CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-10-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2002-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less
THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less
Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J
2015-07-07
Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.
Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis
NASA Astrophysics Data System (ADS)
Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.
2016-03-01
With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.
CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder
2002-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
40 CFR 260.32 - Variances to be classified as a boiler.
Code of Federal Regulations, 2010 CFR
2010-07-01
... extent to which the unit has provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases; and (b) The extent to which the combustion chamber and energy recovery... recovered energy compared with the thermal value of the fuel; and (d) The extent to which exported energy is...
40 CFR 260.32 - Variances to be classified as a boiler.
Code of Federal Regulations, 2014 CFR
2014-07-01
... extent to which the unit has provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases; and (b) The extent to which the combustion chamber and energy recovery... recovered energy compared with the thermal value of the fuel; and (d) The extent to which exported energy is...
40 CFR 260.32 - Variances to be classified as a boiler.
Code of Federal Regulations, 2011 CFR
2011-07-01
... extent to which the unit has provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases; and (b) The extent to which the combustion chamber and energy recovery... recovered energy compared with the thermal value of the fuel; and (d) The extent to which exported energy is...
40 CFR 260.32 - Variances to be classified as a boiler.
Code of Federal Regulations, 2012 CFR
2012-07-01
... extent to which the unit has provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases; and (b) The extent to which the combustion chamber and energy recovery... recovered energy compared with the thermal value of the fuel; and (d) The extent to which exported energy is...
40 CFR 260.32 - Variances to be classified as a boiler.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extent to which the unit has provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases; and (b) The extent to which the combustion chamber and energy recovery... recovered energy compared with the thermal value of the fuel; and (d) The extent to which exported energy is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-05-01
The new 1984 version of Coal Export Financing is published as a joint effort of the ARC and the U.S. Department of Commerce. It was updated to include information on new trends and developments that have occurred since late 1982 in coal-export financing as a result of the intense price competition from other coal-exporting nations. This includes new information on developments under the Export Trading Company Act of 1982, reverse investments, and barter/countertrade. Information previously provided on political and commercial risk insurance and on governmental assistance has been expanded to reflect the increasing importance of these areas. Any information onmore » banks providing coal-export financing services has been updated, as well as expanded to encompass the entire United States, rather than just the Appalachian region.« less
Exporting coal through technology and countertrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borissoff, E.
1985-08-01
Straightforward coal exporting on a simple price-and-delivery basis is becoming increasingly difficult for US suppliers. Technology and countertrade are two tools which could help coal suppliers' exports and, at the same time, satisfy the needs of their overseas customers. Neither would complicate the established process of coal exporting, but both would offer the prospect of increased sales and higher profits. Technical selling involves demonstrating to a customer that US steam coal is more competitive when burned in boiler designed specifically to burn that coal efficiently. To do this, the exporter must know the chemical characteristic of his coal and establishmore » a working relationship with his customers' purchasing agents and boiler chiefs. Technical selling to new users offers even more opportunities. Countertrade occurs when the customer pays for coal or a coal/boiler package with something other than US dollars.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... cranes, steam shovels, pile drivers, and machines of similar construction, and maintenance machines built prior to September 21, 1945. (3) Export, industrial, and other cars not owned by a railroad which are... shipper, stating that such movement is being made under the authority of this paragraph. (4) Industrial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis.
NASA Astrophysics Data System (ADS)
Gupta, Sunay; Guédez, Rafael; Laumert, Björn
2017-06-01
Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil fields. The model was developed for steam flooding requirements in Issaran oil field using DYESOPT, KTH's in-house tool for techno-economic modelling in CSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocur, G.; Adler, T.J.
