Investigation of component failure rates for pulsed versus steady state tokamak operation
Cadwallader, L.C.
1992-07-01
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
NASA Astrophysics Data System (ADS)
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.
2016-06-01
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN , despite strong internal transport barriers. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. More investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.
2016-06-20
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β_{p} and β_{N} despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β_{p} plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...
2016-06-20
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electronmore » energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less
Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation
NASA Astrophysics Data System (ADS)
Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team
2014-10-01
It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
High Internal Inductance for High βN Steady-State Tokamak Operation
NASA Astrophysics Data System (ADS)
Ferron, J. R.
2015-11-01
An attractive scenario for steady-state tokamak operation at relatively high values of the internal inductance, li > 1 , has been demonstrated at DIII-D. The more peaked current density profile leads to reduced core energy transport and higher ideal stability limits that could eliminate the need for n >= 1 active stabilization coils at βN ~ 4, or enable βN ~ 5 with wall stabilization. The scenario's potential is shown by discharges at li ~ 1.3 with high bootstrap current fraction fBS ~0.8 , high plasma pressure βN ~ 5 and excellent confinement H98 (y , 2) ~ 1.8. This very high βN discharge with q95 =7.5 has noninductive current fraction fNI > 1 and too much bootstrap current in the H-mode pedestal, so li decreases with time. To achieve a stationary current profile, the key is to maximize βN and fBS while maintaining li high enough for stability through choice of q95 or by reduced pedestal current. DIII-D modeling shows that with q95 reduced to lower fBS to ~ 0.5, a self-consistent equilibrium has li ~ 1.07 and βN ~ 4 (below the n=1 no-wall limit) with q95 ~ 6. The remainder of the current can be externally-driven near the axis where the efficiency is high. Discharge tests with similar li in the ITER shape at q95=4.8 have reached fNI=0.7, fBS=0.4 at βN ~ 3.5 with performance appropriate for the ITER Q=5 mission, H89βN /q952~ 0.3. The li was shown to increase further above 1, to enable higher self-consistent fBS and βN, by reducing pedestal pressure and bootstrap current density through application of n = 3 resonant magnetic fields. With similar fields for ELM mitigation, and neutral beam and electron cyclotron current drive sources for near-axis current drive, the high li scenario is a potential option for ITER. The increased core confinement can help mitigate the effect of reduced pedestal pressure. Supported by US DOE under DE-FC02-04ER54698.
Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State
Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.
2000-06-06
A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.
Steady state self-induced current in tokamak
Gott, Yu. V.; Yurchenko, E. I.
2009-11-15
A model, which may make it possible to self-consistently calculate the self-driven current in tokamaks taking into account asymmetry and bootstrap currents, is presented. It is shown that the described self-driven current can provide steady-state tokamak operation without the seed current produced with the help of additional methods. The total self-consistent, self-driven current does not depend on magnetic field magnitude and is proportional to the square root from plasma pressure. The experimental data obtained in the National Spherical Torus Experiment are satisfactorily described by this model.
A non-inductively driven steady state tokamak reactor
Fenstermacher, M.E.; Devoto, R.S.; Bulmer, R.H.; Lee, J.D.; Miller, J.R.; Schultz, J.
1988-09-20
The physics and engineering guidelines for the ITER device are shown to lead to viable and attractive operating points for a steady state tokamak power reactor. Non-inductive current drive is provided in steady state by high energy neutral beam injection in the plasma core, lower hybrid slow waves in the outer regions of the plasma and bootstrap current. Plasma gain Q (/equivalent to/fusion power/input power) in excess of 20 and average neutron wall loading,
NASA Astrophysics Data System (ADS)
Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.
2015-08-01
Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.
System studies for quasi-steady-state advanced physics tokamak
Reid, R.L.; Peng, Y.K.M.
1983-11-01
Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.
Steady-state inductive spheromak operation
Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki
1987-01-01
The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.
Steady-state inductive spheromak operation
Janos, A.C.; Jardin, S.C.; Yamada, M.
1985-02-20
The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.
Simulations of KSTAR high performance steady state operation scenarios
NASA Astrophysics Data System (ADS)
Na, Yong-Su; Kessel, C. E.; Park, J. M.; Yi, Sumin; Becoulet, A.; Sips, A. C. C.; Kim, J. Y.
2009-11-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; βN above 3, H98(y, 2) up to 2.0, fBS up to 0.76 and fNI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of qmin is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally
Simulations of KSTAR high performance steady state operation scenarios
Na, Y S; Kessel, C. E.; Park, Jin Myung; Yi, Sumin; Becoulet, A.; Sips, A C C; Kim, J Y
2009-01-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work
NASA Astrophysics Data System (ADS)
Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Mansfield, D. K.; Maingi, R.; Zou, X. L.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.; East Team
2015-02-01
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H -mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.
Steady state plasma operation in RF dominated regimes on EAST
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N. Li, J. G.
2015-12-10
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Steady state plasma operation in RF dominated regimes on EAST
NASA Astrophysics Data System (ADS)
Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N.; Li, J. G.
2015-12-01
Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H98˜1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te˜4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.
Diagnostics and steady-state high power operation
NASA Astrophysics Data System (ADS)
Laviron, Clément
2003-03-01
TORE SUPRA has now been upgraded to handle high power plasmas for very long duration. It came back into operation in 2001, and the goals are to extend the performances, in power and in duration, to be expressed in terms of energy. The design is such that a plasma discharge of 25 MW during 1000 s could be sustained, with actively cooled components in a steady-state condition. This corresponds to 25 GJ, orders of magnitude above other existing tokamaks and relevant to ITER conditions. The importance of diagnostics for missions other than physics understanding increases, such as machine operation or safety control. All TORE SUPRA diagnostics have been revisited to take into account these new constraints. Only a few of them did not need to be modified, most had to be adapted, upgraded, or even completely rebuilt. The main constraint deals with the thermal load on diagnostic components, the need to optimize the geometry and develop specific protections often with active cooling. The specific developments now implemented and operational on TORE SUPRA will be presented. Another requirement concerns the need for more control loops in order to maintain optimized modes of plasma operation for very long periods. Diagnostics are operated in real time, with the ability to transmit any kind of pertinent information on a fast time scale. This requires strict procedures, higher reliability, and stability of calibration of the relevant diagnostics. In addition, data can be accessed in real time, without waiting for the end of the pulse.
Steady-state and non-steady state operation of counter-current chromatography devices.
Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A
2013-11-01
Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors
Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.
1983-11-01
Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles.
Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project
Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.
1996-01-01
In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}
Long Pulse Operation on Tore-Supra: Towards Steady State
Moreau, P.; Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Monier-Garbet, P.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G. T.; Kazarian, F.; Mazon, D.
2006-01-15
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.
Steady-state operation of spheromaks by inductive techniques
Janos, A.
1984-04-01
A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation.
Progress Toward Steady-State Operation on Tore Supra
NASA Astrophysics Data System (ADS)
J, Jacquinot; G, T. Hoang
2004-02-01
Important technological and physics issues related to steady-state operation required for next step are being examined on Tore Supra, after a major upgrade of internal components in order to increase the heat extraction capability to 25 MW for 1000 s. Here, we show first experimental results, where all the plasma facing components were actively cooled during pulses exceeding four minutes, with reactor-relevant heat load. New physics was observed in non-inductively driven plasmas, including a stationary peaked radial profile of the plasma density generated by an anomalous inward pinch; and a regime characterized by sinusoidal oscillations of central electron temperature, governed by non-linear coupling between heat transport and plasma current analogous to a predator-prey mechanism.
NASA Astrophysics Data System (ADS)
Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.
2015-06-01
This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.
An Operational Definition of the Steady State in Enzyme Kinetics.
ERIC Educational Resources Information Center
Barnsley, E. A.
1990-01-01
The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)
An Operational Definition of the Steady State in Enzyme Kinetics.
ERIC Educational Resources Information Center
Barnsley, E. A.
1990-01-01
The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)
NASA Astrophysics Data System (ADS)
Lee, G. S.; Na, Yong-Su; Becoulet, A.; Ide, S.; Kessel, C. E.; Komori, A.; Kuteev, B. V.; Mank, G.; Olstad, R. A.; Sarkar, B.; Sips, A. C. C.; van Houtte, D.; Vdovin, V. L.
2008-08-01
This report summarizes the contributions presented at the 5th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices, held in Daejeon, Republic of Korea, 14-17 May 2007. The main topics of the meeting were overview and superconducting devices, long pulse operation and advanced tokamak, steady state fusion technology, heating and current drive, particle control and power exhaust and ITER-related issues.
Advanced fueling system for steady-state operation of a fusion reactor
Raman, R.
2008-07-15
Steady-state Advanced Tokamak scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. A precision fuelling system has the capability for controlling the fusion burn by maintaining the required pressure profile to maximize the bootstrap current fraction. An advanced fuelling system based on Compact Toroid (CT) injection has the potential to meet these needs while simultaneously simplifying the requirements of the tritium handling systems. Simpler engineering systems would reduce reactor construction and maintenance cost through increased reliability. A CT fueling system is described together with the associated tritium handling requirements. (authors)
DIII-D research towards resolving key issues for ITER and steady-state tokamaks
NASA Astrophysics Data System (ADS)
Hill, D. N.; the DIII-D Team
2013-10-01
The DIII-D research program is addressing key ITER research needs and developing the physics basis for future steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM energy loss in proportion to 1/fpellet by inducing ELMs at up to 12× the natural ELM rate. Complete suppression of ELMs with resonant magnetic perturbations has been extended to the q95 expected for ITER baseline scenario discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-Ip torque. ITER baseline discharges at βN ˜ 2 and scaled NBI torque have been maintained in stationary conditions for more than four resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance; active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA 20 MeV runaway electron (RE) beams yield dissipation rates ˜10× faster than expected from e-e collisions and demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced electron transport when \
Moreau, Didier; Artaud, J. F.; Ferron, John R.; Holcomb, Christopher T.; Humphreys, David A.; Liu, Feng; Luce, Timothy C.; Park, Jin Myung; Prater, Ronald; Turco, Francesca; Walker, Michael L.
2015-05-01
This paper shows that semi-empirical data-driven models based on a twotime- scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, β_{N}, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0-D scaling laws and 1.5-D ordinary differential equations. A number of open loop simulations were performed, in which the heating and current drive (H&CD) sources were randomly modulated around the typical values of a reference AT discharge on DIIID. Using these simulated data, a two-time-scale state space model was obtained for the coupled evolution of the poloidal flux profile and βN parameter, and a controller was synthesized based on the near-optimal ARTAEMIS algorithm [D. Moreau et al., Nucl. Fusion 53 (2013) 063020]. The paper discusses the results of closed-loop nonlinear simulations, using this controller for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and β_{N} are satisfactorily tracked with a time scale of about ten seconds, despite large disturbances applied to the feedforward powers and plasma parameters. The effectiveness of the control algorithm is thus demonstrated for long pulse and steady state high-β_{N} AT discharges. Its robustness with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and
Moreau, Didier; Artaud, J. F.; Ferron, John R.; ...
2015-05-01
This paper shows that semi-empirical data-driven models based on a twotime- scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated data obtained using a rapidly converging plasma transportmore » code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0-D scaling laws and 1.5-D ordinary differential equations. A number of open loop simulations were performed, in which the heating and current drive (H&CD) sources were randomly modulated around the typical values of a reference AT discharge on DIIID. Using these simulated data, a two-time-scale state space model was obtained for the coupled evolution of the poloidal flux profile and βN parameter, and a controller was synthesized based on the near-optimal ARTAEMIS algorithm [D. Moreau et al., Nucl. Fusion 53 (2013) 063020]. The paper discusses the results of closed-loop nonlinear simulations, using this controller for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about ten seconds, despite large disturbances applied to the feedforward powers and plasma parameters. The effectiveness of the control algorithm is thus demonstrated for long pulse and steady state high-βN AT discharges. Its robustness with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also
Comparative study of pulsed and steady-state tokamak reactor burn cycles
Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.
1984-05-01
Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles.
Simulation of the hybrid and steady state advanced operating modes in ITER
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.
2007-09-01
Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW
Aspects of steady-state operation of the Wendelstein 7-X stellarator
Geiger, J.; Wolf, R. C.; Beidler, C.; Cardella, A.; Chlechowitz, E.; Erckmann, V.; Gantenbein, G.; Hathiramani, D.; Hirsch, M.; Kasparek, W.; Kißlinger, J.; König, R.; Kornejew, P.; Laqua, H. P.; Lechte, C.; Lore, J.; Lumsdaine, A.; Maaßberg, H.; Marushchenko, N. B.; Michel, G.; Otte, M.; Peacock, A.; Sunn Pedersen, T.; Thumm, M.; Turkin, Y.; Werner, A.; Zhang, D.
2012-12-17
The objective of Wendelstein 7-X is to demonstrate steady-state operation at -values of up to 5%, at ion temperatures of several keV and plasma densities of up to 2 1020 m 3. The second operational phase foresees a fully steady-state high heat flux (HHF) divertor. Preparations are underway to cope with residual bootstrap currents, either by electron cyclotron current drive or by HHF protection elements. The main steady-state heating system is an electron cyclotron resonance heating facility. Various technical improvements of the gyrotrons have been implemented recently. They enable a reliable operation at the 1MW power level. Some of the technical issues preparing plasma diagnostics for steady-state operation are exemplified. This includes the protection against non-absorbed microwave radiation.
NASA Astrophysics Data System (ADS)
Sonnino, G.
2011-03-01
Fully ionized L-mode tokamak plasmas in the fully collisional (Pfirsch-Schlüter) and in the low-collisional (banana) nonlinear transport regimes are analyzed. We derive the expressions for particles and heat losses together with the steady-state particle distribution functions in the several collisional transport regimes. The validity of the nonlinear closure equations, previously derived, has been indirectly tested by checking that the obtained particle distribution functions are indeed solutions of the nonlinear, steady-state, Vlasov-Landau gyro-kinetic equations. A quite encouraging result is the fact that, for L-mode tokamak plasmas a dissymmetry appears between the ion and electron transport coefficients: the latter submits to a nonlinear correction, which makes the radial electron coefficients much larger than the former. In particular we show that when the L-mode JET plasma is out of the linear region, the Pfirsch-Schlüter electron transport coefficients are corrected by an amplification factor, which may reach values of order 102. Such a correction is absent for ions. On the contrary, in the banana regime, the ion transport coefficients are increased by a factor 2 and the nonlinear corrections for electrons are negligible. These results are in line with experiments.
Advanced tokamak operating modes in TPX and ITER
Nevins, W.M.
1994-12-31
A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER.
Advanced tokamak operating modes in TPX and ITER
NASA Astrophysics Data System (ADS)
Nevins, W. M.
1994-09-01
A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER.
Diagnostics and control for the steady state and pulsed tokamak DEMO
NASA Astrophysics Data System (ADS)
Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.
2016-02-01
The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.
Hybrid and Steady-State Operation on JET and Tore Supra
NASA Astrophysics Data System (ADS)
Bécoulet, A.
2003-12-01
Producing fusion energy requires to simultaneously sustain in a tokamak environment fully non inductive regimes at the highest Q-values and a "significant" fusion performance level under MHD-stable conditions, while insuring a satisfactory confinement of the fast alpha particles. This ambitious goal is being investigated on many devices worldwide, particularly focusing on the role played by the current density profile. The paper reports on the recent experimental progress of both the JET and Tore Supra devices towards i) long to very long pulse operation relying on a careful use of lower hybrid current drive under various current profile tailoring conditions (namely so-called "hybrid" peaked current density profiles and so-called "steady-state" hollow current density profiles) and ii) discharges performed with real-time controlled pressure and/or current density profiles. Such discharges are detailed and interpreted using the CRONOS integrated modelling suite. Its fully predictive capability, including real time control features, is used to provide keys to future experiments.
Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR
NASA Astrophysics Data System (ADS)
Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team
2016-10-01
For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.
Poloidal Field Power Supply Systems for the HT-7U Steady-State Superconducting Tokamak
Fu, P.; Liu, Z.Z.; Xu, J.Z.; Gao, G.; Wen, J.L.; Cao, Y.; Song, Z.Q.; Tang, L.J.; Wang, L.S.; Liang, X.Y.
2002-07-15
The paper gives a description of the poloidal field power supplies and the control system of the HT-7U superconducting tokamak required to energize the magnetic field coils for plasma excitation and confinement. An original configuration of alternating-current/direct-current (dc) converter, thyristor dc circuit breaker, and power supply control system are introduced in detail.
A ``Stepladder'' Approach to a Steady State Tokamak Fusion Power Plant
NASA Astrophysics Data System (ADS)
Zohm, Hartmut; Bock, Alexander; Fable, Emiliano; Stober, Joerg; Traeuble, Frederik
2016-10-01
In the EU strategy to an FPP, DEMO is the single step between ITER and an FPP. It is not obvious how to arrive at a DEMO design point in this strategy. We propose to avoid large scenario development steps in an ITER-DEMO-FPP step-ladder, since no other machines can qualify the scenarios. Thus, DEMO becomes a technology demonstrator, not a plasma physics experiment. We characterize the plasma scenario in terms of the quantities βN, q, H and fGW. To ensure adequate divertor performance, constant ne is chosen. Different from previous approaches, ρ* and ν* will vary throughout the stepladder based on physics arguments that below minimum values, their variation is no longer important. This leaves open the choice of machine parameters A, R and B. Fixing A to the ITER value, constant fGW and absolute ne lead to B/R = const. At constant q, βN and A, B and R increase proportional to Pfus1 / 7 in the stepladder. The power needed to drive the current in steady state varies similarly, so from DEMO to an FPP a significant decrease in recirculating power fraction occurs. A viable divertor solution and access to H-mode are considered explicitly. An example for such a stepladder is discussed, based on recent ASDEX Upgrade results in steady state. Also at Faculty of Physics, Ludwig-Maximilians-Universität, D-80799 München, Germany.
Not Available
1988-01-01
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.
Woolley, R.D.
1996-12-31
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Woolley, Robert D.
1998-01-01
A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.
Woolley, R.D.
1998-09-08
A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.
Description of the Steady-State Operation of a Biochemical Reactor Using a Diffusion Model
NASA Astrophysics Data System (ADS)
Moshinskii, A. I.
2017-07-01
Consideration has been given to nonlinear boundary-value problems of steady-state operation of a biochemical reactor. Nontrivial solutions of these problems have been found using equations of a diffusion model with homogeneous boundary conditions. A study has been made of the operating regimes of the reactor under different conditions of biomass transfer in it.
Sengupta, A.; Ranjan, P
2001-01-15
In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters.
Steady state off-axis sawtoothing in the Rijnhuizen Tokamak project
NASA Astrophysics Data System (ADS)
Meulenbroeks, R. F. G.; de Baar, M. R.; Beurskens, M. N. A.; de Blank, H. J.; Deng, B. H.; Donné, A. J. H.; Hogeweij, G. M. D.; Lopes Cardozo, N. J.; Montvai, A.; Oyevaar, Th.
1999-10-01
A family of off-axis, or annular, instabilities has been studied using Thomson scattering, soft X-ray emission, and two electron cyclotron emission diagnostic systems. In the Rijnhuizen tokamak (RTP) [N. J. Lopes Cardozo et al., Plasma Physics and Controlled Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 271] these phenomena are invoked in a controlled way in discharges with specific (off-axis) deposition of electron cyclotron heating (ECH) and persist during most of the heating period, or during many current diffusion times. Based on coherent mode analysis at the crash time, the instabilities are associated with resonant surfaces near simple rational values of q (3/2, 2, and 3). A parameter study shows an increase of reheat rate and a decrease of sawtooth period with increasing ECH power and — in contrast to observations in other experiments — with increASING density as well.
High internal inductance for steady-state operation in ITER and a reactor
Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; Park, J. M.; Kolemen, Egemen; La Haye, Robert J.; Solomon, Wayne M.; Turco, Francesca
2015-06-26
Increased confinement and ideal stability limits at relatively high values of the internal inductance (${{\\ell}_{i}}$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with ${{\\beta}_{\\text{N}}}\\approx 5$ at ${{\\ell}_{i}}\\approx 1.3$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at ${{\\beta}_{\\text{N}}}>5.5$ . Confinement is above the H-mode level with ${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$ . At ${{q}_{95}}\\approx 7.5$ , the current is overdriven, with bootstrap current fraction ${{f}_{\\text{BS}}}\\approx 0.8$ , noninductive current fraction ${{f}_{\\text{NI}}}>1$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at ${{\\ell}_{i}}\\approx 1$ is a promising option with ${{f}_{\\text{BS}}}\\approx 0.5$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at ${{q}_{95}}=4.8$ , so far reaching ${{f}_{\\text{NI}}}=0.7$ and ${{f}_{\\text{BS}}}=0.4$ at ${{\\beta}_{\\text{N}}}\\approx 3.5$ with performance appropriate for the ITER Q=5 mission, ${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high ${{\\ell}_{i}}$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at ${{\\beta}_{\\text{N}}}=4$ , ${{\\ell}_{i}}=1.07$ and ${{f}_{\\text{BS}}}=0.5$ , and at ${{\\beta}_{\\text{N}}}=5$ with the vacuum vessel wall.
High internal inductance for steady-state operation in ITER and a reactor
Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...
2015-06-26
Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less
NASA Astrophysics Data System (ADS)
Effertz, Timo; Pernpeintner, Johannes; Schiricke, Björn
2017-06-01
At DLR's QUARZ Center a test bench has been established to measure, using steady state calorimetric method, the total hemispherical emittance of cylindrical solar thermal absorber samples at temperatures up to 450 °C. Emittance measurement of solar absorber surfaces is commonly performed by direct-hemispherical reflectance measurements with spectrophotometers. However, the measurement of cylindrical samples with spectrophotometers can be considered still a challenge as integrating spheres, reference samples and calibration services by national metrology institutions are optimized for flat sample measurement. Additionally samples are typically measured at room temperature. The steady state calorimetric method does not rely on reference samples and the measurement is performed at operating temperature. In the steady state calorimetric method electrical power input used to heat the sample is equated to the radiative heat loss from a heated sample to the environment. The total emittance can be calculated using the Stefan-Boltzmann equation from radiative heat loss power, the defined sample surface area and measured surface temperature. The expanded uncertainty (k=2) of the total hemispherical emittance has been determined to ±13 % for a typical parabolic trough absorber sample at a temperature of 300 °C and a heating power of 100 W. The test bench was validated by the measurement of three samples with the spectrophotometer and the steady state calorimetric method.
Fu, H.; Haken, H.
1988-05-01
A semiclassical theory of dye lasers is presented in which the relevant energy-level diagram of a dye molecule is assumed to consist of a bandlike ground state with many sublevels and an excited single state. This theory not only describes the single-frequency operation, which has a low instability threshold, but also describes the two-frequency and multifrequency steady states of operation and the transitions between the different steady states. The general solution of a multifrequency operation is given explicitly and differs essentially from the well-known Rabi oscillation. The theoretical predictions are in good agreement with recent experiments done by Hillman et al. (Phys. Rev. Lett. 52, 1605 (1984)), which cannot be explained by the conventional Maxwell--Bloch laser theory derived from two-level atoms.
Non-steady-state operation of polymer/TiO2 photovoltaic devices
NASA Astrophysics Data System (ADS)
Kirov, Kiril R.; Burlakov, Victor M.; Xie, Zhibin; Henry, Bernard M.; Carey, Michelle J.; Grovenor, Christopher R. M.; Burn, Paul L.; Assender, Hazel E.; Briggs, G. Andrew D.
2004-11-01
We present data on the initial period of operation of Gilch-route MEH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (Voc) and of the short-circuit current density (Jsc) with time, a passage through a maximum of either or both parameters, and even a sign reversal. The mechanisms most probably contributing to the transient processes are: i) diffusion driven redistribution of charges resulting in the build up of a quasi steady state charge density profile across the device; ii) photo-doping resulting in a relatively slow increase of the average charge carrier concentration and consequently of the conductivity of the device. The latter is responsible for a strong decrease in Voc, and is evidenced by the significant increase in dark current after device illumination.
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; Ren, Qilong; Solomon, Wayne M.; Strait, Edward J.; Van Zeeland, Michael A.; Holcomb, Christopher T.; Meneghini, Orso; Smith, Sterling P.; Staebler, Gary M.; Wan, Baonian; Bravenec, Ronald; Budny, Robert V.; Ding, Siye; Hanson, Jeremy M.; Heidbrink, William W.; Lao, Lang L.; Li, Guoqiang; Pan, Chengkang; Petty, Craig C.; Qian, Jingping; Paz-Soldan, Carlos; Xu, Guosheng
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced to classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β_{N} ≤ 4 , β_{P} ≥ 3 , and β_{T} ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, βN ≤ 4 , βP ≥ 3 , and βT ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less
Demonstration of Steady State Operation with 1 MW of 170 GHz gyrotron for ITER
Kasugai, Atsushi; Takahashi, Koji; Kajiwara, Ken; Kobayashi, Noriyuki; Sakamoto, Keishi
2007-09-28
A quasi-steady-state operation of 1 MW/800 s with the efficiency of 55%, which exceeded 1 MW/500 s/50% of the performance required in ITER, was demonstrated in a 170 GHz gyrotron. The oscillation characteristics in the long pulse operation was clarified, and the operation scenario to the hard self-excitation region for the high efficiency oscillation was newly established by controlling a pitch factor of the electron and the cavity magnetic field during the pulse with fixed beam voltage in the triode MIG. The result gives a clear outlook for the success of ECH and ECCD in ITER.
Quantitative, steady-state properties of Catania's computational model of the operant reserve.
Berg, John P; McDowell, J J
2011-05-01
Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior.
Operating points and feedback control of plasma characteristics in tokamaks with full current drive
Swain, D.W.; Attenberger, S.E.; Houlberg, W.A.; Bonoli, P.T.; Nevins, W.M.
1994-12-31
Tokamak operation using advanced tokamak modes with steady-state current drive may provide better performance, thereby improving the prospects of power-producing fusion reactors. Scenarios for such operation in TPX and in an ITER-like scale-up of TPX are modeled. Results indicate that the heating and current drive power and feedback control requirements may be achievable.
High-power and steady-state operation of ICRF heating in the large helical device
Mutoh, T. Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G.; Shinya, T.
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.
Exterior integrability: Yang-Baxter form of non-equilibrium steady-state density operator
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Ilievski, Enej; Popkov, Vladislav
2013-07-01
A new type of quantum transfer matrix, arising as a Cholesky factor for the steady-state density matrix of a dissipative Markovian process associated with the boundary-driven Lindblad equation for the isotropic spin-1/2 Heisenberg (XXX) chain, is presented. The transfer matrix forms a commuting family of non-Hermitian operators depending on the spectral parameter, which is essentially the strength of dissipative coupling at the boundaries. The intertwining of the corresponding Lax and monodromy matrices is performed by an infinitely dimensional Yang-Baxter R-matrix, which we construct explicitly and is essentially different from the standard 4 × 4 XXX R-matrix. We also discuss a possibility to construct Bethe ansatz for the spectrum and eigenstates of the non-equilibrium steady-state density operator. Furthermore, we indicate the existence of a deformed R-matrix in the infinite dimensional auxiliary space for the anisotropic XXZ spin-1/2 chain, which in general provides a sequence of new, possibly quasi-local, conserved quantities of the bulk XXZ dynamics.
Heating and current drive requirements towards steady state operation in ITER
Poli, F. M.; Kessel, C. E.; Gorelenkova, M.; Bonoli, P. T.; Batchelor, D. B.; Harvey, B.; Petrov, Y.
2014-02-12
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.
Impact of real-time magnetic axis sweeping on steady state divertor operation in LHD
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Masuzaki, S.; Morisaki, T.; Ogawa, H.; Watanabe, T.; Kubota, Y.; Sakamoto, R.; Ashikawa, N.; Sato, K.; Chikaraishi, H.; Saito, K.; Seki, T.; Kumazawa, R.; Mutoh, T.; Kubo, S.; Takeiri, Y.; Peterson, B. J.; Komori, A.; Motojima, O.; LHD experimental Group
2006-07-01
Steady state divertor operation with high performance plasmas (ne ~ 0.7 × 1019 cm-3, Ti ~ 2 keV) was demonstrated for half an hour in the Large Helical Device (LHD), the superconducting helical device (R = 3.6-3.9 m, a = 0.6 m, B = 3 T, l/m = 2/10). The high performance plasmas have been sustained with an averaged heating power of 680 kW and achieved an injected energy of 1.3 GJ. This required both advanced technological integration of heating systems and divertor heat flux control. In particular, optimization of divertor heat flux distribution along the divertor leg trace on divertor plates and real-time magnetic axis sweeping (R = 3.67-3.7 m) have allowed LHD to access a steady state regime with a margin of safety for the actively cooled divertor plates. The distribution of divertor heat load along the traces was investigated with calorimetric measurements and it was found that there was a localized heat load connected with the loss of high-energy ions produced by ion cyclotron radio frequency near-fields. Orbit analysis shows that the behaviour of high-energy ions is qualitatively in good agreement with the experimental result. Long-pulse discharges were terminated by radiation collapse due to penetration of metallic flakes into the plasma.
NASA Astrophysics Data System (ADS)
Tani, K.; Shinohara, K.; Oikawa, T.; Tsutsui, H.; McClements, K. G.; Akers, R. J.; Liu, Y. Q.; Suzuki, M.; Ide, S.; Kusama, Y.; Tsuji-Iio, S.
2016-11-01
As part of the verification and validation of a newly developed non-steady-state orbit-following Monte-Carlo code, application studies of time dependent neutron rates have been made for a specific shot in the Mega Amp Spherical Tokamak (MAST) using 3D fields representing vacuum resonant magnetic perturbations (RMPs) and toroidal field (TF) ripples. The time evolution of density, temperature and rotation rate in the application of the code to MAST are taken directly from experiment. The calculation results approximately agree with the experimental data. It is also found that a full orbit-following scheme is essential to reproduce the neutron rates in MAST.
Isayama, A.
2005-05-15
Recent results from steady-state sustainment of high-{beta} plasma experiments in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) tokamak [A. Kitsunezaki et al., Fusion Sci. Technol. 42, 179 (2002)] are described. Extension of discharge duration to 65 s (formerly 15 s) has enabled physics research with long time scale. In long-duration high-{beta} research, the normalized beta {beta}{sub N}=2.5, which is comparable to that in the steady-state operation in International Thermonuclear Experimental Reactor (ITER) [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], has been sustained for about 15 s with confinement enhancement factor H{sub 89PL} above 2, where the duration is about 80 times energy confinement time and {approx}10 times current diffusion time ({tau}{sub R}). In the scenario aiming at longer duration with {beta}{sub N}{approx}1.9, which is comparable to that in the ITER standard operation scenario, duration has been extended to 24 s ({approx}15{tau}{sub R}). Also, from the viewpoint of collisionality and Larmor radius of the plasmas, these results are obtained in the ITER-relevant regime with a few times larger than the ITER values. No serious effect of current diffusion on instabilities is observed in the region of {beta}{sub N} < or approx. 2.5, and in fact neoclassical tearing modes (NTMs), which limit the achievable {beta} in the stationary high-{beta}{sub p} H-mode discharges, are suppressed throughout the discharge. In high-{beta} research with the duration of several times {tau}{sub R}, a high-{beta} plasma with {beta}{sub N}{approx}2.9-3 has been sustained for 5-6 s with two scenarios for NTM suppression: (a) NTM avoidance by modification of pressure and current profiles, and (b) NTM stabilization with electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH). NTM stabilization with the second harmonic X-mode ECCD/ECH has been performed, and it is found that EC current
Water-cooled target modules for steady-state operation of the W7-X divertor
NASA Astrophysics Data System (ADS)
Boscary, J.; Greuner, H.; Czerwinski, M.; Mendelevitch, B.; Pfefferle, K.; Renner, H.
