers observed with an impulse radar, we show that the divide's internal structure is not in a steady state but underwent a disturbance, potentially implying a regional ice-flow reorganization, 2.5 (1.8-2.9) kyr B.P. Our data are consistent with slow ice flow in this location before the reorganization and the ice divide subsequently remaining stationary. These findings increase our knowledge of the glacial history of a region that lacks dated constraints on late-Holocene ice-sheet retreat and provides a key target for models that reconstruct and predict ice-sheet behavior.

  11. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  12. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  13. Modelling of a stirling cryocooler regenerator under steady and steady - periodic flow conditions using a correlation based method

    NASA Astrophysics Data System (ADS)

    Kishor Kumar, V. V.; Kuzhiveli, B. T.

    2017-12-01

    The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.

  14. Effects of Unsteadiness Due to Wake Passing on Rotor Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Rigby, David L.; Heidmann, James; Steinthorsson, Erlendur; Fabian, John C.

    2007-01-01

    14. ABSTRACT In a gas turbine engine, the turbine rotor blades are buffeted by the wakes of the vanes located upstream. There is a transient effect from the passing of wakes on the blade heat transfer. This transient effect has been computed for a representative rotor by introducing a wake upstream via an unsteady inlet flow boundary condition, or "gust" condition. Two cases of turbulent flow and laminar flow with Reynolds numbers of 385,000 and 385 respectively were considered. For the turbulent flow case a quasi-steady calculation was also performed. The variation in the unsteady heat transfer coefficient was found to be as high as 120 percent of the mean. For the turbulent flow case a quasisteady calculation was also performed. The time mean of the unsteady heat transfer, the mean of the quasi-steady variations and the steady results agree reasonably well on all blade locations except for the turbulent results which differ near the leading edge. The quasi-steady heat transfer results do not agree with the instantaneous unsteady results, although the time-mean values are similar.

  15. Steady-state analysis of a faulted three-phase four-wire system supplying induction motors with neutrals connected and other single-phase line-to-neutral loads

    NASA Technical Reports Server (NTRS)

    Wood, M. E.

    1980-01-01

    Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.

  16. An investigation of chaotic Kolmogorov flows

    NASA Technical Reports Server (NTRS)

    Platt, N.; Sirovich, L.; Fitzmaurice, N.

    1990-01-01

    A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.

  17. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  18. Lift and drag in three-dimensional steady viscous and compressible flow

    NASA Astrophysics Data System (ADS)

    Liu, L. Q.; Wu, J. Z.; Su, W. D.; Kang, L. L.

    2017-11-01

    In a recent paper, Liu, Zhu, and Wu ["Lift and drag in two-dimensional steady viscous and compressible flow," J. Fluid Mech. 784, 304-341 (2015)] present a force theory for a body in a two-dimensional, viscous, compressible, and steady flow. In this companion paper, we do the same for three-dimensional flows. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flows originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the unified force theorem, which states that the forces are always determined by the vector circulation Γϕ of longitudinal velocity and the scalar inflow Qψ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the testable unified force formula. After that, a general principle to increase the lift-drag ratio is proposed.

  19. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation

    PubMed

    Spicer; Keller; Pratsinis

    1996-12-01

    The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.

  20. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1989-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two-phase seal is described and documented. The analyses, results, and computer codes are summarized.

  1. On the formation of string cavitation inside fuel injectors

    NASA Astrophysics Data System (ADS)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; Long, E. J.; McDavid, R. M.

    2014-01-01

    The formation of vortex or `string' cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single `bridging' string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.

  2. Evolution of Unsteady Groundwater Flow Systems

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition changes frequently. This study was financially supported by National Natural Science Foundation of China (U1403282 & 41272258).

  3. Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.; Mcdonald, H.

    1983-01-01

    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.

  4. Comments regarding two upwind methods for solving two-dimensional external flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Kleb, W. L.

    1994-01-01

    Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.

  5. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less

  6. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    NASA Astrophysics Data System (ADS)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  7. Acoustic metacages for sound shielding with steady air flow

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  8. UNSTEADY DISPERSION IN RANDOM INTERMITTENT FLOW

    EPA Science Inventory

    The longitudinal dispersion coefficient of a conservative tracer was calculated from flow tests in a dead-end pipe loop system. Flow conditions for these tests ranged from laminar to transitional flow, and from steady to intermittent and random. Two static mixers linked in series...

  9. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  10. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  11. Respiratory fluid mechanics

    PubMed Central

    Grotberg, James B.

    2011-01-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from “capillary-elastic instabilities,” as well as nonlinear stabilization from oscillatory core flow which we call the “oscillating butter knife;” liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg–Borgas–Gaver shock. PMID:21403768

  12. High data density temperature measurement for quasi steady-state flows

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Rashidnia, Nasser; Creath, Katherine

    1995-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermocouple and the two data sets show excellent agreement This instrument maintains the compact, robust design of Linnik's point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction.

  13. High Data Density Temperature Measurement for Quasi Steady-State Flows

    NASA Technical Reports Server (NTRS)

    Mercer, C. R.; Rashidnia, N.; Creath, K.

    1996-01-01

    A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermo-couple and the two data sets show excellent agreement. This instrument maintains the compact, robust design of Linniks point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave-fronts with very high data density and with automated data reduction.

  14. Measurements in discrete hole film cooling behavior with periodic freestream unsteadiness

    NASA Astrophysics Data System (ADS)

    Fan, Danyang; Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.

    2018-03-01

    Magnetic resonance imaging (MRI) techniques were used to investigate a discrete, 30°-inclined round jet in crossflow subjected to periodic freestream unsteadiness. The freestream perturbations were generated by an oscillating airfoil upstream of the jet. The experiment operated at a Strouhal number of 0.014, channel Reynolds number of 25,000, hole Reynolds number of 2900, and jet blowing ratio of unity. 3D phase locked velocity measurements were obtained over the entire channel using magnetic resonance velocimetry (MRV). 3D time-averaged temperature measurements were acquired using magnetic resonance thermometry (MRT), along with phase-locked temperature measurements in the 2D centerplane of the channel and jet. The freestream flow just upstream of the jet was characterized by streamwise velocities ranging from 0.88 U_ {bulk} to 1.23 U_ {bulk} and wall-normal velocities from -0.11 U_ {bulk} to 0.02 U_ {bulk}. Flow inside the hole was observed to be insensitive to the freestream fluctuations, as velocities and temperatures in the hole remained largely unchanged throughout the cycle. Outside the hole, changes to the streamwise velocity produced an oscillating jet blowing ratio that led to the lengthening and shortening of the counter-rotating vortex pair (CVP) as well as a varying degree of coolant separation from the film cooled wall. During one portion of the cycle, downwashing freestream flow (i.e., flow with negative wall-normal velocities) promoted strong re-attachment and lateral spreading of the jet. Mean, spanwise-averaged film cooling effectiveness values were compared to those of an earlier experiment with a steady freestream and identical geometry, Reynolds number, and blowing ratio. Film cooling performance in the near-hole region was higher with steady freestream flow. However, at downstream locations, the downward transport of coolant by the periodic downwashing flow led to a higher mean surface effectiveness than in the steady case.

  15. Evaporation effect on two-dimensional wicking in porous media.

    PubMed

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  17. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, B. C., E-mail: low@ucar.edu; Egan, A. K., E-mail: andrea.egan@colorado.edu

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid intomore » a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset of hydrodynamic turbulence. The implications of this MHD study are discussed, with an interest in the prominences in the solar atmosphere and the interstellar clouds in the Galaxy.« less

  18. Effects of Initial Correlation and Quantum Coherence on the Energy Transfer, Purity and Entanglement

    NASA Astrophysics Data System (ADS)

    Meng, Xiangjia; Chen, Longxi

    2018-04-01

    We investigate the influences of the initial correlation and quantum coherence on a bipartite dissipative system which is modeled by two two-level quantum emitters driven by an external laser field. It is shown that the initial correlation can enhance or suppress the dynamical evolution of the energy transfer quantified by the excited-state population and the information flow between the two emitters characterized by the purity. We also present the degree of the influence of the initial correlation that is determined by the quantum coherence induced by a relative phase. By introducing Bloch sphere, we illustrate the relation between the energy transfer and the purity. In addition, a scheme for generating maximally entangled steady state is proposed.

  19. Experiments on an unsteady, three-dimensional separation

    NASA Technical Reports Server (NTRS)

    Henk, R. W.; Reynolds, W. C.; Reed, H. L.

    1992-01-01

    Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.

  20. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    PubMed

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Experimental Investigations in a Reactor Cavity Cooling System with Advanced Instrumentation for the Study of Instabilities, Oscillations, and Transients

    NASA Astrophysics Data System (ADS)

    Tompkins, Casey A.

    A research team at University of Wisconsin - Madison designed and constructed a 1/4 height scaled experimental facility to study two-phase natural circulation cooling in a water-based reactor cavity cooling system (WRCCS) for decay heat removal in an advanced high temperature reactor. The facility is capable of natural circulation operation scaled for simulated decay heat removal (up to 28.5 kW m-2 (45 kW) input power, which is equivalent to 14.25 kW m-2 (6.8 MW) at full scale) and pressurized up to 2 bar. The UW-WRCCS facility has been used to study instabilities and oscillations observed during natural circulation flow due to evaporation of the water inventory. During two-phase operation, the system exhibits flow oscillations and excursions, which cause thermal oscillations in the structure. This can cause degradation in the mechanical structure at welds and limit heat transfer to the coolant. The facility is equipped with wire mesh sensors (WMS) that enable high-resolution measurements of the void fraction and steam velocities in order to study the instability's and oscillation's growth and decay during transient operation. Multiple perturbations to the system's operating point in pressure and inlet throttling have shown that the oscillatory behavior present under normal two-phase operating conditions can be damped and removed. Furthermore, with steady-state modeling it was discovered that a flow regime transition instability is the primary cause of oscillations in the UW-WRCCS facility under unperturbed conditions and that proper orifice selection can move the system into a stable operating regime.