1982-02-23
The export coal transportation study has proceeded through the first two subtasks. Figure 1 shows a comparison between past and projected US coal export demand and US port coal transshipment capacities. Projected export demand was taken from the MIT World Coal Study, and projected port capacities were determined primarily by personal communications with port managers. Table 1 details projected 1990 capacities at each major port, with a maximum-minimum range indicating undertain projects. The obvious observation from these data is the massive discrepancy between projected capacities and projected export movements. It is very likely that many ports have publicized ambitious expansionmore » plans in order to discourage competing ports from expanding. In addition, the excess port capacity could be used for exports of, for example, iron ore and grain. Nonetheless, Fig. 1 does indicate some need to determine which subset of ports will lie on the most cost-effective routing from mine to ultimate destination and which thus deserve the largest investments. The survey of rail export (steam) coal rates began with an identification of representative mines (13) to port (19) movement (total of 54 allowable). Per carload rail rates were then obtained for approximately 25 of these movements. Regression analyses were performed relating these rates to shipping distance, and other factors. 1 figure, 1 table.« less
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
....B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant...), for operation of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP), located in Darlington... ``Generic Environmental Impact Statement for License Renewal of Nuclear Plants: H.B. Robinson Steam Electric...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results.
Evolution of a steam atmosphere during earth's accretion
NASA Astrophysics Data System (ADS)
Zahnle, K. J.; Kasting, J. F.; Pollack, J. B.
1988-04-01
The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.
Evolution of a steam atmosphere during earth's accretion
NASA Technical Reports Server (NTRS)
Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.
1988-01-01
The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.
1985-06-01
production; - Plant will meet PURPA criteria for recognition as a "Qualifying Facility" (QF). - Plant design allows for sale of byproducts, decreasing...export to the HCP be the minimum necessary to meet PURPA requirements and the remaining steam be used to produce electric power. Since the fuel cell...Policies Act ( PURPA ) criteria to be classified as a "Qualifying Facility" (QF). 14. Plant site conditions are as summarized in Table 2-1. I 9I I I IL
Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities
ERIC Educational Resources Information Center
Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.
2018-01-01
Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0110; 50-382] Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... the Waterford Steam Electric Station, Unit 3 (Waterford 3), located in St. Charles Parish, Louisiana...
Paciulli, Maria; Dall'Asta, Chiara; Rinaldi, Massimiliano; Pellegrini, Nicoletta; Pugliese, Alessandro; Chiavaro, Emma
2018-04-01
Several studies investigated the impact of different cooking techniques on the quality of vegetables. However, the use of the combined air-steam cooking is still scarcely debated, despite the advantages informally referred by professional catering workers. In this study, its optimisation was studied on Brussels sprouts and pumpkin cubes to obtain the best physical (texture, colour) and antioxidant (FRAP, total phenols) response, in comparison to a conventional steaming treatment. Increasing the strength of the air-steam treatment, Brussels sprouts resulted to be softer, less green (higher a* value), richer in phenols and exhibited lower FRAP values than the steamed ones. The air-steamed pumpkin cubes exhibited an equivalent softening degree to that of steamed ones and, under the strongest cooking conditions, a higher antioxidant quality and a yellow darkening (lower b* value). Varying the cooking time and/or temperature, a linear change of force/compression hardness and a* (negative a*: greenness) for Brussels sprouts, b* (yellowness) and total phenol content for pumpkin cubes was observed. A predictive model for these variables was obtained by response surface methodology. The best process conditions to achieve the optimal desirability were also identified. The application of air-steam cooking under suitable time/temperature conditions could be proposed as an alternative method to a traditional steam cooking on Brussels sprouts and pumpkin cubes, being able to preserve or improve their quality. The best air-steam cooking conditions were 25 min at 90 °C for Brussels sprouts and 10 min at 110 °C for pumpkin. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
77 FR 73627 - 2012 LNG Export Study
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY 2012 LNG Export Study AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of availability of 2012 LNG Export Study and request for comments. Freeport LNG Expansion... liquefied natural gas (LNG) export cumulative impact study (LNG Export Study) in the above- referenced...
77 FR 23247 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application to support the export of... parties may submit comments on this transaction by email to economic[email protected] or by mail to 811...
77 FR 3772 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application to support the export of.... Interested parties may submit comments on this transaction by email to economic[email protected] or by mail to...