2003-09-01
The stellarator WENDELSTEIN 7-X (W7-X) includes water-cooled plasma facing components (PFCs) to allow steady-state operation and to provide an efficient particle and power exhaust up to 10 MW for a maximum pulse duration of 30 min. Ten divertor units are arranged along the helical edge of the fivefold periodic plasma column. The three-dimensional shape and positioning of the target surfaces are optimized to address physics issues for a wide range of experimental parameters, which influence the topology of the boundary. The three-dimensional target surfaces are reproduced by a series of consecutive plane target elements as a set of parallel water-cooled elements positioned onto the frameworks of target modules. The design and arrangement of target modules and elements are described.
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
D0 Silicon Upgrade: Control Dewar Steady State Thermodynamic Operating Goals
Rucincki, Russ; /Fermilab
1995-10-20
This engineering note documents the thermodynamic operating parameter goals for the steady state operation of the control dewar/solenoid system. Specifically, how the control dewar pressure control valve, PV-3062-H and the magnet flow control valve EVMF are operated to give the lowest possible temperature fluid at the solenoid magnet. The goals are: (1) For PV-3062-H - The process variable is the helium reservoir pressure, minimize the reservoir pressure, provide only enough pressure plus a little margin to ensure leads flow; and (2) For EVMF - The process variable is firstly a manual setpoint of flowrate as read by the flow venturi, FE3253-H, and secondly the reservoir liquid level, minimize the pressure drop thru the solenoid cooling tubes, provide at least enough flow to maintain reservoir level and stable operation of the magnet. The thermodynamic states for the fluid thru the system are shown on the Pressure versus Temperature graph. Lines of constant enthalpy are also shown. State A is shown as two phase liquid entering the inlet of the subcooler. The subcooler subcools the fluid to State B. State B to State C is caused by the pressure drop across EVMF. State C to D is the estimated pressure drop from the outlet of EVMF thru the solenoid cooling tubes and back up to the helium reservoir inlet. To give the coolest fluid in the cooling tubes, the two phase fluid in the reservoir should be at the lowest pressure (and thus temperature). This lowest pressure is limited by the required pressure for leads flow and if this does not dominate, the low pressure side pressure drop thru the refrigerator and suction pressure set point. My guess is the lead flow requirement will dominate. I suggest putting the PV-3062-H set point such that the lead flow control valves operate at about 80% open. The second parameter that will give the coolest fluid in the cooling tubes is a minimized pressure drop thru the cooling tubes. This can be accomplished by providing a minimized
Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.
Calvin, Olivia L; McDowell, J J
2016-06-01
The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.
Radioactivity computation of steady-state and pulsed fusion reactors operation
Attaya, H.
1994-06-01
Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices.
Kupiszewski, T.; Christianson, O.R.; Natelson, D.
1996-12-31
A finite difference numerical model is developed to simulate steady-state supercritical helium flow and heat transfer within superconducting magnets using double-pancake coils of cable-in-conduit conductor (CICC). The model is implemented in computer programs which calculate global temperature and pressure distributions in winding packs subjected to time-averaged thermal loads. These programs are used to predict nuclear heating effects upon pressure drop and temperature rise along the forced-flow cooled superconductors of magnets in the Toroidal Physics experiment (TPX) tokamak. The authors present results suggesting superconductor temperature margin depends upon how effectively a coil design {open_quotes}surfs{close_quotes} the helium heat capacity {open_quotes}wave{close_quotes} and case-to-coil heat transfer interactions.
Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation
Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...
2017-07-25
Rate theory simulations of fission gas behavior in U3Si2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U3Si2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U3Si2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U3Si2 temperature is expected to be below 1000 K, intragranular bubbles are dominant and fission gas ismore » retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U3Si2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
Gaseous Swelling of U3Si2 during Steady-State LWR Operation: A Rate Theory Invesitgation
Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...
2017-10-01
Rate theory simulations of fission gas behavior in U3Si2 are reported for light water reactor (LWR) steady-state operation scenarios. A model of U3Si2 was developed and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U3Siz swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U3Si2 temperature is expected to be below 1000 K, intragranular bubbles are dominant and fission gas ismore » retained in those bubbles . The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U3Si2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
Steady-state operation and high energy particle production of MeV energy in the Large Helical Device
NASA Astrophysics Data System (ADS)
Mutoh, T.; Kumazawa, R.; Seki, T.; Saito, K.; Kasahara, H.; Nakamura, Y.; Masuzaki, S.; Kubo, S.; Takeiri, Y.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Watanabe, T.; Ogawa, H.; Miyazawa, J.; Shoji, M.; Ashikawa, N.; Nishimura, K.; Osakabe, M.; Tsumori, K.; Ikeda, K.; Nagaoka, K.; Oka, Y.; Chikaraishi, H.; Funaba, H.; Morita, S.; Goto, M.; Inagaki, S.; Narihara, K.; Tokuzawa, T.; Sakamoto, R.; Morisaki, T.; Peterson, B. J.; Tanaka, K.; Nakanishi, H.; Nishiura, M.; Ozaki, T.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Zhao, Y. P.; Kwak, J. G.; Murakami, S.; Okada, H.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Kaneko, O.; Ida, K.; Nagayama, Y.; Watanabe, K. Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.
2007-09-01
Achieving steady-state plasma operation at high plasma temperatures is one of the important goals of worldwide magnetic fusion research. High temperatures of approximately 1-2 keV, and steady-state plasma sustainment operations have been reported. Recently the steady-state operation regime was greatly extended in the Large Helical Device (LHD). A high-temperature plasma was created and maintained for 54 min with 1.6 GJ in the 2005FY experimental programme. The three-dimensional heat-deposition profile of the LHD helical divertor was modified, and during long-pulse discharges it effectively dispersed the heat load using a magnetic axis swing technique developed at the LHD. A sweep of only 3 cm in the major radius of the magnetic axis position (less than 1% of the major radius of the LHD) was enough to disperse the divertor heat load. The steady-state plasma was heated and sustained mainly by hydrogen minority ion heating using ion cyclotron range of frequencies and partially by electron cyclotron of fundamental resonance frequency. By accumulating the small flux of charge-exchanged neutral particles during the long-pulse operation, a high energy ion tail which extended up to 1.6 MeV was observed. This is the first experimental evidence of high energetic ion confinement of MeV range in helical devices. The long-pulse operations lasted until a sudden increase in radiation loss occurred, presumably because of metal wall flakes dropping into the plasma. The sustained line-averaged electron density and temperature were approximately 0.8 × 1019 m-3 and 2 keV, respectively, at a 1.3 GJ discharge (#53776) and 0.4 × 1019 m-3 and 1 keV at a 1.6 GJ discharge (#66053). The average input power was 680 kW and 490 kW, and the plasma duration was 32 min and 54 min, respectively. These successful long operations show that the heliotron configuration has a high potential as a steady-state fusion reactor.
Development of steady-state operation using ICH in the LHD
Kasahara, H.; Seki, T.; Saito, K.; Seki, R.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tokitani, M.; Ashikawa, N.; Shoji, M.; Kamio, S.; Tsuchiya, H.; Tanaka, H.; Yoshimura, S.; Tamura, N.; Yamada, I.; Suzuki, C.; Mutoh, T.; and others
2014-02-12
Long-pulse discharge with the electron density n{sub e0} of 1 × 10{sup 19} m{sup −3}, electron temperature T{sub e0} of 2.5 keV, discharge length t{sub dis} of 19 minutes and heating power P{sub inject} of 1MW, is demonstrated using the HAS antenna and the PA antenna for ion cyclotron heating (ICH) and increasing in the power of electron cyclotron heating (ECH). The HAS antenna is designed to phase dipole and excite ideal fast wave with parallel electric field kept small, and low impurity generation and accumulation are achieved on the steady-state discharge by weak parasitic heating around antennas. On the long-pulse discharge, the radiation measured by bolometer is kept smaller than 20% for injection power, and the heat load to divertor is approximately 60 % with low energetic particle losses. The heat load ratio to divertor is not as a function of injection power around 1MW, and energy confinement has been kept during the steady-state discharge.
Ehst, D.A.; Jardin, S.; Kessel, C.
1995-10-01
The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub 0} R{sub 0}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.
Overview of the microwave tokamak experiment operation and developments
NASA Astrophysics Data System (ADS)
Lang, D. D.; Allen, S. L.; Bell, H. H.
1991-09-01
At Lawrence Livermore National Laboratory (LLNL), we assembled and presently operate the Microwave Tokamak Experiment (MTX) to demonstrate the feasibility of using intense microwave pulses (up to 6 GW peak power) from a free electron laser (FEL) to provide electron cyclotron heating (ECH) for use in tokamaks, particularly high field machines. The MTX consists primarily of the ALCATOR C tokamak and power supplies from MIT, along with FEL; the FEL is made up of the ETA-II linear induction accelerator and the IMP steady-state wiggler. A four-barrel pellet injector was added to the tokamak to produce peaked density profiles. The tokamak operations started in November 1988, with full duration plasmas being obtained at a toroidal field of both 5 and 9 tesla. Initial results were obtained with the single pulse 140 GHz FEL at peak power levels of 200 to 400 MW late in 1989. Due to excessive transverse electron beam motion, and arcing in the accelerator cells, the accelerator was modified. These modifications have been successfully tested on a small portion of the rebuilt accelerator and have been incorporated in the remaining portion of the accelerator. A 140 GHz, 400 kW gyrotron was used to perform preliminary heating experiments during the fall of 1990. This same gyrotron system is serving as the master oscillator for the burst mode FEL. The new IMP steady state wiggler will be used to produce the high power microwaves for the burst mode. The FEL construction has been completed, and it will be used for heating experiments scheduled for this fall. This paper describes the recent experimental operations. It also briefly outlines the additions and improvements to the experiment, which are described in more detail in companion papers at this conference.
Rodatos, A; Greuner, H; Jakubowski, M W; Boscary, J; Wurden, G A; Pedersen, T S; König, R
2016-02-01
Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m(2). These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X.
NASA Astrophysics Data System (ADS)
Rodatos, A.; Greuner, H.; Jakubowski, M. W.; Boscary, J.; Wurden, G. A.; Pedersen, T. S.; König, R.
2016-02-01
Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m2. These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X.
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
NASA Astrophysics Data System (ADS)
Radosavljević, Jordan; Klimenta, Dardan; Jevtić, Miroljub
2012-07-01
This paper proposed a multi-objective genetic algorithm (MOGA) based approach for determining the steady-state performance characteristics of three-phase self-excited induction generators (SEIGs) operating in parallel and supplying an unbalanced load. The symmetrical component theory is used for the transformation of a complex three-phase generators-capacitances-load system to a simple equivalent circuit. The MOGA has been employed for the determination of unknown variables by minimizing the impedance module of the equivalent circuit. Using this approach, effects of various parameters on the terminal voltage control characteristics are examined for two parallel SEIGs with C2C connection under a single phase load.
The capabilities of steady state operation at the stellarator W7-X with emphasis on divertor design
NASA Astrophysics Data System (ADS)
Renner, H.; Boscary, J.; Erckmann, V.; Greuner, H.; Grote, H.; Sapper, J.; Speth, E.; Wesner, F.; Wanner, M.; W7-X Team
2000-06-01
The stellarator Wendelstein 7-X (W7-X) is presently under construction at Greifswald, Germany, and the start of operation is planned in 2006. W7-X is a large `advanced stellarator' of the HELIAS type (R = 5.5 m, a = 0.55 m, B0 = 3 T, five periods, moderate shear and variable rotational transform 5/6 <= ι <= 5/4 at the boundary) with the aims of demonstrating the reactor potential of this stellarator line in steady state operation close to fusion relevant parameters. The capability of stationary operation requires the realization of a superconducting magnet system consisting of 50 modular coils and 20 planar coils, the operation of a 140 GHz ECR CW heat source of 10 MW, the installation of a divertor to handle the power and particle flux, and to limit the impurity fraction to tolerable levels. Additional heating schemes, ICRF and NBI, will be provided for flexible experimentation.
Salt loaded heat pipes: steady-state operation and related heat and mass transport
NASA Astrophysics Data System (ADS)
Simakin, A.; Ghassemi, A.
2003-10-01
Fluids in the deep-seated zones (3.5-4.5 km) of active geothermal zones are known to have increased salinity and acidity that can enhance interaction with surrounding porous rocks. A possible mechanism for brine generation is the separation of the rising magmatic fluid into a gas-like and a liquid-like component. This work illustrates the main features of this mechanism by investigating the conditions for heat pipe convection of natural brines in hydrothermal systems. The well-established heat pipe regime for convection of two-phase pure water (vapor-liquid) in a porous column is extended to the case of boiling brines. In particular, the NaCl-H 2O system is used to model the 1-D reactive flow with dissolution-precipitation in geothermal reservoirs. The quasi steady-state equations of the conservation of matter, Darcy's law for the gas and liquid phases, and the heat balance equation have been examined while neglecting the temporal variation of porosity. A semi-analytical procedure is used to solve these equations for a two-phase fluid in equilibrium with a solid salt. The solution is in the form of the dependence of liquid volume fraction as a function of temperature for different heat fluxes. The solution is separated into two isolated regions by the temperature T=596°C, at the maximum fluid pressure for three-phase (H-L-V) equilibrium. In the case of unsaturated two-phase flow at the reference permeability of porous rocks (3·10 -16 m 2), the maximum heat flux that can be transferred through the porous column via convection is analytically estimated to be 4.3 W/m 2. This is close to the corresponding value for the three-phase case that is numerically calculated to be 6 W/m 2. Due to dissolution (partial leaching of oxide components by acid condensates) and precipitation of salt at the boiling front, heat transfer in a heat pipe in soluble media occurs in a direction opposite to the associated mass transfer. This can cause deep hydrothermal karsting that is
Radioactivity computation of steady-state and pulsed fusion reactors operation
Attaya, H.
1994-11-01
The International Thermonuclear Report (ITER) is expected to operate in a pulsed operational mode. Accurate radioactivity calculations, that take into account this mode of operation, are required in order to determine precisely the different safety aspects of ITER. The authors previous examined analytically the effect of pulsed operation in ITER and showed how it depends on the burn time, the dwell time, and the half-lives. That analysis showed also that for ITER`s low duty factor, using the continuous operation assumption would considerably overestimate the radioactivities, for a wide range of half-lives. At the same time, the large improvements in the quality and the quantity of the decay and the cross-section data libraries has considerably increased the computation times of the radioactivity calculations. For both reasons it is imperative to seek different methods of solution that reduce the computational time and can be easily adopted to the treatment of the pulsed operation. In this work, they have developed algorithms based on several mathematical methods that were chosen based on their generality, reliability, stability, accuracy, and efficiency. These methods are the matrix Schuer decomposition, the eigenvector decomposition, and the Pade approximation for the matrix exponential functions.
Steady-state operation of 170 GHz 1 MW gyrotron for ITER
NASA Astrophysics Data System (ADS)
Kasugai, A.; Sakamoto, K.; Takahashi, K.; Kajiwara, K.; Kobayashi, N.
2008-05-01
A 170 GHz gyrotron has been developed at JAEA, which has achieved operation of 1 MW/800 s and up to 55% efficiency. This is the first demonstration of a gyrotron achieving and even exceeding the ITER operating requirements of 1 MW/500 s and 50% efficiency. In addition the gyrotron demonstrated operation for 1 h with an output power of 0.6 MW. The oscillation was stable with all cooling water temperatures and vacuum pressure reaching equilibrium conditions during the pulse length at either power level. The successful operation was aided by a very low level of stray radiation (~2% of the output power), which contributed to fast conditioning and stable operation. The output power from the gyrotron was coupled into an ITER sized corrugated waveguide (phi = 63.5 mm) via a matching optics unit with a total of 0.97 MW transmitted to the dummy load after two miter bends and ~7 m of a waveguide without any trouble. These results give an encouraging outlook for the success of the ITER electron cyclotron heating and current drive system.
Steady state thermal radiometers
NASA Technical Reports Server (NTRS)
Loose, J. D. (Inventor)
1974-01-01
A radiometer is described operating in a vacuum under steady state conditions. The front element is an aluminum sheet painted on the outer side with black or other absorptive material of selected characteristics. A thermocouple is bonded to the inner side of the aluminum sheet. That is backed by highly insulative layers of glass fiber and crinkled, aluminized Mylar polyester. Those layers are backed with a sturdy, polyester sheet, and the entire lamination is laced together by nylon cords. The device is highly reliable in that it does not drift out of calibration, and is significantly inexpensive.
Steady state operation of an ampere-class hydrogen negative ion source
NASA Astrophysics Data System (ADS)
Miyamoto, Naoki; Fujiwara, Yukio; Miyamoto, Kenji; Okumura, Yoshikazu
2000-02-01
A cesium-seeded volume negative ion source producing H- ion beams of 800 mA has been operated continuously at a high current density of 20 mA/cm2. The ion source consists of a magnetically filtered multicusp plasma generator and a multiaperture extractor. The ion source has a frame-cooling-type plasma grid, which is continuously able to keep the temperature at optimum using radiation from filaments and arc discharge. The ion source produces about 150 mA of H- in operation without cesium (pure volume operation). The negative ion yield is enhanced by more than a factor of four by injecting 600 mg of cesium. It is important to keep the plasma grid surface temperature at about 300 °C, where the negative ion yield has the maximum. The plasma generator has six tungsten filament cathodes of 1.2 mm in diameter. To estimate a lifetime of the filaments, weight and diameter of the filaments were measured after continuous operation. It was found that evaporation is the dominant wearing-out process, and no significant sputtering effect such as the self-sputtering, cesium sputtering, and chemical sputtering was observed.
Lumen and Chromaticity Maintenance of LED PAR38 Lamps Operated in Steady-State Conditions
Royer, Michael P.
2014-12-01
The lumen depreciation and color shift of 38 different lamps (32 LED, 2 CFL, 1 ceramic metal halide [CMH], 3 halogen) were monitored in a specially developed automated long-term test apparatus (ALTA2) for nearly 14,000 hours. Five samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at a target ambient temperature between 44°C and 45°C.
Steady state operation simulation of the Francis-99 turbine by means of advanced turbulence models
NASA Astrophysics Data System (ADS)
Gavrilov, A.; Dekterev, A.; Minakov, A.; Platonov, D.; Sentyabov, A.
2017-01-01
The paper presents numerical simulation of the flow in hydraulic turbine based on the experimental data of the II Francis-99 workshop. The calculation domain includes the wicket gate, runner and draft tube with rotating reference frame for the runner zone. Different turbulence models such as k-ω SST, ζ-f and RSM were considered. The calculations were performed by means of in-house CFD code SigmaFlow. The numerical simulation for part load, high load and best efficiency operation points were performed.
Mission and physics design of the Tokamak Physics Experiment
Neilson, G.H.; Batchelor, D.B.; Mioduszewski, P.K.; Strickler, D.J.; Bonoli, P.T.; Porkolab, M.; Goldston, R.J.; Jardin, S.C.; Bialek, J.M.; Kessel, C.E.
1994-11-01
Improvements in the confinement, stability limits, current-drive efficiency and divertor performance, combined with steady-state operation, can lead to a more economical tokamak fusion reactor than one based on the present physics data base. The Tokamak Physics Experiment (TPX) is planned to extend the recent advances in these areas, achieved in pulsed tokamaks, to the steady-state regime. In so doing, it will develop a data base needed for the design of an economically attractive tokamak reactor.
Rajamanickam, Ravi; Baskaran, Divya
2017-09-04
Petroleum oil refineries are massive emitters of risky volatile organic compounds (VOCs). Among the VOCs, toluene is taken into account as a significant pollutant. In the present study, a compost biofilter is used to treat the toluene vapor. However, an elimination capacity and removal efficiency of the biofilter was investigated for a wide range of toluene concentrations (0.29-3.8 g m(-3)) and operated for 54 days effectively. Elimination capacity of 93 g m(-3) h(-1) was recorded as maximum value at a toluene inlet concentration of 114 g m(-3) h(-1). An elimination capacity was perpetually better at the lower section of the biofilter, and therefore, the value was around 40-60 g m(-3) h(-1). The high removal efficiency of 97% was obtained at inlet toluene load of 60.55 g m(-3) h(-1). Hence, the biofilm was quite sensitive to handling transient loading conditions. The pressure drop had no vital impact on the biofilter performance. An Ottengraf model was applied to all phase of biofilter operation in each of the diffusion limiting region and reaction limiting region. The parameters of the model K 1 (75.95 g(1/2) m(-3/2) h(-1)) and K 0 (90.51 g m(-3) h(-1)) were obtained from diffusion and reaction limiting region severally. However, K 1 was used to calculate the theoretical elimination capacities, and therefore, K 0 was used to discover the biofilm thickness. By the way, the average biofilm thickness was found to be 0.98 mm from reaction limiting region.
Development of steady-state operation using ion cyclotron heating in the Large Helical Device
Kasahara, H.; Seki, T.; Saito, K.; Seki, R.; Kumazawa, R.; Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tokitani, M.; Ashikawa, N.; Shoji, M.; Kamio, S.; Tsuchiya, H.; Yoshimura, S.; Tamura, N.; Suzuki, C.; Yamada, H.; Mutoh, T.; and others
2014-06-15
Using a handshake shape (HAS) antenna phasing dipole for ion cyclotron heating (ICH), the heating efficiency was higher than that using a previous poloidal array antenna in the Large Helical Device. In order to sustain the dipole operation, real-time feedback for impedance matching and maintaining the same phase and power was adopted during long-pulse discharge. The HAS antenna was designed to reduce parasitic losses associated with energetic particle and radio-frequency (RF) sheath effects by field-aligned current concentration on the midplane. Local hot spots and the inhomogeneity of the diverter heat profile in the toroidal direction were reduced. The long-pulse discharge with an electron density (n{sub e0}) of 1 × 10{sup 19} m{sup −3}, center electron temperature (T{sub e0}) of 2.5 keV, a plasma duration time (t{sub d}) of 19 min, and RF heating power (P{sub RF}) of 1 MW was achieved by ICH and electron cyclotron heating.
Evaluation of performance of a BLSS model in long-term operation in dynamic and steady states
NASA Astrophysics Data System (ADS)
Gros, Jean-Bernard; Tikhomirov, Alex; Ushakova, Sofya; Velitchko, Vladimir; Tikhomirova, Natalia; Lasseur, Christophe
Evaluation of performance of a BLSS model, including higher plants for food production and biodegradation of human waste, in long-term operation in dynamic and steady states was performed. The model system was conceived for supplying vegetarian food and oxygen to 0.07 human. The following data were obtained in steady-state operating conditions. Average rate of wheat, chufa, radish, lettuce and Salicornia edible biomass accumulation were 8.7, 5.5, 0.6, 0.6 and metricconverterProductID2.5 g2.5 g per day respectively. Thus, to mimic the vegetarian edible biomass consumption by a human it was necessary to withdraw 17.9 g/d from total mass ex-change. Simultaneously, human mineralized exometabolites (artificial mineralized urine, AMU) in the amount of approximately 7% of a daily norm were introduced into the nutrient solu-tion for irrigation of the plants cultivated on a neutral substrate (expanded clay aggregate). The estimated value of 5.8 g/d of wheat and Salicornia inedible biomass was introduced in the soil-like substrate (SLS) to fully meet the plants need in nitrogen. The rest of wheat and Salicornia inedible biomass, 5.7 g/d, was stored. Thus in all, 23.6g of vegetarian dry matter had been stored. Assuming edible biomass is eaten up by the human, the closure coefficient of the vegetarian biomass inclusion into matter recycling amounted to 88%. The analysis of the long-term model operation showed that the main factors limiting increase of recycling processes were the following: a) Partly unbalanced mineral composition of daily human waste with daily needs of plants culti-` vated in the system. Thus, when fully satisfied with respect to nitrogen, the plants experienced a lack of macro elements such as P, Mg and Ca by more than 50%; b) Partly unbalanced mineral composition of edible biomass of the plants cultivated in the SLS with that of inedible biomass of the plants cultivated by hydroponic method on neutral substrate introduced in the SLS; c) Accumulation of
Physics design requirements for the Tokamak Physics Experiment (TPX)
Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Nevins, W.M.; Porkolab, M.; Ulrickson, M.
1993-11-01
The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust.
Holcomb, C T; Ferron, J R; Luce, T C; Petrie, T W; Politzer, P A; Rhodes, T L; Doyle, E J; Makowski, M A; Kessel, C; DeBoo, J C; Groebner, R J; Osborne, T H; Snyder, P B; Greenfield, C M; La Haye, R J; Murakami, M; Hyatt, A W; Challis, C; Prater, R; Jackson, G L; Park, J; Reimerdes, H; Turnbull, A D; McKee, G R; Shafer, M W; Groth, M; Porter, G D; West, W P
2008-12-19
Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness ({zeta}). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with {zeta}, in agreement with the modeling. Optimization of kink stability via {zeta} is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest {zeta} tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5<{beta}{sub N}<3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H{sub 98(y,2)}{approx}1.5.
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; Petrie, T. W.; Politzer, P. A.; Challis, C.; DeBoo, J. C.; Doyle, E. J.; Greenfield, C. M.; Groebner, R. J.; Groth, M.; Hyatt, A. W.; Jackson, G. L.; Kessel, C.; La Haye, R. J.; Makowski, M. A.; McKee, G. R.; Murakami, M.; Osborne, T. H.; Park, J.-M.; Prater, R.; Porter, G. D.; Reimerdes, H.; Rhodes, T. L.; Shafer, M. W.; Snyder, P. B.; Turnbull, A. D.; West, W. P.
2009-05-01
Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness (ζ). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with ζ, in agreement with the modeling. Optimization of kink stability via ζ is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest ζ tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5<βN<3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H98(y ,2)≈1.5.
NASA Astrophysics Data System (ADS)
Bergan, Carl; Goyal, Rahul; Cervantes, Michel J.; Dahlhaug, Ole G.
2016-11-01
Francis-99 is a set of workshops aiming to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) focused on steady state conditions. Some concerns were raised regarding uncertainty in the measurements, mainly that there was no clear vortex rope at the Part Load (PL) condition, and that the flow exhibited relatively large asymmetry. The present paper addresses these concerns in order to ensure the quality of the data presented in further workshops. To answer some of these questions, a new set of measurements were performed on the Francis- 99 model at Waterpower Laboratory at the Norwegian University of Science and Technology (NTNU). In addition to PL, two other operating conditions were considered, for further use in transient measurements, Best Efficiency (BEP) and High Load (HL). The experiments were carried out at a head of 12 m, with a runner rotational speed of 333 revolutions per minute (rpm). The guide vane opening angle were 6.72°, 9.84° and 12.43° for PL, BEP and HL, respectively. The part load condition has been changed from the first workshop, to ensure a fully developed Rotating Vortex Rope (RVR). The velocity and pressure measurements were carried out in the draft tube cone using 2D PIV and six pressure sensors, respectively. The new PL condition shows a fully developed rotating vortex rope (RVR) in both the frequency analysis and in the phase resolved data. In addition, the measurements confirm an asymmetric flow leaving the runner, as was a concern in the first Francis-99 workshop. This asymmetry was detected at both design and off-design conditions, with a stronger effect during off design.
An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...
An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...
NASA Astrophysics Data System (ADS)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T.; Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nishino, N.; Collaboration: QUEST Group
2011-09-15
A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.
McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...
2017-08-03
In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less
NASA Astrophysics Data System (ADS)
Oishi, Tetsutarou; Yamazaki, Kozo; Arimoto, Hideki; Mano, Junji
We applied the TOTAL (toroidal transport analysis linkage) simulation code for the analysis of the operational scenario of D-3He spherical tokamak reactors with high beta values and high bootstrap current fractions. Several technical elements, such as the control of the fuel ratio or selective exhaust of the α particle, need to be developed to establish steady-state burning. Negative magnetic shear configuration is a candidate for the high bootstrap current fraction operation.
none,
2014-12-31
This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.
Overview of the National Centralized Tokamak programme
NASA Astrophysics Data System (ADS)
Kikuchi, M.; Tamai, H.; Matsukawa, M.; Fujita, T.; Takase, Y.; Sakurai, S.; Kizu, K.; Tsuchiya, K.; Kurita, G.; Morioka, A.; Hayashi, N.; Miura, Y.; Itoh, S.; Bialek, J.; Navratil, G.; Ikeda, Y.; Fujii, T.; Kurihara, K.; Kubo, H.; Kamada, Y.; Miya, N.; Suzuki, T.; Hamamatsu, K.; Kawashima, H.; Kudo, Y.; Masaki, K.; Takahashi, H.; Takechi, M.; Akiba, M.; Okuno, K.; Ishida, S.; Ichimura, M.; Imai, T.; Hashizume; Miura, Y. M.; Horiike, H.; Kimura, A.; Tsutsui, H.; Matsuoka, M.; Uesugi, Y.; Sagara, A.; Nishimura, A.; Shimizu, A.; Sakamoto, M.; Nakamura, K.; Sato, K.; Okano, K.; Ida, K.; Shimada, H. R.; Kishimoto, Y.; Azechi, H.; Tanaka, S.; Yatsu, K.; Yoshida, N.; Inutake, M.; Fujiwara, M.; Inoue, N.; Hosogane, N.; Kuriyama, M.; Ninomiya, H.
2006-03-01
An overview is given of the National Centralized Tokamak (NCT) programme as a research programme for advanced tokamak research to succeed JT-60U. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility is pursued in aspect ratio and shape controllability for the demonstration of the high-β steady-state, feedback control of resistive wall modes, wide current and pressure profile control capability and also very long pulse steady-state operation. Existing JT-60 infrastructure such as the heating and current drive system, power supplies and cooling systems will be best utilized for this modification.
RF-driven tokamak reactor with sub-ignited, thermally stable operation
Harten, L.P.; Bers, A.; Fuchs, V.; Shoucri, M.M.
1981-02-01
A Radio-Frequency Driven Tokamak Reactor (RFDTR) can use RF-power, programmed by a delayed temperature measurement, to thermally stabilize a power equilibrium below ignition, and to drive a steady state current. We propose the parameters for such a device generating approx. = 1600 MW thermal power and operating with Q approx. = 40 (= power out/power in). A one temperature zero-dimensional model allows simple analytical formulation of the problem. The relevance of injected impurities for locating the equilibrium is discussed. We present the results of a one-dimensional (radial) code which includes the deposition of the supplementary power, and compare with our zero-dimensional model.