  2. Nature of the Congested Traffic and Quasi-steady States of the General Motor Models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2015-03-01

    We look at the general motor (GM) class microscopic traffic models and analyze some of the universal features of the (multi-)cluster solutions, including the emergence of an intrinsic scale and the quasisoliton dynamics. We show that the GM models can capture the essential physics of the real traffic dynamics, especially the phase transition from the free flow to the congested phase, from which the wide moving jams emerges (the F-S-J transition pioneered by B.S. Kerner). In particular, the congested phase can be associated with either the multi-cluster quasi-steady states, or their more homogeneous precursor states. In both cases the states can last for a long time, and the narrow clusters will eventually grow and merge, leading to the formation of the wide moving jams. We present a general method to fit the empirical parameters so that both quantitative and qualitative macroscopic empirical features can be reproduced with a minimal GM model. We present numerical results for the traffic dynamics both with and without the bottleneck, including various types of spontaneous and induced ``synchronized flow,'' as well as the evolution of wide moving jams. We also discuss its implications to the nature of different phases in traffic dynamics.

  3. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  4. Strain memory of 2D and 3D rigid inclusion populations in viscous flows - What is clast SPO telling us?

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W.; Law, Richard D.

    2014-11-01

    We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.

  5. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  6. Influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, W; Hein, D

    1986-09-01

    The influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube was investigated for a parameter range occurring in fossil-fired steam generators. Included in the analysis are quantities which determine the wetting state in steady and transient flow. The experimental work consists of the following: Occurrence of critical heat flux (CHF) and post-CHF heat transfer in a vertical upflow evaporator tube; influence of pressure and enthalpy transients on heat transfer in the unwetted region; influence of pipe orientation on heat transfer; and two phase flow pressure loss in wetted and unwettedmore » region. Based on these experiments a method of predicting CHF for a vertical upflow evaporator tube was developed. The heat transfer in the unwetted region was newly formulated taking into account thermal nonequilibrium between the water and steam phases. Wall temperature excursions during pressure and enthalpy transients are interpreted with the help of the boiling curve and the Leidenfrost phenomenon. A method is developed by means of which it is possible to determine the influence of the pipe orientation on the location of the boiling crisis as well as on the heat transfer in the unwetted region. The influence of the wetting state of the heated surface on the two phase flow pressure loss is interpreted as ''Wall effect'' and is calculated using a simplified computer model. 68 refs., 83 figs.« less

  7. Sensitivity analysis of a ground-water-flow model

    USGS Publications Warehouse

    Torak, Lynn J.; ,

    1991-01-01

    A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.

  8. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    NASA Technical Reports Server (NTRS)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  9. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    PubMed

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  10. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    PubMed Central

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  11. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    PubMed

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  12. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    DTIC Science & Technology

    2007-04-17

    field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in

  13. Direct numerical simulations of two-phase laminar jet flows with different cross-section injection geometries

    NASA Astrophysics Data System (ADS)

    Abdel-Hameed, H.; Bellan, J.

    2002-10-01

    Direct numerical simulations are performed of spatial, three-dimensional, laminar jets of different inlet geometric configurations for the purpose of quantifying the characteristics of the flows; both single-phase (SP) and two-phase (TP) free jets are considered. The TP jets consist of gas laden with liquid drops randomly injected at the inlet. Drop evaporation ensues both due to the gaseous flow being initially unvitiated by the vapor species corresponding to the liquid drops, and to drop heating as the initial drop temperature is lower than that of the carrier gas. The conservation equations for the TP flow include complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the vapor enthalpy, internal energy, and latent heat of vaporization. Inlet geometries investigated are circular, elliptic, rectangular, square, and triangular. The results focus both on the different spreading achieved according to the inlet geometry, as well as on the considerable change in the flow field due to the presence of the drops. The most important consequence of the drop interaction with the flow is the production of streamwise vorticity that alters entrainment and species mixing according to the inlet geometry. Similar to their SP equivalent, TP jets are shown to reach steady-state entrainment; examination of the flows at this time station shows that the potential cores of TP jets are shorter by an order of magnitude than their SP counterpart. Moreover, whereas the TP circular jet exhibits a symmetric entrainment pattern well past the streamwise location of the potential core, noncircular jets display at the same location strong departures from symmetry. Furthermore, the SP-jet phenomenon of axis switching is no longer present in TP jets. The distributions of drop-number density, liquid mass, and evaporated species are compared for different inlet cross sections and recommendations are made regarding the optimal choice for different applications.

  14. Hydrodynamic parameters of mesh fillers relevant to miniature regenerative cryocoolers

    NASA Astrophysics Data System (ADS)

    Landrum, E. C.; Conrad, T. J.; Ghiaasiaan, S. M.; Kirkconnell, Carl S.

    2010-06-01

    Directional hydrodynamic parameters of two fine-mesh porous materials that are suitable for miniature regenerative cryocoolers were studied under steady and oscillating flows of helium. These materials included stacked discs of #635 stainless steel (wire diameter of 20.3 μm) and #325 phosphor bronze (wire diameter of 35.6 μm) wire mesh screens, which are among the commercially available fillers for use in small-scale regenerators and heat exchangers, respectively. Experiments were performed in test sections in which pressure variations across these fillers, in the axial and lateral (radial) directions, were measured under steady and oscillatory flows. The directional permeability and Forchheimer's inertial coefficient were then obtained by using a Computational Fluid Dynamics (CFD)-assisted method. The oscillatory flow experiments covered a frequency range of 50-200 Hz. The results confirmed the importance of anisotropy in the mesh screen fillers, and indicated differences between the directional hydrodynamic resistance parameters for steady and oscillating flow regimes.

  15. Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination

    NASA Astrophysics Data System (ADS)

    Tonon, D.; Moers, E. M. T.; Hirschberg, A.

    2013-04-01

    Well known examples of acoustical dampers are the aero-engine liners, the IC-engine exhaust mufflers, and the liners in combustion chambers. These devices comprise wall perforations, responsible for their sound absorbing features. Understanding the effect of the flow on the acoustic properties of a perforation is essential for the design of acoustic dampers. In the present work the effect of a grazing-bias flow combination on the impedance of slit shaped wall perforations is experimentally investigated by means of a multi-microphone impedance tube. Measurements are carried out for perforation geometries relevant for in technical applications. The focus of the experiments is on the low Strouhal number (quasi-steady) behavior. Analytical models of the steady flow and of the low frequency aeroacoustic behavior of a two-dimensional wall perforation are proposed for the case of a bias flow directed from the grazing flow towards the opposite side of the perforated wall. These theoretical results compare favorably with the experiments, when a semi-empirical correction is used to obtain the correct limit for pure bias flow.

  16. On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers

    NASA Technical Reports Server (NTRS)

    Dijkstra, Henk A.

    1992-01-01

    Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.

  17. Automated Quantitation of Non-Steady Flow and Lumen Area Based on Temporal Correlation

    DTIC Science & Technology

    2001-10-25

    elevated intracranial pressure (ICP)), and Chiari malformation (herniation of hindbrain into the spinal canal) (3,4). Recently, noninvasive method...4] Pujol J, Roig C, et. al.: Motion of the Cerebellar Tonsils in Chiari Type I Malformation Studied by Cine Phase-Contrast MRI, Neurology 45

  18. Quantification of error associated with stormwater and wastewater flow measurement devices

    EPA Science Inventory

    A novel flow testbed has been designed to evaluate the performance of flumes as flow measurement devices. The newly constructed testbed produces both steady and unsteady flows ranging from 10 to 1500 gpm. Two types of flumes (Parshall and trapezoidal) are evaluated under differen...

  19. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  20. Numerical simulation of granular flows : comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.

    2003-04-01

    Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.

  1. Mesoscale thermospheric wind in response to nightside auroral brightening

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Zou, Y.; Gabrielse, C.; Lyons, L. R.; Varney, R. H.; Conde, M.; Hampton, D. L.; Mende, S. B.

    2017-12-01

    Although high-latitude ionospheric flows and thermospheric winds in the F-region are overall characterized by two-cell patterns over a global scale ( 1000 km), intense energy input from the magnetosphere often occurs in a mesoscale ( 100 km) and transient manner ( 10 min). Intense mesoscale energy input would drive enhanced mesoscale winds, whose properties are closely associated with auroral arcs and associated ionospheric flows. However, how thermospheric winds respond to and distribute around mesoscale magnetospheric input has not been characterized systematically. This presentation addresses how mesoscale winds distribute around quasi-steady arcs, evolve and distribute around transient arcs, and vary with geomagnetic and solar activity. We use Scanning Doppler Imagers (SDIs), all-sky imagers and PFISR over Alaska. A channel of azimuthal neutral wind is often found associated with localized flow channels adjacent to quasi-steady discrete aurora. The wind speed dynamically changes after a short time lag (a few tens of minutes) from auroral brightenings, including auroral streamers and intensifications on preexisting auroral arcs. This is in contrast to a much longer time lag ( 1 hour) reported previously. During a storm main phase, a coherent equatorward motion of the Harang discontinuity was seen in plasma flow, aurora and neutral wind, with a few degrees of equatorward displacement of the neutral wind Harang, which is probably due to the inertia. These results suggest that a tight M-I-T connection exists under the energy input of assorted auroral arcs and that mesoscale coupling processes are important in M-I-T energy transfer.

  2. Steady-states for shear flows of a liquid-crystal model: Multiplicity, stability, and hysteresis

    NASA Astrophysics Data System (ADS)

    Dorn, Tim; Liu, Weishi

    In this work, we study shear flows of a fluid layer between two solid blocks via a liquid-crystal type model proposed in [C.H.A. Cheng, L.H. Kellogg, S. Shkoller, D.L. Turcotte, A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA 21 (2007) 1-5] for an understanding of frictions. A characterization on the existence and multiplicity of steady-states is provided. Stability issue of the steady-states is examined mainly focusing on bifurcations of zero eigenvalues. The stability result suggests that this simple model exhibits hysteresis, and it is supported by a numerical simulation.

  3. The steady part of the secular variation of the Earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1992-01-01

    The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.

  4. Phase-plane analysis to an “anisotropic” higher-order traffic flow model

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Xiu

    2018-04-01

    The qualitative theory of differential equations is applied to investigate the traveling wave solution to an “anisotropic” higher-order viscous traffic flow model under the Lagrange coordinate system. The types and stabilities of the equilibrium points are discussed in the phase plane. Through the numerical simulation, the overall distribution structures of trajectories are drawn to analyze the relation between the phase diagram and the selected conservative solution variables, and the influences of the parameters on the system are studied. The limit-circle, limit circle-spiral point, saddle-spiral point and saddle-nodal point solutions are obtained. These steady-state solutions provide good explanation for the phenomena of the oscillatory and homogeneous congestions in real-world traffic.