77 FR 44614 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application to support the export of... economic[email protected] or by mail to 811 Vermont Avenue NW., Room 432, Washington, DC 20571, within 14...
Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait
NASA Astrophysics Data System (ADS)
Wei, J.; Zhang, X.; Wang, Z.
2017-12-01
Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.
77 FR 59397 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States is in the process of reviewing its economic impact procedures. A draft of the proposed economic impact procedures can be accessed at the following location...
Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait
NASA Astrophysics Data System (ADS)
Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin
2018-05-01
Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.
American export control, technology spillover and innovation of Chinese pharmaceutical Industry.
Hui, Jiang
2017-05-01
This paper was aimed to analyze whether the U.S. strict export control to China affects the technological innovation of Chinese pharmaceutical industry. This paper selected the data of technological innovation and the expenditure of high and new technology adoption in China's pharmaceutical industry from 1995 to 2014, created panel regression model to study the impact of export controls on technology spillovers and the impact of technology spillovers on innovation capacity. The results show that US export control has a significant impact on technology spillovers, but foreign technology spillovers have no significant impact on the innovation of Chinese pharmaceutical industry. Although the US export control prevented foreign technology spillovers to China, but indirectly stimulated the domestic technology spillovers to pharmaceutical manufacturing industry in China. Statistical analysis show that the correlation coefficient between innovation capacity and expenditure for high technology adoption is not significant, but the expenditure of purchasing domestic technical is essential to pharmaceutical innovation. This study shows that US export control indirectly, not directly, affected the technological innovation of China's pharmaceutical industry, affected the allocation of innovative resources, but failed to prevent the technological progress and competitiveness improvement of Chinese pharmaceutical industry.
Combined-cycle plant built in record time
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis formore » Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.« less
Geothermal Field Near Rotorua, New Zealand
NASA Technical Reports Server (NTRS)
2002-01-01
Historical sketches show the indigenous Maori cooking with natural hot waters and steam prior to the arrival of Europeans on North Island, New Zealand. Since the 1950s, geothermal heat and steam have been exploited for both heating and electrical power generation, and some excess electrical power is exported to South Island. The geothermal development can be identified by the unique patterns of infrastructure that look like tan beads on a string in the midst of otherwise green vegetation. This one near the town of Rotorua lies within a northeast-trending line of active volcanoes (Ruapehu, Tongariro, and White Island) that are the surface result of the Pacific tectonic plate descending beneath the Australian-Indian plate. Image STS110-726-10 was taken by space shuttle crewmembers in April 2002 using a Hasselblad film camera. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
NASA Astrophysics Data System (ADS)
Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.
2016-11-01
The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that PFe export fluxes can be driven by the lithogenic pool of particles, especially over the Plateau where such inputs from the sediments are important. Finally, for the Plateau and the PF meander, the comparison between PFe export and the particulate PFe stock integrated over the mixed layer depth revealed an efficient PFe export out of the mixed layer at these sites. Export efficiencies (i.e. the ratio between export and uptake) exhibit a very efficient silica pump especially at the HNLC reference station where heavily silicified diatoms were present. On the contrary, the increase with depth of the C:N ratio and the low nitrogen export efficiencies support the idea of a strong remineralization and nitrification activity.
Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions.
Paulot, Fabien; Jacob, Daniel J
2014-01-21
We use a model of agricultural sources of ammonia (NH3) coupled to a chemical transport model to estimate the impact of U.S. food export on particulate matter concentrations (PM2.5). We find that food export accounts for 11% of total U.S. NH3 emissions (13% of agricultural emissions) and that it increases the population-weighted exposure of the U.S. population to PM2.5 by 0.36 μg m(-3) on average. Our estimate is sensitive to the proper representation of the impact of NH3 on ammonium nitrate, which reflects the interplay between agricultural (NH3) and combustion emissions (NO, SO2). Eliminating NH3 emissions from food export would achieve greater health benefits than the reduction of the National Ambient Air Quality Standards for PM2.5 from 15 to 12 μg m(-3). Valuation of the increased premature mortality associated with PM2.5 from food export (36 billion US$ (2006) per year) amounts to 50% of the gross food export value. Livestock operations in densely populated areas have particularly large health costs. Decreasing SO2 and NOx emissions will indirectly reduce health impact of food export as an ancillary benefit.