NASA Astrophysics Data System (ADS)
Cesario, R.; Amicucci, L.; Fonseca, A.; Chapman, I. T.; Jenko, F.; Marinucci, M.; Saarelma, S.; Smeulders, P.; Told, D.; Zagorski, R.; Baranov, Y.; Beurskens, M.; De Angelis, R.; McDonald, D.; Challis, C.; Galli, A.; Mailloux, J.; Pericoli, V.; Zerbini, M.; EFDA-JET Contributors, the
2013-04-01
In this paper, we discuss the phenomena that link particle recycling from the vessel walls in the L-mode during discharge start-up and the core confinement in the H-mode during the subsequent main heating phase. We consider available data of JET experiments that aimed at approaching fully non-inductive ITER-relevant steady-state conditions and show that the high electron temperature produced at the edge by a low recycling during start-up tends to favour the build-up of high normalized β(βN) regimes in the H-mode, the confinement being improved in a large plasma volume. To provide an insight into this complex phenomenon we have modelled the relation between particle recycling in the scrape-off layer and the evolution of plasma transport, plasma current density and shear as well as the stability properties for such experimental conditions. The results confirm the existence of a link between the confinement in the H-mode phase and the values at the edge of electron temperature, bootstrap current density and local magnetic shear during start-up. Such a link could favour these regimes to be self-sustained in time.
Jana, M. R.; Mattoo, S. K.; Khan, M.
2010-11-15
Neutral beam injection (NBI) system is a workhorse to heat magnetically confined tokamak fusion plasma. The heart of any NBI system is an ion extractor system. Steady State Superconducting Tokamak-1 (SST-1) needs 0.5 MW of hydrogen beam power at 30 kV to raise the plasma ion temperature to {approx}1 keV and 1.7 MW of hydrogen beam power at 55 kV for future upgradation. To meet this requirement, an ion extractor system consisting of three actively cooled grids has been designed, fabricated, and its performance test has been done at MARION test stand, IPP, Julich, Germany. During long pulse (14 s) operation, hydrogen ion beam of energy 31 MJ has been extracted at 41 kV. In this paper, we have presented detailed analysis of calorimetric data of actively cooled extractor grids and showed that by monitoring outlet water temperature, grid material temperature can be monitored for safe steady state operation of a NBI system. Steady state operation of NBI is the present day interest of fusion research. In the present experimental case, performance test analysis indicates that the actively cooled grids attain steady state heat removal condition and the grid material temperature rise is {approx}18 deg. C and saturates after 10 s of beam pulse.
Jana, M R; Mattoo, S K; Khan, M
2010-11-01
Neutral beam injection (NBI) system is a workhorse to heat magnetically confined tokamak fusion plasma. The heart of any NBI system is an ion extractor system. Steady State Superconducting Tokamak-1 (SST-1) needs 0.5 MW of hydrogen beam power at 30 kV to raise the plasma ion temperature to ~1 keV and 1.7 MW of hydrogen beam power at 55 kV for future upgradation. To meet this requirement, an ion extractor system consisting of three actively cooled grids has been designed, fabricated, and its performance test has been done at MARION test stand, IPP, Julich, Germany. During long pulse (14 s) operation, hydrogen ion beam of energy 31 MJ has been extracted at 41 kV. In this paper, we have presented detailed analysis of calorimetric data of actively cooled extractor grids and showed that by monitoring outlet water temperature, grid material temperature can be monitored for safe steady state operation of a NBI system. Steady state operation of NBI is the present day interest of fusion research. In the present experimental case, performance test analysis indicates that the actively cooled grids attain steady state heat removal condition and the grid material temperature rise is ~18°C and saturates after 10 s of beam pulse.
NASA Astrophysics Data System (ADS)
Ishida, S.; JT-60 Team, JFT-2M Group
2004-05-01
In the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U), a high- β p ELMy H-mode (high-poloidal-beta high-confinement-mode with edge localized mode) plasma was sustained with β N ˜2.7 for 7.4 s. Real-time neoclassical tearing mode (NTM) stabilization system was established and effective NTM suppression by early electron cyclotron (EC) wave injection was demonstrated. High fusion triple product of n i (0)τ E T i (0)=3.1×10 20 keVṡsṡm -3 was achieved using the negative-ion based neutral beam current drive with β N ˜2.5 and the bootstrap current fraction f BS ˜50%. In a hot electron regime, a high electron cyclotron current drive efficiency of 4.2×10 18 A/W/m 2 was achieved at T e ˜21 keV . Innovative current start-up scenario produced a current hole plasma with a very high f BS ˜90%. No accumulation of helium and carbon impurities was observed for internal transport barrier (ITB) plasmas. While argon impurity was accumulated, EC injection effectively exhausted it across ITB. In a regime of ELM disappearance, a clear correlation between the ELM frequency and the toroidal velocity at pedestal was observed. In the Japan Atomic Energy Research Institute Fusion Torus-2 Modified (JFT-2M), high beta plasmas were produced with full ferritic inside wall up to β N =3.3, where high recycling steady H-mode discharges were developed up to β N H 89 P ˜6 at n e /n GW ˜0.7-1.0 with ITB. JT-60U started long pulse experiment in late 2003 and JFT-2M will conduct wall stabilization experiment in early 2004. The modification of JT-60 to a fully superconducting coil tokamak is regarded as the national centralized tokamak facility program to accomplish the high beta steady-state research in a collisionless regime.
2010-03-01
organization and shared situational awareness 15 is sought between organizations and others. It is a metacognition of the operating environment that...understanding of a situation and perceives it, its history, and potential future(s), in the same way. It is a metacognition of the operating environment that...This assessment should culminate in the creation of a risk portfolio that includes a hierarchical prioritization of hazards, based upon their
Wyrzykowska-Ceradini, Barbara; Gullett, Brian K; Tabor, Dennis; Touati, Abderrahmane
2011-07-01
Concentrations of polybrominated dibenzo-p-dioxins, and -dibenzofurans (PBDDs/Fs) and polychlorinated dibenzo-p-dioxins, and -dibenzofurans (PCDDs/Fs), were determined in the pre- and post-air pollution control system (APCS) flue gas of a municipal waste combustor (MWC). Operational transients of the combustor were found to considerably increase levels of PBDDs/Fs and PCDDs/Fs compared to steady state operation, both for the raw and clean flue gas; ΣPBDDs/Fs increased from 72.7 to 700 pg dscm(-1) in the raw, pre-APCS gas and from 1.45 to 9.53 pg dscm(-1) in the post-APCS flue gas; ΣPCDDs/Fs increased from 240 to 960 ng dscm(-1) in the pre-APCS flue gas, and from 1.52 to 16.0 ng dscm(-1) in the post-APCS flue gas. The homologue profile of PBDDs/Fs and PCDDs/Fs in the raw flue gas (steady state and transients) was dominated by hexa- and octa-isomers, while the clean flue gas homologue profile was enriched with tetra- and penta-isomers. The efficiency of the APCS for PBDD/F and PCDD/F removal was estimated as 98.5% and 98.7%, respectively. The cumulative TEQ(PCDD/F+PBDD/F) from the stack was dominated by PCDD/F: the TEQ of PBDD/F contributed less than 0.1% to total cumulative toxic equivalency of MWC stack emissions.
Baker, C.C.
1981-01-01
This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.
NASA Astrophysics Data System (ADS)
De Rosa, M.; Ruiz-Calvo, F.; Corberán, J. M.; Montagud, C.; Tagliafico, L. A.
2014-11-01
The correct design and optimization of complex energy systems requires the ability to reproduce the dynamic thermal behavior of each system component. In ground source heat pump (GSHP) systems, modelling the borehole heat exchangers (BHE) dynamic response is especially relevant in the development of control strategies for energy optimization purposes. Over the last years, several models have been developed but most of them are based on steady- state approaches, which makes them unsuitable for short-term simulation purposes. In fact, in order to accurately predict the evolution of the fluid temperatures due to the ON/OFF cycles of the heat pump, it is essential to correctly characterize the dynamic response of BHE for very short time periods. The aim of the present paper is to compare the performance of an analytical steady-state model, available in TRNSYS environment (Type 557), with a novel short-term dynamic model. The new dynamic model is based on the thermal-network approach coupled with a vertical discretization of the borehole which takes into account both the advection due to the fluid circulating along the U-tube, and the heat transfer in the borehole and in the ground. These two approaches were compared against experimental data collected from a real GSHP system installed at the Universitat Politecnica de Valencia. The analysis was performed comparing the outlet temperature profiles predicted by both models during daily standard ON/OFF operating conditions, both in heating and cooling mode, and the between both approaches were highlighted. Finally, the obtained results have been discussed focusing on the potential impact that the differences found in the prediction of the temperature evolution could have in design and optimization of GSHP systems.
NASA Technical Reports Server (NTRS)
Olson, Walter T; Childs, J Howard
1950-01-01
Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.
NASA Technical Reports Server (NTRS)
Khonsari, M. M.
1983-01-01
Thermohydrodynamic effects in journal bearings operating under steady load in laminar regime are investigated. An analytical model for the finite and infinitely long journal bearings is formulated. The model includes correction factors for the cavitation effects in the unloaded region of the bearing and the mixing of the recirculating oil and supply oil at the oil inlet. A finite difference computer program is developed to numerically solve the governing equations of the continuity, Reynolds, energy, Laplace heat conduction, and a viscosity-temperature relation simultaneously. The program includes a numerical technique for obtaining an isothermal shaft temperature. The numerical results of temperature distribution and the heat effects on the bearing load carrying capacity agree closely with those of experimental findings. Several different sets of simpler boundary conditions for the energy equation are studied.
NASA Astrophysics Data System (ADS)
Naujoks, D.
2010-05-01
The magnetic confinement of a hot plasma is the most promising concept to realize controlled thermonuclear fusion on earth. In the last years of intense research activities in the frame of broad international collaboration, it became clear that on the way to a stationary operating fusion reactor not only questions of plasma heating, transport and stability but also the problems associated with the choice of plasma facing materials are decisive. These issues cannot be decoupled from each other [1]. It is demonstrated that both sides, the plasma and the wall, exhibit mutual dependences. Burning conditions will not be achieved without careful adaptation of the chosen materials to the developed plasma scenarios and vice versa. Integrated concepts are required.
NASA Astrophysics Data System (ADS)
Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.
2012-11-01
A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the
NASA Technical Reports Server (NTRS)
Morse, C R; Johnston, J R
1955-01-01
In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.
2014-01-01
This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.
2014-01-01
This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle
NASA Technical Reports Server (NTRS)
Johnsen, R. L.; Namkoong, D.; Edkin, R. A.
1971-01-01
The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.
Steady-state spheromak reactor studies. Revision
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.
Einstein's steady-state cosmology
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac
2014-09-01
Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.
NASA Astrophysics Data System (ADS)
Marmar, Earl
2011-10-01
I-mode operation on Alcator C-Mod combines a strong edge thermal transport barrier with L-mode levels of particle and impurity transport, allowing access to very high performance discharges with low pedestal collisionality and central temperatures up to 8 keV, and without large ELMs or other intermittent edge instabilities. In recent campaigns, C-Mod I-modes have been extended to quasi-steady-state, with access in both favorable and unfavorable ion drift directions and typical normalized energy confinement quality factor H98 ~ 1.0 to 1.2. Adding ICRF mode-conversion flow-drive enhances toroidal flow shear near the plasma edge and confinement is further enhanced. I-mode has been maintained with input power up to nearly 2x the I-mode threshold power, with the largest accessible range in closed divertor geometry at modest triangularity. Simple extrapolations at fixed field imply that ITER in unfavorable drift could access I-mode with available power, and stay in I-mode with alpha-dominant heating. Detailed pedestal fluctuation measurements reveal changes in the turbulence, with decreases in the power at some frequencies and size scales, and growth of a weakly coherent mode (WCM) (kθ ~ 1.5 cm-1, δf/f ~.3) which propagates in the electron diamagnetic direction in the plasma frame. The WCM, which has density, temperature and magnetic signatures, appears to play a key role in pedestal density and impurity regulation, and detailed experimental results and associated modeling are presented. The distribution of divertor exhaust power depends on ion drift direction; new measurements of I-mode heat flux footprints on the outer divertor are compared with those in H-mode. Pedestal stability analyses will be shown for I-modes, including some which exhibited small ELMs. Supported by USDOE Award DE-FC02-99-ER54512.
ELM induced tungsten melting and its impact on tokamak operation
NASA Astrophysics Data System (ADS)
Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Jachmich, S.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Knaup, M.; Komm, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.
2015-08-01
In JET-ILW dedicated melt exposures were performed using a sequence of 3MA/2.9T H-Mode JET pulses with an input power of PIN = 23 MW, a stored energy of ∼6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ∼ 30 Hz. In order to assess the risk of starting ITER operations with a full W divertor, one of the task was to measure the consequences of W transients melting due to ELMs. JET is the only tokamak able to produce transients/ ELMs large enough (>300 kJ per ELM) to facilitate melting of tungsten. Such ELMs are comparable to mitigated ELMs expected in ITER. By moving the outer strike point (OSP) onto a dedicated leading edge the base temperature was raised within ∼1 s to allow transient ELM-driven melting during the subsequent 0.5 s. Almost 1 mm (∼6 mm3) of W was moved by ∼ 150 ELMs within 5 subsequent discharges. Significant material losses in terms of ejections into the plasma were not observed. There is indirect evidence that some small droplets (∼ 80 μm) were ejected. The impact on the main plasma parameters is minor and no disruptions occurred. The W-melt gradually moved along the lamella edge towards the high field side, driven by j × B forces. The evaporation rate determined is 100 times less than expected from steady state melting and thus only consistent with transient melting during individual ELMs. IR data, spectroscopy, as well as melt modeling point to transient melting. Although the type of damage studied in these JET experiments is unlikely to be experienced in ITER, the results do strongly support the design strategy to avoid exposed edges in the ITER divertor. The JET experiments required a surface at normal incidence and considerable pre-heating to produce tungsten melting. They provide unique experimental evidence for the absence of significant melt splashing at events resembling mitigated ELMs on ITER and establish a unique experimental benchmark for the simulations being used to study transient shallow melting on ITER W
ERIC Educational Resources Information Center
Owens, J. A.
1982-01-01
Options for faculty utilization in a steady state are examined, with consideration for their economy or ability to increase turnover or flexibility: early retirement, part retirement, retraining, exchange with other institutions or industry, and fixed-term appointments or lecturer positions. (MSE)
Gravitational steady states of solar coronal loops
NASA Astrophysics Data System (ADS)
Sugiyama, Linda E.; Asgari-Targhi, M.
2017-02-01
Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with
Royer, Michael P.; McCullough, Jeffrey J.; Tucker, Joseph C.
2014-12-01
The lumen depreciation and color shift of 17 different A lamps (15 LED, 1 CFL, 1 halogen) was monitored in the automated long-term test apparatus (ALTA) for more than 7,500 hours. Ten samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at an ambient temperature of 45°C (-1°C). Importantly, the steady-state test conditions were not optimized for inducing catastrophic failure for any of the lamp technologies—to which thermal cycling is a strong contributor— and are not typical of normal use patterns—which usually include off periods where the lamp cools down. Further, the test conditions differ from those used in standardized long-term test methods (i.e., IES LM-80, IES LM-84), so the results should not be directly compared. On the other hand, the test conditions are similar to those used by ENERGY STAR (when elevated temperature testing is called for). Likewise, the conditions and assumptions used by manufacturers to generated lifetime claims may vary; the CALiPER long-term data is informative, but cannot necessarily be used to discredit manufacturer claims. The test method used for this investigation should be interpreted as one more focused on the long-term effects of elevated temperature operation, at an ambient temperature that is not uncommon in luminaires. On average, the lumen maintenance of the LED lamps monitored in the ALTA was better than benchmark lamps, but there was considerable variation from lamp model to lamp model. While three lamp models had average lumen maintenance above 99% at the end of the study period, two products had average lumen maintenance below 65%, constituting a parametric failure. These two products, along with a third, also exhibited substantial color shift, another form of parametric failure. While none of the LED lamps exhibited catastrophic failure—and all of the benchmarks did—the early degradation of performance is concerning, especially with a
Bootstrapped tokamak with oscillating field current drive
Weening, R.H. )
1993-07-01
A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.
Intense steady state electron beam generator
Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto
1990-01-01
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.
Posaconazole Plasma Concentrations on Days Three to Five Predict Steady-State Levels
Prattes, Jürgen; Duettmann, Wiebke
2016-01-01
Low posaconazole plasma concentrations (PPCs) have been associated with breakthrough invasive fungal infections. We assessed the correlation between pre-steady-state PPCs (obtained between days 3 and 5) and PPCs obtained during steady state in 48 patients with underlying hematological malignancies receiving posaconazole oral-solution prophylaxis. Pre-steady-state PPCs correlated significantly with PPCs obtained at steady state (Spearman r = 0.754; P < 0.001). Receiver operating characteristic (ROC) curve analysis of pre-steady-state PPCs revealed an area under the curve (AUC) of 0.884 (95% confidence interval [CI], 0.790 to 0.977) for predicting satisfactory PPCs at steady state. PMID:27324763
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q_{fus} ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
High-beta, steady-state hybrid scenario on DIII-D
NASA Astrophysics Data System (ADS)
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; DeBoo, J. C.; Doyle, E. J.; Ferron, J. R.; Garofalo, A. M.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Murakami, M.; Politzer, P. A.; Reimerdes, H.
2016-01-01
The potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ⩾1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearly equal electron and ion temperatures at low collisionality. A 0D physics model shows that steady-state hybrid operation with Qfus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an advanced tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.
Inconsistencies in steady state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Superconducting magnet system for the TPX Tokamak
NASA Astrophysics Data System (ADS)
Hassenzahl, W. V.; Chaplin, M. R.; Heim, J. R.; Lang, D. D.; O'Connor, T. G.; Slack, D. S.; Wong, R. L.; Zbasnik, J. P.; Brown, T. G.; Citrolo, J. C.
1994-07-01
The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.
Superconducting magnet system for the TPX Tokamak
Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.
1993-09-15
The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPX superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.
Superconducting magnet system for the TPX Tokamak
Hassenzahl, W.V.; Chaplin, M.R.; Heim, J.R.
1994-07-01
The Tokamak Physics Experiment (TPX) will be the first Tokamak using superconducting magnets for both the poloidal and toroidal field. It is designed for advanced Tokamak physics experiments in steady-state and long-pulse operation. The TPC superconducting magnets use an advanced cable-in-conduit conductor (CICC) design similar to that developed in support of the International Thermonuclear Experimental Reactor (ITER). The toroidal field magnets provide 4.0 T at 2.25 m with a stored energy of 1.05 GJ. The poloidal field magnets provide 18.0 V-s to ohmically start and control long burns of a 2.0 MA plasma.
Irreversible processes at nonequilibrium steady states
Fox, Ronald Forrest
1979-01-01
It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649
Progress Towards High-Performance, Steady-State Spherical Torus
Lawrence Livermore National Laboratory
2004-01-04
Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fastwave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX
Progress Towards High Performance, Steady-state Spherical Torus
M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden
2003-10-02
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been
Waight, Roy D.; Leff, Paul; Bardsley, William G.
1977-01-01
1. A study of variations in experimental error of velocity measurement with substrate concentration for alkaline phosphatase reveals that the standard error is not constant or strictly proportional to velocity, but obeys a more complex dependence. 2. By using an approach based on error estimates at each individual substrate concentration, we show that the double-reciprocal plots in general are curved, necessitating a high-degree rate equation. The curves are analysed according to a recent classification of possible curve shapes for the 3:3 function, which is shown to be the lowest-degree rate equation satisfying the experimental data. 4. Other workers have supposed the enzyme to follow Michaelis–Menten kinetics, and it is shown that this assumption is approximately true at low temperatures in the absence of phosphate. 5. A study of the effects of phosphate concentration, pH and temperature on the kinetics shows that there is a gradual alteration in curve shape with these experimental variables, resulting in an apparent reduction in degree under certain special conditions, and particularly at low temperature. 6. It is shown that the steady-state kinetics do not require a flip-flop or half-of-sites reactivity mechanism as claimed, and a mechanism is proposed, a rate equation calculated and an analysis attempted. 7. An analysis of the product-inhibition effects for a linked two-sited Uni Bi enzyme is given. Alterations of asymptotic double-reciprocal slopes and limiting (1/ν) intercepts with products is discussed, and it is shown how the theory of product inhibition can be extended to complex kinetic situations to extract information as to molecular mechanism. 8. Deviations from Michaelis–Menten kinetics are expressed in terms of the magnitude of the appropriate Sylvester resultants. PMID:23764
Venusian hydrology: Steady state reconsidered
NASA Technical Reports Server (NTRS)
Grinspoon, David H.
1992-01-01
In 1987, Grinspoon proposed that the data on hydrogen abundance, isotopic composition, and escape rate were consistent with the hypothesis that water on Venus might be in steady state rather than monotonic decline since the dawn of time. This conclusion was partially based on a derived water lifetime against nonthermal escape of approximately 10(exp 8) yr. De Bergh et al., preferring the earlier Pioneer Venus value of 200 ppm water to the significantly lower value detected by Bezard et al., found H2O lifetimes of greater than 10(exp 9) yr. Donahue and Hodges derived H2O lifetimes of 0.4-5 x 10 (exp 9) yr. Both these analyses used estimates of H escape flux between 0.4 x 10(exp 7) and 1 x 10(exp 7) cm(exp -2)s(exp -1) from Rodriguez et al. Yet in more recent Monte Carlo modeling, Hodges and Tinsley found an escape flux due to charge exchange with hot H(+) of 2.8 x 10(exp 7) cm(exp -2)s(exp -1). McElroy et al. estimated an escape flux of 8 x 10(exp 6) cm(exp -2)s(exp -1) from collisions with hot O produced by dissociative recombination of O2(+). Brace et al. estimated an escape flux of 5 x 10(exp 6) cm(exp -2)s(exp -1) from ion escape from the ionotail of Venus. The combined estimated escape flux from all these processes is approximately 4 x 10(exp 7) cm(exp -2)s(exp -1). The most sophisticated analysis to date of near-IR radiation from Venus' nightside reveals a water mixing ratio of approximately 30 ppm, suggesting a lifetime against escape for water of less than 10(exp 8) yr. Large uncertainties remain in these quantities, yet the data point toward a steady state. Further evaluation of these uncertainties, and new evolutionary modeling incorporating estimates of the outgassing rate from post-Magellan estimates of the volcanic resurfacing rate are presented.
Advanced tokamak operations with ICRF and lower-hybrid power
NASA Astrophysics Data System (ADS)
Mau, T. K.; Lee, B. J.; Ehst, D. A.
1994-10-01
Advanced tokamak operating modes based on high bootstrap current, first- and second-stability regime plasma are examined in the context of the TPX experiment and the ARIES reactors, using a combination of ICRF fast wave and lower hybrid power. The main method of analysis entails the alignment of driven current density profiles with those required for stability. In most of the cases studied, the required power levels and launched spectra are found to be reasonable.
High power steady state MPD thrusters
NASA Astrophysics Data System (ADS)
Auweter-Kurtz, Monika; Habiger, Harald; Kurtz, Helmut; Schrade, Herbert; Sleziona, Cristian
1993-04-01
At the Institut fuer Raumfahrtsysteme (IRS) rotation symmetric magnetoplasmadynamic thrusters with self induced magnetic fields are investigated at high current levels in a steady state operation mode. MPD thrusters with different geometrics were compared, and the influence of mass flow rate and power input on the operating conditions of the thrusters explored. By optical and probe measurements, a systematic investigation of the plasma plume has been started. The investigation of the various instabilities of the arc and the plasma flow appearing at high power levels was continued. The computer code development for the geometry optimization of continuous self-field MPD thrusters, running with argon, was modified by considering higher degrees of ionization, which showed better agreement with the experiment.
JET, the largest tokamak on the eve of DT operation
NASA Astrophysics Data System (ADS)
Horton, L. D.
2016-11-01
The Joint European Torus (JET) is the world's largest operating tokamak and the only such machine capable of operating with the fuel mixture (deuterium-tritium) foreseen for a fusion reactor. Since it came into operation in 1983, JET has explored fusion plasmas "in conditions and dimensions approaching those of a fusion reactor" [1]. JET has demonstrated world-record levels of fusion power and energy production, in conditions where the ratio of the fusion power generated to the input power to the plasma, Q, approaches unity.
Analysis and Simulation of ITER Steady-State Discharges on DIII-D
NASA Astrophysics Data System (ADS)
Diem, S. J.; Murakami, M.; Park, J. M.; Sontag, A. C.
2013-10-01
One of the primary goals of the ITER project is to demonstrate a reactor scale steady-state operation for future tokamaks. This is a challenging task which requires simultaneous operation with fully noninductive current drive, a fusion gain of Q >= 5 and IBS for discharges approximately 3000s in length. Previously, DIII-D has demonstrated fully noninductive scenario in ITER-like shaped plasmas at relatively high q95 ~ 6 . 5 and moderate βN ~ 3 but with low fusion performance (G =βNH89 /q952 ~ 0 . 15). Recent high qmin experiment and modeling indicate that the goal of G = 0 . 3 predicted for Q = 5 operation on ITER can be achieved noninductively at reduced q95 and at higher βN. An optimum choice of q95 and βN for the ITER steady-state mission will be discussed based on the experimental scaling from ITER demonstration discharges on DIII-D, as well as predictive FASTRAN scenario modeling using TGLF coupled to the Integrated Plasma Simulator. FASTRAN is a new iterative numerical procedure that integrates a variety of models (transport, heating, CD, equilibrium and stability) and has been shown to reproduce most features of DIII-D high beta discharges with a stationary current profile. ORNL is managed by UT-Battelle, LLC for the US DOE under DE-AC02-05ER22725 and DE-FC02-04ER54698.
Modelling of pulsed and steady-state DEMO scenarios
NASA Astrophysics Data System (ADS)
Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.
2015-07-01
Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.
Multiple steady states in coupled flow tank reactors
NASA Astrophysics Data System (ADS)
Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John
1992-05-01
Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide
Inductive flux usage and its optimization in tokamak operation
Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; ...
2014-07-30
The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate ofmore » rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.« less
Inductive flux usage and its optimization in tokamak operation
Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; Solomon, Wayne M.
2014-07-30
The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate of rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.
Adaptive steady-state stabilization for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Braun, David J.
2008-07-01
By means of LaSalle’s invariance principle, we propose an adaptive controller with the aim of stabilizing an unstable steady state for a wide class of nonlinear dynamical systems. The control technique does not require analytical knowledge of the system dynamics and operates without any explicit knowledge of the desired steady-state position. The control input is achieved using only system states with no computer analysis of the dynamics. The proposed strategy is tested on Lorentz, van der Pol, and pendulum equations.
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Development of steady-state scenarios compatible with ITER-like wall conditions
NASA Astrophysics Data System (ADS)
Litaudon, X.; Arnoux, G.; Beurskens, M.; Brezinsek, S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Giroud, C.; Pitts, R. A.; Rimini, F. G.; Andrew, Y.; Ariola, M.; Baranov, Yu F.; Brix, M.; Buratti, P.; Cesario, R.; Corre, Y.; DeLa Luna, E.; Fundamenski, W.; Giovannozzi, E.; Gryaznevich, M. P.; Hawkes, N. C.; Hobirk, J.; Huber, A.; Jachmich, S.; Joffrin, E.; Koslowski, H. R.; Liang, Y.; Loarer, Th; Lomas, P.; Luce, T.; Mailloux, J.; Matthews, G. F.; Mazon, D.; McCormick, K.; Moreau, D.; Pericoli, V.; Philipps, V.; Rachlew, E.; Reyes-Cortes, S. D. A.; Saibene, G.; Sharapov, S. E.; Voitsekovitch, I.; Zabeo, L.; Zimmermann, O.; Zastrow, K. D.; JET-EFDA Contributors, the
2007-12-01
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q95 ~ 5 and high triangularity, δ (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching βN ~ 2 at Bo ~ 3.1 T. Operating at higher δ has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At
Prospects for Tokamak Fusion Reactors
Sheffield, J.; Galambos, J.
1995-04-01
This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.
Tokamak Physics Experiment (TPX) cost and performance trade studies using supercode
Miller, R.L.; Galambos, J.D.; Haney, S.W.; Perkins, L.J.; Mandrekas, J.
1993-11-01
The Tokamak Physics Experiment (TPX) has been proposed to demonstrate steady-state operation and to develop advanced performance in terms of {beta} and energy confinement. Major TPX cost drivers and the impact of physics and technology constraints and options on operating scenarios are identified. Key trade and sensitivity studies performed using SuperCode are summarized.
Steady-State Squeezing in the Micromaser Cavity Field
NASA Technical Reports Server (NTRS)
Nayak, N.
1996-01-01
It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).
Flexibility in a Steady State University
ERIC Educational Resources Information Center
Campbell, Richard
1977-01-01
Problems posed by abrupt transition to a steady state following rapid expansion in Australian universities are reviewed. Focus is on demography of departments, new developments in academic disciplines, tenure, and early retirement. (LBH)
Steady-state permanent magnet MPD thruster
Arakawa, Y.; Sasoh, A.
1987-01-01
A steady-state MPD arc thruster with permanent magnets has been made. The effect of the permanent magnets on thruster performance and the plasma acceleration mechanism was examined through measurements of thrust, chamber pressure, current densities, and plasma properties in the exhaust plume. Experimental results show that the use of the permanent magnets is desirable in steady-state MPD thrusters of the greater than 10 kW power range. 7 references.
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
Plasma/Liquid-Metal Interactions During Tokamak Operation
Hassanein, A.; Allain, J.P.; Insepov, Z.; Konkashbaev, I.
2005-04-15
One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin.Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.
Plasma/liquid metal interactions during tokamak operation.
Hassanein, A.; Allain, J. P.; Insepov, Z.; Konkashbaev, I.; Energy Technology
2005-04-01
One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin. Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.
The Tokamak Physics Experiment
Davidson, R.C.; Goldston, R.J.; Neilson, G.H.; Thomassen, K.I.
1995-06-01
The mission of the Tokamak Physics Experiment (TPX) [Nevins {ital et} {ital al}., {ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion}, Wuerzburg (International Atomic Energy Agency, Vienna, 1992), Vol. 3, p. 279] is to develop the scientific basis for an economically competitive and continuously operating tokamak fusion power source. This complements the primary mission of the International Thermonuclear Experimental Reactor (ITER) [ITER Document Ser. No. 18 (International Atomic Energy Agency, Vienna, 1991)], the demonstration of ignition and long-pulse burn, and the integration of nuclear technologies. The TPX program is focused on making the demonstration power plant that follows ITER as compact and attractive as possible, and on permitting ITER to achieve its ultimate goal of steady-state operation. This mission of TPX requires the development of steady-state regimes with high beta, good confinement, and a high fraction of a self-driven bootstrap current. These regimes must be compatible with plasma stability, strong heat-flux dispersion in the divertor region, and effective particle control.
The Tokamak Physics Experiment
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; Goldston, Robert J.; Neilson, George H.; Thomassen, Keith I.