  5. Coupled fluid and solid evolution in analogue volcanic vents

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen A.; Ogden, Darcy E.; Kim, Dave (Dae-Wook); Kim, Sang Young

    2014-07-01

    Volcanic eruptions emit rock particulates and gases at high speed and pressure, which change the shape of the surrounding rock. Simplified analytical solutions, field studies, and numerical models suggest that this process plays an important role in the behavior and hazards associated with explosive volcanic eruptions. Here we present results from a newly developed laboratory-scale apparatus designed to study this coupled process. The experiments used compressed air jets expanding into the laboratory through fabricated rock analogue material, which evolves through time during the experiment. The compressed air was injected at approximately 2.5 times atmospheric pressure. We fabricated rock analogues from sand and steel powder samples with a three-dimensional printing process. We studied the fluid development using phase-locked particle image velocimetry, while simultaneously observing the solid development via a video camera. We found that the fluid response was much more rapid than that of the solid, permitting a quasi-steady approximation. In most cases, the solid vent flared out rapidly, increasing its diameter by 20 to 100%. After the initial expansion, the vent and flow field achieved a near-steady condition for a long duration. The new expanded vent shapes permitted lower vent exit pressures and larger jet radii. In one experiment, after an initial vent shape development and establishment of steady flow behavior, rock failure occurred a second time, resulting in a new exit diameter and new steady state. This second failure was not precipitated by changes in the nozzle flow condition, and it radically changed the downstream flow dynamics. This experiment suggests that the brittle nature of volcanic host rock enables sudden vent expansion in the middle of an eruption without requiring a change in the conduit flow.

  6. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  7. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  8. Study of unsteady flow simulation of backward impeller with non-uniform casing

    NASA Astrophysics Data System (ADS)

    Swe, War War Min; Morimatsu, Hiroya; Hayashi, Hidechito; Okumura, Tetsuya; Oda, Ippei

    2017-06-01

    The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.

  9. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  10. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  11. Characterization of the Dynamic Pressure Response of Fuels in Microchannels

    NASA Astrophysics Data System (ADS)

    Haendler, Brenda; Pisano, Albert; Liepmann, Dorian

    2004-11-01

    In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.

  12. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  13. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  14. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  15. The evolution of an unsteady translating nonlinear rossby-wave critical layer

    NASA Astrophysics Data System (ADS)

    Haynes, Peter H.; Cowley, Stephen J.

    When a monochromatic Rossby wave is forced on a flow which is slowly varying in time, the location of the critical line, where the phase speed of the wave is equal to that of the flow, also slowly changes. It is shown that this translation can play an important role in the vorticity balance near the critical line. The behavior of the translating critical layer is analyzed for various values of y, a parameter which measures the relative importance of nonlinear advection and translation. First, the vorticity equation in the critical layer is solved numerically in an important special case, where the velocity field in the critical layer is independent of the vorticity distribution and constant in time. The solutions reveal a number of new aspects of the behavior which are introduced by the translation, including the formation of a wake behind the critical layer, and the possibility of "trapping" of fluid particles in the critical layer if y exceeds a threshold value. Viewed in a frame of reference moving with the critical line the vorticity distribution may tend to a steady state, except in a "vorticity front" far downstream in the wake. If streamlines in the critical layer are open this steady state may be a predominantly inviscid one; if they are closed a steady state is possible only with non-zero dissipation. For both the unsteady and steady flows the translation allows the "logarithmic phase jump" across the critical layer, 4, to be non-zero and negative. Hence, even when the viscosity is vanishingly small, the critical layer can act as a strong "absorber" of Eliassen-Palm wave activity. Second, steady-state solutions are obtained numerically for a case when the velocity field in the critical layer is not independent of the vorticity distribution there. The interaction restricts the formation of closed streamlines, and an asymptotic open-streamline solution for large y can be found. The critical layer again acts an absorber of wave activity, but with decreasing eNectiveness as y increases.

  16. A Theory For The Variability of The Baroclinic Quasi-geostrophic Winnd Driven Circulation.

    NASA Astrophysics Data System (ADS)

    Ben Jelloul, M.; Huck, T.

    We propose a theory of the wind driven circulation based on the large scale (i.e. small Burger number) quasi-geostrophic assumptions retained in the Rhines and Young (1982) classical study of the steady baroclinic flow. We therefore use multiple time scale and asymptotic expansions to separate steady and the time dependent component of the flow. The barotropic flow is given by the Sverdrup balance. At first order in Burger number, the baroclinic flow can be decom- posed in two parts. A steady contribution ensures no flow in the deep layer which is at rest in absence of dissipative processes. Since the baroclinic instability is inhibited at large scale a spectrum of neutral modes also arises. These are of three type, classical Rossby basin modes deformed through advection by the barotropic flow, recirculating modes localized in the recirculation gyre and blocked modes corresponding to closed potential vorticity contours. At next order in Burger number, amplitude equations for baroclinic modes are derived. If dissipative processes are included at this order, the system adjusts towards Rhines and Young solution with a homogenized potential vorticity pool.

  17. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less

  18. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  19. Turbulent Boundary Layers in Oscillating Flows. Part 1: an Experimental and Computational Study

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1986-01-01

    An experimental-computational study of the behavior of turbulent boundary layers for oscillating air flows over a plane surface with a small favorable mean pressure gradient is described. Experimental studies were conducted for boundary layers generated on the test section wall of a facility that produces a flow with a mean free stream velocity and a superposed nearly-pure sinusoidal component over a wide range of frequency. Flow at a nominal mean free stream velocity of 50 m/s were studied at atmospheric pressure and temperature at selected axial positions over a 2 m test length for frequencies ranging from 4 to 29 Hz. Quantitative experimental results are presented for unsteady velocity profiles and longitudinal turbulence levels obtained from hot wire anemometer measurements at three axial positions. Mean velocity profiles for oscillating flows were found to exhibit only small deviations from corresponding steady flow profiles, while amplitudes and phase relationships exhibited a strong dependence on axial position and frequency. Since sinusoidal flows could be generated over a wide range of frequency, studies at fixed values of reduced frequency at different axial positions were studied. Results show that there is some utility in the use of reduced frequency to correlate unsteady velocity results. The turbulence level u' sub rms was observed to vary essentially sinusoidally around values close to those measured in steady flow. However, the amplitude of oscillation and phase relations for turbulence level were found to be strongly frequency dependent. Numerical predictions were obtained using an unsteady boundary layer computational code and the Cebeci-Smith and Glushko turbulence models. Predicted quantities related to unsteady velocity profiles exhibit fair agreement with experiment when the Cebeci-Smith turbulence model is used.

  20. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    2017-01-01

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. Here we examine the pressure of ABPs in two dimensions in both closed boxes and systems with periodic boundary conditions and show that its nonmonotonic behavior with density is a general property of ABPs and is not the result of finite-size effects. We correlate the time evolution of the mean pressure towards its steady-state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase-separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady-state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems.

  1. On the Asymptotic Stability of Steady Flows with Nonzero Flux in Two-Dimensional Exterior Domains

    NASA Astrophysics Data System (ADS)

    Guillod, Julien

    2017-05-01

    The Navier-Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2-perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically decaying flux carrier with flux {| Φ | < 2 π} and a small subcritically decaying term. Under the central symmetry assumption, the general hypothesis is also proven for any critically decaying steady solutions under a suitable smallness condition.

  2. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  3. Virus transport during infiltration of a wetting front into initially unsaturated sand columns.

    PubMed

    Kenst, Andrew B; Perfect, Edmund; Wilhelm, Steven W; Zhuang, Jie; McCarthy, John F; McKay, Larry D

    2008-02-15

    We investigated the effect of different flow conditions on the transport of bacteriophage phiX174 in Memphis aquifer sand. Virus transport associated with a wetting front moving into an initially unsaturated horizontal sand column was experimentally compared with that observed under steady-state saturated vertical flow. Results obtained by sectioning the sand columns showthattotal (retained and free) resident virus concentrations decreased approximately exponentially with the travel distance. The rate of decline was similar under both transient unsaturated flow and steady-state saturated flow conditions. Total resident virus concentrations near the inlet were an order of magnitude greater than the virus concentration of the influent solution in both experiments, indicating continuous virus sorption during flow through this zone. Virus retardation was quantified using the ratio of the centroids of the relative saturation and virus concentration versus relative distance functions. The mean retardation factors were 6.43 (coefficient of variation, CV = 14.4%) and 8.22 (CV = 8.22%) for the transient unsaturated and steady-state saturated flow experiments, respectively. Attest indicated no significant difference between these values at P < 0.05. Air-water and air-water-solid interfaces are thought to enhance virus inactivation and sorption to solid particles. The similar retardation factors obtained may be attributable to the reduced presence of these interfaces in the two flow systems investigated as compared to steady-state unsaturated flow experiments in which these interfaces occur throughout the entire column.

  4. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  5. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The foldover in magnified images was eliminated by exciting limited regions with orthogonal pi/2 and pi pulses. Off-midline regions were imaged by tandemly offsetting the phase-encoding and excitation. Artifacts due to non-steady-state conditions were demonstrated. The approach to steady state was defined by operators and vectors, and any repeated series of RF pulses was proven to produce a steady-state. The vector difference between the magnetization and its steady state value is relatively constant during the approach. The repetition time relative to T_1 is the main determinant of approach rate, and off-resonant RF pulses incoherent with the magnetization produce a more rapid approach than on-resonant pulses.

  6. Controlling Flows Of Two Ingredients For Spraying

    NASA Technical Reports Server (NTRS)

    Chandler, Huel H.

    1995-01-01

    Closed-loop servo control subsystem incorporated, as modification, into system controlling flows of two ingredients mixed and sprayed to form thermally insulating foams on large tanks. Provides steady flows at specified rates. Foams produced smoother and of higher quality. Continued use of system results in substantial reduction in cost stemming from close control of application of foam and consequent reduced use of material.

  7. Apparent dispersion in transient groundwater flow

    USGS Publications Warehouse

    Goode, Daniel J.; Konikow, Leonard F.

    1990-01-01

    This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity is acting in a direction that is not the assumed flow direction. This increase is a function of the angle between the transient flow vector and the assumed steady state flow direction and the ratio of transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if storativity is assumed to be zero, such that the flow field responds instantly to boundary condition changes.

  8. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  9. Measurement and modeling of advanced coal conversion processes, Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  10. On the Wind Generation of Water Waves

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2016-11-01

    In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of M iles [16]. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air-sea interface). We are thus able to give a unified equation connecting the Kelvin-Helmholtz and quasi-laminar models of wave generation.