1995-06-01
The mission of the Tokamak Physics Experiment (TPX) [Nevins et al., Plasma Physics and Controlled Nuclear Fusion, Würzburg (International Atomic Energy Agency, Vienna, 1992), Vol. 3, p. 279] is to develop the scientific basis for an economically competitive and continuously operating tokamak fusion power source. This complements the primary mission of the International Thermonuclear Experimental Reactor (ITER) [ITER Document Ser. No. 18 (International Atomic Energy Agency, Vienna, 1991)], the demonstration of ignition and long-pulse burn, and the integration of nuclear technologies. The TPX program is focused on making the demonstration power plant that follows ITER as compact and attractive as possible, and on permitting ITER to achieve its ultimate goal of steady-state operation. This mission of TPX requires the development of steady-state regimes with high beta, good confinement, and a high fraction of a self-driven bootstrap current. These regimes must be compatible with plasma stability, strong heat-flux dispersion in the divertor region, and effective particle control.
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Erckmann, V.; Laurent, L.; Motojima, O.; Neilson, G. H.; Oktay, E.; Owens, D. K.; Rau, F.; Thomassen, K. I.; Wagner, F.
1996-03-01
The major contributions to this workshop came from TORE-SUPRA, TPX, LHD and W7-X (two tokamaks, one heliotron and a stellarator). All four devices are of similar size and designed for a similar range of parameters and, in particular, they address the same target - steady-state plasma operation. TORE-SUPRA is a circular cross section tokamak, LHD is designed with optimized continuous coils and provides a helical divertor, TPX and W7-X incorporate strongly-shaped geometries to improve confinement and stability and optimize the bootstrap current. In TPX, the system is optimized for a large bootstrap current, in W7-X for basically no bootstrap current. Also the heating systems are designed for the specific purpose of steady-state operation. TORE-SUPRA is in operation, LHD is near completion; W7-X has recently (after the workshop) been approved; TPX is still in the approval phase. Superconducting coil material is NbTi for TORE-SUPRA, LHD and W7-X and Nb3Sn for TPX. The TF-coils of TORE-SUPRA (1.8 K, superfluid He) and the helical coil of LHD (4.2 K for the first part of experiments with 3 T) are bath-cooled. Cable-in-conduit conductors are used in the other SC coils. Largely different solutions are selected for the SC cable composition. Except for TPX, which has a double-null poloidal field divertor matched to the strong plasma shaping, most of the steady-state devices have a very flexible plasma edge configuration: islands or ergodic boundaries (W7-X, TORE-SUPRA, LHD), limiter (TORE-SUPRA), helical divertor (LHD, W7-X). The status of plasma equilibrium control, high heat flux materials and activation problems were also discussed. Power plant studies based on different steady-state confinement concepts were presented and confronted with a summary on the PULSAR study based on pulsed systems.
Fluctuations When Driving Between Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2017-06-01
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.
Fluctuations When Driving Between Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2017-08-01
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.
On the possibility of a steady state tokamak
NASA Astrophysics Data System (ADS)
Dawson, J. M.; Nunan, W. J.; Ma, S.
1994-08-01
It is a great pleasure for me to speak at this symposium in honor of Tom Stix. I have had the privilege of knowing Tom ever since I started working in plasma physics and fusion at the Princeton Plasma Physics Lab almost 36 years ago. He was a leader of the fusion effort when I arrived and has remained so up to the present time. I vividly remember our interesting discussions on plasma physics. Particularly, I remember how many new and original ideas came from Tom, his ideas for ICRH: the Stix coil, the magnetic beach, and many, many others. Tom not only originated ideas but he built and carried out experiments to these ideas, as well as many other fundamental concepts in plasma physics. Tom's experiments were always firsts, and many pioneering advances were made by him. Tom's enthusiasm for plasma physics and fusion is infectious; it stimulates and inspires his co-workers and has touched all of Princeton's plasma students. Tom has had a deep interest in teaching plasma physics from the beginning. His excellent course on plasma waves launched many careers. His book on plasma waves, which came from this course, is the standard on the subject, and is an invaluable reference for everyone working in plasma physics. Tom is a generous and caring person which made him an ideal person to lead the Princeton Plasma Physics Graduate Program. It is my great good fortune to have known and worked with Tom, and to have him as a friend. This symposium is particularly honoring Tom for his guiding of the graduate program in plasma physics at Princeton. For this reason I thought it would be appropriate for me to speak about some work a graduate student of mine, Bill Nunan, is doing, at UCLA. In a real sense the UCLA graduate program in Plasma Physics has many roots in the Princeton program which Tom so skillfully guided.
Tokamak power reactor ignition and time dependent fractional power operation
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.
Dust remobilization in fusion plasmas under steady state conditions
NASA Astrophysics Data System (ADS)
Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-02-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.
Firestone, M.A.; Mau, T.K.; Conn, R.W.
1985-04-01
A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.
Network inference in the nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Dettmer, Simon L.; Nguyen, H. Chau; Berg, Johannes
2016-11-01
Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states
NASA Astrophysics Data System (ADS)
Ferraro, N. M.; Jardin, S. C.
2009-11-01
M3D- C1 is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlüter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed.
Magnetic confinement experiment. I: Tokamaks
Goldston, R.J.
1995-08-01
Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.
Steady state response of unsymmetrically laminated plates
Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki
1995-11-01
A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.
Steady-State Axial Temperature and Flow Velocity in Triga Channel.
ZEFRAN, BOJAN
2007-02-28
Version 00 TRISTAN-IJS is a computer program for calculating steady-state axial temperature distribution and flow velocity through a vertical coolant channel in low power TRIGA reactor core, cooled by natural circulation. It is designed for steady-state thermohydraulic analysis of TRIGA research reactors operating at a low power level of 1-2 MW.
Density limits investigation and high density operation in EAST tokamak
NASA Astrophysics Data System (ADS)
Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team
2016-05-01
Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H → L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H → L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.
CA_OPPUSST - Cantera OPUS Steady State
Moffat, Harry K.
2005-03-01
The Cantera Opus Steady State (ca-opusst) applications solves steady reacting flow problems in opposed-flow geometries. It is a 1-0 application that represents axisymmetnc 3-0 physical systems that can be reduced via a similarity transformation to a 1-0 mathematical representation. The code contain solutions of the general dynamic equations for the particle distribution functions using a sectional model to describe the particle distribution function. Operators for particle nucleation, coagulation, condensation (i.e., growth/etching via reactions with the gas ambient), internal particle reactions. particle transport due to convection and due to molecular transport, are included in the particle general dynamics equation. Heat transport due to radiation exchange of the environment with particles in local thermal equilibrium to the surrounding gas will be included in the enthalpy conservation equation that is solved for the coupled gas! particle system in an upcoming version of the code due in June 2005. The codes use Cantera , a C++ Cal Tech code, for determination of gas phase species transport, reaction, and thermodynamics physical properties and source terms. The Codes use the Cantera Aerosol Dynamics Simulator (CADS) package, a general library for aerosol modeling, to calculate properties and source terms for the aerosol general dynamics equation, including particle formation from gas phase reactions, particle surface chemistry (growth and oxidation), bulk particle chemistry, particle transport by Brownian diffusion, thermophoresis, and diffusiophoresis, and thermal radiative transport involving particles. Also included are post-processing programs, cajost and cajrof, to extract ascii data from binary output files to produce plots.
Runov, A.M.; Kasilov, S.V.; Helander, P.
2015-11-01
A kinetic Monte Carlo model suited for self-consistent transport studies is proposed and tested. The Monte Carlo collision operator is based on a widely used model of Coulomb scattering by a drifting Maxwellian and a new algorithm enforcing the momentum and energy conservation laws. The difference to other approaches consists in a specific procedure of calculating the background Maxwellian parameters, which does not require ensemble averaging and, therefore, allows for the use of single-particle algorithms. This possibility is useful in transport balance (steady state) problems with a phenomenological diffusive ansatz for the turbulent transport, because it allows a direct use of variance reduction methods well suited for single particle algorithms. In addition, a method for the self-consistent calculation of the electric field is discussed. Results of testing of the new collision operator using a set of 1D examples, and preliminary results of 2D modelling in realistic tokamak geometry, are presented.
Tokamak Physics Experiment (TPX) design
Schmidt, J.A.
1995-12-31
TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995.
Investigation of the steady state measurement process
Nagy, J. L.; Leisztner, L.; Hangos, K. M.
1988-01-01
Based on the role of steady state concept in the model of analytical chemical measurement and deduction, the definition of ‘practically sleady slate’ (PSS) has been inlroduced. The defnition does not require the process to be in steady state in a strictly mathematical sense. In order to fulfil the requiremenls of ‘practically steady state’ the random error and the syslematic error must vary within a suitable limit, and the expected fgure for the measured value must be within a specified range. The goal of the present investigation was to detect the steady state of the measurement process with respect to the analytical information (peak area ratio) based on the measured values. The method proposed proved to be useful for the determination of the simultaneously present systematic error and random error. Control based on the measured values of the internal standard is useful, but additional information is necessary. There are several advantages to the method described: the results for the internal standard indicate possible sources of disturbances and allow the end of the steady state measurement process to be predicted. PMID:18925195
Thermodynamics of Stability of Nonequilibrium Steady States.
ERIC Educational Resources Information Center
Rastogi, R. P.; Shabd, Ram
1983-01-01
Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)
Steady-State Staffing: A Second Report.
ERIC Educational Resources Information Center
Furniss, W. Todd
This is a folow-up report on developments in long-range faculty personnel planning since the publication of "Steady-State Staffing in Tenure-Granting Institutions and Related Papers," covering the period from March through December 1973. Following references to newly available data, the paper deals first with work done at SUNY-Buffalo, Stanford,…
The Politics of the Steady State
ERIC Educational Resources Information Center
Taylor, Charles
1978-01-01
A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)
ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM
HUMPHREYS,DA; FERRON,JR; GAROFALO,AM; HYATT,AW; JERNIGAN,TC; JOHNSON,RD; LAHAYE,RJ; LEUER,JA; OKABAYASHI,M; PENAFLOR,BG; SCOVILLE,JT; STRAIT,EJ; WALKER,ML; WHYTE,DG
2002-10-01
A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.
DEVELOPMENT IN THE DIII-D TOKAMAK OF HYBRID OPERATION SCENARIOS FOR BURNING PLASMA EXPERIMENTS
LUCE,TC; WADE,MR; FERRON,JR; HYATT,AW; POLITZER,PA; SIPS,ACC
2003-08-01
OAK-B135 The basic parameters of proposed burning plasma experiments such as ITER and FIRE have been chosen based on analysis of multi-machine databases of confinement, stability, and divertor operation. given these specifications, it is of interest to run discharges in present-day machines such as DIII-D to verify the design basis and evaluate the margin available to achieve the mission goals. it is especially important to operate discharges which are stationary with respect to the current relaxation time scale ({tau}{sub R}) since it is well-known that higher performance can be achieved transiently. Attention has been focused on validating the baseline scenario for diverted machines--ELMing H-mode discharges with q{sub 95} = 3 with sawteeth. However, there is also interest in the ITER program to assess the feasibility of operating the tokamak in a mode to maximize the neutron fluence for the purpose of testing the design of various components critical to the nuclear fuel cycle and energy conversion systems in a fusion power plant. It was originally envisioned that these discharges would be intermediate between an inductive burn (baseline) scenario and a fully noninductive (steady state) scenario; therefore, this type of discharge has become known as a hybrid scenario. In the course of investigating these hybrid scenarios in DIII-D, two key results have been obtained. First, stationary discharges with q{sub 95} > 4 have been obtained which project to Q{sub fus} {approx} 10 in ITER. The projected duration of these discharges in ITER when using the full inductive flux capability is > 4000 s. (The significant engineering issues of site heat capacity, activation, and tritium consumption are beyond the scope of this work). Second, utilizing the same plasma initiation techniques as developed for the hybrid scenario, discharges at q{sub 95} = 3.2 project to near ignition in ITER, even with reduced parameters. This indicates the ITER design has significant performance
Harmonic coupling of steady-state visual evoked potentials.
Krusienski, Dean J; Allison, Brendan Z
2008-01-01
Steady-state visual evoked potentials (SSVEPs) are oscillating components of the electroencephalogram (EEG) that are detected over the occipital areas, having frequencies corresponding to visual stimulus frequencies. SSVEPs have been demonstrated to be reliable control signals for operating a brain-computer interface (BCI). This study uses offline analyses to investigate the characteristics of SSVEP harmonic amplitude and phase coupling and the impact of using this information to construct a matched filter for continuously tracking the signal.
Krachkovskiy, Sergey A; Bazak, J David; Werhun, Peter; Balcom, Bruce J; Halalay, Ion C; Goward, Gillian R
2016-06-29
Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
On Steady-State Tropical Cyclones
2014-01-01
temperature, Te, in analogy to the model for the Hadley circulation of Schneider (1977) and Held and Hou (1980). The model is nearly inviscid in the flow...tangential wind speed is approximately constant. However, in many of our own calculations the upper and outer circulations are by no means steady at... circulation (Ooyama, 1969; Shapiro and Willoughby, 1982). Above the frictional boundary layer, this steady-state circulation must be along absolute angular
Variational methods in steady state diffusion problems
Lee, C.E.; Fan, W.C.P.; Bratton, R.L.
1983-01-01
Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions.
Advanced tokamak scenario developments for the next step
NASA Astrophysics Data System (ADS)
Joffrin, E.
2007-12-01
The objective of advanced tokamak scenario research is to provide a candidate plasma scenario for continuous operation in a fusion power plant. The optimization of the self-generated non-inductive current by the bootstrap mechanism up to a level of 50% and above using high plasma pressure and improved confinement are the necessary conditions to achieve this goal. The two main candidate scenarios for continuous operation, the steady state scenario and long duration (up to 3000 s) high neutron fluency scenario (the hybrid scenario), both face physics challenges in terms of confinement, stability, power exhaust and plasma control. Resistive wall modes and Alfvénic fast ion driven instabilities are the main limitations for operating the steady state scenario at high pressure and low magnetic shear. In addition, this scenario demands a high degree of control over the plasma current and pressure profile and the steady state heat load on in-vessel plasma facing components. Understanding the confinement properties of hybrid scenario is still an outstanding issue as well as its modelling for ITER in particular with regard to the H-mode pedestal parameters. This scenario will also require active current profile control, although, less demanding than for the steady state scenario. To operate advanced tokamak scenario, broad current and pressure profile control appears as a necessary requirement on ITER actuators, in addition to the tools required for instability control such as error field coils or electron cyclotron current drive.
Theory of Steady-State Superradiance
NASA Astrophysics Data System (ADS)
Xu, Minghui
In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.
On Typicality in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto
2016-08-01
From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Cardella, A; Erckmann, V.; Gantenbein, G; Hathiramani, D; Kasparek, W; Klinger, T.; Koenig, R; Kornejew, P; Laqua, H P; Lechte, C; Michel, G; Peacock, A.; Sunn Pedersen, T; Thumm, M; Turkin, Yu.; Wegener, Lutz; Werner, A.; Zhang, D; Beidler, C.; Bozhenkov, S.; Brown, T.; Geiger, J.; Harris, Jeffrey H; Heitzenroeder, P.; Lumsdaine, Arnold; Maassberg, H.; Marushchenko, N B; Neilson, G. H.; Otte, M; Rummel, Thomas; Spong, Donald A; Tretter, Jorg
2013-01-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Operation of a tangential bolometer on the PBX tokamak
Paul, S.F.; Fonck, R.J.; Schmidt, G.L.
1987-04-01
A compact 15-channel bolometer array that views plasma emission tangentially across the midplane has been installed on the PBX tokamak to supplement a 19-channel poloidal array which views the plasma perpendicular to the toroidal direction. By comparing measurements from these arrays, poloidal asymmetries in the emission profile can be assessed. The detector array consists of 15 discrete 2-mm x 2-mm Thinistors, a mixed semiconductor material whose temperature coefficient of resistance is relatively high. The accumulated heat incident on a detector gives rise to a change in the resistance in each active element. Operated in tandem with an identical blind detector, the resistance in each pair is compared in a Wheatstone bridge circuit. The variation in voltage resulting from the change in resistance is amplified, stored on a CAMAC transient recorder during the plasma discharge, and transferred to a VAX data acquisition computer. The instantaneous power is obtained by digitally smoothing and differentiating the signals in time, with suitable compensation for the cooling of the detector over the course of a plasma discharge. The detectors are ''free standing,'' i.e., they are supported only by their electrical leads. Having no substrate in contact with the detector reduces the response time and increases the time it takes for the detector to dissipate its accumulated heat, reducing the compensation for cooling required in the data analysis. The detectors were absolutely calibrated with a tungsten-halogen filament lamp and were found to vary by +-3%. The irradiance profiles are inverted to reveal the radially resolved emitted power density from the plasma, which is typically in the 0.1 to 0.5 W/cm/sup 3/ range.
Resistive demountable toroidal-field coils for tokamak reactors
Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.
1981-07-01
Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.
Energy repartition in the nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu
2017-01-01
The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.
Enceladus is not in Steady State
NASA Astrophysics Data System (ADS)
Cheunchitra, T.; Stevenson, D. J.
2016-12-01
Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice
Steady state stresses in ribbon parachute canopies
NASA Technical Reports Server (NTRS)
Garrard, W. L.; Wu, K. Y.; Muramoto, K. K.
1984-01-01
An experimental study of the steady state stresses in model ribbon parachute canopies is presented. The distribution of circumferential stress was measured in the horizontal ribbons of two parachutes using Omega sensors. Canopy pressure distributions and overall drag were also measured. Testing was conducted in the University of Minnesota Low-Speed Wind Tunnel at dynamic pressures ranging from 1.0 to 1.5 inches of water. The stresses in the parachute canopies were calculated using the parachute structural analysis code, CANO. It was found that the general shape of the measured and calculated stress distributions was fairly similar; however, the measured stresses were somewhat less than the calculated stresses.
Intensity fluctuations in steady-state superradiance
Meiser, D.; Holland, M. J.
2010-06-15
Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.
Tokamak and RFP ignition requirements
Werley, K.A.
1991-01-01
A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.
TPX diagnostics for tokamak operation, plasma control and machine protection
Edmonds, P.H.; Medley, S.S.; Young, K.M.
1995-08-01
The diagnostics for TPX are at an early design phase, with emphasis on the diagnostic access interface with the major tokamak components. Account has to be taken of the very severe environment for diagnostic components located inside the vacuum vessel. The placement of subcontracts for the design and fabrication of the diagnostic systems is in process.
Exploration of steady-state scenarios for the Fusion Development Facility (FDF)
NASA Astrophysics Data System (ADS)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.; Choi, M.; Kinsey, J. E.; Lao, L. L.; Snyder, P. B.; St. John, H. E.; Turnbull, A. D.
2011-10-01
A Fusion Nuclear Science Facility (FNSF) has to operate at 105 times longer duration than that of present tokamak discharges. The scalability of plasma sustainment to such a long time is an issue that needs to be resolved by scientific understanding. We carry out steady-state (SS) scenario development of the FDF (a candidate for FNSF-AT) using an iterative process toward a self-consistent solution via alternating temperature profiles and current profile evolution. The temperature profile evolves according to a physics-based transport model GLF23. SS requires large off-axis current drive (CD). To achieve this with no NBI is highly challenging. It however simplifies tritium containment, increases area for tritium breeding, and avoids costly negative-ion NBI technology. We find that with ECH/ECCD only, too much power is required. A SS baseline equilibrium is found by adding LHCD: Qfus ~ 4 , H98 y 2 ~ 1 . 2 , fBS ~ 70 %, Pfus ~ 260 MW, PEC = 35 MW, PLH = 21 MW. The GATO ideal MHD code finds the equilibrium stable to n = 1 internal kink at κ = 2 . 3 . Work supported by General Atomics internal funds.
An Intuitive Approach to Steady-State Kinetics.
ERIC Educational Resources Information Center
Raines, Ronald T.; Hansen, David E.
1988-01-01
Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)
An Intuitive Approach to Steady-State Kinetics.
ERIC Educational Resources Information Center
Raines, Ronald T.; Hansen, David E.
1988-01-01
Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)
Statistical steady state in turbulent droplet condensation
NASA Astrophysics Data System (ADS)
Siewert, Christoph; Bec, Jérémie; Krstulovic, Giorgio
2017-01-01
Motivated by systems in which droplets grow and shrink in a turbulence-driven supersaturation field, we investigate the problem of turbulent condensation in a general manner. Using direct numerical simulations we show that the turbulent fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. Based on that, we propose a Lagrangian stochastic model for condensation and evaporation of small droplets in turbulent flows. It consists of a set of stochastic integro-differential equations for the joint evolution of the squared radius and the supersaturation along the droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution. These results reconcile those of earlier numerical studies, once these various regimes are considered.
Non-steady-state aerosol filtration in nanostructured fibrous media.
Przekop, Rafal; Gradoń, Leon
2011-06-28
The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.
Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.
2000-01-01
NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.
Steady State Turbulent Transport in Magnetic Fusion Plasmas
Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.
2007-12-20
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.
Steady-state models of photosynthesis.
von Caemmerer, Susanne
2013-09-01
In the challenge to increase photosynthetic rate per leaf area mathematical models of photosynthesis can be used to help interpret gas exchange measurements made under different environmental conditions and predict underlying photosynthetic biochemistry. To do this successfully it is important to improve the modelling of temperature dependencies of CO₂ assimilation and gain better understanding of internal CO₂ diffusion limitations. Despite these shortcomings steady-state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO₂, inserting bicarbonate pumps into C₃ chloroplasts or inserting C₄ photosynthesis into rice. Here a number of models derived from the C₃ model by Farquhar, von Caemmerer and Berry are discussed and compared.
Steady-State Chemotaxis in Escherichia coli
NASA Astrophysics Data System (ADS)
Kafri, Yariv; da Silveira, Rava Azeredo
2008-06-01
The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: “runs,” in which it moves in near-straight lines, and “tumbles,” in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors is obtained that depends subtly upon several aspects of the system—memory, correlation, and tumbling stochasticity, in particular.
Bohm, P. Bilkova, P.; Melich, R.; Sestak, D.; Weinzettl, V.; Stockel, J.; Hron, M.; Panek, R.; Mikulin, O.; Scannell, R.; Naylor, G.; Frassinetti, L.; Fassina, A.; Walsh, M. J.
2014-11-15
The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.
Bohm, P; Aftanas, M; Bilkova, P; Stefanikova, E; Mikulin, O; Melich, R; Janky, F; Havlicek, J; Sestak, D; Weinzettl, V; Stockel, J; Hron, M; Panek, R; Scannell, R; Frassinetti, L; Fassina, A; Naylor, G; Walsh, M J
2014-11-01
The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.
A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.
Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K
2013-01-01
Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.
Economic analyses of alpha channeling in tokamak power plants.
Ehst, D.A.
1998-09-17
The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.
NASA Astrophysics Data System (ADS)
Sauter, O.; Henderson, M. A.; Hofmann, F.; Goodman, T.; Alberti, S.; Angioni, C.; Appert, K.; Behn, R.; Blanchard, P.; Bosshard, P.; Chavan, R.; Coda, S.; Duval, B. P.; Fasel, D.; Favre, A.; Furno, I.; Gorgerat, P.; Hogge, J.-P.; Isoz, P.-F.; Joye, B.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Mandrin, P.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Martynov, A. A.; Mlynar, J.; Moret, J.-M.; Nieswand, C.; Nikkola, P.; Paris, P.; Perez, A.; Pietrzyk, Z. A.; Pitts, R. A.; Pochelon, A.; Pochon, G.; Refke, A.; Reimerdes, H.; Rommers, J.; Scavino, E.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Weisen, H.
2000-04-01
A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0.5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.
Steady state multiplicity of two-step biological conversion systems with general kinetics.
Volcke, E I P; Sbarciog, M; Noldus, E J L; De Baets, B; Loccufier, M
2010-12-01
This study analyses the steady state behaviour of biological conversion systems with general kinetics, in which two consecutive reactions are carried out by two groups of micro-organisms. The model considered is a realistic description of wastewater treatment processes. A step-wise procedure is followed to reveal the mechanisms affecting the occurrence of steady states in terms of the process input variables. It is clearly demonstrated how taking into account inhibition effects by simply including additional inhibition terms to the kinetic expressions, a common practice, influences the model's long term behaviour. The overall steady state behaviour of the model has been summarized in easy-to-interpret operating diagrams, depicting the occurrence of steady states in terms of the reactor dilution rate and the influent substrate concentration, with well-defined boundaries between distinct operating regions. This knowledge is crucial for modelers as steady state multiplicity--in the sense that more than one steady state can be reached depending on the initial conditions--may remain undetected during simulation. The obtained results may also serve for experimental design and for model validation based on experimental findings.
NASA Lewis Steady-State Heat Pipe Code Architecture
NASA Technical Reports Server (NTRS)
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
New models for fast steady state magnetic reconnection
NASA Technical Reports Server (NTRS)
Priest, E. R.; Forbes, T. G.
1986-01-01
A new unified family of models for incompressible, steady-state magnetic reconnection in a finite region is presented. The models are obtained by expanding in powers of the Alfven Mach number and may be used to elucidate some of the puzzling properties of numerical experiments on reconnection which are not present in the classical models. The conditions imposed on the inflow boundary of the finite region determine which member of the family occurs. Petscheklien and Sonnerup like solutions are particular members. The Sonneruplike regime is a special case of a weak slow mode expansion in the inflow region, and it separates two classes of members with reversed currents. The Petscheklike regime is a singular case of a weak fast mode expansion, and it separates the hybrid regime from a regime of slow mode compressions. Care should be taken in deciding which type of reconnection is operating in a numerical experiment. Indeed, no experiment to date has used boundary conditions appropriate for demonstrating steady state Petschek reconnection.
Maximal lactate steady state in Judo
de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio
2014-01-01
Summary Background: the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. Methods: to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. Results: the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. Conclusions: RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo. PMID:25332923
Inconsistencies in steady-state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006), 10.1007/s10955-005-9021-7] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.
Steady State Vapor Bubble in Pool Boiling
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.
2016-01-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-02-03
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion
NASA Technical Reports Server (NTRS)
Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur
2017-01-01
Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.
Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes
NASA Technical Reports Server (NTRS)
Wadge, G.
1982-01-01
Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β_{N} and the noninductive current drive. However, in scenarios with q_{min}>2 that target the typical range of q_{95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β_{N}. Conversely similar plasmas except with q_{min} just above 1 have approximately classical fast-ion transport. Experiments that take q_{min}>3 plasmas to higher β_{P} with q_{95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q_{min} scenario, the high β_{P} cases have shorter slowing-down time and lower ∇β_{fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β_{N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q_{95}, high-q_{min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β_{N} and the noninductive current drive. However, in scenarios with q_{min}>2 that target the typical range of q_{95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β_{N}. Conversely similar plasmas except with q_{min} just above 1 have approximately classical fast-ion transport. Experiments that take q_{min}>3 plasmas to higher β_{P} with q_{95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q_{min} scenario, the high β_{P} cases have shorter slowing-down time and lower ∇β_{fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β_{N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q_{95}, high-q_{min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
NASA Astrophysics Data System (ADS)
Yamazaki, K.; Uemura, S.; Oishi, T.; Garcia, J.; Arimoto, H.; Shoji, T.
2009-05-01
Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.
A bounce-averaged Monte Carlo collision operator and ripple transport in a tokamak
Albert, J.M.; Boozer, A.H.
1986-09-01
A bounce-averaged Monte Carlo operator is presented that simulates bounce-averaged perturbative Lorentz pitch angle scattering of particles in toroidal plasmas, in particular a tokamak. In conjunction with bounce-averaged expressions for the deterministic motion, this operator allows a quick and inexpensive simulation on time scales long compared to a bounce time. An analytically tractable model of transport due to toroidal magnetic field ripple is described.
Exact Nonequilibrium Steady State of a Strongly Driven Open XXZ Chain
NASA Astrophysics Data System (ADS)
Prosen, Tomaž
2011-09-01
An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is—apart from a normalization constant—a polynomial of degree 2n-2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n2 scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)PRLTAO0031-900710.1103/PhysRevLett.106.217206].
Transient and steady state modelling of a coupled WECS
NASA Astrophysics Data System (ADS)
Nathan, G. K.; Tan, J. K.
The paper presents a method for simulation of a wind turbine using a dc motor. The armature and field voltages of the dc motor are independently regulated to obtain torque-speed characteristics which correspond to those of a wind turbine at different wind speeds. The mass moment of inertia of the wind turbine is represented by adding a rotating mass to a parallel shaft which is positively coupled to the motor shaft. To verify the method of simulation, an American multiblade wind turbine is chosen, loaded by coupling to a centrifugal pump. Using the principle of conservation of energy and characteristics of both constituent units, two mathematical models are proposed: one for steady state operation and another for the transient state. The close comparison between the theoretical and the experimental results validates the proposed models and the method of simulation. The experimental method is described and the results of the experimental and theoretical investigation are presented.
Global migration of impurities in tokamaks
NASA Astrophysics Data System (ADS)
Hakola, A.; Airila, M. I.; Björkas, C.; Borodin, D.; Brezinsek, S.; Coad, J. P.; Groth, M.; Järvinen, A.; Kirschner, A.; Koivuranta, S.; Krieger, K.; Kurki-Suonio, T.; Likonen, J.; Lindholm, V.; Makkonen, T.; Mayer, M.; Miettunen, J.; Müller, H. W.; Neu, R.; Petersson, P.; Rohde, V.; Rubel, M.; Widdowson, A.; the ASDEX Upgrade Team; Contributors, JET-EFDA
2013-12-01
The migration of impurities in tokamaks has been studied with the help of tracer-injection (13C and 15N) experiments in JET and ASDEX Upgrade since 2001. We have identified a common pattern for the migrating particles: scrape-off layer flows drive impurities from the low-field side towards the high-field side of the vessel. Migration is also sensitive to the density and magnetic configuration of the plasma, and strong local variations in the resulting deposition patterns require 3D treatment of the migration process. Moreover, re-erosion of the deposited particles has to be taken into account to properly describe the migration process during steady-state operation of the tokamak.
Saturated internal instabilities in advanced-tokamak plasmas
NASA Astrophysics Data System (ADS)
Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team
2010-06-01
"Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Attenberger, S. E.
The reactor potential of some advanced physics operating modes proposed for the TPX physics program are examined. A moderate aspect ratio (A = 4.5 as in TPX), 2 GW reactor is analyzed because of its potential for steady-state, noninductive operation with high bootstrap current fraction. Particle, energy, and toroidal current equations are evolved to steady-state conditions using the 1 1/2-D time-dependent WHIST transport code. The solutions are therefore consistent with particle, energy, and current sources and assumed transport models. Fast wave current drive (FWCD) provides the axial seed current. The bootstrap current typically provides 80-90% of the current, while feedback on the lower hybrid current drive (LHCD) power maintains the total current. The sensitivity of the plasma power amplification factor, Q equivalent to P(sub fus)/P(sub aux), to variations in the plasma properties is examined. The auxiliary current drive power, P(sub aux) = P(sub LH) + P(sub FW); bootstrap current fraction; current drive efficiency; and other parameters are evaluated. The plasma is thermodynamically stable for the energy confinement model assumed (a multiple of ITER89P). The FWCD and LHCD sources provide attractive control possibilities, not only for the current profile, but also for the total fusion power since the gain on the incremental auxiliary power is typically 10-30 in these calculations when overall Q approximately equals 30.
Houlberg, W.A.; Attenberger, S.E.
1994-11-01
The reactor potential of some advanced physics operating modes proposed for the TPX physics program are examined. A moderate aspect ratio (A = 4.5 as in TPX), 2 GW reactor is analyzed because of its potential for steady-state, non-inductive operation with high bootstrap current fraction. Particle, energy and toroidal current equations are evolved to steady-state conditions using the 1-1/2-D time-dependent WHIST transport code. The solutions are therefore consistent with particle, energy and current sources and assumed transport models. Fast wave current drive (FWCD) provides the axial seed current. The bootstrap current typically provides 80-90% of the current, while feedback on the lower hybrid current drive (LHCD) power maintains the total current. The sensitivity of the plasma power amplification factor, Q {triple_bond} P{sub fus}/P{sub aux}, to variations in the plasma properties is examined. The auxiliary current drive power, P{sub aux} = P{sub LH} + P{sub FW}; bootstrap current fraction; current drive efficiency; and other parameters are evaluated. The plasma is thermodynamically stable for the energy confinement model assumed (a multiple of ITER89P). The FWCD and LHCD sources provide attractive control possibilities, not only for the current profile, but also for the total fusion power since the gain on the incremental auxiliary power is typically 10-30 in these calculations when overall Q {approx} 30.
Houlberg, W.A.; Attenberger, S.E.
1995-02-01
The reactor potential of some advanced physics operating modes proposed for the TPX physics program are examined. A moderate aspect ratio (A = 4.5 as in TPX), 2 GW reactor is analyzed because of its potential for steady-state, non-inductive operation with high bootstrap current fraction. Particle, energy and toroidal current equations are evolved to steady-state conditions using the 1-1/2-D time-dependent WHIST transport code. The solutions are therefore consistent with particle, energy and current sources and assumed transport models. Fast wave current drive (FWCD) provides the axial seed current. The bootstrap current typically provides 80-90% of the current, while feedback on the lower hybrid current drive (LHCD) power maintains the total current. The sensitivity of the plasma power amplification factor, Q {equivalent_to} P{sub fus}/P{sub aux}, to variations in the plasma properties is examined. The auxiliary current drive power, P{sub aux} = P{sub LH} + P{sub FW}; bootstrap current fraction: current drive efficiency; and other parameters are evaluated. The plasma is thermodynamically stable for the energy confinement model assumed (a multiple of ITER89P). The FWCD and LHCD sources provide attractive control possibilities, not only for the current profile, but also for the total fusion power since the gain on the incremental auxiliary power is typically 10-30 in these calculations when overall Q {approx} 30.
Optimizing organic fertilizer applications under steady-state conditions.
Crohn, David M
2006-01-01
Because organic N fertilizers must be mineralized before they become plant-available, application designs should consider time and temperature effects on N release as well as crop N requirements. This study presents deterministic (DOpt) and stochastic (SOpt) linear optimization models to determine sustainable land application schedules. The easily solved models minimize the amount of N that is applied while assuring than crop N demands are met as they develop. Temperature effects on N mineralization were included by using the Arrhenius equation to create a temperature-adjusted time series. Uncertainties associated with mineralization rates and the temperature-adjustment (Q10) factor are considered by SOpt. Examples are presented for a summer maize (Zea mays L.) and winter triticale (Triticum aestivum L. x Secale cereale L.) rotation operated by a hypothetical dairy operation in Stanislaus County, California. Monte Carlo simulations were used to test the models. A closed-form solution for estimating the time until steady state is presented and steady-state conditions were reached within 7 yr after applications were initiated. Because of temperature effects, DOpt solutions were 12% greater during the winter and 29% lower during the summer than a reference approach that applied liquid manure at 130% of the crop N demand. Stochastic linear optimization values were 1.7% greater than DOpt values in the summer and 6.2% greater in the winter. Surplus N estimates from Monte Carlo simulations averaged 104 kg ha(-1) for DOpt and 126 ka ha(-1) for SOpt, but SOpt was much less likely to result in crop N deficits. Linear optimization is a viable tool for scheduling organic N applications.
Defining Features of Steady-State Timbres
NASA Astrophysics Data System (ADS)
Hall, Michael D.
1995-01-01
Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
Hollow current profile scenarios for advanced tokamak reactor operations
Gourdain, P.-A.; Leboeuf, J.-N.
2009-11-15
Advanced tokamak scenarios are a possible approach to boosting reactor performances. Such schemes usually trigger current holes, a particular magnetohydrodynamics equilibrium where no current or pressure gradients exist in the core of the plasma. While such equilibria have large bootstrap fractions, flat pressure profiles in the plasma core may not be optimal for a reactor. However, moderate modifications of the equilibrium current profile can lead to diamagnetism where most of the pressure gradient is now balanced by poloidal currents and the toroidal magnetic field. In this paper, we consider the properties of diamagnetic current holes, also called ''dual equilibria,'' and demonstrate that fusion throughput can be significantly increased in such scenarios. Their stability is investigated using the DCON code. Plasmas with a beta peak of 30% and an average beta of 6% are found stable to both fixed and free-boundary modes with toroidal mode numbers n=1-4, as well as Mercier and high-n ballooning modes. This is not surprising as these scenarios have a normal beta close to 3.
The generalized Balescu-Lenard collision operator: A unifying concept for tokamak transport
Mynick, H.E.
1987-08-01
The generalization of the Balescu-Lenard collision operator to its fully electromagnetic counterpart in Kaufman's action-angle formalism is derived and its properties investigated. The general form may be specialized to any particular geometry where the unperturbed particle motion is integrable, and thus includes cylindrical plasmas, inhomogeneous slabs with nonuniform magnetic fields, tokamaks, and the particularly simple geometry of the standard operator as special cases. The general form points to the commonality between axisymmetric, turbulent, and ripple transport, and implies properties (e.g., intrinsic ambipolarity) which should be shared by them, under appropriate conditions. Along with a turbulent ''anomalous diffusion coefficient'' calculated for tokamaks in previous work, an ''anomalous pinch'' term of closely related structure and scaling is also implied by the generalized operator. 20 refs. (LSP)
Assessment of the LH wave for demo in pulsed and steady state scenario
NASA Astrophysics Data System (ADS)
Cardinali, A.; Barbato, E.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Marinucci, M.; Mirizzi, F.; Panaccione, L.; Ravera, G. L.; Santini, F.; Schettini, G.; Tuccillo, A. A.
2014-02-01
The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the "pulsed and steady state regime" considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios ("flat" and "peaked"), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards.
Assessment of the LH wave for demo in pulsed and steady state scenario
Cardinali, A.; Barbato, E.; Castaldo, C.; Cesario, R.; Marinucci, M.; Ravera, G. L.; Tuccillo, A. A.; Ceccuzzi, S.; Mirizzi, F.; Panaccione, L.; Santini, F.; Schettini, G.
2014-02-12
The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the 'pulsed and steady state regime' considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios ('flat' and 'peaked'), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards.
The steady-state assumption in oscillating and growing systems.
Reimers, Alexandra-M; Reimers, Arne C
2016-10-07
The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.
A programmatic framework for the Tokamak Physics Experiment (TPX)
Thomassen, K.I. ); Goldston, R.J. ); Neilson, G.H. )
1993-09-01
Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the [open quotes]power breakeven[close quotes] level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program.
Tokamak Physics Experiment divertor design
Anderson, P.M.
1995-12-31
The Tokamak Physics Experiment (TPX) tokamak requires a symmetric up/down double-null divertor capable of operation with steady-state heat flux as high as 7.5 MW/m{sup 2}. The divertor is designed to operate in the radiative mode and employs a deep slot configuration with gas puffing lines to enhance radiative divertor operation. Pumping is provided by cryopumps that pump through eight vertical ports in the floor and ceiling of the vessel. The plasma facing surface is made of carbon-carbon composite blocks (macroblocks) bonded to multiple parallel copper tubes oriented vertically. Water flowing at 6 m/s is used, with the critical heat flux (CHF) margin improved by the use of enhanced heat transfer surfaces. In order to extend the operating period where hands on maintenance is allowed and to also reduce dismantling and disposal costs, the TPX design emphasizes the use of low activation materials. The primary materials used in the divertor are titanium, copper, and carbon-carbon composite. The low activation material selection and the planned physics operation will allow personnel access into the vacuum vessel for the first 2 years of operation. The remote handling system requires that all plasma facing components (PFCs) are configured as modular components of restricted dimensions with special provisions for lifting, alignment, mounting, attachment, and connection of cooling lines, and instrumentation and diagnostics services.
Steady states of solar coronal loops as nonaxisymmetric toroidal flux ropes
NASA Astrophysics Data System (ADS)
Sugiyama, Linda; Asgari-Targhi, M.
2016-10-01
Consistent MHD steady states for coronal loops on the surface of the sun, modeled as magnetic flux ropes, are derived for the first time, based on the equilibrium and stability of toroidal magnetically confined fusion plasmas. Coronal loops, like magnetic tori, are unstable to expansion in major radius. The solar gravity and plasma beta, previously ignored, are crucual parameters in the steady state. For loops with a predominantly axisymmetric magnetic axis, three analytical steady states exist in terms of beta and the normalized solar gravity parameter Ĝ = ga /vA2 , where g is the acceleration due to gravity, ordered in inverse aspect ratio: high beta (β ɛ) and small gravity Ĝ ɛ3 , which resembles a nearly axisymmetric high-beta tokamak, and high beta with larger Ĝ ɛ2 , and low beta (β ɛ2) with Ĝ ɛ3 , which are more strongly nonaxisymmetric. Comparison with observations shows that the two high beta states bracket the range of thin coronal loops in solar active regions ɛ 0.02 and Ĝ orders the loops by height. The low beta solution may describe certain thicker loops ɛ 0.1 that grow to solar flares or Coronal Mass Ejections. Work partially supported by the U.S. DOE OFES under Award DE-SC-0007883.
A new hybrid inductive scenario for a nearly steady-state Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Sarff, J. S.
2007-11-01
Steady-state current sustainment is challenging for the Reversed Field Pinch (RFP). The current magnitude is large, while the pressure-driven (bootstrap) current is small, even at the RFP's high beta >20%. In the TITAN (RFP) system study [1], the current was designed steady-state using Oscillating Field Current Drive (OFCD), i.e., steady magnetic helicity injection using phased AC induction. Experiments and theory for OFCD are so far promising, but OFCD's reliance on magnetic relaxation could turn out incompatible with energy confinement requirements. Meanwhile inductive current profile control has demonstrated tokamak-like confinement in the RFP. Such control is inherently not steady-state. A hybrid scheme is proposed using OFCD to ramp the current, followed by a pulsed-burn during which inductive profile control maintains high confinement. The current is not constant but never goes to zero (sawtooth-like waveform). The current drive (and profile control) is efficient induction, simply applied at the plasma surface. The pulsed-burn phases could be separated by only a few seconds. Optimization of the hybrid cycle and other issues will be discussed. [1] http://aries.ucsd.edu/LIB/REPORT/TITAN/final.shtml
Steady states and stability in metabolic networks without regulation.
Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J
2016-07-21
Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological
Steady State Growth of Continental Crust?
NASA Astrophysics Data System (ADS)
Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.
2012-12-01
any age. If one accepts that the probability of preserving old crust decreases with increasing age, the few exposures of rocks older than 3.5 Ga should not be surprising. The thickness and compositional differences between Archean and younger lithospheric mantle are not fully understood nor is the role of thicker buoyant mantle in preserving continental crust; these lead to the question of whether the preserved rock record is representative of what formed. It is notable that the oldest known rocks, the ca. 4.0 Ga Acasta Gneisses, are tonalities-granodiorites-granites with evidence for the involvement of even older crust and that the oldest detrital zircons from Australia (ca. 4.0-4.4 Ga) are thought to have been derived from granitoid sources. The global Hf and Nd isotope databases are compatible with both depleted and enriched sources being present from at least 4.0 Ga to the present and that the lack of evolution of the MORB source or depleted mantle is due to recycling of continental crust throughout earth history. Using examples from the Slave Province and southern Africa, we argue that Armstrong's concept of steady state crustal growth and recycling via plate tectonics still best explains the modern geological and geochemical data.
The operation of the Tokamak Fusion Test Reactor Tritium Facility
Gentile, C.A.; LaMarche, P.H.; Anderson, J.L.
1995-07-01
The TFTR tritium operations staff has successfully received, stored, handled, and processed over five hundred thousand curies of tritium for the purpose of supporting D-T (Deuterium-Tritium) operations at TFTR. Tritium operations personnel nominally provide continuous round the clock coverage (24 hours/day, 7 days/week) in shift complements consisting of I supervisor and 3 operators. Tritium Shift Supervisors and operators are required to have 5 years of operational experience in either the nuclear or chemical industry and to become certified for their positions. The certification program provides formal instruction, as well as on the job training. The certification process requires 4 to 6 months to complete, which includes an oral board lasting up to 4 hours at which time the candidate is tested on their knowledge of Tritium Technology and TFTR Tritium systems. Once an operator is certified, the training process continues with scheduled training weeks occurring once every 5 weeks. During D-T operations at TFTR the operators must evacuate the tritium area due to direct radiation from TFTR D-T pulses. During `` time operators maintain cognizance over tritium systems via a real time TV camera system. Operators are able to gain access to the Tritium area between TFTR D-T pulses, but have been excluded from die tritium area during D-T pulsing for periods up to 30 minutes. Tritium operators are responsible for delivering tritium gas to TFRR as well as processing plasma exhaust gases which lead to the deposition of tritium oxide on disposable molecular sieve beds (DMSB). Once a DMSB is loaded, the operations staff remove the expended DMSB, and replace it with a new DMSB container. The TFIR tritium system is operated via detailed procedures which require operator sign off for system manipulation. There are >300 procedures controlling the operation of the tritium systems.
High beta, sawtooth-free tokamak operation using energetic trapped particles
White, R.B.; Bussac, M.N.; Romanelli, F.
1988-08-01
It is shown that a population of high energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high beta. 13 refs., 2 figs.
Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.
1986-09-01
Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.
A stability analysis of the power-law steady state of marine size spectra.
Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J
2011-10-01
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.
Bootstrap current in a tokamak
Kessel, C.E.
1994-03-01
The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.
Current Control in ITER Steady State Plasmas With Neutral Beam Steering
R.V. Budny
2009-09-10
Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.
Phase Space Analysis of a Gravitationally-Induced, Steady-State Nonequilibrium
NASA Astrophysics Data System (ADS)
Sheehan, D. P.; Glick, J.; Duncan, T.; Langton, J. A.; Gagliardi, M.; Tobe, R.
Recently a new type of pressure gradient was introduced, a gravitationally-induced, dynamically-maintained, steady-state pressure gradient (GDSPG) [D. P. Sheehan and J. Glick, Physica Scripta 61, 635 (2000)]. In this paper, three dimensional numerical test particle simulations detail its phase space structure. These verify the underlying physical mechanism originally hypothesized for its operation and support key assumptions upon which it is based. The GDSPG appears to be a member of a more general class of steady-state nonequilibrium systems that arise under extreme thermodynamic conditions [D. P. Sheehan, Phys. Rev. E57, 6660 (1998)].
Steady-state creep of complexly reinforced shallow metal-composite shells
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2010-05-01
The problem of deformation of shallow shells of variable thickness reinforced with fibers of constant cross section, whose all phases operate under the conditions of steady-state creep, is formulated. The system of resolving equations and the corresponding boundary conditions are analyzed, and the procedure for solving this problem is developed. A way of approximate solution of such problems in the case of transient creep is indicated. The particular calculations performed show that the compliance of thin-walled structures, under the conditions of steady-state creep, greatly depends on the structure of reinforcement.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Steady-state decoupling and design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Thaler, G. J.
1974-01-01
A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.
A Note on Equations for Steady-State Optimal Landscapes
Liu, H.H.
2010-06-15
Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.
Tokamak operation with safety factor q95 < 2 via control of MHD stability.
Piovesan, P; Hanson, J M; Martin, P; Navratil, G A; Turco, F; Bialek, J; Ferraro, N M; La Haye, R J; Lanctot, M J; Okabayashi, M; Paz-Soldan, C; Strait, E J; Turnbull, A D; Zanca, P; Baruzzo, M; Bolzonella, T; Hyatt, A W; Jackson, G L; Marrelli, L; Piron, L; Shiraki, D
2014-07-25
Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given toroidal magnetic field. In tokamaks with a divertor, the limit occurs at q(95) = 2, as confirmed in DIII-D. Since the energy confinement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a whole new high-current regime not accessible before. This result brings significant possible benefits in terms of fusion performance, but it also extends resistive-wall mode physics and its control to conditions never explored before. In present experiments, the q(95) < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
Predictive Modeling of Tokamak Configurations*
NASA Astrophysics Data System (ADS)
Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.
2001-10-01
The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Development of high poloidal beta, steady-state scenario with ITER-like W divertor on EAST
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Lanctot, M.; Gong, X. Z.; Ding, S.; Li, G.; Liu, H.; Lyu, B.; Qian, J.; Bonoli, P. T.; Shiraiwa, S.; Holcomb, C.; McClenaghan, J.
2016-10-01
Experiments on EAST have started to adapt the fully-noninductive high poloidal beta scenario developed on DIII-D, in order to demonstrate steady state tokamak operation at high performance on metal walls. Unlike on DIII-D, where the creation of a broad current profile requires early heating at low density, on EAST a broad current profile can be obtained simply by increasing the electron density, when most of the current drive is provided by lower hybrid wave. Systematic scans yield lower internal inductance with higher density. The hypothesis is that the LHCD profile becomes more off-axis with higher density. With the newly commissioned POINT (polarimeter-interferometer) diagnostic for q-profile measurements, these experiments enable strict tests of LHCD deposition models. Supported by US DOE under DE-SC0010685, DE-SC0010492 DE-FC02-04ER54698, DE-AC02-09-CH11466, DE-AC52-07NA27344, DE-AC05-00OR22725, and the National Magnetic Confinement Fusion Program of China (No. 2015GB110001 and 2015GB102000).
The Enlisted Steady State-Simulation (ESS-SIM) Tool
2014-07-01
The Enlisted Steady State-Simulation ( ESS -SIM) Tool David M. Rodney • Peggy A. Golfin • Molly F. McIntosh DIM-2014-U-007587-Final July 2014 This...situation. We built and made use of a simulation model, ESS -Sim (Enlisted Steady- State Simulation), to obtain insights into attainable levels of...fleet manning and estimate the impact of policy changes on fleet man- ning. This information memorandum describes this model. Model overview We built ESS
Steady State Analysis of Small Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Yamamoto, Takahisa; Mitachi, Koshi; Suzuki, Takashi
The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fuel flow. The model consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, transport equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and the graphite moderator. The following results are obtained: (1) in the rated operation condition, the peaks of the neutron fluxes slightly move toward the bottom from the center of the reactor and the delayed neutron precursors are significantly carried by the fuel salt flow, and (2) the extension of residence time in the external-loop system and the rise of the fuel inflow temperature show weak negative reactivity effects, which decrease the neutron multiplication factor of the small MSR system.
Measuring the steady state of pedestrian flow in bottleneck experiments
NASA Astrophysics Data System (ADS)
Liao, Weichen; Tordeux, Antoine; Seyfried, Armin; Chraibi, Mohcine; Drzycimski, Kevin; Zheng, Xiaoping; Zhao, Ying
2016-11-01
Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. Thus a modified version of the Cumulative Sum Control Chart algorithm is proposed to robustly detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with manually selected ones, the modified algorithm gives robust and reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The results reconfirm that the specific flow is constant as bottleneck width changes. Moreover, we proposed a criterion to judge the difference between the flows in all states and in steady states, which is the ratio of pedestrian number to bottleneck width. The critical value of the ratio is found to be approximately 115 persons/m. This conclusion applies not only for the analysis of existing bottleneck experiments but also for the design of new bottleneck experiments and the validation of evacuation models. Furthermore, the range of steady state in time series of pedestrian characteristics could be effectively controlled by adjusting the value of the ratio.
Steady state and a general scale law of deformation
NASA Astrophysics Data System (ADS)
Huang, Yan
2017-07-01
Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.
NASA Astrophysics Data System (ADS)
Himabindu, M.; Tyagi, Anil; Sharma, Devendra; Deshpande, Shishir P.; Bonnin, Xavier
2014-02-01
Computational analysis of coupled plasma and neutral transport in the Scrape-Off Layer (SOL) region of the Steady-State Superconducting Tokamak (SST-1) is done using SOLPS for Phase-I of double-null divertor plasma operations. An optimum set of plasma parameters is explored computationally for the first phase operations with the central objective of achieving an effective control over particle and power exhaust. While the transport of plasma species is treated using a fluid model in the B2.5 code, a full kinetic description is provided by the EIRENE code for the neutral particle transport in a realistic geometry. Cases with and without external gas puffing are analyzed for finding regimes where an effective control of plasma operations can be exercised by controlling the SOL plasma conditions over a range of heating powers. In the desired parameter range, a reasonable neutral penetration across the SOL is observed, capable of causing a variation of up to 15% of the total input power, in the power deposited on the divertors. Our computational characterization of the SOL plasma with input power 1 MW and lower hybrid current drive, for the separatrix density up to 1019 m-3, indicates that there will be access to high recycling operations producing reduction in the temperature and the peak heat flux at the divertor targets. This indicates that a control of the core plasma density and temperature would be achievable. A power balance analysis done using the kinetic neutral transport code EIRENE indicates about 60%-75% of the total power diverted to the targets, providing quantitative estimates for the relative power loading of the targets and the rest of the plasma facing components.
Himabindu, M.; Tyagi, Anil; Sharma, Devendra; Deshpande, Shishir P.; Bonnin, Xavier
2014-02-15
Computational analysis of coupled plasma and neutral transport in the Scrape-Off Layer (SOL) region of the Steady-State Superconducting Tokamak (SST-1) is done using SOLPS for Phase-I of double-null divertor plasma operations. An optimum set of plasma parameters is explored computationally for the first phase operations with the central objective of achieving an effective control over particle and power exhaust. While the transport of plasma species is treated using a fluid model in the B2.5 code, a full kinetic description is provided by the EIRENE code for the neutral particle transport in a realistic geometry. Cases with and without external gas puffing are analyzed for finding regimes where an effective control of plasma operations can be exercised by controlling the SOL plasma conditions over a range of heating powers. In the desired parameter range, a reasonable neutral penetration across the SOL is observed, capable of causing a variation of up to 15% of the total input power, in the power deposited on the divertors. Our computational characterization of the SOL plasma with input power 1 MW and lower hybrid current drive, for the separatrix density up to 10{sup 19} m{sup −3}, indicates that there will be access to high recycling operations producing reduction in the temperature and the peak heat flux at the divertor targets. This indicates that a control of the core plasma density and temperature would be achievable. A power balance analysis done using the kinetic neutral transport code EIRENE indicates about 60%-75% of the total power diverted to the targets, providing quantitative estimates for the relative power loading of the targets and the rest of the plasma facing components.
Comparing Steady State to Time Interval and Non-Steady State Measurements of Resting Metabolic Rate.
Irving, Chelsea Jayne; Eggett, Dennis L; Fullmer, Susan
2017-02-01
The 2 most common methods to determine resting metabolic rate (RMR) with indirect calorimetry are steady state (SS) and time intervals. Studies have suggested SS more accurately reflects RMR, but further research is needed. Our objective was to compare the bias, precision, and accuracy of SS to time intervals and non-SS measurements in a healthy adult population. Seventy-seven participants were measured for 45 minutes using a Quark RMR. Inclusion criteria included healthy participants aged 18-65 years. Pregnant and lactating women were excluded. Paired t tests compared differences between measures. Bland-Altman plots were used to determine precision. Bias occurred if there was a significant difference between the means. Accuracy was determined by counting the number of absolute differences between SS compared with non-SS and time intervals that were <75 calories. Of 77 participants, 84% achieved SS, and 95% achieved SS by minute 30. Most differences between SS and time intervals were statistically but not practically significant. Bland-Altman plots showed SS measurements were generally lower than any time interval, suggesting SS is more indicative of RMR. Non-SS was significantly more biased ( P = .0005), less precise (spread of limits of agreement was 269 calories), and less accurate (65%) than SS. We conclude that non-SS is not equivalent to SS. We also conclude that using 5-minute SS is more indicative of RMR than any time interval that was tested in healthy populations. If SS cannot be achieved, we recommend repeating the measurement.
What we should do for transition from current tokamaks to fusion-fission reactor
NASA Astrophysics Data System (ADS)
Mirnov, S.
2012-06-01
The Russian fission community places several heavy demands to quality of fusion neutron source for the first step of investigation of minority transmutations ("burning") and breading of nuclear fuel. They are: the steady state regime of neutron production (not rare 80% of main operation time), the total power on neutron flux should be not lower than 20MW with surface neutron load not lower than 0.2MW/m2. Between the current fusion devices: mirror traps, reverse field pinches, stellarators, spherical torus and tokamaks only lasts have today the some probability to fulfill in the near future these hard demands. Two well known DT-tokamaks with neutron power production higher 10MW - TFTR and JET-had maximal neutron load approximately 0.1MW/m2 only in transient (with time scale lower 1s) regimes. The quasi steady state neutron emission regime (˜5MW, 5sec) was performed in JET with mean surface neutron load lower than 0.025MW/m2 only. In this communication it will be discussed the main needs of JET scale tokamak improvement for increase on neutron load up to 0.2MW/m2. They are: decrease of Zeff by ECRH and lithium use as plasma facing components, the increase of energy of steady state neutral injectors up to 150-170keV (tritium), the He removal and creation of closed loop of DT fuel circulation.
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations
Mühler, R
2012-05-01
Recording human auditory steady-state responses (ASSR) at different frequencies allows objective assessment of auditory thresholds. Common practice has been to record ASSR to pure tones that are sinusoidally modulated in amplitude and frequency. Recently, optimized chirp stimuli have been proposed to evoke transient as well as steady-state responses. Because of the resulting uncertainty about the different methods, this paper aims to reconsider the terminology of transient and steady-state responses. Two experiments demonstrate the smooth transition between transient and steady-state responses. In experiment 1, click-evoked auditory brainstem responses (ABR) were recorded over a wide range of stimulus repetition rates (24/s to 72/s). In experiment 2, auditory steady-state responses were recorded for the same stimulus repetition rates, using three different stimulus types: an amplitude modulated 1-kHz tone (AM), a 1-kHz tone-burst (TB) and a flat-spectrum chirp. Experiment 1 demonstrates the merging of the typical ABR wave complexes at higher repetition rates, forming a steady-state response. This effect can only be observed if the time window is extended far beyond the window traditionally used for clinical ABR recordings. Experiment 2 reveals similar ASSR amplitude spectra regardless of the stimulus type and repetition rate used. Steady-state responses can be evoked for a large variety of stimulus types and repetition rates. Thus, from a clinician's point of view, steady-state responses cannot be considered a new type of evoked responses. They differ from transient responses primarily in the frequency response method and the longer timeframe required.
Residual gas analysis for long-pulse, advanced tokamak operation.
Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B
2010-10-01
A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.
NASA Lewis steady-state heat pipe code users manual
Tower, L.K.; Baker, K.W.; Marks, T.S.
1992-06-01
The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
NASA Lewis steady-state heat pipe code users manual
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-01-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
Steady-state deformation of some lithium ceramics
Poeppel, R.B.; Routbort, J.L.; Billone, M.C.; Applegate, D.S.; Buchmann, E.; Londschien, B.
1987-05-01
The stress-strain behavior of Li/sub 2/O, LiAlO/sub 2/ and Li/sub 2/ZrO/sub 3/ polycrystals, with densities varying from 0.70 to 0.95 of the theoretical, has been measured in constant-crosshead-speed compression tests at temperatures of 700 to 1000/sup 0/C with strain rates ranging from about 10/sup -6/ to 10/sup -4/ s/sup -1/. A steady-state stress, sigma/sub s/, for which the work-hardening rate becomes zero, was achieved. These results, therefore, yield information equivalent to that obtained from creep experiments. Limited data on LiAlO/sub 2/ and Li/sub 2/ZrO/sub 3/ were obtained. Nevertheless, under comparable conditions the lithium aluminate and zirconate were considerably stronger than the Li/sub 2/O. This finding may be related to differences in crystal structure. It is, however, likely that in operation as a function breeder blanket material, the oxide will swell whereas the aluminate and the zirconate will crack. 5 refs., 6 figs., 1 tab.
Maximally reliable spatial filtering of steady state visual evoked potentials.
Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M
2015-04-01
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".
Geomorphic and Thermal Steady State Regimes: Reality or Wishful Thinking?
NASA Astrophysics Data System (ADS)
Lock, J.; Furlong, K.
2003-04-01
In many tectonic geomorphic studies, it is assumed that rates of uplift within an orogen are matched by rates of exhumation producing a steady-state orogen. However, the tools used to determine exhumation are thermally driven (e.g. Fission Track, U-Th/He) and exhumation can substantially perturb the crustal thermal regime. Since knowing the thermal regime is key to determining exhumation from thermochronology, problems arise. In order to interpret a rate of exhumation we make the assumption that an area is in thermal 'steady state', which in young active orogens unlikely exists. Taiwan, the Southern Alps, Fiordland, and Nanga Parbat are relatively young mountain belts that have begun to uplift or have experienced increased rates of uplift during the past 5-10 Ma. As there is a time lag between the onset of uplift and achieving geomorphic steady state and again between reaching geomorphic steady state and thermal steady state, these orogens may be too young to have achieved this final stage. Additionally, young orogens may not have experienced a constant rate of uplift and denudation in the time over which the thermochronometers average. Certainly, in the case of the Southern Alps, present uplift rates can not have existed since uplift begun. Therefore, an apparent age is recording a transient thermal state. Even in a case where geomorphic steady state exists i.e. exhumation balances uplift, it is unlikely that a thermal steady state has been reached. This precludes the simple interpretation of exhumation rates often made. When multiple thermochronometers are used, inconsistencies can arise. For example, an increase in the rate of uplift is often observed when comparing the rates of exhumation using different thermochronometers. Our modeling shows that in some cases this phenomena is actually eliminated by considering the transient nature of the thermal regime following the onset of uplift and exhumation of an active orogen. To accurately determine exhumation rate
A unified theory of tokamak transport via the generalized Balescu--Lenard collision operator
Mynick, H.E.; Duvall, R.E.
1988-06-01
A unified basis from which to study the transport of tokamaks at low collisionality is provided by specializing the ''generalized Balescu--Lenard'' collision operator to toridal geometry. Explicitly evaluating this operator, ripple, turbulent, and neoclassical transport coefficients are obtained, simply by further specializing the single operator to different particular classes of fluctuation wavelength and mode structure. For each class of fluctuations, the operator possesses a diffusive, test-particle contribution D, and in addition a dynamic drag term F, which makes the operator self-consistent, and whose presence is accordingly essential for the resultant fluxes to possess the appropriate conservation laws and symmetrics. These properties, well-known for axisymmetric transport, are demonstrated for one type of turbulent transport, chosen for definiteness, by explicit evaluation of both ''anomalous diffusion'' term arising from D, as well as the closely related test particle calculations, but is shown to have an important impact on the predicted fluxes. 16 refs., 1 fig.