  11. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  12. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  13. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    PubMed

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan

    2017-11-01

    We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.

  15. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.

  16. Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones

    NASA Technical Reports Server (NTRS)

    Tsinganos, K.; Low, B. C.

    1989-01-01

    A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.

  17. Comparison of steady and unsteady secondary flows in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Hebert, Gregory J.; Tiederman, William G.

    1989-01-01

    The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades by passing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.

  18. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  19. Multishot EPI-SSFP in the Heart

    PubMed Central

    Herzka, Daniel A.; Kellman, Peter; Aletras, Anthony H.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. PMID:11948726

  20. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  1. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2013-07-01

    We investigate the dynamical properties of monodomain nematic liquid crystals under shear flow and magnetic fields on the basis of the Ericksen-Leslie theory. Stable and unstable states appear depending on the magnetic field and the shear rate. The trajectory of the unstable state shows tumbling motion. The phase diagram of these states is plotted as a function of the three components of the magnetic field at a constant shear rate. The phase diagram changes depending on the viscous properties of different types of nematic liquid crystals. In this nonequilibrium steady state, we calculate the correlation function of director fluctuations and the response function, and discuss the nonequilibrium fluctuations and the modified fluctuation-dissipation relation in connection with nonconservative forces due to shear flow.

  2. Release of genetically engineered insects: a framework to identify potential ecological effects

    PubMed Central

    David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A

    2013-01-01

    Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955

  3. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    NASA Astrophysics Data System (ADS)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  4. Development of a nonlinear unsteady transonic flow theory

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1973-01-01

    A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.

  5. Optimizing energy growth as a tool for finding exact coherent structures

    NASA Astrophysics Data System (ADS)

    Olvera, D.; Kerswell, R. R.

    2017-08-01

    We discuss how searching for finite-amplitude disturbances of a given energy that maximize their subsequent energy growth after a certain later time T can be used to probe the phase space around a reference state and ultimately to find other nearby solutions. The procedure relies on the fact that of all the initial disturbances on a constant-energy hypersphere, the optimization procedure will naturally select the one that lies closest to the stable manifold of a nearby solution in phase space if T is large enough. Then, when in its subsequent evolution the optimal disturbance transiently approaches the new solution, a flow state at this point can be used as an initial guess to converge the solution to machine precision. We illustrate this approach in plane Couette flow by rediscovering the spanwise-localized "snake" solutions of Schneider et al. [Phys. Rev. Lett. 104, 104501 (2010), 10.1103/PhysRevLett.104.104501], probing phase space at very low Reynolds numbers (less than 127.7 ) where the constant-shear solution is believed to be the global attractor and examining how the edge between laminar and turbulent flow evolves when stable stratification eliminates the turbulence. We also show that the steady snake solution smoothly delocalizes as unstable stratification is gradually turned on until it connects (via an intermediary global three-dimensional solution) to two-dimensional Rayleigh-Bénard roll solutions.

  6. Two-phase/two-phase heat exchanger analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.

  7. On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Williams, J.; Hibberd, S.; Power, H.; Riley, D. S.

    2012-05-01

    Motivated by applications in aero-engines, steady two-dimensional thin-film flow on the inside of a circular cylinder is studied when the film surface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the film surface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized.

  8. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.

    1974-01-01

    This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf. PMID:4846767

  9. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.

    PubMed

    Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin

    2016-10-28

    By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.

  10. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  11. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  12. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.

  13. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  14. Calculations of steady and transient channel flows with a time-accurate L-U factorization scheme

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    Calculations of steady and unsteady, transonic, turbulent channel flows with a time accurate, lower-upper (L-U) factorization scheme are presented. The L-U factorization scheme is formally second-order accurate in time and space, and it is an extension of the steady state flow solver (RPLUS) used extensively to solve compressible flows. A time discretization method and the implementation of a consistent boundary condition specific to the L-U factorization scheme are also presented. The turbulence is described by the Baldwin-Lomax algebraic turbulence model. The present L-U scheme yields stable numerical results with the use of much smaller artificial dissipations than those used in the previous steady flow solver for steady and unsteady channel flows. The capability to solve time dependent flows is shown by solving very weakly excited and strongly excited, forced oscillatory, channel flows.

  15. A general mixture model and its application to coastal sandbar migration simulation

    NASA Astrophysics Data System (ADS)

    Liang, Lixin; Yu, Xiping

    2017-04-01

    A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that the suspended load will also make great contributions to the topography change in the surf zone, which is usually neglected in some previous researches.

  16. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that symmetrically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.

  17. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  18. Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney.

    PubMed

    Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q

    2013-09-01

    We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Bennett, James

    1986-01-01

    The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.

  20. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  1. Experimental validation of an ultrasonic flowmeter for unsteady flows

    NASA Astrophysics Data System (ADS)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  2. Natural convection in melt crystal growth - The influence of flow pattern on solute segregation

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Yamaguchi, Y.; Chang, C. J.

    1982-01-01

    The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.

  3. Numerical Investigation of Nanofluid Laminar Forced Convective Heat Transfer inside an Equilateral Triangular Tube

    NASA Astrophysics Data System (ADS)

    Etminan, Amin; Harun, Zambri; Sharifian, Ahmad

    2017-01-01

    In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.

  4. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.

    1996-04-01

    We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.

  5. Analysis of a swimmer's hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions.

    PubMed

    Samson, M; Monnet, T; Bernard, A; Lacouture, P; David, L

    2018-01-23

    The propulsive forces generated by the hands and arms of swimmers have so far been determined essentially by quasi-steady approaches. This study aims to quantify the temporal dependence of the hydrodynamic forces for a simple translation movement: an impulsive start from rest. The study, carried out in unsteady numerical simulation, couples the calculation of the lift and the drag on an expert swimmer hand-forearm model with visualizations of the flow and flow vortex structure analysis. The results of these simulations show that the hand and forearm hydrodynamic forces should be studied from an unsteady approach because the quasi-steady model is inadequate. It also appears that the delayed stall effect generates higher circulatory forces during a short translation at high angle of attack than forces calculated under steady state conditions. During this phase the hand force coefficients are approximately twice as large as those of the forearm. The total force coefficients are highest for angles of attack between 40° and 60°. For the same angle of attack, the forces produced when the leading edge is the thumb side are slightly greater than those produced when the leading edge is the little finger side. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A self-adaptive-grid method with application to airfoil flow

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.

  7. The rheology of three-phase suspensions at low bubble capillary number

    PubMed Central

    Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.

    2015-01-01

    We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617

  8. Interfacial distribution of mucus under forced expiration in a double bifurcation model

    NASA Astrophysics Data System (ADS)

    Rajendran, Rahul; Banerjee, Arindam

    2017-11-01

    Mucus is removed from the lung airways by the rhythmic beating of cilia and the mucus interaction with the turbulent core airflow generated during a cough or forced expiration. The quantity and quality of mucus are adversely altered, impairing mucociliary clearance under chronic pulmonary conditions. Existing studies on airflow induced mucus clearance have established a functional relationship between the airflow rate, mucus properties, flow bias, breathing frequency and clearance; however, the impact of airway branching, gravity, and characterization of primary and secondary flows have not been studied. The focus of the current investigation is the detailed understanding of air-mucus two-phase flow mechanism under steady expiratory airflow in a double bifurcation model. The effect of different airflow rates and mucus viscosities on the flow morphology, mucus layer thickness, mucus clearance and pressure drop across the model will be discussed. The impact of in-plane and out-of-plane configurations of the bifurcation model on the primary and secondary flow structures as well as the mucus distribution will be addressed. In addition, a detailed comparison of the flow structures in the mucus-lined airways, and its corresponding dry wall (no mucus lining) case will be presented.

  9. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  10. FLUSH - PREDICTION OF FLOW PARAMETERS OF SLUSH HYDROGEN

    NASA Technical Reports Server (NTRS)

    Hardy, T.

    1994-01-01

    Slush hydrogen, a mixture of the solid and liquid phases of hydrogen, is a possible source of fuel for the National Aerospace Plane (NASP) Project. Advantages of slush hydrogen over liquid hydrogen include greater heat capacity and greater density. However, practical use of slush hydrogen as a fuel requires systems of lines, valves, etc. which are designed to deliver the fuel in slush form with minimal solid loss as a result of pipe heating or flow friction. Engineers involved with the NASP Project developed FLUSH to calculate the pressure drop and slush hydrogen solid fraction loss for steady-state, one-dimensional flow. FLUSH solves the steady-state, one-dimensional energy equation and the Bernoulli equation for pipe flow. The program performs these calculations for each two-node element--straight pipe length, elbow, valve, fitting, or other part of the piping system--specified by the user. The user provides flow rate, upstream pressure, initial solid hydrogen fraction, element heat leak, and element parameters such as length and diameter. For each element, FLUSH first calculates the pressure drop, then figures the slush solid fraction exiting the element. The code employs GASPLUS routines to calculate thermodynamic properties for the slush hydrogen. FLUSH is written in FORTRAN IV for DEC VAX series computers running VMS. An executable is provided on the tape. The GASPLUS physical properties routines which are required for building the executable are included as one object library on the program media (full source code for GASPLUS is available separately as COSMIC Program Number LEW-15091). FLUSH is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard media) or on a TK50 tape cartridge. FLUSH was developed in 1989.

  11. Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment

    PubMed Central

    Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.

    2011-01-01

    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112

  12. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  13. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  14. Transient-state mechanisms of wind-induced burrow ventilation.

    PubMed

    Turner, J Scott; Pinshow, Berry

    2015-01-15

    Burrows are common animal habitations, yet living in a burrow presents physiological challenges for its inhabitants because the burrow isolates them from sources and sinks for oxygen, carbon dioxide, water vapor and ammonia. Conventionally, the isolation is thought to be overcome by either diffusion gas exchange within the burrow or some means of capturing wind energy to power steady or quasi-steady bulk flows of air through it. Both are examples of what may be called 'DC' models, namely steady to quasi-steady flows powered by steady to quasi-steady winds. Natural winds, however, are neither steady nor quasi-steady, but are turbulent, with a considerable portion of the energy contained in so-called 'AC' (i.e. unsteady) components, where wind velocity varies chaotically and energy to power gas exchange is stored in some form. Existing DC models of burrow gas exchange do not account for this potentially significant source of energy for ventilation. We present evidence that at least two AC mechanisms operate to ventilate both single-opening burrows (of the Cape skink, Trachylepis capensis) and double-opening model burrows (of Sundevall's jird, Meriones crassus). We propose that consideration of the physiological ecology and evolution of the burrowing habit has been blinkered by the long neglect of AC ventilation. © 2015. Published by The Company of Biologists Ltd.

  15. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  16. Transient and steady-state performance of a single turbojet combustor with four different fuel nozzles

    NASA Technical Reports Server (NTRS)

    Mccafferty, Richard J; Donlon, Richard H

    1955-01-01

    Acceleration and steady-state performance of a tubular combustor was evaluated at two simulated altitudes with four different fuel nozzles. Temperature response lag was observed with all the nozzles. Except for rich-limit blowout, the only combustion failures observed during acceleration were with a fuel nozzle that gave an interrupted flow delivery during the acceleration. This same nozzle, because of superior fuel atomization, gave the highest steady-state combustion efficiencies.

  17. Nonlinear deformation and localized failure of bacterial streamers in creeping flows

    PubMed Central

    Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke

    2016-01-01

    We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior. PMID:27558511

  18. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  19. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  20. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  1. Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study

    NASA Astrophysics Data System (ADS)

    Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad

    2018-02-01

    An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated as well.

  2. Population splitting of rodlike swimmers in Couette flow.

    PubMed

    Nili, Hossein; Kheyri, Masoud; Abazari, Javad; Fahimniya, Ali; Naji, Ali

    2017-06-28

    We present a quantitative analysis on the response of a dilute active suspension of self-propelled rods (swimmers) in a planar channel subjected to an imposed shear flow. To best capture the salient features of the shear-induced effects, we consider the case of an imposed Couette flow, providing a constant shear rate across the channel. We argue that the steady-state behavior of swimmers can be understood in the light of a population splitting phenomenon, occurring as the shear rate exceeds a certain threshold, initiating the reversal of the swimming direction for a finite fraction of swimmers from down- to upstream or vice versa, depending on the swimmer position within the channel. Swimmers thus split into two distinct, statistically significant and oppositely swimming majority and minority populations. The onset of population splitting translates into a transition from a self-propulsion-dominated regime to a shear-dominated regime, corresponding to a unimodal-to-bimodal change in the probability distribution function of the swimmer orientation. We present a phase diagram in terms of the swim and flow Péclet numbers showing the separation of these two regimes by a discontinuous transition line. Our results shed further light on the behavior of swimmers in a shear flow and provide an explanation for the previously reported non-monotonic behavior of the mean, near-wall, parallel-to-flow orientation of swimmers with increasing shear strength.

  3. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    NASA Astrophysics Data System (ADS)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  4. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    NASA Technical Reports Server (NTRS)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.

  5. Aerodynamic response of an airfoil with thickness to a longitudinal and transverse periodic gust

    NASA Technical Reports Server (NTRS)

    Hamad, G.; Atassi, H.

    1980-01-01

    The unsteady lift of an airfoil with thickness subject to a two-dimensional periodic gust is analyzed using the recent theory of Goldstein and Atassi. It is found that to properly account for the coupling between the steady potential flow and the unsteady vortical flow, one has to consider the contribution of order alpha-squared (when alpha is steady state disturbance) to the potential flowfield. A closed form analytical formula is then derived for the lift function. The results show strong dependence on the wave members of the gust.

  6. Two and three-dimensional prediffuser combustor studies with air-water mixture

    NASA Technical Reports Server (NTRS)

    Laing, Peter; Ehresman, C. M.; Murthy, S. N. B.

    1993-01-01

    Two- and three-dimensional gas turbine prediffuser-combustor sectors were experimentally studied under a number of mixture and flow conditions in a tunnel operating with a two-phase, air-liquid film-droplet mixture. It is concluded that water vaporization in the combustor causes changes in both local gas temperature and state of vitiation and reduces reaction rates. Substantial accumulation of water and water vapor takes place in pocket over the combustor volume, even when the air-water mixture is steady in time. The accuracy of determining combustor performance changes increases with a better knowledge of the state of the air-water mixture in the primary zone. To establish flame-out conditions it is considered to be necessary to combine the prediction of detailed flowfield and chemical activity with that of flame stability and motion characteristics.

  7. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  8. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE PAGES

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less

  9. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Rebecca L., E-mail: rlb@lanl.gov; Girimaji, Sharath S., E-mail: girimaji@aero.tamu.edu

    2015-12-15

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.« less

  10. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  11. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  12. Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow

    DOE PAGES

    Wan, W. C.; Malamud, Guy; Shimony, A.; ...

    2015-10-01

    This manuscript reports the first observations of the Kelvin-Helmholtz instability evolving from well-characterized seed perturbations in a steady, supersonic flow. The Kelvin-Helmholtz instability occurs when two fluids move parallel to one another at different velocities, and contributes to an intermixing of fluids and transition to turbulence. It is ubiquitous in nature and engineering, including terrestrial systems such as cloud formations, astrophysical systems such as supernovae, and laboratory systems such as fusion experiments. In a supersonic flow, the growth rate of the instability is inhibited due to effects of compressibility. These effects are still not fully understood, and hold the motivationmore » for the current work. The data presented here were obtained by developing a novel experimental platform capable of sustaining a steady shockwave over a precision-machined interface for unprecedented durations. The chosen interface was a well-characterized, single-mode sine wave, allowing us to document the evolution of individual vortices at high resolution. Understanding the behavior of individual vortices is the first of two fundamental steps towards developing a comprehensive model for the Kelvin-Helmholtz instability in a compressible flow. The results of this experiment were well reproduced with 2D hydrodynamic simulations. The platform has been extended to additional experiments, which study the evolution of different hydrodynamic instabilities in steady, supersonic flows.« less

  13. Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, W. C.; Malamud, Guy; Shimony, A.

    This manuscript reports the first observations of the Kelvin-Helmholtz instability evolving from well-characterized seed perturbations in a steady, supersonic flow. The Kelvin-Helmholtz instability occurs when two fluids move parallel to one another at different velocities, and contributes to an intermixing of fluids and transition to turbulence. It is ubiquitous in nature and engineering, including terrestrial systems such as cloud formations, astrophysical systems such as supernovae, and laboratory systems such as fusion experiments. In a supersonic flow, the growth rate of the instability is inhibited due to effects of compressibility. These effects are still not fully understood, and hold the motivationmore » for the current work. The data presented here were obtained by developing a novel experimental platform capable of sustaining a steady shockwave over a precision-machined interface for unprecedented durations. The chosen interface was a well-characterized, single-mode sine wave, allowing us to document the evolution of individual vortices at high resolution. Understanding the behavior of individual vortices is the first of two fundamental steps towards developing a comprehensive model for the Kelvin-Helmholtz instability in a compressible flow. The results of this experiment were well reproduced with 2D hydrodynamic simulations. The platform has been extended to additional experiments, which study the evolution of different hydrodynamic instabilities in steady, supersonic flows.« less

  14. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Aubert, Julien; Thébault, Erwan

    2015-05-01

    In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.

  15. Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1990-01-01

    The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.

  16. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  17. Flow visualization in long neck Helmholtz resonators with grazing flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1976-01-01

    Both oscillating and steady flows were applied to a single plexiglass resonator cavity with colored dyes injected in both the orifice and grazing flow field to record the motion of the fluid. For oscillatory flow, the instantaneous dye streamlines were similar for both the short and long-neck orifices. The orifice flow blockage appears to be independent of orifice length for a fixed amplitude of flow oscillation and magnitude of the grazing flow. The steady flow dye studies showed that the acoustic and steady flow resistances do not necessarily correspond for long neck orifices.

  18. The effect of viscosity on steady transonic flow with a nodal solution topology

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Zank, Gary P.

    1991-01-01

    The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.

  19. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  20. Numerical modeling of flow focusing: Quantitative characterization of the flow regimes

    NASA Astrophysics Data System (ADS)

    Mamet, V.; Namy, P.; Dedulle, J.-M.

    2017-09-01

    Among droplet generation technologies, the flow focusing technique is a major process due to its control, stability, and reproducibility. In this process, one fluid (the continuous phase) interacts with another one (the dispersed phase) to create small droplets. Experimental assays in the literature on gas-liquid flow focusing have shown that different jet regimes can be obtained depending on the operating conditions. However, the underlying physical phenomena remain unclear, especially mechanical interactions between the fluids and the oscillation phenomenon of the liquid. In this paper, based on published studies, a numerical diphasic model has been developed to take into consideration the mechanical interaction between phases, using the Cahn-Hilliard method to monitor the interface. Depending on the liquid/gas inputs and the geometrical parameters, various regimes can be obtained, from a steady state regime to an unsteady one with liquid oscillation. In the dispersed phase, the model enables us to compute the evolution of fluid flow, both in space (size of the recirculation zone) and in time (period of oscillation). The transition between unsteady and stationary regimes is assessed in relation to liquid and gas dimensionless numbers, showing the existence of critical thresholds. This model successfully highlights, qualitatively and quantitatively, the influence of the geometry of the nozzle, in particular, its inner diameter.

  1. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  2. Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence

    1992-01-01

    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.

  3. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component. On the first pass, the user finds that the calculated outlet conditions of the last component do not match the estimated inlet conditions of the first. The user then modifies the estimated inlet conditions of the first component in an attempt to match the calculated values. The user estimated values are called State Variables. The differences between the user estimated values and calculated values are called the Error Variables. The procedure systematically changes the State Variables until all of the Error Variables are less than the user-specified iteration limits. The solution procedure is referred to as SCX. It consists of two phases, the Systems phase and the Controller phase. The X is to imply experimental. SCX computes each next set of State Variables in two phases. In the first phase, SCX fixes the controller positions and modifies the other State Variables by the Newton-Raphson method. This first phase is the Systems phase. Once the Newton-Raphson method has solved the problem for the fixed controller positions, SCX next calculates new controller positions based on Newton's method while treating each sensor-controller pair independently but allowing all to change in one iteration. This phase is the Controller phase. SINFAC is available by license for a period of ten (10) years to approved licensees. The licenced program product includes the source code for the additional routines to SINDA, the SINDA object code, command procedures, sample data and supporting documentation. Additional documentation may be purchased at the price below. SINFAC was created for use on a DEC VAX under VMS. Source code is written in FORTRAN 77, requires 180k of memory, and should be fully transportable. The program was developed in 1988.