Tokamak Physics Experiment diagnostic plans (invited)
NASA Astrophysics Data System (ADS)
Medley, S. S.
1995-01-01
A superconducting Tokamak Physics Experiment (TPX) whose mission is to develop the scientific basis for a compact and continuously operating tokamak fusion reactor is being designed by an integrated U.S. national team. Key physics features such as strong shaping, a double-null poloidal divertor, full noninductive current drive, and current profile control capability will be used to explore improvements in energy confinement and beta limit scaling in high-aspect-ratio plasmas with a high bootstrap current fraction. Steady-state operation of TPX permits these studies to be extended to time scales significantly exceeding the global current-relaxation time and the plasma-wall equilibrium time. The diagnostic requirements are determined by the TPX mission and supporting objectives, such as optimization of plasma performance through active control of the current profile and of the plasma-wall interactions. Diagnostic measurements are needed to characterize the plasma behavior over the full range of conventional tokamak plasma parameters with appropriate spatial and temporal resolution as well as for control and monitoring of aspects of the machine operation such as the plasma position and shape, plasma current, vacuum vessel currents, electron density and temperature, and the divertor and limiter temperatures. In addition, several diagnostic capabilities that are especially critical for the TPX project will be discussed.
NASA Astrophysics Data System (ADS)
Nieto, M.; Allain, J. P.; Hassanein, A.; Titov, V.; Hendricks, M.; Gray, T.; Kaita, R.; Kugel, H.; Majeski, R.; Mansfield, D.; Spaleta, J.; Timberlake, J.
2006-12-01
The role of lithium on the modification of recycling regimes in fusion reactors has renewed interest of previous lithium supershot experiments carried out in TFTR. There is a need to understand the interaction between edge plasmas and lithiated plasma-facing components (PFCs), which have the potential of enabling fusion reactors to operate at low-recycling regimes. The Interaction of Materials with Particles and Components Testing (IMPACT) facility at Argonne National Laboratory is currently collaborating with Princeton Plasma Physics Laboratory (PPPL) to conduct lithiated surface studies for the National Spherical Tokamak Experiment (NSTX) and the Current Drive eXperiment — Upgrade (CDX-U). IMPACT has the necessary tools to perform experiments that diagnose the surface dynamics of lithium thin films on metallic and non-metallic substrates, and can be monitored with multiple in-situ techniques (LEISS, AES, QMS and XPS) capturing real-time surface dynamics. Therefore, these techniques are available during He+ and D+ irradiation. Surface sputtering measurements can be performed using a quartz crystal microbalance — dual crystal unit (QCM-DCU) with very high sensitivity. Initial results suggest that lithium intercalation into graphite occurs quite rapidly and only a fraction lithium can be kept on the surface. On metallic substrates this intercalation is absent. Additional results of Li/metal systems show lithium surface self-healing with temperature. It was also found that the presence of lithium seems to inhibit hydrocarbon formation during D+ bombardment of graphite. Experiments in CDX-U have tested the effect of both solid and liquid lithium PFCs on tokamak plasmas, and significant changes in tokamak operation are observed. These include a strong reduction in both recycling and impurity levels in the gas phase, lowered loop voltage during ohmic operation, and an increased electron temperature at the edge.
Remote operation of the GOLEM tokamak with hydrogen and helium plasmas
NASA Astrophysics Data System (ADS)
Svoboda, V.; Dvornova, A.; Dejarnac, R.; Prochazka, M.; Zaprianov, S.; Akhmethanov, R.; Bogdanova, M.; Dimitrova, M.; Dimitrov, Zh; Grover, O.; Hlavata, L.; Ivanov, K.; Kruglov, K.; Marinova, P.; Masherov, P.; Mogulkin, A.; Mlynar, J.; Stockel, J.; Volynets, A.
2016-10-01
The GOLEM tokamak was operated remotely via Internet connection during the 6th International Workshop and Summer School on Plasma Physics. Performances of hydrogen and helium discharges are compared in this paper. It is found, at similar vacuum conditions, that helium discharges are shorter but the breakdown of the working gas can be quite easily achieved at almost the same loop voltage. The plasma current in helium discharges is slightly lower than in the case of hydrogen. Turbulent fluctuations of the floating potential measured by means of an array of Langmuir probes reveal a noticeably different character in the two discharges.
NASA Technical Reports Server (NTRS)
Garrett, Floyd B; Gyorgak, Charles A; Weeton, John Waldemar
1953-01-01
An investigation was conducted to determine the behavior of recently produced, forged S-816 turbine blades in a full-scale turbojet engine, and in particular, the scatter in performance of the alloy. The turbine blades were operated as continuously as possible at a temperature of 1500 degrees F and a centrifugal stress of 21,500 pounds per square inch. The operating lives of the turbine blades varied from 181 to 539 hours, a range of 358 hours. Stress-rupture properties of specimens cut from blade airfoils also varied considerably, as much as 1257 hours at 20,000 pounds per square inch and 1500 degrees F. Since the variability of scatter of stress-rupture data is greater than that of blade performance, the scatter is probably caused by variations in the properties of the forged blades rather than by variations caused by engine operation or installation of the blades. Metallographic examinations were made to determine possible causes of the scatter and although numerous differences in microstructures of blades were found, no consistent tendencies were observed and the findings did not permit an explanation of the scatter of blade performance. The results of the metallographic examinations and of the physical tests indirectly indicated variables in the fabricating method caused the scatter in properties.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
Integrated modelling of DEMO-FNS current ramp-up scenario and steady-state regime
NASA Astrophysics Data System (ADS)
Dnestrovskij, A. Yu.; Kuteev, B. V.; Bykov, A. S.; Ivanov, A. A.; Lukash, V. E.; Medvedev, S. Yu.; Sergeev, V. Yu.; Sychugov, D. Yu.; Khayrutdinov, R. R.
2015-06-01
An approach to the integrated modelling of plasma regimes in the projected neutron source DEMO-FNS based on different codes is developed. The consistency check of the steady-state regime is carried out, namely, the possibility of the plasma current ramp-up, acceptance of growth rates of MHD modes in the steady-state regime, heat loads to the wall and divertor plates and neutron yield value. The following codes are employed for the integrated modelling. ASTRA transport code for calculation of plasma parameters in the steady-state regime, NUBEAM Monte Carlo code for NBI incorporated into the ASTRA code, DINA free boundary equilibrium and evolution code, SPIDER free boundary equilibrium and equilibrium reconstruction code, KINX ideal MHD stability code, TOKSTAB rigid shift vertical stability code, edge and divertor plasma B2SOLPS5.2 code and Semi-analytic Hybrid Model (SHM) code for self-consistent description of the core, edge and divertor plasmas based on the experimental scaling laws. The consistent steady-state regime for the DEMO-FNS plasma and the plasma current ramp-up scenario are developed using the integrated modelling approach. Passive copper coils are suggested to reduce the plasma vertical instability growth rate to below ˜30 s-1.The outer divertor operation in the ‘high-recycling’ regime is numerically demonstrated with a maximal heat flux density of 7-9 MW m-2 that is technically acceptable.
A comparison of steady state and transient thermography techniques using a healing tendon model.
Stein, L E; Pijanowski, G J; Johnson, A L; MacCoy, D M; Chato, J C
1988-01-01
Steady state and transient thermal techniques were used to define the thermal signatures of surgically sectioned and sham-operated common calcanean tendons in four dogs. All limbs were imaged from the lateral side using an Inframetrics 525 system at - 1, 2, 4, 6, and 8 weeks after surgery. Individual video frames were used to compute absolute surface temperatures and rewarm curves for five predetermined 1 cm2 skin areas. Angiography was performed at each observation period to correlate changes in vascular morphology and thermal data. Thermal signatures and angiograms were similar in all animals before surgery. At 2 and 4 weeks after surgery, the absolute surface temperatures of the entire lateral crus area were elevated in three of four animals. During weeks 6 and 8, the surface temperatures, rewarm curves, and angiograms returned to presurgical values for the controls. Skin areas over the repaired tendons remained warmer and were shown to correlate with vascular proliferation by transient but not steady state techniques. Steady state and transient thermal imaging techniques can be used to detect vascular changes in the area around a healing tendon. However, our data indicate that transient thermal techniques are more suitable than steady state methods for localizing vascular disturbances in tissues. Thermographic imaging techniques may become a reliable noninvasive method to monitor wound healing processes if starting temperatures, cool down techniques, and time intervals for data collection are fully evaluated in future studies using transient thermal imaging protocols.
Proteome analysis of the Escherichia coli heat shock response under steady-state conditions
Lüders, Svenja; Fallet, Claas; Franco-Lara, Ezequiel
2009-01-01
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37°C and 47.5°C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date. PMID:19772559
Impurity shielding criteria for steady state hydrogen plasmas in the LHD, a heliotron-type device
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Kobayashi, M.; Yoshimura, S.; Tamura, N.; Yoshinuma, M.; Tanaka, K.; Suzuki, C.; Peterson, B. J.; Sakamoto, R.; Morisaki, T.; the LHD Experiment Group
2014-07-01
Impurity behavior has so far been investigated in steady state hydrogen plasmas in the Large Helical Device, which is a heliotron-type device and excellent for steady state operation. There was always found to be an impurity accumulation window, as observed before (Nakamura et al 2002 Plasma Phys. Control. Fusion 44 2121, Nakamura et al 2003 Nucl. Fusion 43 219). To clarify the boundary conditions, the dependences of impurity transport on edge plasma parameters are investigated with a database of steady state hydrogen discharges, and the boundary conditions for the impurity accumulation window are discussed. It is found that two different types of impurity screening effects are essential for preventing intrinsic impurities from entering the core plasma. One of them is due to positive radial electric field at the plasma edge on the low collisionality side and the other is impurity retention caused by friction force in the ergodic layer on the high collisionality side. The classification of steady state discharges on n-T space shows that the impurity behavior can be predicted by the impurity shielding criteria based on each empirical scaling.
NASA Astrophysics Data System (ADS)
Hershey, Kyle W.; Holmes, Russell J.
2016-11-01
Phosphorescent organic light-emitting devices (OLEDs) can suffer a significant reduction in device efficiency under high current density excitation. This steady-state efficiency roll-off is frequently modeled by including losses from exciton-exciton and exciton-polaron quenching. Despite success in modeling the steady-state efficiency roll-off, the corresponding transient electroluminescence behavior has not been modeled as effectively using the same quenching processes. In this work, both the steady-state and transient electroluminescence behavior of phosphorescent OLEDs based on tris[2-phenylpyridinato-C2,N]Iridium(III) (Ir(ppy)3) are successfully reproduced by considering a dynamic polaron population. Within this model, polarons are able to either form excitons or leak through the device emissive layer, reducing the overall efficiency. This formalism permits a natural and rigorous connection between exciton and polaron dynamics and device charge balance, with the charge balance cast as the efficiency of exciton formation. The full dynamics model reproduces both the rise and decay of transient electroluminescence, as well as the full dependence of the external quantum efficiency on current density. Fit parameters are independently verified using separate studies of transient and steady-state photoluminescence. The model provides a complete picture for the dynamics present during the electrical operation of phosphorescent OLEDs, while also offering a direct route to elucidate exciton formation.
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Daniele, C. J.
1975-01-01
The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.
Evaluation of a steady state MPD thruster test facility
Reed, C.B.; Carlson, L.W.; Herman, H.; Doss, E.D.; Kilgore, O.
1985-01-01
The successful development of multimegawatt MPD thrusters depends, to a great extent, on testing them under steady state high altitude space conditions. Steady state testing is required to provide thermal characteristics, life cycle, erosion, and other essential data. the major technical obstacle for ground testing of MPD thrusters in a space simulation facility is the inability of state-of-the-art vacuum systems to handle the tremendous pumping speeds required for multimegawatt MPD thrusters. This is true for other types of electric propulsion devices as well. This paper discusses the results of the first phase of an evaluation of steady state MPD thruster test facilities. The first phase addresses the conceptual design of vacuum systems required to support multimegawatt MPD thruster testing. Three advanced pumping system concepts were evaluated and are presented here.
Poissonian steady states: from stationary densities to stationary intensities.
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Efficient steady-state solver for hierarchical quantum master equations
NASA Astrophysics Data System (ADS)
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Quantum quasi-steady states in current transport
NASA Astrophysics Data System (ADS)
D'Agosta, Roberto; Zwolak, Michael; di Ventra, Massimiliano
2007-03-01
We investigate quasi-steady state solutions to transport in quantum systems by finding states which at some time minimize the change in density throughout all space and have a given current density flowing from one part of the system to another [1]. Contrary to classical dynamics, in a quantum mechanical system there are many states with a given energy and particle number which satisfy this minimization criterion. Taking as an example spinless fermions on a one-dimensional lattice, we explicitly show the phase space of a class of quasi-steady states. We also discuss the possibility of coherent and incoherent mixing of these steady state solutions leading to a new type of noise in quantum transport. [1] M. Di Ventra and T.N. Todorov J. Phys. Cond. Matt. 16, 8025 (2004).
Fractality in nonequilibrium steady states of quasiperiodic systems
NASA Astrophysics Data System (ADS)
Varma, Vipin Kerala; de Mulatier, Clélia; Žnidarič, Marko
2017-09-01
We investigate the nonequilibrium response of quasiperiodic systems to boundary driving. In particular, we focus on the Aubry-André-Harper model at its metal-insulator transition and the diagonal Fibonacci model. We find that opening the system at the boundaries provides a viable experimental technique to probe its underlying fractality, which is reflected in the fractal spatial dependence of simple observables (such as magnetization) in the nonequilibrium steady state. We also find that the dynamics in the nonequilibrium steady state depends on the length of the chain chosen: generic length chains harbour qualitatively slower transport (different scaling exponent) than Fibonacci length chains, which is in turn slower than in the closed system. We conjecture that such fractal nonequilibrium steady states should arise in generic driven critical systems that have fractal properties.
Structural simplification of chemical reaction networks in partial steady states.
Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa
2016-11-01
We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Power supplies and quench protection for the Tokamak Physics Experiment
Neumeyer, C.L.
1994-07-01
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.
Power supplies and quench protection for the Tokamak Physics Experiment
Neumeyer, C.L.
1994-11-01
The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
A simplified approach to estimating the maximal lactate steady state.
Snyder, A C; Woulfe, T; Welsh, R; Foster, C
1994-01-01
The exercise intensity associated with an elevated but stable blood lactate (HLa) concentration during constant load work (the maximal steady state, MSS) has received attention as a candidate for the "optimal" exercise intensity for endurance training. Identification of MSS ordinarily demands direct measurement of HLa or respiratory metabolism. The purpose of this study was to test the ability of heart rate (HR) to identify MSS during steady state exercise, similar to that used in conventional exercise prescription. Trained runners (n = 9) and cyclists (n = 12) performed incremental and steady state exercise. MSS was defined as the highest intensity in which blood lactate concentration increased < 1.0 mM from minutes 10 to 30. The next higher intensity workbout completed was defined as > MSS. HR models related to the presence or absence of steady state conditions were developed from the upper 95% confidence interval of MSS and the lower 95% confidence interval of > MSS. Cross validation of the model to predict MSS was performed using 21 running and 45 cycling exercise bouts in a separate group. Using the MSS upper 95% confidence interval model 84% and 76% of workbouts were correctly predicted in cyclists and runners, respectively. Using the > MSS lower 95% confidence interval model, 76% and 81% of workbouts were correctly predicted in cyclists and runners, respectively. Prediction errors tended to incorrectly predict non-steady state conditions when steady state had occurred (16/26) (62%). We conclude that use of these simple HR models may predict MSS with sufficient accuracy to be useful when direct HLa measurement is not available.
Steady-state error of a system with fuzzy controller.
Butkiewicz, B S
1998-01-01
We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.
Steady-state coherent transfer by adiabatic passage.
Huneke, Jan; Platero, Gloria; Kohler, Sigmund
2013-01-18
We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot.
Steady state decoupling and design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Huang, J. Y.; Thaler, G. J.
1974-01-01
A constructive criterion for decoupling the steady states of linear multivariable systems is developed. The criterion consists of n(n-1) inequalities with the type numbers of the compensator transfer functions as the unknowns. These unknowns can be chosen to satisfy the inequalities and hence achieve a steady state decoupling scheme. It turns out that pure integrators in the loops play an important role. An extended root locus design method is then developed to take care of the stability and transient response. The overall procedure is applied to the compensation design for STOL C-8A aircraft in the approach mode.
Descriptive Linear modeling of steady-state visual evoked response
NASA Technical Reports Server (NTRS)
Levison, W. H.; Junker, A. M.; Kenner, K.
1986-01-01
A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
Mean field treatment of heterogeneous steady state kinetics
NASA Astrophysics Data System (ADS)
Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy
2017-10-01
We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.
An Insightful Steady-State Performance of a Squirrel Cage Induction Generator Enhanced with STATCOM
NASA Astrophysics Data System (ADS)
Ojo, Olorunfemi; Khayamy, Mehdy; Bule, Mehari
2014-06-01
This paper presents the regulation of the terminal voltage and reactive power of a grid-connected squirrel cage induction generator. A shunt connected voltage source inverter (VSI) with a capacitor in the DC side operating as a Static Compensator (STATCOM) and a shunt capacitor are used for regulating the generator terminal voltage and limit the reactive power demand from the grid. Simulation results for steady-state operation for a wide variation of speed in the super-synchronous region are presented as well as the dynamic stability of the system. Closed-form steady-state characteristics equations for the system are used to determine key variables and to demonstrate how the operation of the system depends on various parameters. This characteristics curve which contains all of the equations of the system provides the all in one insightful view to the inherent characteristics of the system and the effect of the parameter variation on the terminal voltage plane.
Tokamak Operation with Safety Factor q95<2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
Karst, Daniel J; Steinhoff, Robert F; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo
2016-12-20
Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10(6) cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 10(6) cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016.
A steady-state model of the lunar ejecta cloud
NASA Astrophysics Data System (ADS)
Christou, Apostolos
2014-05-01
Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.
A theory of nonequilibrium steady states in quantum chaotic systems
NASA Astrophysics Data System (ADS)
Wang, Pei
2017-09-01
Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{< #1 \\vert}} \\renewcommand{\\ket}[1]{{\\vert #1 >} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{< #1 \\vert}} \\renewcommand{\\ket}[1]{{\\vert #1 >} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.
Gas Fuelling System for SST-1Tokamak
NASA Astrophysics Data System (ADS)
Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata
2017-04-01
SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
Scoffield, Don
2015-03-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions
Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun
2015-01-01
We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case. PMID:26472080
Equilibrium Binding and Steady-State Enzyme Kinetics.
ERIC Educational Resources Information Center
Dunford, H. Brian
1984-01-01
Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)
Comment on ``Dynamically maintained steady-state pressure gradients''
NASA Astrophysics Data System (ADS)
Duncan, Todd L.
2000-04-01
Sheehan [Phys. Rev. E 57, 6660 (1998)] recently discussed the possibility of establishing a dynamically maintained, steady-state pressure gradient in a gas filling a cavity. In this Comment it is pointed out that the pressure gradients in such a system, if attainable in the laboratory, could be used to violate the second law of thermodynamics.
Aperiodically Driven Integrable Systems and Their Emergent Steady States
NASA Astrophysics Data System (ADS)
Nandy, Sourav; Sen, Arnab; Sen, Diptiman
2017-07-01
Does a closed quantum many-body system that is continually driven with a time-dependent Hamiltonian finally reach a steady state? This question has only recently been answered for driving protocols that are periodic in time, where the long-time behavior of the local properties synchronizes with the drive and can be described by an appropriate periodic ensemble. Here, we explore the consequences of breaking the time-periodic structure of the drive with additional aperiodic noise in a class of integrable systems. We show that the resulting unitary dynamics leads to new emergent steady states in at least two cases. While any typical realization of random noise causes eventual heating to an infinite-temperature ensemble for all local properties in spite of the system being integrable, noise that is self-similar in time leads to an entirely different steady state (which we dub the "geometric generalized Gibbs ensemble") that emerges only after an astronomically large time scale. To understand the approach to the steady state, we study the temporal behavior of certain coarse-grained quantities in momentum space that fully determine the reduced density matrix for a subsystem with size much smaller than the total system. Such quantities provide a concise description for any drive protocol in integrable systems that are reducible to a free-fermion representation.
Effects of curvature on asymmetric steady states in catalyst particles
Lucier, B J
1981-02-01
The effects of curvature on steady states of chemical catalytic reactions are investigated by studying the cases of the catalytic particle being a spherical or cylindrical shell. Existence and stability of solutions are studied. It is shown that the solutions converge to the solutions for the catalytic slab when the curvature goes to 0 in each case.
Equilibrium Binding and Steady-State Enzyme Kinetics.
ERIC Educational Resources Information Center
Dunford, H. Brian
1984-01-01
Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)
Identification of enzyme inhibitory mechanisms from steady-state kinetics.
Fange, David; Lovmar, Martin; Pavlov, Michael Y; Ehrenberg, Måns
2011-09-01
Enzyme inhibitors are used in many areas of the life sciences, ranging from basic research to the combat of disease in the clinic. Inhibitors are traditionally characterized by how they affect the steady-state kinetics of enzymes, commonly analyzed on the assumption that enzyme-bound and free substrate molecules are in equilibrium. This assumption, implying that an enzyme-bound substrate molecule has near zero probability to form a product rather than dissociate, is valid only for very inefficient enzymes. When it is relaxed, more complex but also more information-rich steady-state kinetics emerges. Although solutions to the general steady-state kinetics problem exist, they are opaque and have been of limited help to experimentalists. Here we reformulate the steady-state kinetics of enzyme inhibition in terms of new parameters. These allow for assessment of ambiguities of interpretation due to kinetic scheme degeneracy and provide an intuitively simple way to analyze experimental data. We illustrate the method by concrete examples of how to assess scheme degeneracy and obtain experimental estimates of all available rate and equilibrium constants. We suggest simple, complementary experiments that can remove ambiguities and greatly enhance the accuracy of parameter estimation.
Identifiability of steady-state chemical kinetic models
Shvetsova-Shilovskaya, T.N.; Gorskii, V.G.
1995-01-01
The methodology for the local and global identifiability analysis of steady-state kinetic models of catalytic reactions is discussed. This methodology is based on the prior transformation of the model into the linear form so that the coefficients of the linear form are uniquely identifiable combinations of constants (observed parameters). Identifiability analysis is applied to several particular models.
Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients
ERIC Educational Resources Information Center
Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.
2005-01-01
Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…
Pre-Steady-State Decoding of the Bicoid Morphogen Gradient
Bergmann, Sven; Sandler, Oded; Sberro, Hila; Shnider, Sara; Schejter, Eyal; Shilo, Ben-Zion; Barkai, Naama
2007-01-01
Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule gene expression domains observed in response to alterations in bcd dosage. PMID:17298180
Pressure updating methods for the steady-state fluid equations
NASA Technical Reports Server (NTRS)
Fiterman, A.; Turkel, E.; Vatsa, V.
1995-01-01
We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.
Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients
ERIC Educational Resources Information Center
Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.
2005-01-01
Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…
CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT
Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...
Steady-State Multiplicity Features of Chemically Reacting Systems.
ERIC Educational Resources Information Center
Luss, Dan
1986-01-01
Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)
Combined Steady-State and Dynamic Heat Exchanger Experiment
ERIC Educational Resources Information Center
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Acceleration to a steady state for the Euler equations
NASA Technical Reports Server (NTRS)
Turkel, E.
1984-01-01
A multi-stage Runge-Kutta method is analyzed for solving the Euler equations exterior to an airfoil. Highly subsonic, transonic and supersonic flows are evaluated. Various techniques for accelerating the convergence to a steady state are introduced and analyzed.
CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT
Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...
Steady-State Multiplicity Features of Chemically Reacting Systems.
ERIC Educational Resources Information Center
Luss, Dan
1986-01-01
Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)
The concave river long profile: a morphodynamic steady state?
NASA Astrophysics Data System (ADS)
Blom, A.
2011-12-01
By definition, a morphodynamic steady state is governed by a spatially constant sediment transport rate. As the sediment transport rate is a function of shear stress associated with skin friction, the morphodynamic steady state has been considered to be governed by a spatially constant bed slope. For this reason, the typical concave river long profile has been considered to be a quasi-steady state. The river's steady state has been considered to be one with a spatially constant bed slope, with tributaries inducing a stepwise decrease in bed slope in streamwise direction. Yet, for the sediment transport rate to be spatially constant, it rather is the product of water surface slope and water depth associated with skin friction that needs to be constant. This implies that physical mechanisms that induce streamwise variation in the sediment transport rate can be compensated by a streamwise variation in bed slope so as to guarantee a spatially constant sediment transport rate. Following the river course, such physical mechanisms can be bedrock exposure, partial transport, and a spatially lagging bedform growth. At locations where tributaries increase the water discharge, the above mechanisms cause the river bed profile to be upward concave over a significant reach. At bifucations or at locations where river widening prevails, the river bed profile is upward convex.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Nonlinear elements in the EMTP: Steady-state initialization
Perkins, B.K.; Marti, J.R.; Dommel, H.W.
1995-05-01
A methodology is presented for the formulation and solution of networks containing a class of nonlinear elements within the framework of electromagnetic transient programs. The method facilitates steady-state initialization formulated in the time-domain as a two-point boundary value problem. The techniques developed are applied to a simple network exhibiting harmonics due to transformer saturation.
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
NASA Astrophysics Data System (ADS)
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
Combined Steady-State and Dynamic Heat Exchanger Experiment
ERIC Educational Resources Information Center
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.
Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation
NASA Astrophysics Data System (ADS)
Giruzzi, G.; Yoshida, M.; Artaud, J. F.; Asztalos, Ö.; Barbato, E.; Bettini, P.; Bierwage, A.; Boboc, A.; Bolzonella, T.; Clement-Lorenzo, S.; Coda, S.; Cruz, N.; Day, Chr.; De Tommasi, G.; Dibon, M.; Douai, D.; Dunai, D.; Enoeda, M.; Farina, D.; Figini, L.; Fukumoto, M.; Galazka, K.; Galdon, J.; Garcia, J.; Garcia-Muñoz, M.; Garzotti, L.; Gil, C.; Gleason-Gonzalez, C.; Goodman, T.; Granucci, G.; Hayashi, N.; Hoshino, K.; Ide, S.; Imazawa, R.; Innocente, P.; Isayama, A.; Itami, K.; Joffrin, E.; Kamada, Y.; Kamiya, K.; Kawano, Y.; Kawashima, H.; Kobayashi, T.; Kojima, A.; Kubo, H.; Lang, P.; Lauber, Ph.; de la Luna, E.; Maget, P.; Marchiori, G.; Mastrostefano, S.; Matsunaga, G.; Mattei, M.; McDonald, D. C.; Mele, A.; Miyata, Y.; Moriyama, S.; Moro, A.; Nakano, T.; Neu, R.; Nowak, S.; Orsitto, F. P.; Pautasso, G.; Pégourié, B.; Pigatto, L.; Pironti, A.; Platania, P.; Pokol, G. I.; Ricci, D.; Romanelli, M.; Saarelma, S.; Sakurai, S.; Sartori, F.; Sasao, H.; Scannapiego, M.; Shimizu, K.; Shinohara, K.; Shiraishi, J.; Soare, S.; Sozzi, C.; Stępniewski, W.; Suzuki, T.; Suzuki, Y.; Szepesi, T.; Takechi, M.; Tanaka, K.; Terranova, D.; Toma, M.; Urano, H.; Vega, J.; Villone, F.; Vitale, V.; Wakatsuki, T.; Wischmeier, M.; Zagórski, R.
2017-08-01
The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.
Characterization of the Radiation Environment During and Following Operation of the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Riso, Victoria; Pace, D. C.; Cooper, C. M.
2015-11-01
A survey of the gamma ray spectrum throughout the machine hall of the DIII-D tokamak provides a detailed mapping of its energy and temporal evolution. Engineering issues related to the structural effects of radiation produced by a fusion power plant will significantly affect the cost-effectiveness of the resulting energy. While existing magnetic confinement facilities produce considerably less neutron and gamma radiation than that expected from a power plant-scale facility, it remains useful to examine the latent gamma spectrum of the surrounding structures. The DIII-D tokamak produces ~1016 neutrons per run day (resulting primarily from beam-target DD fusion), with ~75 run days per year, leading to the activation of support structures with a short half-life. Measurements are made using bismuth germinate scintillator detectors operated in pulse height analysis mode. These detectors are placed throughout the machine hall and acquire gamma data both during experiments and for some time afterward. Results of these surveys from the 2015 experiments will be presented. Supported in part by US DOE under DE-FC02-04ER54698.
Steady-state canopy gas exchange: system design and operation
NASA Technical Reports Server (NTRS)
Bugbee, B.
1992-01-01
This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.
Cooperative Effects in Models of Steady-State Transport across Membranes
Hill, Terrell L.; Chen, Yi-Der
1971-01-01
Several different one-site, two-site, and multisite models of steady-state ion transport across a membrane are investigated. The basic features, including cooperative interactions between channels, are the same as in earlier papers in this series. In particular, the present paper represents a considerable elaboration of part III. The models might apply to artificial or possibly to biological membranes, but particular applications must await further elucidation of the molecular structure and operation of these membranes. PMID:5132496
Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies
Nabavi-Niaki, A.; Iravani, M.R.
1996-11-01
This paper provides comprehensive development procedures and final forms of mathematical models of unified power flow controller (UPFC) for steady-state, transient stability and eigenvalue studies. Based on the developed models, the impacts of control strategy, parameters and location of UPFC on power system operating conditions are discussed. The accuracy of the developed models is verified through comparing the study results with those obtained from detailed time-domain simulation using the Electromagnetic Transients Program (EMTP).
Feedback-assisted extension of the tokamak operating space to low safety factor
Hanson, J. M. Bialek, J. M.; Navratil, G. A.; Olofsson, K. E. J.; Shiraki, D.; Turco, F.; Baruzzo, M.; Bolzonella, T.; Marrelli, L.; Martin, P.; Piovesan, P.; Piron, C.; Piron, L.; Terranova, D.; Zanca, P.; Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.; and others
2014-07-15
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q{sub 95} = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q{sub 95} values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q{sub 95} values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.
Feedback-assisted extension of the tokamak operating space to low safety factor
Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; Bolzonella, Tommaso; Hyatt, Alan W.; Jackson, Gary L.; King, J.; La Haye, Robert J.; Lanctot, Matthew J.; Marrelli, Lionello; Martin, Piero; Navratil, Gerald A.; Okabayashi, Michio; Olofsson, K. Erik J.; Paz-Soldan, Carlos; Piovesan, Paolo; Piron, Chiara; Piron, Lidia; Shiraki, Daisuke; Strait, Edward J.; Terranova, D.; Turco, Francesca; Turnbull, Alan D.; Zanca, Paolo
2014-07-07
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q_{95} = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q_{95} values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q_{95} values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.
Feedback-assisted extension of the tokamak operating space to low safety factor
Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; ...
2014-07-07
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and q95 = 2 (divertor plasmas). However, passively stable operation can be attained for q(a) and q95 values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantlymore » as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q95 values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.« less
Overview of EAST experiments on the development of high-performance steady-state scenario
NASA Astrophysics Data System (ADS)
Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2 > 1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5 × 1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n = 1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.
Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes
Wadge, G.
1982-05-10
Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in terms of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.
Realization of minute-long steady-state H-mode discharges on EAST
NASA Astrophysics Data System (ADS)
Xianzu, GONG; Baonian, WAN; Jiangang, LI; Jinping, QIAN; Erzhong, LI; Fukun, LIU; Yanping, ZHAO; Mao, WANG; Handong, XU; A, M. GAROFALO; Annika, EKEDAH; Siye, DING; Juan, HUANG; Ling, ZHANG; Qing, ZANG; Haiqing, LIU; Long, ZENG; Shiyao, LIN; Biao, SHEN; Bin, ZHANG; Linming, SHAO; Bingjia, XIAO; Jiansheng, HU; Chundong, HU; Liqun, HU; Liang, WANG; Youwen, SUN; Guosheng, XU; Yunfeng, LIANG; Nong, XIANG; EAST Team
2017-03-01
In the 2016 EAST experimental campaign, a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive, through an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management, and effective coupling of multiple RF heating and current drive sources at high injected power. The plasma current (I p ∼ 0.45 MA) was fully-noninductively driven (V loop < 0.0 V) by a combination of ∼2.5 MW LHW, ∼0.4 MW ECH and ∼0.8 MW ICRF. This result demonstrates the progress of physics and technology studies on EAST, and will benefit the physics basis for steady state operation of ITER and CFETR.
Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing
NASA Technical Reports Server (NTRS)
Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.
1996-01-01
This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.
Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.
Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas
2014-05-01
Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.
Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing
NASA Technical Reports Server (NTRS)
Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.
1996-01-01
This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.
Steady-state bumpless transfer under controller uncertainty using the state/output feedback topology
Zheng, K.; Lee, A.H.; Bentsman, J.; Taft, C.W.
2006-01-15
Linear quadratic (LQ) bumpless transfer design introduced recently by Turner and Walker gives a very convenient and straightforward computational procedure for the steady-state bumpless transfer operator synthesis. It is, however, found to be incapable of providing convergence of the output of the offline controller to that of the online controller in several industrial applications, producing bumps in the plant output in the wake of controller transfer. An examination of this phenomenon reveals that the applications in question are characterized by a significant mismatch, further referred to as controller uncertainty, between the dynamics of the implemented controllers and their models used in the transfer operator computation. To address this problem, while retaining the convenience of the Turner and Walker design, a novel state/output feedback bumpless transfer topology is introduced that employs the nominal state of the offline controller and, through the use of an additional controller/model mismatch compensator, also the offline controller output. A corresponding steady-state bumpless transfer design procedure along with the supporting theory is developed for a large class of systems. Due to these features, it is demonstrated to solve a long-standing problem of high-quality steady-state bumpless transfer from the industry standard low-order nonlinear multiloop PID-based controllers to the modern multiinput-multioutput (MIMO) robust controllers in the megawatt/throttle pressure control of a typical coal-fired boiler/turbine unit.
Analytical determination of transition time between transient and steady state water infiltration
NASA Astrophysics Data System (ADS)
Lassabatere, Laurent; Angulo-Jaramillo, Rafael; di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo
2016-04-01
The hydraulic characterization of soil hydraulic properties is a prerequisite to the modelling of flow in the vadose zone. Since many years, numerous methods were developed to determine soil hydraulic properties. Many of these methods rely on water infiltration experiments and their analysis using analytical or numerical models. At the beginning, most models were developed for water infiltration at steady state. These models had the advantage to be easy to develop from a theoretical point of view. Yet, many drawbacks remain including the need to wait for a long time, leading to time-consuming experiments, the risk to infiltrate water in large volumes of soil, leading to a response affected by soil variability, and the uncertainty regarding the attainment of steady state (i.e. constant infiltration rate). More recently, infiltration models and mathematical developments addressed the case of consecutive transient and steady states. Yet, one main problem remain. In the field, the operator is never sure about the state of water infiltration data. This paper present analytical formulations for the estimation of a transition time. We consider the model developed by Haverkamp et al. (1994) linking 1D infiltration flux to cumulative infiltration and related approximated expansions. An analytical method based on scaling is proposed to define transition time values in terms of both scaled cumulative infiltration and times. Dimensional times are then calculated for a large variety of soils and initial conditions. These time database can be considered as a relevant tool for the guidance for operators who conduct water infiltration experiments and wants to know when to stop and also for modelers who want to know how to select the data to fit transient or steady state models. Haverkamp, R., Ross, P. J., Smetten, K. R. J., Parlange, J. Y. (1994), Three-dimensional analysis of infiltration from the disc infiltrometer: 2 Physically based infiltration equation. Water Resour. Res
Viscoelastic shear wave at thermal steady state in gelatin
NASA Astrophysics Data System (ADS)
Chang, Sheng-Yi; Ho, Chien-Wa; Hsieh, Tong-Sheng; Yu, Li-Ping; Chou, Chien
2013-02-01
Viscoelastic shear waves (VESW) propagation in soft matters such as gelatin under thermal steady state was studied. VESW in a slab of gelatin causes the transverse displacement of the surface in a harmonic wave. The harmonic oscillation frequency of the transverse displacement of gelatin surface was then measured in real time in order to measure the modulus of rigidity of gelatin in terms of the measured oscillation frequency. A polarized heterodyne interferometer (PHI) was setup in this experiment which enables to precisely measure the transverse displacement of surface in real time at 0.3 nm resolution. This results in the proposed VESW method able to characterize gelatin soft material in real time. From the experimental demonstration, the properties of VESW propagation in soft material at thermal steady state potentially can become a novel nano-scale non-intrusion strain-stress sensor able to characterize the modulus rigidity of soft material.
Non-equilibrium steady states in supramolecular polymerization
NASA Astrophysics Data System (ADS)
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.
2017-06-01
Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.
Task-specific stability of multifinger steady-state action.
Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L
2015-01-01
The authors explored task-specific stability during accurate multifinger force production tasks with different numbers of instructed fingers. Subjects performed steady-state isometric force production tasks and were instructed not to interfere voluntarily with transient lifting-and-lowering perturbations applied to the index finger. The main results were (a) intertrial variance in the space of finger modes at steady states was larger within the subspace that had no effect on the total force (the uncontrolled manifold [UCM]); (b) perturbations caused large deviations of finger modes within the UCM (motor equivalence); and (c) deviations caused by the perturbation showed larger variance within the UCM. No significant effects of the number of task fingers were noted in any of the 3 indicators. The results are discussed within the frameworks of the UCM and referent configuration hypotheses. The authors conclude, in particular, that all the tasks were effectively 4-finger tasks with different involvement of task and nontask fingers.
Multiplying steady-state culture in multi-reactor system.
Erm, Sten; Adamberg, Kaarel; Vilu, Raivo
2014-11-01
Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.
Extending Molecular Theory to Steady-State Diffusing Systems
FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.
1999-10-22
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
NASA Astrophysics Data System (ADS)
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Optimal Control of Transitions between Nonequilibrium Steady States
Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.
2013-01-01
Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112
Turnover of messenger RNA: Polysome statistics beyond the steady state
NASA Astrophysics Data System (ADS)
Valleriani, A.; Ignatova, Z.; Nagar, A.; Lipowsky, R.
2010-03-01
The interplay between turnover or degradation and ribosome loading of messenger RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of newly created mRNA chains requires some time to reach steady state, a fraction of the extracted mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the mean ribosome density obtained from the extracted complexes is found to be inversely proportional to the mRNA length. On the other hand, the ribosome density profile shows an exponential decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.
Steady-state superradiance with alkaline-earth-metal atoms
Meiser, D.; Holland, M. J.
2010-03-15
Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.
Multiple steady states for characteristic initial value problems
NASA Technical Reports Server (NTRS)
Salas, M. D.; Abarbanel, S.; Gottlieb, D.
1984-01-01
The time dependent, isentropic, quasi-one-dimensional equations of gas dynamics and other model equations are considered under the constraint of characteristic boundary conditions. Analysis of the time evolution shows how different initial data may lead to different steady states and how seemingly anamolous behavior of the solution may be resolved. Numerical experimentation using time consistent explicit algorithms verifies the conclusions of the analysis. The use of implicit schemes with very large time steps leads to erroneous results.
Steady state equivalence among autocatalytic peroxidase-oxidase reactions
NASA Astrophysics Data System (ADS)
Méndez-González, José; Femat, Ricardo
2016-12-01
Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.
A correspondence principle for steady-state wave problems
NASA Technical Reports Server (NTRS)
Schmerr, L. W.
1976-01-01
A correspondence principle was developed for treating the steady state propagation of waves from sources moving along a plane surface or interface. This new principle allows one to obtain, in a unified manner, explicit solutions for any source velocity. To illustrate the correspondence principle in a particular case, the problem of a load moving at an arbitrary constant velocity along the surface of an elastic half-space is considered.
Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2000-01-01
This paper extends Farrenkopf's analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only part of the state update resulting from the angle sensor measurement is propagated to future times.
The approach to steady state using homogeneous and Cartesian coordinates.
Gochberg, D F; Ding, Z
2013-01-01
Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.
Intense steady state neutron source. The CNR reactor
Difilippo, F.C.; Moon, R.M.; Gambill, W.R.; Moon, R.M.; Primm, R.T. III; West, C.D.
1986-01-01
The Center for Neutron Research (CNR) has been proposed in response to the needs - neutron flux, spectrum, and experimental facilities - that have been identified through workshops, studies, and discussions by the neutron-scattering, isotope, and materials irradiation research communities. The CNR is a major new experimental facility consisting of a reactor-based steady state neutron source of unprecedented flux, together with extensive facilities and instruments for neutron scattering, isotope production, materials irradiation, and other areas of research.
Steady state equivalence among autocatalytic peroxidase-oxidase reactions.
Méndez-González, José; Femat, Ricardo
2016-12-14
Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.
Steady state magnetic field configurations for the earth's magnetotail
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
MUTATION RATES OF BACTERIA IN STEADY STATE POPULATIONS
Fox, Maurice S.
1955-01-01
The breeder and the chemostat have been used to measure mutation rates for two mutations under a variety of steady state growth conditions. These rates have been found to be higher in complex medium than in minimal (F) medium. The effects of changes in nutritional conditions on these high rates have been described. In addition, the mutation rates at short generation times, in complex medium, have been shown to decrease with increasing generation time. PMID:13271726
Multiple Color Stimulus Induced Steady State Visual Evoked Potentials
2007-11-02
MULTIPLE COLOR STIMULUS INDUCED STEADY STATE VISUAL EVOKED POTENTIALS M. Cheng, X. Gao, S. Gao, D. Xu Institute of Biomedical Engineering...characteristics of high SNR and effectiveness in short-term identification of evoked responses. In most of the SSVEP experiments, single high...frequency stimuli are used. To characterize the complex rhythms in SSVEP, a new multiple color stimulus pattern is proposed in this paper. FFT and
Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior.
Zoski, Cynthia G; Yang, Nianjun; He, Peixin; Berdondini, Luca; Koudelka-Hep, Milena
2007-02-15
An addressable nanoelectrode membrane array (ANEMA) based on a Au-filled track-etched polycarbonate membrane was fabricated. The Au-filled membrane was secured to a lithographically fabricated addressable ultramicroelectrode (UME) array patterned with 25 regularly spaced (100 microm center to center spacing), 10 microm diameter recessed Pt UMEs to create 25 microregions of 10 microm diameter nanoelectrode ensembles (NEEs) on the membrane. The steady-state voltammetric behavior of 1.0 mM Ru(NH(3))(6)Cl(3) and 1.0 mM ferrocene methanol in 0.1 M KCl on each of the micro NEEs resulted in sigmoidal-shaped voltammograms which were reproducible across the ANEMA. This reproducibility of the steady-state current was attributed to the overlapping hemispherical diffusion layers at the Au-filled nanopores of each 10 microm diameter NEE of a ANEMA. The track-etched polycarbonate membranes were filled using a gold electroless deposition procedure into the 30 nm diameter pores in the membrane. Electrical connection between the Au-filled template array and the lithographic UME platform array was achieved by potentiostatic electrodeposition of Cu from an acidic copper solution into each of the 25 recessed Pt UMEs on the UME array platform. A multiplexer unit capable of addressing 64 individual micro NEEs on an ANEMA is described. ANEMAs have advantages of high reproducibility, facile fabrication, multitime reuse of lithographically fabricated UME arrays, and purely steady-state behavior.
A steady-state theory for processive cellulases.
Cruys-Bagger, Nicolaj; Elmerdahl, Jens; Praestgaard, Eigil; Borch, Kim; Westh, Peter
2013-08-01
Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis-Menten equation. The main difference is a 'kinetic processivity coefficient', which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low. This has significant kinetic implications, for example the maximal specific rate (V(max)/E₀) for processive cellulases is much lower than the catalytic rate constant (k(cat)). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases. © 2013 FEBS.
Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems
NASA Astrophysics Data System (ADS)
Taniguchi, Tooru; Cohen, E. G. D.
2008-02-01
We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.
Numerical computation of steady-state acoustic disturbances in flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Myers, M. K.
1992-01-01
Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.
Steady states of continuous-time open quantum walks
NASA Astrophysics Data System (ADS)
Liu, Chaobin; Balu, Radhakrishnan
2017-07-01
Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long-time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).
STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED
Yoon, Peter H.; Kim, Sunjung; Choe, G. S.
2015-10-20
In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.
Cavitation modeling for steady-state CFD simulations
NASA Astrophysics Data System (ADS)
Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.
2016-11-01
Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-01
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-01-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760
Basin stability measure of different steady states in coupled oscillators.
Rakshit, Sarbendu; Bera, Bidesh K; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-05
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
Basin stability measure of different steady states in coupled oscillators
NASA Astrophysics Data System (ADS)
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
Adaptive control of unknown unstable steady states of dynamical systems.
Pyragas, K; Pyragas, V; Kiss, I Z; Hudson, J L
2004-08-01
A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical systems is considered. The controller is reference-free; it does not require knowledge of the location of the fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made. With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.
Numerical computation of steady-state acoustic disturbances in flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Myers, M. K.
1992-01-01
Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.
The VERRUN and VERNAL software systems for steady-state visual evoked response experimentation
NASA Technical Reports Server (NTRS)
Levison, W. H.; Zacharias, G. L.
1984-01-01
Two digital computer programs were developed for use in experiments involving steady-state visual evoked response (VER): VERRUN, whose primary functions are to generate a sum-of-sines (SOS) stimulus and to digitize and store electro-cortical response; and VERNAL, which provides both time- and frequency-domain metrics of the evoked response. These programs were coded in FORTRAN for operation on the PDP-11/34, using the RSX-11 Operating System, and the PDP-11/23, using the RT-11 Operating System. Users' and programmers' guides to these programs are provided, and guidelines for model analysis of VER data are suggested.
Steady state thermal radiation analysis between the TOPAZ-II radiator and a heat exchanger
Maveety, J.G.; Wold, S.K.
1995-12-31
In this study the authors investigate the feasibility and efficiency of coupling a single-pass heat exchanger to the TOPAZ-II space power system operating at steady state conditions. A first and second law analysis was performed in order to determine the optimal operating conditions which minimize the pumping power and maximize the flow exergy of the working fluid. The results of this study show that (1) the space power system is basically unaffected by the addition of this heat exchanger and (2) as much as 60% of the availability is destroyed by irreversibilities while operating at optimal flow conditions.
Haaland, Ben; Min, Wanli; Qian, Peter Z. G.; Amemiya, Yasuo
2011-01-01
Temperature control for a large data center is both important and expensive. On the one hand, many of the components produce a great deal of heat, and on the other hand, many of the components require temperatures below a fairly low threshold for reliable operation. A statistical framework is proposed within which the behavior of a large cooling system can be modeled and forecast under both steady state and perturbations. This framework is based upon an extension of multivariate Gaussian autoregressive hidden Markov models (HMMs). The estimated parameters of the fitted model provide useful summaries of the overall behavior of and relationships within the cooling system. Predictions under system perturbations are useful for assessing potential changes and improvements to be made to the system. Many data centers have far more cooling capacity than necessary under sensible circumstances, thus resulting in energy inefficiencies. Using this model, predictions for system behavior after a particular component of the cooling system is shut down or reduced in cooling power can be generated. Steady-state predictions are also useful for facility monitors. System traces outside control boundaries flag a change in behavior to examine. The proposed model is fit to data from a group of air conditioners within an enterprise data center from the IT industry. The fitted model is examined, and a particular unit is found to be underutilized. Predictions generated for the system under the removal of that unit appear very reasonable. Steady-state system behavior also is predicted well. PMID:22076026
Steady-state and transient analysis of a squeeze film damper bearing for rotor stability
NASA Technical Reports Server (NTRS)
Barrett, L. E.; Gunter, E. J.
1975-01-01
A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Arc plasma generator of atomic driver for steady-state negative ion source
Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A. Mishagin, V. V.; Shulzhenko, G. I.; Putvinsky, S. V.; Smirnov, A.
2014-02-15
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB{sub 6} cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng
2012-05-01
We study the statistics of heat transferred in a given time interval t_{M}, through a finite harmonic chain, called the center, which is connected to two heat baths, the left (L) and the right (R), that are maintained at two temperatures. The center atoms are driven by external time-dependent forces. We calculate the cumulant generating function (CGF) for the heat transferred out of the left lead, Q_{L}, based on the two-time quantum measurement concept and using the nonequilibrium Green's function method. The CGF can be concisely expressed in terms of Green's functions of the center and an argument-shifted self-energy of the lead. The expression of the CGF is valid in both transient and steady-state regimes. We consider three initial conditions for the density operator and show numerically, for a one-atom junction, how their transient behaviors differ from each other but, finally, approach the same steady state, independent of the initial distributions. We also derive the CGF for the joint probability distribution P(Q_{L},Q_{R}), and discuss the correlations between Q_{L} and Q_{R}. We calculate the CGF for total entropy production in the reservoirs. In the steady state we explicitly show that the CGFs obey steady-state fluctuation theorems. We obtain classical results by taking ℏ→0. We also apply our method to the counting of the electron number and electron energy, for which the associated self-energy is obtained from the usual lead self-energy by multiplying a phase and shifting the contour time, respectively.
The physics design of the Tokamak Physics Experiment
NASA Astrophysics Data System (ADS)
Thomassen, K. I.; Batchelor, D. B.; Bialek, J.
1994-08-01
The physics approaches to improved, steady-state tokamak reactors, as evolved through reactor design studies, ideas based on experimental results, and better theoretical understanding, are the foundation for the mission and physics design of the Tokamak Physics Experiment (TPX). The mission of TPX is to develop the scientific basis for cost-competitive, continuously operating tokamak power plants. We report here the design status of TPX, a device optimized to achieve improved performance through strong plasma shaping, recycling control, and current profile shaping, while operating continuously. The design incorporates poloidal field flexibility for a wide range of operation in normalized beta and internal inductance, a double-null 'Vee' divertor configuration for power and particle control, internal and external n (ne) 0 coils, as well as passive stabilizers, for control of MHD activity, and remote maintenance for continuous high-power operation in deuterium. Having superconducting poloidal and toroidal coils, the TPX device itself is capable of continuous operation, although initially auxiliary equipment limits the pulse length to 1000 sec.
The physics design of the Tokamak Physics Experiment
Thomassen, K.I.; Batchelor, D.B.; Bialek, J.
1994-08-08
The physics approaches to improved, steady-state tokamak reactors, as evolved through reactor design studies, ideas based on experimental results, and better theoretical understanding, are the foundation for the mission and physics design of the Tokamak Physics Experiment (TPX). The mission of TPX is to develop the scientific basis for cost-competitive, continuously operating tokamak power plants. We report here the design status of TPX, a device optimized to achieve improved performance through strong plasma shaping, recycling control, and current profile shaping, while operating continuously. The design incorporates poloidal field flexibility for a wide range of operation in normalized beta and internal inductance, a double-null ``Vee`` divertor configuration for power and particle control, internal and external n {ne} 0 coils, as well as passive stabilizers, for control of MHD activity, and remote maintenance for continuous high-power operation in deuterium. Having superconducting poloidal and toroidal coils, the TPX device itself is capable of continuous operation, although initially auxiliary equipment limits the pulse length to 1000 sec.
Development in Diagnostics Application to Control Advanced Tokamak Plasma
Koide, Y.
2008-03-12
For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)
Fan, Fan; Luxenburger, Andreas; Painter, Gavin F; Blanchard, John S
2007-10-09
Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.
Steady-State and Pre-Steady-State Kinetic Analysis of Mycobacterium smegmatis Cysteine Ligase (MshC)
Fan, Fan; Luxenburger, Andreas; Painter, Gavin F.; Blanchard, John S
2008-01-01
Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-D-myo-inosityl-2-(N-acetyl-L-cysteinyl)amido-2-deoxy-α-D-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth, and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-D. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady state and pre-steady state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady state kinetic parameters were determined to be: kcat equal to 3.15 s−1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analog, 5′-O-[N-(L-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and non-competitive inhibition versus cysteine, with an inhibition constant of ~306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid quench techniques, giving rates of ~9.4 s−1 and ~5.2 s−1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC. PMID:17848100
Experiments on steady state particle control in Tore Supra and DIII-D
Mioduszewski, P.K.; Hogan, J.T.; Owen, L.W.
1994-12-31
Particle control is playing an increasingly important role in tokamak plasma performance. The present paper discusses particle control of hydrogen/deuterium by wall pumping on graphite or carbonized surfaces, as well as by external exhaust with pumped limiters and pumped divertors. Wall pumping is ultimately a transient effect and by itself not suitable for steady state particle exhaust. Therefore, external exhaust techniques with pumped divertors and limiters are being developed. How wall pumping phenomena interact and correlate with these inherently steady state, external exhaust techniques, is not well known to date. In the present paper, the processes involved in wall pumping and in external pumping are investigated in an attempt to evaluate the effect of external exhaust on wall pumping. Some of the key elements of this analysis are: (1) charge-exchange fluxes to the wall play a crucial role in the core-wall particle dynamics, (2) the recycling fluxes of thermal molecules have a high probability of ionization in the scrape-off layer, (3) thermal particles originating from the wall, which are ionized within the scrape-off layer, can be directly exhausted, thus providing a direct path between wall and exhaust which can be used to control the wall inventory. This way, the wall can be kept in a continuous pumping state in the sense that it continuously absorbs energetic particles and releases thermal molecules which are then removed by the external exhaust mechanism. While most of the ingredients of this analysis have been observed individually before, the present evaluation is an attempt to correlate effects of wall recycling and external exhaust.
Scott, T.C.; Hill, C.G. Jr.; Amundson, C.H.
1985-01-01
Analysis of the steady-state behavior of immobilized ..beta..-galactosidase by integral reactor techniques has yielded a model which allows one to predict reactor performance under normal operating conditions. Values of the mechanistic rate constants for enzymatic hydrolysis of lactose were determined as a function of temperature by fitting the reactor model to experimental lactose conversion profiles. Use of this model along with the activity decay characteristics of the immobilized enzyme which have been presented in a previous publication could prove to be a useful tool in determining appropriate operating strategies for industrial applications of the immobilized enzyme catalyst. 18 refs., 5 figs., 6 tabs.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
The design of the Tokamak Physics Experiment (TPX)
NASA Astrophysics Data System (ADS)
Schmidt, J. A.; Thomassen, K. I.; Goldston, R. J.; Neilson, G. H.; Nevins, W. M.; Sinnis, J. C.; Andersen, P.; Bair, W.; Barr, W. L.; Batchelor, D. B.; Baxi, C.; Berg, G.; Bernabei, S.; Bialek, J. M.; Bonoli, P. T.; Boozer, A.; Bowers, D.; Bronner, G.; Brooks, J. N.; Brown, T. G.; Bulmer, R.; Butner, D.; Campbell, R.; Casper, T.; Chaniotakis, E.; Chaplin, M.; Chen, S. J.; Chin, E.; Chrzanowski, J.; Citrolo, J.; Cole, M. J.; Dahlgren, F.; Davis, F. C.; Davis, J.; Davis, S.; Diatchenko, N.; Dinkevich, S.; Feldshteyn, Y.; Felker, B.; Feng, T.; Fenstermacher, M. E.; Fleming, R.; Fogarty, P. J.; Fragetta, W.; Fredd, E.; Gabler, M.; Galambos, J.; Gohar, Y.; Goranson, P. L.; Greenough, N.; Grisham, L. R.; Haines, J.; Haney, S.; Hassenzahl, W.; Heim, J.; Heitzenroeder, P. J.; Hill, D. N.; Hodapp, T.; Houlberg, W. A.; Hubbard, A.; Hyatt, A.; Jackson, M.; Jaeger, E. F.; Jardin, S. C.; Johnson, J.; Jones, G. H.; Juliano, D. R.; Junge, R.; Kalish, M.; Kessel, C. E.; Knutson, D.; LaHaye, R. J.; Lang, D. D.; Langley, R. A.; Liew, S.-L.; Lu, E.; Mantz, H.; Manickam, J.; Mau, T. K.; Medley, S.; Mikkelsen, D. R.; Miller, R.; Monticello, D.; Morgan, D.; Moroz, P.; Motloch, C.; Mueller, J.; Myatt, L.; Nelson, B. E.; Neumeyer, C. L.; Nilson, D.; O'Conner, T.; Pearlstein, L. D.; Peebles, W. A.; Pelovitz, M.; Perkins, F. W.; Perkins, L. J.; Petersen, D.; Pillsbury, R.; Politzer, P. A.; Pomphrey, N.; Porkolab, M.; Posey, A.; Radovinsky, A.; Raftopoulis, S.; Ramakrishnan, S.; Ramos, J.; Rauch, W.; Ravenscroft, D.; Redler, K.; Reiersen, W. T.; Reiman, A.; Reis, E.; Rewoldt, G.; Richards, D. J.; Rocco, R.; Rognlien, T. D.; Ruzic, D.; Sabbagh, S.; Sapp, J.; Sayer, R. O.; Scharer, J. E.; Schmitz, L.; Schnitz, J.; Sevier, L.; Shipley, S. E.; Simmons, R. T.; Slack, D.; Smith, G. R.; Stambaugh, R.; Steill, G.; Stevenson, T.; Stoenescu, S.; Onge, K. T. St.; Stotler, D. P.; Strait, T.; Strickler, D. J.; Swain, D. W.; Tang, W.; Tuszewski, M.; Ulrickson, M. A.; VonHalle, A.; Walker, M. S.; Wang, C.; Wang, P.; Warren, J.; Werley, K. A.; West, W. P.; Williams, F.; Wong, R.; Wright, K.; Wurden, G. A.; Yugo, J. J.; Zakharov, L.; Zbasnik, J.
1993-09-01
The Tokamak Physics Experiment is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. It is based on an emerging class of tokamak operating modes, characterized by beta limits well in excess of the Troyon limit, confinement scaling well in excess of H-mode, and bootstrap current fractions approaching unity. Such modes are attainable through the use of advanced, steady state plasma controls including strong shaping, current profile control, and active particle recycling control. Key design features of the TPX are superconducting toroidal and poloidal field coils; actively-cooled plasma-facing components; a flexible heating and current drive system; and a spacious divertor for flexibility. Substantial deuterium plasma operation is made possible with an in-vessel remote maintenance system, a lowactivation titanium vacuum vessel, and shielding of ex-vessel components. The facility will be constructed as a national project with substantial participation by U.S. industry. Operation will begin with first plasma in the year 2000.
The design of the Tokamak Physics Experiment (TPX)
Schmidt, J.A.; Goldston, R.J.; Sinnis, J.C.; Bernabei, S.; Bialek, J.M.; Bronner, G.; Chen, S.J.; Chrzanowski, J.; Citrolo, J.; Dahlgren, F.
1993-09-01
The Tokamak Physics Experiment (TPX) is designed to develop the scientific basis for a compact and continuously operating tokamak fusion reactor. It is based on an emerging class of tokamak operating modes, characterized by beta limits well in excess of the Troyon limit, confinement scaling well in excess of H-mode, and bootstrap current fractions approaching unity. Such modes are attainable through the use of advanced, steady state plasma controls including strong shaping, current profile control, and active particle recycling control. Key design features of the TPX are superconducting toroidal and poloidal field coils; actively-cooled plasma-facing components; a flexible heating and current drive system; and a spacious divertor for flexibility. Substantial deuterium plasma operation is made possible with an in-vessel remote maintenance system, a low-activation titanium vacuum vessel, and shielding of ex-vessel components. The facility will be constructed as a national project with substantial participation of US industry. Operation will begin with first plasma in the year 2000.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
NASA Astrophysics Data System (ADS)
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
Fitting Boolean Networks from Steady State Perturbation Data
Almudevar, Anthony; McCall, Matthew N; McMurray, Helene; Land, Hartmut
2011-01-01
Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design. PMID:23089817
Relaxation versus adiabatic quantum steady-state preparation
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Steady-State Solution of a Flexible Wing
NASA Technical Reports Server (NTRS)
Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh
1997-01-01
A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.
A Spreadsheet Program for Steady-State Temperature Distributions
Hutchens, G.J.
2000-11-01
A desktop program is developed in Microsoft EXCEL using Visual Basic for Applications (VBA) to solve a two-dimensional steady state heat conduction problem with a radiation boundary condition. The resulting partial differential equation and boundary conditions are solved using finite difference techniques and the results are compared with a finite element solution using the commercially available software package MSC/THERMAL. The results from the two methods are found to be within 1 percent. The VBA solution demonstrates how spreadsheet programs, like EXCEL, can be used to solve practical engineering problems with good accuracy.
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Energy decay and steady states in externally driven magnetohydrodynamic systems
NASA Astrophysics Data System (ADS)
Núñez, Manuel
Some relaxed magnetohydrodynamic states of a plasma, such as the Taylor or the Alfvén state are often presented as the logical end of the plasma evolution by an argument of energy minimization under some constraint. However, these arguments are unsatisfactory and the very existence of nontrivial steady states as limits of magnetohydrodynamic evolution is far from obvious. For steady solutions to exist, the forcing term must be time-independent, it is shown that in this case, either the plasma undergoes constant change at a positive minimum rate or it comes arbitrarily close, in the quadratic mean norm, to the set of steady solutions of the magnetohydrodynamic equations.
Thermodynamic formalism and linear response theory for nonequilibrium steady states.
Speck, Thomas
2016-08-01
We study the linear response in systems driven away from thermal equilibrium into a nonequilibrium steady state with nonvanishing entropy production rate. A simple derivation of a general response formula is presented under the condition that the generating function describes a transformation that (to lowest order) preserves normalization and thus describes a physical stochastic process. For Markov processes we explicitly construct the conjugate quantities and discuss their relation with known response formulas. Emphasis is put on the formal analogy with thermodynamic potentials and some consequences are discussed.