  4. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  5. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  6. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  7. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  8. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  9. Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime

    DOE PAGES

    Di Stefano, C. A.; Malamud, G.; Kuranz, C. C.; ...

    2015-03-17

    This work presents direct experimental evidence of long-predicted nonlinear aspects of the Richtmyer-Meshkov (RM) process, in which new modes first arise from the coupling of initially-present modes, and in which shorter-wavelength modes are eventually overtaken by longer-wavelength modes. This is accomplished using a technique we developed employing a long driving laser pulse to create a strong (Mach ~ 8) shock across a well-characterized material interface seeded by a two-mode sinusoidal perturbation. Furthermore, this technique further permits the shock to be sustained, without decay of the high-energy-density flow conditions, long enough for the system to evolve into the nonlinear phase.

  10. Wave dispersion of carbon nanotubes conveying fluid supported on linear viscoelastic two-parameter foundation including thermal and small-scale effects

    NASA Astrophysics Data System (ADS)

    Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai

    2017-01-01

    In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.

  11. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  12. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    NASA Astrophysics Data System (ADS)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  13. A visual study of radial inward choked flow of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.

  14. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as refrigerant. Both heat exchangers feature parallel micro-channels with identical 1x1-mm2 cross-sections. The evaporators are connected in series, with the smaller 152.4-mm long heat exchanger situated upstream of the larger 609.6-mm long heat exchanger. In the steady-state characteristics part, it is shown low qualities are associated with slug flow and dominated by nucleate boiling, and high qualities with annular flow and convective boiling. Important transition points between the different heat transfer regimes are identified as (1) intermittent dryout, resulting from vapor blanket formation in liquid slugs and/or partial dryout in the liquid film surrounding elongated bubbles, (2) incipient dryout, resulting from dry patch formation in the annular film, and (3) complete dryout, following which the wall has to rely entirely on the mild cooling provided by droplets deposited from the vapor core. In the transient characteristics part, heat transfer measurement and high speed video are used to investigate variations of heat transfer coefficient with quality for different mass velocities and heat fluxes, as well as transient fluid flow and heat transfer behavior. An important transient phenomenon that influences both fluid flow and heat transfer is a liquid wave composed of remnants of liquid slugs from the slug flow regime. The liquid wave serves to replenish dry wall patches in the slug flow regime and to a lesser extent the annular regime. Unlike small heat sinks employed in the electronics industry, TCS heat sinks are characterized by large length-to-diameter ratio, for which limited information is presently available. The large length-to-diameter ratio of 609.6 is especially instrumental to capturing detailed axial variations of flow pattern and corresponding variations in local heat transfer coefficient. High-speed video analysis of the inlet plenum shows appreciable vapor backflow under certain operating conditions, which is also reflected in periodic oscillations in the measured pressure drop. In fact, the backflow frequency captured by video matches closely the frequency obtained from Fourier analysis of the pressure drop signal. It is shown the periodic oscillations and vapor backflow are responsible for initiating intermittent dryout and appreciable drop in local heat transfer coefficient in the downstream regions of the channels. A parametric study of oscillation frequency shows a dependence on four dimensionless parameters that account for amount of vapor generation, subcooling, and upstream liquid length, in addition to Weber number. A new correlation for oscillation frequency is constructed that captures the frequency variations relative to these individual parameters. (Abstract shortened by ProQuest.).

  15. A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; John, J.

    1996-01-01

    The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the phase averaging techniques. The temporal distribution of velocity and Reynolds stress components obtained in a stationary frame of reference are transformed to a spatial distribution in a relative frame of reference. Profiles of phase-averaged velocity and Reynolds stress distributions in the relative frame of reference and similarity coordinates are presented. The velocity defect and Reynolds stress distributions agree with the results of the wake development behind a stationary cylinder in the curved channel at zero streamwise pressure gradient. The phase-averaged third-order correlations, presented in the relative frame of reference and similarity coordinates, show pronounced asymmetric features.

  16. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  17. Parallel solution of high-order numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Lin, Avi; Liou, May-Fun; Blech, Richard A.

    1993-01-01

    A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained.

  18. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  19. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.

    PubMed

    Chaudhuri, Pinaki; Horbach, Jürgen

    2014-10-01

    Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.

  20. Multishot EPI-SSFP in the heart.

    PubMed

    Herzka, Daniel A; Kellman, Peter; Aletras, Anthony H; Guttman, Michael A; McVeigh, Elliot R

    2002-04-01

    Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. Copyright 2002 Wiley-Liss, Inc.

  1. Measurements of Combined Axial Mass and Heat Transport in He II.

    ERIC Educational Resources Information Center

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  2. An Evaluation of the NEKTON Program

    DTIC Science & Technology

    1990-09-01

    features could be studied. Test cases were chosen for which experimental data or analytic solutions exist. These test cases verify NEKTON’s unsteady flow ...including steady and unsteady incompressible flow problems in two or three spatial dimensions. NEKTON version 2.6, which was evaluated for this... unsteady flow decay of a free surface moderate [7] 2-D laminar flow flow past a cylinder 100 [7] 3-D Stokes flow spiral groove thrust bearing < 1 [8

  3. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  4. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  5. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  6. Features of two-phase flow in a microchannel of 0.05×20 mm

    NASA Astrophysics Data System (ADS)

    Ronshin, Fedor

    2017-10-01

    We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.

  7. An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.

  8. Experimental study of vortex breakdown in a cylindrical, swirling flow

    NASA Technical Reports Server (NTRS)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  9. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-03-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping (CFP) in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model including two steady-state flow equations with different hydraulic parameters for the skin and formation zones. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the boundary in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow component due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the CFP have good accuracy if satisfying the criterion.

  10. Effect of thermal noise on vesicles and capsules in shear flow.

    PubMed

    Abreu, David; Seifert, Udo

    2012-07-01

    We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic models predict only pure tank treading or tumbling.

  11. An exponential time-integrator scheme for steady and unsteady inviscid flows

    NASA Astrophysics Data System (ADS)

    Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili

    2018-07-01

    An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.

  12. Numerical analysis of steady and transient natural convection in an enclosed cavity

    NASA Astrophysics Data System (ADS)

    Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul

    2017-06-01

    The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.

  13. Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport-of-intensity equation.

    PubMed

    Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M

    2004-07-20

    We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.

  14. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  15. Rethinking wave-kinetic theory applied to zonal flows

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey

    2017-10-01

    Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.

  16. Magnetohydrodynamic drag reduction and its efficiency

    NASA Astrophysics Data System (ADS)

    Shatrov, V.; Gerbeth, G.

    2007-03-01

    We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.

  17. A pressure-gradient mechanism for vortex shedding in constricted channels

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  18. CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.

  19. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    1995-04-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids (LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The graphical plots. The approach uses ARMOS ©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic simulations of free oil area changes to pumping rates are analyzed. Pumping rates are determined that achieve LNAPL plume containment at different times (i.e. 90, 180 and 360 days) for a planning period of 360 days. These pumping rates are used in reverse order as a stepwise (monotonically increasing) pumping strategy. This stepwise pumping strategy is analyzed further by performing additional simulations at different pumping rates for the last pumping period. The final stepwise pumping strategy is varied by factors of -25% and +30% to evaluate sensitivity in the free oil recovery process. Stepwise pumping is compared to steady pumping rates to determine the best free oil recovery strategy. Stepwise pumping is shown to improve oil recovery by increasing recoveredoil volume (11%) and decreasing residual oil (15%) when compared with traditional steady pumping strategies. The best stepwise pumping strategy recovers more free oil by reducing the amount of residual oil left in the system due to pumping drawdown. This stepwise pumping pproach can be used to enhance free oil recovery and provide for cost-effective design and management of LNAPL cleanup.

  20. Flow field in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2015-02-01

    The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.

  1. Development and testing of pulsed and rotating detonation combustors

    NASA Astrophysics Data System (ADS)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.

  2. Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J

    2016-09-01

    Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Experimental Investigation of a High Head Model Francis Turbine During Steady-State Operation at Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Bergan, Carl; Goyal, Rahul; Cervantes, Michel J.; Dahlhaug, Ole G.

    2016-11-01

    Francis-99 is a set of workshops aiming to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) focused on steady state conditions. Some concerns were raised regarding uncertainty in the measurements, mainly that there was no clear vortex rope at the Part Load (PL) condition, and that the flow exhibited relatively large asymmetry. The present paper addresses these concerns in order to ensure the quality of the data presented in further workshops. To answer some of these questions, a new set of measurements were performed on the Francis- 99 model at Waterpower Laboratory at the Norwegian University of Science and Technology (NTNU). In addition to PL, two other operating conditions were considered, for further use in transient measurements, Best Efficiency (BEP) and High Load (HL). The experiments were carried out at a head of 12 m, with a runner rotational speed of 333 revolutions per minute (rpm). The guide vane opening angle were 6.72°, 9.84° and 12.43° for PL, BEP and HL, respectively. The part load condition has been changed from the first workshop, to ensure a fully developed Rotating Vortex Rope (RVR). The velocity and pressure measurements were carried out in the draft tube cone using 2D PIV and six pressure sensors, respectively. The new PL condition shows a fully developed rotating vortex rope (RVR) in both the frequency analysis and in the phase resolved data. In addition, the measurements confirm an asymmetric flow leaving the runner, as was a concern in the first Francis-99 workshop. This asymmetry was detected at both design and off-design conditions, with a stronger effect during off design.

  4. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  5. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    NASA Astrophysics Data System (ADS)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  6. Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae

    2015-03-01

    Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.

  7. Method and apparatus for adapting steady flow with cyclic thermodynamics

    DOEpatents

    Swift, Gregory W.; Reid, Robert S.; Ward, William C.

    2000-01-01

    Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.

  8. Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui

    2007-01-01

    This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.

  9. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  10. Fluctuating Pressure Environments and Hydrodynamic Radial Force Mitigation for a Two Blade Unshrouded Inducer

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2011-01-01

    Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small decrease in radial load along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the flow environment.

  11. An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow

    NASA Technical Reports Server (NTRS)

    Dusto, A. R.; Epton, M. A.

    1980-01-01

    An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.

  12. Inertial instabilities in a mixing-separating microfluidic device

    NASA Astrophysics Data System (ADS)

    Domingues, Allysson; Poole, Robert; Dennis, David

    2017-11-01

    Combining and separating fluids has many industrial and biomedical applications. This numerical and experimental study explores inertial instabilities in a so-called mixing-separating cell micro-geometry which could potentiality be used to enhance mixing. Our microfluidic mixing-separating cell consists of two straight square parallel channels with flow from opposite directions with a central gap that allows the streams to interact, mix or remain separate (often referred to as the `H' geometry). A stagnation point is generated at the centre of symmetry due to the two opposed inlets and outlets. Under creeping flow conditions (Reynolds number [ Re 0 ]) the flow is steady, two-dimensional and produces a sharp symmetric boundary between fluids stream entering the geometry from opposite directions. For Re > 30 , an inertial instability appears which leads to the generation of a central vortex and the breaking of symmetry, although the flow remains steady. As Re increases the central vortex divides into two vortices. Our experimental and numerical investigations both show the same phenomena. The results suggest that the effect observed can be exploited to enhance mixing in biomedical or other applications. Work supported by CNPq Grant 203195/2014-0.

  13. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.

    PubMed

    Kienle, A; Patterson, M S

    1997-09-01

    We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.

  14. Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1991-01-01

    Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in a high gradient region or the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational costs. A detailed description is given of the enrichment and coarsening procedures and comparisons with alternative results and experimental data are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.

  15. Steady flows in the chromosphere and transition-zone above active regions as observed by OSO-8

    NASA Technical Reports Server (NTRS)

    Lites, B. W.

    1980-01-01

    Two years of data from the University of Colorado ultraviolet spectrometer aboard OSO-8 were searched for steady line-of-sight flows in the chromosphere and transition-zone above active regions. The most conspicuous pattern that emerges from this data set is that many sunspots show persistent blueshifts of transition-zone lines indicating velocities of about 20 km/s with respect to the surrounding plage areas. The data show much smaller shifts in ultraviolet emission lines arising from the chromosphere: the shifts are frequently to the blue, but sometimes redshifts do occur. Plage areas often show a redshift of the transition-zone lines relative to the surrounding quiet areas, and a strong gradient of the vertical component of the velocity is evident in many plages. One area of persistent blueshift was observed in the transition-zone above an active region filament. The energy requirement of these steady flows over sunspots is discussed.

  16. Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Yang, Henry T. Y.; Batina, John T.

    1991-01-01

    Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with alternative results and experimental data to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.

  17. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-06-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model describing steady-state radial and vertical flows in a two-zone aquifer. Hydraulic parameters in these two zones can be different but are assumed homogeneous in each zone. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the aquifer domain in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the constant-flux pumping have good accuracy if satisfying the criterion.

  18. Modeling static and dynamic human cardiovascular responses to exercise.

    PubMed

    Stremel, R W; Bernauer, E M; Harter, L W; Schultz, R A; Walters, R F

    1975-08-01

    A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.

  19. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  20. Acceleration processes in the quasi-steady magnetoplasmadynamic discharge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Boyle, M. J.

    1974-01-01

    The flow field characteristics within the discharge chamber and exhaust of a quasi-steady magnetoplasmadynamic (MPD) arcjet were examined to clarify the nature of the plasma acceleration process. The observation of discharge characteristics unperturbed by insulator ablation and terminal voltage fluctuations, first requires the satisfaction of three criteria: the use of refractory insulator materials; a mass injection geometry tailored to provide propellant to both electrode regions of the discharge; and a cathode of sufficient surface area to permit nominal MPD arcjet operation for given combinations of arc current and total mass flow. The axial velocity profile and electromagnetic discharge structure were measured for an arcjet configuration which functions nominally at 15.3 kA and 6 g/sec argon mass flow. An empirical two-flow plasma acceleration model is advanced which delineates inner and outer flow regions and accounts for the observed velocity profile and calculated thrust of the accelerator.

  1. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  2. Two-phase simulation-based location-allocation optimization of biomass storage distribution

    USDA-ARS?s Scientific Manuscript database

    This study presents a two-phase simulation-based framework for finding the optimal locations of biomass storage facilities that is a very critical link on the biomass supply chain, which can help to solve biorefinery concerns (e.g. steady supply, uniform feedstock properties, stable feedstock costs,...

  3. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    NASA Astrophysics Data System (ADS)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  4. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  5. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.

  6. New turbidity current model based on high-resolution monitoring of the longest flow ever measured

    NASA Astrophysics Data System (ADS)

    Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed

    2016-04-01

    Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting chance to explore the full range of turbidity current behaviour in nature.

  7. Propagations of fluctuations and flow separation on an unsteadily loaded airfoil

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Lewalle, Jacques

    2014-11-01

    We analyze pressure data from 18 taps located along the surface of a DU-96-W180 airfoil in bothand steady flow conditions. The conditions were set to mimic the flow conditions experienced by a wind turbine blade under unsteady loading to test and to quantify the effects of several flow control schemes. Here we are interested in the propagation of fluctuations along the pressure and suction sides, particularly in relation to the fluctuating separation point. An unsteady phase of the incoming fluctuations is defined using Morlet wavelets, and phase-conditioned cross-correlations are calculated. Using wavelet-based pattern recognition, individual events in the pressure data are identified with several different algorithms utilizing both the original time series pressure signals and their corresponding scalograms. The data analyzed in this study was collected by G. Wang in the Skytop anechoic chamber at Syracuse University in the spring of 2013; the work of Zhe Bai on this data is also acknowledged.

  8. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    NASA Astrophysics Data System (ADS)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  9. Solar photocatalytic gas-phase degradation of n-decane--a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO₂ films.

    PubMed

    Miranda, Sandra M; Lopes, Filipe V S; Rodrigues-Silva, Caio; Martins, Susana D S; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    Cellulose acetate monoliths (CAM) were used as the substrate for the deposition of TiO2 films to produce honeycombed photoactive structures to fill a tubular photoreactor equipped with a compound parabolic collector. By using such a setup, an efficient single-pass gas-phase conversion was achieved in the degradation of n-decane, a model volatile organic compound. The CAM three-dimensional, gas-permeable transparent structure with a rugged surface enables a good adhesion of the catalytic coating. It also provides a rigid structure for packing the tubular photoreactor, and maximizing the illuminated catalyst surface. The efficiency of the photocatalytic oxidation (PCO) process on n-decane degradation was evaluated under different operating conditions, such as feeding concentration (73 and 146 ppm), gas stream flow rate (73, 150, and 300 mL min(-1)), relative humidity (3 and 25 %), and UV irradiance (18.9, 29.1, and 38.4 WUV m(-2)). The results show that n-decane degradation by neat photolysis is negligible, but mineralization efficiencies of 86 and 82 % were achieved with P25-CAM and SG-CAM, respectively, for parent pollutant conversions above 95 %, under steady-state conditions. A mass transfer model, considering the mass balance to the plug-flow packed photoreactor, and PCO reaction given by a Langmuir-Hinshelwood bimolecular non-competitive two types of sites equation, was able to predict well the PCO kinetics under steady-state conditions, considering all the operational parameters tested. Overall, the performance of P25-CAM was superior taking into account mineralization efficiency, cost of preparation, surface roughness, and robustness of the deposited film.

  10. Nonlinear Analysis of Cavitating Propellers in Nonuniform Flow

    DTIC Science & Technology

    1992-10-16

    Helmholtz more than a century ago [4]. The method was later extended to treat curved bodies at zero cavitation number by Levi - Civita [4]. The theory was...122, 1895. [63] M.P. Tulin. Steady two -dimensional cavity flows about slender bodies . Technical Report 834, DTMB, May 1953. [64] M.P. Tulin...iterative solution for two -dimensional flows is remarkably fast and that the accuracy of the first iteration solution is sufficient for a wide range of

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less

  12. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    DOE PAGES

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    2016-10-03

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less

  13. Well balancing of the SWE schemes for moving-water steady flows

    NASA Astrophysics Data System (ADS)

    Caleffi, Valerio; Valiani, Alessandro

    2017-08-01

    In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.

  14. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  15. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  16. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    PubMed Central

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  17. A new Lagrangian method for three-dimensional steady supersonic flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.

  18. Changes in migration mode of brine and supercritical CO2 in imbibition process under steady flow state of very slow fluid velocities

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Zhang, Yi; Nishizawa, Osamu; Xue, Ziqiu

    2018-05-01

    Relative permeability curves and flow mechanisms of CO2 and brine in Berea sandstone were investigated during a two-phase flow imbibition process, where CO2 saturation in the rock decreased from 55 per cent to 9 per cent by stepwise decrease of CO2/brine injection ratios. Total fluid flow velocity was 4.25 × 10-6 m/s, corresponding to the capillary number of order ˜10-8 for CO2 flow. The relative permeability curves showed a slight hysteresis compared to those during the drainage process. Local CO2 saturation and the differential pressure showed temporal fluctuations when the average differential pressure showed constant values or very small trends. The fluctuations in local CO2 saturation correlate with local porosity distributions. The differential pressure between the inlet and outlet ends showed the largest fluctuation when the CO2/brine ratio equals to one. A final brine-only injection resulted in more CO2 trapped within low porosity zones. These results suggest important roles of ganglion dynamics in the low flow rate ranges, where fluid pathways undergo repetitive brine snap-off and coalescence of CO2 ganglia that causes morphological changes in distributions of CO2 pathways.

  19. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  20. Numerical investigation of Dean vortices in a curved pipe

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A.; Bosioc, A.; Stanciu, R.; Bernad, E. S.

    2013-10-01

    This study is devoted to the three-dimensional numerical simulation of developing secondary flows of Newtonian fluid through a curved circular duct. The numerical simulations produced for different Dean numbers show clearly the presence of two steady Dean vortices. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index.

  1. Symposium on Numerical and Physical Aspects of Aerodynamic Flows, 4th, California State University, Long Beach, Jan. 16-19, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Papers are presented on the calculation of flows of relevance to aircraft, ships, and missiles, with emphasis on the solution of two-dimensional unsteady and three-dimensional steady equations. Papers are also presented describing experimental work and the representation of the onset of transition from laminar to turbulent flow.

  2. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  3. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the buoyancy effect can be expressed as a sum of two buoyancy effects from two-phase flows, i.e., oil-water and oil-gas systems. We propose an upwind scheme for the buoyancy flux term from three-phase flow as a sum of two buoyancy terms from two-phase flows. The upwind direction of the buoyancy flux in two phase flow is always fixed such that the heavier fluid goes downward and the lighter fluid goes upward. It is shown that the Implicit Hybrid-Upwinding (IHU) scheme for three-phase flow is locally conservative and produces physically-consistent numerical solutions. As in two phase flow, the primary advantage of the IHU scheme is that the flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions as a function of time, or (Newton) iterations. This is in contrast to the standard phase-potential-based upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the transition between co-current and counter-current flows.