Steady-state properties of a nonequilibrium Fermi gas
NASA Astrophysics Data System (ADS)
Ribeiro, Pedro
2017-08-01
The current-carrying steady state that arises in the middle of a metallic wire connected to macroscopic leads is characterized regarding its response functions, correlations, and entanglement entropy. The spectral function and the dynamical structure factor show clear nonequilibrium signatures accessible by state-of-the-art techniques. In contrast with the equilibrium case, the entanglement entropy is extensive with logarithmic corrections at zero temperature that depend on the lead-wire coupling and, in a nonanalytic way, on voltage. This shows that some robust universal quantities found in gapless equilibrium phases do not persist away from equilibrium.
Typical pure nonequilibrium steady states and irreversibility for quantum transport.
Monnai, Takaaki; Yuasa, Kazuya
2016-07-01
It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.
Steady-State-Preserving Simulation of Genetic Regulatory Systems
Hou, Xilin
2017-01-01
A novel family of exponential Runge-Kutta (expRK) methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature. PMID:28203268
Steady-State-Preserving Simulation of Genetic Regulatory Systems.
Zhang, Ruqiang; Ehigie, Julius Osato; Hou, Xilin; You, Xiong; Yuan, Chunlu
2017-01-01
A novel family of exponential Runge-Kutta (expRK) methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.
Steady-state capabilities for hydroturbines with OpenFOAM
NASA Astrophysics Data System (ADS)
Page, M.; Beaudoin, M.; Giroux, A. M.
2010-08-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Steady State Creep of Zirconium at High and Intermediate Temperatures
Rosen, R.S.; Hayes, T.A.
2000-04-08
Creep of zirconium and zirconium alloys has been labeled ''anomalous.'' Researchers often report that zirconium and its alloys never reach true steady state creep and have stress exponents that continuously change with stress and temperature. Many varied interpretations have been offered explaining the creep behavior of zirconium. Some have suggested that creep is diffusion controlled, while others maintain that creep is dislocation glide controlled. Cumulative zirconium creep data will be presented based on an extensive literature review. An interpretation of results will be presented and compared to previous interpretations.
Stabilizing unstable steady states using multiple delay feedback control.
Ahlborn, Alexander; Parlitz, Ulrich
2004-12-31
Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.
Nonequilibrium steady-state circulation and heat dissipation functional.
Qian, H
2001-08-01
A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.
An automatic method for deriving steady-state rate equations.
Cornish-Bowden, A
1977-01-01
A method is described for systematically deriving steady-state rate equations. It is based on the schematic method of King & Altman [J. Phys. Chem. (1956) 60, 1375-1378], but is expressed in purely algebraic terms. It is suitable for implementation as a computer program, and a program has been written in FORTRAN IV and deposited as Supplementary Publication SUP 50078 (12 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977) 161, 1-2. PMID:889575
Steady-state grain growth in UO{sub 2}
Galinari, C.M.; Lameiras, F.S.
1998-06-05
The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.
Linear modeling of steady-state behavioral dynamics.
Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert
2002-01-01
The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782
Design of long pulse/steady state negative hydrogen ion sources for fusion applications
Prelec, K.
1980-01-01
By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length < 0.1 s), requirements have been determined for a long pulse (several seconds) or steady state operating mode and two sources have been designed and fabricated. First of the two is a penning source, designed for a steady state operation with a cathode power density of 1 kW/cm/sup 2/. For the range of cathode power densities between 0.2 kW/cm/sup 2/ and 1 Kw/cm/sup 2/, nucleated boiling has to be used for heat removal; below 0.2 kW/cm/sup 2/ water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H/sup -/ ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm/sup 2/. Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge.
Mechanisms of steady-state nucleate pool boiling in microgravity.
Lee, Ho Sung
2002-10-01
Research on nucleate pool boiling in microgravity using R-113 as a working fluid was conducted using a five-second drop tower and five space flights at a/g approximately 10(-4). A 19 x 38-mm flat gold film heater was used that allowed cine camera viewing both from the side and the bottom of the heater. It was concluded that for both subcooled and saturated liquids long-term steady-state pool boiling can take place in reduced gravity, but the effectiveness of the boiling heat transfer appears to depend on the heater geometry and on the size and the properties of fluids. Heat transfer is enhanced at lower heat flux levels and the CHF increases as the subcooling increases. It was found that several mechanisms are responsible for the steady-state nucleate pool boiling in the absence of buoyancy. The mechanisms considered here are defined and summarized as bubble removal, bubble coalescence, thermocapillary flow, bubble migration, and latent heat transport.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.
2010-01-01
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840
Steady-state mushy layers: Experiments and theory
NASA Astrophysics Data System (ADS)
Peppin, S.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.
2006-11-01
A new facility has been developed to investigate mushy layers formed during the steady directional solidification of transparent aqueous solutions in a quasi-two-dimensional system. Experiments have been conducted on NaCl--H20 solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1,^0C/mm. Ice formed the primary solid phase and the dense residual fluid ponded within the mushy layer at the base of the system. Mathematical predictions of the steady-state temperature profile and mushy layer thickness as functions of freezing rate are in excellent agreement with experimental results. Experiments have also been performed on aqueous NH4Cl solutions, with the salt forming the primary solid phase, yielding buoyancy-driven convection in the mushy layer and the development of chimneys. The lifetime of the chimneys increased with decreasing freezing rate; however, no steady-state chimneys have been observed. Rather, a convecting chimney appears to deplete the surrounding solution and is eventually extinguished. At freezing rates larger than about 5.5,μm/s a uniform mushy layer develops with no chimneys. However, at rates larger than about 5,μm/s a second mode of behaviour is observed in which the mushy layer is thin and there is significant supercooling and nucleation above it. There is hysteresis between the two modes.
Classical Orbital Paramagnetism in Non-equilibrium Steady State
NASA Astrophysics Data System (ADS)
Deshpande, Avinash A.; Kumar, N.
2017-09-01
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.
Steady-State ALPS for Real-Valued Problems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2009-01-01
The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.
Steady States and Universal Conductance in a Quenched Luttinger Model
NASA Astrophysics Data System (ADS)
Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per
2017-01-01
We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to ∞}, after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'}. Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)}, has a universal value equal to the conductance quantum {e^2/h} for the spinless case.
Ecological Implications of Steady State and Nonsteady State Bioaccumulation Models.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2016-10-18
Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene.
Nonequilibrium many-body steady states via Keldysh formalism
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2016-01-01
Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.
Modeling steady-state methanogenic degradation of phenols in groundwater
Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.
1993-01-01
Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
Zonal Flow Growth Rates: Modulational Instability vs Statistical Steady States.
NASA Astrophysics Data System (ADS)
Krommes, J. A.; Kolesnikov, R. A.
2002-11-01
The nonlinear growth rate of zonal flows has been the subject of various investigations. The calculations can be grouped into two major classes: those based on modulational instability of a fixed pump wave;(L. Chen et al., Phys. Plasmas 7), 3129 (2000); P. N. Guzdar et al., Phys. Rev. Lett. 87, 015001 (2001); C. N. Lashmore-Davies et al., Phys. Plasmas 8, 5121 (2001). and those employing statistical formalism to describe a self-consistent, energy-conserving steady state.(J. A. Krommes and C.--B. Kim, Phys. Rev. E 62), 8508 (2000), and references therein. The results from these two approaches do not necessarily agree either in their dependence on parameters like the plasma pressure β, on the threshold for instability, or even, in some cases, on the sign. The reasons for such disagreements are isolated, and it is shown to what extent the steady-state statistical approach can be reconciled with a generic modulational instability calculation. Generalizations of the statistical formalism to the multifield systems appropriate for finite β are described. Specific calculations based on model systems are used to illustrate the general arguments.
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Torque(percent) 2 3 1a Steady-state 170 Warm Idle 0 1b Transition 20 Linear Transition Linear Transition. 2a Steady-state 173 A 100 2b Transition 20 Linear Transition Linear Transition. 3a Steady-state 219 B 50 3b Transition 20 B Linear Transition. 4a Steady-state 217 B 75 4b Transition 20 Linear...
2005-12-01
choice of a steady state control is completely independent from the choice of a stabilizing control law. This separation is key for the methods we will...develop for steady state optimization in later sections. Combining the steady state with the stabilizing control , we can express the control law as u...for stabilizing control and optimization methods for steady state control, both unconstrained and constrained, we were able to produce promising results
Evidence for Anomalous Effects on the Current Evolution in Tokamak Operating Scenarios
Casper, T; Jayakumar, R; Allen, S; Holcomb, C; Makowski, M; Pearlstein, L; Berk, H; Greenfield, C; Luce, T; Petty, C; Politzer, P; Wade, M; Murakami, M; Kessel, C
2006-10-03
Alternatives to the usual picture of advanced tokamak (AT) discharges are those that form when anomalous effects alter the plasma current and pressure profiles and those that achieve stationary characteristics through mechanisms so that a measure of desired AT features is maintained without external current-profile control. Regimes exhibiting these characteristics are those where the safety factor (q) evolves to a stationary profile with the on-axis and minimum q {approx} 1 and those with a deeply hollow current channel and high values of q. Operating scenarios with high fusion performance at low current and where the inductively driven current density achieves a stationary configuration with either small or non-existing sawteeth may enhance the neutron fluence per pulse on ITER and future burning plasmas. Hollow current profile discharges exhibit high confinement and a strong ''box-like'' internal transport barrier (ITB). We present results providing evidence for current profile formation and evolution exhibiting features consistent with anomalous effects or with self-organizing mechanisms. Determination of the underlying physical processes leading to these anomalous effects is important for scaling of current experiments for application in future burning plasmas.
Implementing a Finite-State Off-Normal and Fault Response System for Robust Tokamak Operation
NASA Astrophysics Data System (ADS)
Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Walker, M. L.
2015-11-01
The initial implementation and testing of a finite state off-normal & fault response (ONFR) system on the DIII-D and KSTAR tokamaks is presented. Robust ONFR will be critical to the operation of ITER as the physical consequences of unexpected events will be far more extreme than in present devices. ``Off-normal'' refers to unexpected plasma events (e.g. disruptions) and plasma events that are expected but still require asynchronous response (e.g. neoclassical tearing modes). ``Fault'' refers to hardware failure. ONFR priorities are to (1) protect the device from damage, (2) minimize recovery time between shots by avoiding unnecessary initiation of mitigation procedures, and (3) maximize the useful pulse length of a given shot by providing for discharge recovery after deleterious events. The detailed implementation of finite-state ONFR using Matlab/Simulink and Stateflow exported to the DIII-D and KSTAR plasma control systems is described, as are initial tests of multi-stage locked mode handling on both devices. Work supported by the US DOE under DE-FC02-04ER54698.
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2014 CFR
2014-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2010 CFR
2010-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2013 CFR
2013-07-01
...%. 1bTransition 20 Linear transition Linear transition in torque. 2aSteady-state 166 63% 25%. 2bTransition 20 Linear transition Linear transition in torque. 3aSteady-state 570 91% 75%. 3bTransition 20 Linear transition Linear transition in torque. 4aSteady-state 175 80% 50%. 1 Speed terms are defined...
Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*
NASA Astrophysics Data System (ADS)
Hassam, Adil
1996-11-01
A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE
Divertor erosion study for TPX and implications for steady-state fusion reactors
Brooks, J.N.
1995-12-31
A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature ({approximately}100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak {approx}1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice.
Divertor erosion study for TPX and implications for steady-state fusion reactors
Brooks, J.N.
1995-12-31
A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature ({approximately} 100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak {approx} 1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice.
CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES
STRAIT,EJ; BIALEK,J; CHANCE,MS; CHU,MS; EDGELL,DH; FERRON,JR; GREENFIELD,CM; GAROFALO,AM; HUMPHREYS,DA; JACKSON,GL; JAYAKUMAR,RJ; JERNIGAN,TC; KIM,JS; LA HAYE,RJ; LAO,LL; LUCE,TC; MAKOWSKI,MA; MURAKAMI,M; NAVRATIL,GA; OKABAYASHI,M; PETTY,CC; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WADE,MR; WALKER,ML; WHYTE,DG; DIII-D TEAM
2003-06-01
OAK-B135 Advanced tokamak research in DIII-D seeks to optimize the tokamak approach for fusion energy production, leading to a compact, steady state power source. High power density implies operation at high toroidal beta, {beta}{sub T}=
2{micro}{sub 0}/B{sub T}{sup 2}, since fusion power density increases roughly as the square of the plasma pressure. Steady-state operation with low recirculating power for current drive implies operation at high poloidal beta, {beta}{sub P} =
2{micro}{sub 0}/{sup 2}, in order to maximize the fraction of self-generated bootstrap current. Together, these lead to a requirement of operation at high normalized beta, {beta}{sub N} = {beta}{sub T}(aB/I), since {beta}{sub P}{beta}{sub T} {approx} 25[(1+{kappa}{sup 2})/2] ({beta}{sub N}/100){sup 2}. Plasmas with high normalized beta are likely to operate near one or more stability limits, so control of MHD stability in such plasmas is crucial.
Microchemostat array with small-volume fraction replenishment for steady-state microbial culture.
Park, Jaewon; Wu, Jianzhang; Polymenis, Michael; Han, Arum
2013-11-07
A chemostat is a bioreactor in which microorganisms can be cultured at steady-state by controlling the rate of culture medium inflow and waste outflow, thus maintaining media composition over time. Even though many microbial studies could greatly benefit from studying microbes in steady-state conditions, high instrument cost, complexity, and large reagent consumption hamper the routine use of chemostats. Microfluidic-based chemostats (i.e. microchemostats) can operate with significantly smaller reagent consumption while providing accurate chemostatic conditions at orders of magnitude lower cost compared to conventional chemostats. Also, microchemostats have the potential to significantly increase the throughput by integrating arrays of microchemostats. We present a microchemostat array with a unique two-depth culture chamber design that enables small-volume fraction replenishment of culture medium as low as 1% per replenishment cycle in a 250 nl volume. A system having an array of 8 microchemostats on a 40 × 60 mm(2) footprint could be automatically operated in parallel by a single controller unit as a demonstration for potential high throughput microbial studies. The model organism, Saccharomyces cerevisiae, successfully reached a stable steady-state of different cell densities as a demonstration of the chemostatic functionality by programming the dilution rates. Chemostatic functionality of the system was further confirmed by quantifying the budding index as a function of dilution rate, a strong indicator of growth-dependent cell division. In addition, the small-volume fraction replenishment feature minimized the cell density fluctuation during the culture. The developed system provides a robust, low-cost, and higher throughput solution to furthering studies in microbial physiology.
Automatic Fault-Checking System on the DIII-D Tokamak
Scoville, J.T.; Walker, M.L.
2005-04-15
Modern tokamaks are highly sophisticated devices consisting of a large number of state-of-the-art systems that must function in unison to obtain a successful plasma discharge. An unsuccessful discharge can result if one or more systems fail, and diagnosis in an efficient and timely manner can be difficult. The resulting reduction in tokamak availability and productivity can be expensive, justifying a significant effort for automated fault diagnosis.For the DIII-D tokamak, a software system has been used for the past 5 years to automatically monitor and test the performance of hundreds of tokamak systems. The Fault Identification and Communication System (FICS) is automatically triggered to run immediately after each tokamak discharge and report its results via a simple color-coded graphical user interface. In addition to saving the operator time, the significant advantage of FICS is its ability to detect insipient faults that could lead to future machine failures. It has been estimated that FICS has saved an average of one to two shots per day, which equates to approximately 5% of all DIII-D pulses. The significant experience gained through the development and use of this post-discharge analysis tool also provides insight into future methods for on-line process monitoring of steady state devices.
Steady-state dynamic behavior of an auxiliary bearing supported rotor system
NASA Technical Reports Server (NTRS)
Xie, Huajun; Flowers, George T.; Lawrence, Charles
1995-01-01
This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
A Steady-state Trio for Bretherton Equation
NASA Astrophysics Data System (ADS)
Niu, Zhao; Liu, Zeng; Cui, Jifeng
2016-12-01
To investigate if steady-state resonant solution exist for any system of weakly interacting waves in a dispersive medium, a trio is considered in the Bretherton equation based on the homotopy analysis method (HAM). Time-independent spectrum was found when all components were travelling in the same direction. Within the trio, the amplitude of longer component is larger than that of shorter one. As the difference of wave number between components in trio increases or the nonlinearity of whole system increases, the amplitudes of all components tends to increase simultaneously. These findings are helpful to enrich and deepen our understanding about resonant solutions in any dispersive medium, especially for a two-dimensional scenario.
Relativistic hydrodynamics and non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Spillane, Michael; Herzog, Christopher P.
2016-10-01
We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under consideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.
Steady-state mushy layers: experiments and theory
NASA Astrophysics Data System (ADS)
Peppin, S. S. L.; Aussillous, P.; Huppert, Herbert E.; Grae Worster, M.
A new facility has been developed to investigate the directional solidification of transparent aqueous solutions forming mushy layers in a quasi-two-dimensional system. Experiments have been conducted on NaCl H_{2}O solutions by translating a Hele-Shaw cell at prescribed rates between fixed heat exchangers providing a temperature gradient of approximately 1 (°) C mm(-1) . The mush liquid interface remained planar at all freezing velocities larger than 8 umum s(-1) , while steepling occurred at lower velocities. No significant undercooling of the mush liquid interface was detected at freezing velocities up to 12 umum s(-1) . Mathematical predictions of the steady-state temperature profile and mushy-layer thickness as functions of freezing rate are in excellent agreement with experimental measurements.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
Steady-state plasma transition in the Venus ionosheath
NASA Technical Reports Server (NTRS)
Perez-De-tejada, H.; Intriligator, D. S.; Strangeway, R. J.
1991-01-01
The results of an extended analysis of the plasma and electric field data of the Pioneer Venus Orbiter (PVO) are presented. The persistent presence of a plasma transition embedded in the flanks of the Venus ionosheath between the bow shock and the ionopause is reported. This transition is identified by the repeated presence of characteristic bursts in the 30 kHz channel of the electric field detector of the PVO. The observed electric field signals coincide with the onset of different plasma conditions in the inner ionosheath where more rarified plasma fluxes are measured. The repeated identification of this intermediate ionosheath transition in the PVO data indicates that it is present as a steady state feature of the Venus plasma environment. The distribution of PVO orbits in which the transition is observed suggests that it is more favorably detected in the vicinity of and downstream from the terminator.
Entropy Production and Non-Equilibrium Steady States
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
2013-01-01
The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.
Steady-state magma discharge at Etna 1971-81
NASA Technical Reports Server (NTRS)
Wadge, G.; Guest, J. E.
1981-01-01
Throughout the past decade Mount Etna has been in almost continuous activity and even during periods of repose incandescent lava has often been visible in at least one of the summit vents. Using observations by Italian, British and French volcanological teams, the volumes of lava produced by each eruption from 1971 to July 1981 have been estimated. The computed output of magma for this period approximates to a rate of 0.7 cu m/s. This is compared with the output rate estimates for Etna's historic past. The steady-state nature of the output during the past decade has implications for the interpretation of the volcano's internal plumbing and the petrology of its lavas, and the assumption that this state will be maintained allows a discussion of the timing and magnitude of future eruptions.
Steady state asymmetric planetary electrical induction. [by solar wind
NASA Technical Reports Server (NTRS)
Horning, B. L.; Schubert, G.
1974-01-01
An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.
Extending the definition of entropy to nonequilibrium steady states
Ruelle, David P.
2003-01-01
We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces ξ and maintained at fixed kinetic energy (Hoover–Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti–Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state ρξ. When ξ is replaced by ξ + δξ, one can compute the change δρ of ρξ (linear response) and define an entropy change δS based on energy considerations. When ξ is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if ξ is a gradient) we show that the curvature is zero, and that the entropy S(ξ + δξ) near equilibrium is well defined to second order in δξ. PMID:12629215
Extending the definition of entropy to nonequilibrium steady states.
Ruelle, David P
2003-03-18
We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.
Characterization of a class of stellarator steady states
Weitzner, Harold
2011-01-15
A stellarator steady state is obtained for a specific class of magnetic fields by a formal expansion in the small Larmor radius parameters of the coupled ion-electron Fokker-Planck equations. A system of relatively simple ordinary differential equations is given to determine the plasma profile functions, the number density, the temperature, and the electrostatic potential. A particular low collisionality ordering is used. The magnetic field is assumed to have stellarator symmetry of N periods in the toroidal direction and is approximated by a closed magnetic line configuration with rotational transform N/R. The magnetic field is nearly quasisymmetric. The chosen magnetic field also includes a small additional component leading to a configuration without closed lines or closed flux surfaces. The theoretical logic behind this choice of magnetic fields is also presented.
[Auditory steady-state responses--the state of art].
Szymańska, Anna; Gryczyński, Maciej; Pajor, Anna
2010-01-01
The auditory steady-state responses (ASSR) is quite a new method of electrophysiological threshold estimation with no clinical standards. It was the aim of this study to review practical and theoretical thesis of ASSR and mention recent recommendations and achievements of this technique. The most common application of ASSR is diagnosis of hearing loss in children together with ABR test. In this paper we mentioned information about influence of physiological factors (age, sex, state of arousal, handedness) and type of recording technique (electrodes placement, air and bone stimulation, occlusion effect, amplitude and frequency stimulation, multiple or single frequency stimulation, dichotic and monotic recording technique and type of hearing loss) on ASSR. We conclude that putting ASSR in clinical use as an standardized method it is necessary to do research with numerous groups of patients using the same equipment and parameters of tests.
Steady-state thermodynamics for population growth in fluctuating environments
NASA Astrophysics Data System (ADS)
Sughiyama, Yuki; Kobayashi, Tetsuya J.
2017-01-01
We report that population dynamics in fluctuating environments is characterized by a mathematically equivalent structure to steady-state thermodynamics. By employing the structure, population growth in fluctuating environments is decomposed into housekeeping and excess parts. The housekeeping part represents the integral of the stationary growth rate for each condition during a history of the environmental change. The excess part accounts for the excess growth induced by environmental fluctuations. Focusing on the excess growth, we obtain a Clausius inequality, which gives the upper bound of the excess growth. The equality is shown to be achieved in quasistatic environmental changes. We also clarify that this bound can be evaluated by the "lineage fitness", which is an experimentally observable quantity.
Petri nets for steady state analysis of metabolic systems.
Voss, Klaus; Heiner, Monika; Koch, Ina
2011-01-01
Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.
Steady state analysis of metabolic pathways using Petri nets.
Voss, Klaus; Heiner, Monika; Koch, Ina
2003-01-01
Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.
Steady-state spectroscopy of new biological probes
NASA Astrophysics Data System (ADS)
Abou-Zied, Osama K.
2007-02-01
The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.
A mathematical model of pan evaporation under steady state conditions
NASA Astrophysics Data System (ADS)
Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.
2016-09-01
In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.
Equatorial ground ice on Mars: Steady-state stability
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.; Postawko, Susan E.
1993-01-01
Current Martian equatorial surface temperatures are too warm for water ice to exist at the surface for any appreciable length of time before subliming into the atmosphere. Subsurface temperatures are generally warmer still and, despite the presence of a diffusive barrier of porous regolith material, it has been shown by Smoluchowski, Clifford and Hillel, and Fanale et al. that buried ground ice will also sublime and be lost to the atmosphere in a relatively short time. We investigate the behavior of this subliming subsurface ice and show that it is possible for ice to maintain at a steady-state depth, where sublimation and diffusive loss to the atmosphere is balanced by resupply from beneath by diffusion and recondensation of either a deeper buried ice deposits or ground water. We examine the behavior of equatorial ground ice with a numercial time-marching molecular diffusion model. In our model we allow for diffusion of water vapor through a porous regolith, variations in diffusivity and porosity with ice content, and recondensation of sublimed water vapor. A regolith containing considerable amounts of ice can still be very porous, allowing water vapor to diffuse up from deeper within the ice layer where temperatures are warmer due to the geothermal gradient. This vapor can then recondense nearer to the surface where ice had previously sublimed and been lost to the atmosphere. As a result we find that ice deposits migrate to find a steady-state depth, which represents a balance between diffusive loss to the atmosphere through the overlying porous regolith and diffusive resupply through a porous icy regolith below. This depth depends primarily on the long-term mean surface temperature and the nature of the geothermal gradient, and is independent of the ice-free porosity and the regolith diffusivity. Only the rate of loss of ground ice depends on diffusive properties.
Torque-balanced Steady States of Single-component Plasmas
NASA Astrophysics Data System (ADS)
Danielson, James R.
2005-10-01
Penning-Malmberg traps provide an excellent method to confine single-component plasmas. Specially tailored, high-density plasmas can be created in these devices by the application of azimuthally phased rf fields [i.e., the so-called ``rotating wall'' (RW) technique]. Recently, we reported a new regime of RW compression of electron (or positron) plasmas ootnotetextJ. R. Danielson and C. M. Surko, Phys. Rev. Lett. 95, 035001 (2005).. In this ``strong-drive'' regime, plasmas are compressed until the E x B rotation frequency, φE (with φE plasma density) approaches the applied frequency, φRW. Good compression is achieved over a broad range of RW frequencies, without the need to tune to a mode in the plasma. The resulting steady-state density is found to be only weakly dependent on the applied RW amplitude. A simple nonlinear dynamical model explains these observations as convergence to an attracting fixed point - the torque-balanced steady state. The applied RW torque, τRW, can be understood as a generic, linear coupling between the plasma and the Debye- shielded RW electric field. The thermodynamic equations ootnotetextT. M. O'Neil and D. H. E. Dubin, Phys. Plasmas 5, 2163 (1998). governing the evolution will be discussed and compared to the experiments. This new regime facilitates improved compression and colder plasmas (since less transport means less plasma heating). Factors limiting the utility of the technique and applications will be discussed, including the development of a multicell trap to confine large numbers (i.e., N >=10^ 12) of positrons ootnotetextC. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333 (2004)..
Rotation of weakly collisional plasmas in tokamaks, operated with Alfv{acute e}n waves
Tsypin, V.S.; Elfimov, A.G.; de Azevedo, C.A.; de Assis, A.S.
1996-12-01
The effect of the kinetic Alfv{acute e}n waves on weakly collisional plasma rotation in tokamaks has been studied for the plateau and banana regimes. The quasistationary rotation velocities and radial electric field have been found. The estimation of these quantities for the Phaedrus-T tokamak [S. Wukitch {ital et} {ital al}., Phys. Rev. Lett. {bold 77}, 294 (1996)] and for the Joint European Torus (JET) [A. Fasoli {ital et} {ital al}., Nucl. Fusion, {bold 36}, 258 (1996)] has been presented. It is shown that the kinetic Alfv{acute e}n waves, which are needed for current drive, change weakly the quasistationary rotation velocities and radial electric field, as found from the experimental data of these tokamaks. In conditions with increased rf power, the plasma rotation and radial electric field can essentially grow up. {copyright} {ital 1996 American Institute of Physics.}
Steady-state performance characteristics of latent heat TES/heat pump systems
NASA Astrophysics Data System (ADS)
Sigmon, T. W.
1982-03-01
Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.
Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying
2015-01-01
Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. PMID:26402365
Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite
Qian, Mr. Suxin; Gluesenkamp, Kyle R; Hwang, Dr. Yunho; Radermacher, Reinhard; Chun, Mr. Ho-Hwan
2013-10-01
Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3kW adsorption chiller test facility driven by hot water at 70 C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resulting in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies.
Stability of Elevated-qmin Steady-State Scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.
2016-10-01
Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.
Steady state, continuity, and the curious behavior of steep channels in layered rocks
NASA Astrophysics Data System (ADS)
Covington, M. D.; Perne, M.; Thaler, E.; Myre, J. M.
2016-12-01
Considerations of landscape steady state have substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. Topographic steady state, where topography is fixed in time, is a particularly important tool in the interpretation of landscape features, such as bedrock channel profiles, within a context of uplift patterns and rock strength. However, topographic steady state cannot strictly be attained in a landscape with layered rocks with non-vertical contacts. We show that an assumption of channel continuity, where channel retreat rates in the direction parallel to a contact are equal above and below the contact, provides a more general description of steady state landscapes in layered rocks, and that topographic steady state is a special case of the steady state derived from continuity. We demonstrate that modeled landscapes approach continuity steady state using 1D simulations and full landscape evolution models. Contrary to common conceptions, continuity predicts that channels will be steeper in weaker rocks in the case of subhorizontal rock layers when the stream power erosion exponent n<1. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than would be predicted by topographic steady state. Continuity steady state is a type of flux steady state, where uplift is balanced on average by erosion. The differences between topographic steady state and continuity steady state are most pronuced for steep channels in subhorizontal layered rocks. Consequently, cratonic and plateau settings are most likely to produce the effects predicted by continuity steady state. These settings remain relatively underexplored within the bedrock channel literature. Though examples illustrated here utilze the stream power erosion law, continuity steady state provides a general mathematical tool that can be used to explore the development of landscapes in layered rocks using any
Wernsman, B.
1997-01-01
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40kW{sub e} space nuclear power system that is similar to the 6kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V{close_quote}s do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution. {copyright} {ital 1997 American Institute of Physics.}
Wernsman, Bernard
1997-01-10
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW{sub e} space nuclear power system that is similar to the 6 kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution.
Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...
2014-08-21
Here, analysis of neutron and fast-ion Dα data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high βN, high qmin, steady-state scenario discharges. (βN is the normalized plasma pressure and qmin is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing qmin; however, not all high qmin discharges show appreciable degradation. Two relatively simple empirical quantities providemore » convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less
Self-induced longitudinal current in the perpendicular ion cyclotron heating in a tokamak
NASA Astrophysics Data System (ADS)
Gott, Yu. V.; Yurchenko, E. I.
2016-11-01
In this paper, we give an estimation of the longitudinal current in a tokamak due to high-energy minority ions obtained by perpendicular ICR heating. To illustrate this current, which is known as the banana-drift current, we give an estimation of this effect in an ITER-like tokamak. It is shown that by changing the number of accelerated minority ions, by selecting the position and energy of the resonant layer in which they are accelerated, it is possible to completely replace the noninductive current driven by other methods (for example, with RF power and high-energy neutrals beams). Thus, it is shown that the self-induced currents (bootstrap, asymmetry, and banana-drift currents) driving by continuous HF sources can provide steady-state operation of a fusion reactor.
Modeling of high harmonic fast wave current drive on EAST tokamak
Li, J. C.; Gong, X. Y. Li, F. Y.; Dong, J. Q.; Gao, Q. D.; Zhang, N.
2015-10-15
High harmonic fast waves (HHFW) are among the candidates for non-inductive current drive (CD), which is essential for long-pulse or steady-state operation of tokamaks. Current driven with HHFW in EAST tokamak plasmas is numerically studied. The HHFW CD efficiency is found to increase non-monotonically with the wave frequency, and this phenomenon is attributed to the multi-pass absorption of HHFW. The sensitivity of CD efficiency to the value of the parallel refraction index of the launched wave is confirmed. The quasilinear effects, assessed as significant in HHFW current drive with the GENRAY/CQL3D package, cause a significant increase in CD efficiency as RF power is increased, which is very different from helicon current drive. Simulations for a range of toroidal dc electric fields, in combination with a range of fast wave powers, are also presented and indicate that the presence of the DC field can also enhance the CD efficiency.
Pasch, James Jay
2017-02-07
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.