  4. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  5. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  6. Airflow structures and nano-particle deposition in a human upper airway model

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.

  7. 40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the minimum... mode-average values instead of continuous measurements for discrete mode steady-state duty cycles... molar flow data. This involves determination of at least two of the following three quantities: Raw...

  8. Do steady fast magnetic dynamos exist?

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Ott, Edward; Hanson, James D.; Kan, Ittai

    1989-01-01

    This paper considers the question of the existense of a steady fast kinematic magnetic dynamo for a conducting fluid with a steady velocity field and vanishingly small electrical resistivity. The analysis of examples of steady dynamos, found by considering the zero-resistivity dynamics, indicated that, for sufficiently small resistivity, dynamo action can indeed occur in steady smooth three-dimensional chaotic fluid flows and that fast dynamos should consequently be a typical occurrence for such flows.

  9. Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1998-01-01

    A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.

  10. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  11. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  12. The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Shishkov, Olga; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2016-01-01

    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence.

  13. Experimental Investigation and Analysis of HEC-6 River Morphological Model

    NASA Astrophysics Data System (ADS)

    Tingsanchali, Tawatchai; Supharatid, Seree

    1996-05-01

    Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.

  14. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.

  15. Solution of transonic flows by an integro-differential equation method

    NASA Technical Reports Server (NTRS)

    Ogana, W.

    1978-01-01

    Solutions of steady transonic flow past a two-dimensional airfoil are obtained from a singular integro-differential equation which involves a tangential derivative of the perturbation velocity potential. Subcritical flows are solved by taking central differences everywhere. For supercritical flows with shocks, central differences are taken in subsonic flow regions and backward differences in supersonic flow regions. The method is applied to a nonlifting parabolic-arc airfoil and to a lifting NACA 0012 airfoil. Results compare favorably with those of finite-difference schemes.

  16. Digital Filters for Digital Phase-locked Loops

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1985-01-01

    An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.

  17. Adequate model complexity for scenario analysis of VOC stripping in a trickling filter.

    PubMed

    Vanhooren, H; Verbrugge, T; Boeije, G; Demey, D; Vanrolleghem, P A

    2001-01-01

    Two models describing the stripping of volatile organic contaminants (VOCs) in an industrial trickling filter system are developed. The aim of the models is to investigate the effect of different operating conditions (VOC loads and air flow rates) on the efficiency of VOC stripping and the resulting concentrations in the gas and liquid phases. The first model uses the same principles as the steady-state non-equilibrium activated sludge model Simple Treat, in combination with an existing biofilm model. The second model is a simple mass balance based model only incorporating air and liquid and thus neglecting biofilm effects. In a first approach, the first model was incorporated in a five-layer hydrodynamic model of the trickling filter, using the carrier material design specifications for porosity, water hold-up and specific surface area. A tracer test with lithium was used to validate this approach, and the gas mixing in the filters was studied using continuous CO2 and O2 measurements. With the tracer test results, the biodegradation model was adapted, and it became clear that biodegradation and adsorption to solids can be neglected. On this basis, a simple dynamic mass balance model was built. Simulations with this model reveal that changing the air flow rate in the trickling filter system has little effect on the VOC stripping efficiency at steady state. However, immediately after an air flow rate change, quite high flux and concentration peaks of VOCs can be expected. These phenomena are of major importance for the design of an off-gas treatment facility.

  18. Two phase flow bifurcation due to turbulence: transition from slugs to bubbles

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-09-01

    The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.

  19. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    NASA Technical Reports Server (NTRS)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  20. Steady and Unsteady Velocity Measurements in a Small Turbocharger Turbine with Computational Validation

    NASA Astrophysics Data System (ADS)

    Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.

    2006-07-01

    The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to experiment performance and LDV measurements. With the steady inlet boundary condition, a high level of accuracy was achieved when compared to the experimental performance and velocity field. The velocity along the leading edge showed the same discrepancy as the single passage analysis that is with the radial and axial component from mid span to the blade tip. At the trailing edge features identified in the experimental data are identified in the numerical results; the velocity field appears more 'diffused' across the plane as per the experimental data than from the single passage analysis. With the pulsating inlet boundary, the predicted velocity traces in the volute and close to the turbine lead and trailing edge show excellent agreement in both form (against time) and magnitude.

  1. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  2. MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.

    1999-01-01

    The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurringmore » in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.« less

  3. Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth

    NASA Technical Reports Server (NTRS)

    Chang, C. J.; Brown, R. A.

    1983-01-01

    The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.

  4. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  5. DSMC simulation of two-phase plume flow with UV radiation

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  6. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  7. CO 2 Leakage Into Shallow Aquifers: Modeling CO 2 Gas Evolution and Accumulation at Interfaces of Heterogeneity

    DOE PAGES

    Porter, Mark L.; Plampin, Michael; Pawar, Rajesh; ...

    2014-12-31

    The physicochemical processes associated with CO 2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO 2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool thatmore » is capable of capturing the experimentally observed out ow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO 2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO 2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.« less

  8. Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball

    NASA Astrophysics Data System (ADS)

    Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.

  9. Influence of temperature on the emission of di-(2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC.

    PubMed

    Clausen, Per Axel; Liu, Zhe; Kofoed-Sørensen, Vivi; Little, John; Wolkoff, Peder

    2012-01-17

    Emissions of di-(2-ethylhexyl) phthalate (DEHP) from one type of polyvinylchloride (PVC) flooring with approximately 13% (w/w) DEHP as plasticizer were measured in the Field and Laboratory Emission Cell (FLEC). The gas-phase concentrations of DEHP versus time were measured at air flow rate of 450 mL·min(-1) and five different temperatures: 23 °C, 35 °C, 47 °C, 55 °C, and 61 °C. The experiments were terminated two weeks to three months after steady-state was reached and the interior surface of the FLECs was rinsed with methanol to determine the surface concentration of DEHP. The most important findings are (1) DEHP steady-state concentrations increased greatly with increasing temperature (0.9 ± 0.1 μg·m(-3), 10 ± 1 μg·m(-3), 38 ± 1 μg·m(-3), 91 ± 4 μg·m(-3), and 198 ± 5 μg·m(-3), respectively), (2) adsorption to the chamber walls decreased greatly with increasing temperature (measured partition coefficient between FLEC air and interior surface are: 640 ± 146 m, 97 ± 20 m, 21 ± 5 m, 11 ± 2 m, and 2 ± 1 m, respectively), (3) gas-phase DEHP concentration in equilibrium with the vinyl flooring surface is close to the vapor pressure of pure DEHP, and (4) with an increase of temperature in a home from 23 to 35 °C, the amount of DEHP in the gas- and particle-phase combined is predicted to increase almost 10-fold. The amount in the gas-phase increases by a factor of 24 with a corresponding decrease in the amount on the airborne particles.

  10. Reactive Orthotropic Lattice Diffuser for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor)

    2016-01-01

    An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.

  11. Tear dynamics in healthy and dry eyes.

    PubMed

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  12. Stochastic methods for analysis of power flow in electric networks

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  13. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  14. Dynamics of driven flow with exclusion in graphenelike structures

    NASA Astrophysics Data System (ADS)

    Stinchcombe, R. B.; de Queiroz, S. L. A.

    2015-05-01

    We present a mean-field theory for the dynamics of driven flow with exclusion in graphenelike structures, and numerically check its predictions. We treat first a specific combination of bond transmissivity rates, where mean field predicts, and numerics to a large extent confirms, that the sublattice structure characteristic of honeycomb networks becomes irrelevant. Dynamics, in the various regions of the phase diagram set by open boundary injection and ejection rates, is then in general identical to that of one-dimensional systems, although some discrepancies remain between mean-field theory and numerical results, in similar ways for both geometries. However, at the critical point for which the characteristic exponent is z =3 /2 in one dimension, the mean-field value z =2 is approached for very large systems with constant (finite) aspect ratio. We also treat a second combination of bond (and boundary) rates where, more typically, sublattice distinction persists. For the two rate combinations, in continuum or late-time limits, respectively, the coupled sets of mean-field dynamical equations become tractable with various techniques and give a two-band spectrum, gapless in the critical phase. While for the second rate combination quantitative discrepancies between mean-field theory and simulations increase for most properties and boundary rates investigated, theory still is qualitatively correct in general, and gives a fairly good quantitative account of features such as the late-time evolution of density profile differences from their steady-state values.

  15. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  16. A Low-Erosion Starting Technique for High-Performance Arcjets

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Curran, Francis M.

    1994-01-01

    The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.

  17. An analytic study of nonsteady two-phase laminar boundary layer around an airfoil

    NASA Technical Reports Server (NTRS)

    Hsu, Yu-Kao

    1989-01-01

    Recently, NASA, FAA, and other organizations have focused their attention upon the possible effects of rain on airfoil performance. Rhode carried out early experiments and concluded that the rain impacting the aircraft increased the drag. Bergrum made numerical calculation for the rain effects on airfoils. Luers and Haines did an analytic investigation and found that heavy rain induces severe aerodynamic penalties including both a momentum penalty due to the impact of the rain and a drag and lift penalty due to rain roughening of the airfoil and fuselage. More recently, Hansman and Barsotti performed experiments and declared that performance degradation of an airfoil in heavy rain is due to the effective roughening of the surface by the water layer. Hansman and Craig did further experimental research at low Reynolds number. E. Dunham made a critical review for the potential influence of rain on airfoil performance. Dunham et al. carried out experiments for the transport type airfoil and concluded that there is a reduction of maximum lift capability with increase in drag. There is a scarcity of published literature in analytic research of two-phase boundary layer around an airfoil. Analytic research is being improved. The following assumptions are made: the fluid flow is non-steady, viscous, and incompressible; the airfoil is represented by a two-dimensional flat plate; and there is only a laminar boundary layer throughout the flow region. The boundary layer approximation is solved and discussed.

  18. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  19. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.

  20. Hypervelocity flows of argon produced in a free piston driven expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J.; Stalker, R. J.

    1992-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes. Test section measurements of pitot pressure, static pressure, and flat plate heat transfer rates are used to confirm the presence of quasi-steady flow, and comparisons are made with predictions for the equilibrium flow of an ideal, ionizing, monatomic gas. The results of this work indicate that expansion tubes can be used to generate quasi-steady hypersonic flows in argon at speeds in excess of Earth orbital velocity.

Top