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
77 FR 53201 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $21 million guarantee to support the..., Germany, and Italy. Interested parties may submit comments on this transaction by email to economic.impact...
77 FR 21981 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $19.5 million long... the Ukraine. Interested parties may submit comments on this transaction by email to economic.impact...
77 FR 68776 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $135 million direct... United Kingdom. Interested parties may submit comments on this transaction by email to economic.impact...
76 FR 79679 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $74 million long... sold in China. Interested parties may submit comments on this transaction by email to economic.impact...
Kalschne, Daneysa Lahis; Viegas, Marcelo Caldeira; De Conti, Antonio José; Corso, Marinês Paula; Benassi, Marta de Toledo
2018-03-01
Between 15 and 20% of Brazilian coffee production corresponds to defective beans (PVA), which decreases the quality of the coffee brew. Steam treatment has been reported as an alternative to improve the volatile profile and cup quality of coffee. The aim of this study was to propose a steam treatment of defective Coffea canephora beans to improve the volatile profile of the roasted coffee. The sensory impacts of adding steamed coffee (SC) in Coffea arabica blends were evaluated. The steam treatments studied modified the volatile profile of roasted SCs, increasing the contents of acetoin, benzyl alcohol, maltol, 2,6-dimethylpyrazine, 2-furfurylthiol, and 5-methylfurfural and decreasing the contents of 4-ethylguaiacol, isovaleric acid, methional, 2,3-diethyl-5-methylpyrazine, and 3-methoxy-3-methylpyrazine. Among the evaluated parameters, the best condition to maximized the content of the volatiles with a potential positive impact and minimize those with a potential negative impact was 5bar/16min (SC 5). The thresholds of consumer rejection and of detection indicate that up to 30% SC 5 can be added to a high cup quality Coffea arabica coffee without perception or rejection of the coffee brew. A blend of 30% of SC 5 and 70% of Coffea arabica was well accepted. Copyright © 2017 Elsevier Ltd. All rights reserved.
US PWR steam generator management: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, C.S. Jr.
1997-02-01
This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less
Why the Lack of Academic Literature on Export Controls?
NASA Technical Reports Server (NTRS)
Kremic, Tibor
2001-01-01
Export controls is currently a relevant and dynamic topic. Given the growth of global operations and the high-tech nature of many products, an increase in awareness and understanding of the impacts of export controls are necessary. A structured approach to export controls has been in existence since 1949. Despite over 50 years of history, surprisingly little academic research and literature exists on the topic. This paper explores the current export control environment and explores possible reasons for the limited academic interest. Five possible reasons are discussed: (1) dynamic nature of the topic; (2) difficulty in ensuring accurate data; (3) Complexity of the problem; (4) relatively small economic impact; and (5) sensitive information. A research approach is recommended that considers these potential obstacles.
Potential impact of easing the log export restriction on the Tongass National Forest.
David R. Darr
1978-01-01
The potential of higher revenues in the log export market is constrained by possible reductions in prices associated with expanded supplies in the Japanese log market. Expanded log exports from the Tongass National Forest might force adjustments by existing cantmills, even under a partial easing of the export restriction.
Impact of a Hypothetical Infectious Disease Outbreak on US Exports and Export-Based Jobs
Bambery, Zoe; Cassell, Cynthia H.; Bunnell, Rebecca E.; Roy, Kakoli; Ahmed, Zara; Payne, Rebecca L.
2018-01-01
We estimated the impact on the US export economy of an illustrative infectious disease outbreak scenario in Southeast Asia that has 3 stages starting in 1 country and, if uncontained, spreads to 9 countries. We used 2014-2016 West Africa Ebola epidemic–related World Bank estimates of 3.3% and 16.1% reductions in gross domestic product (GDP). We also used US Department of Commerce job data to calculate export-related jobs at risk to any outbreak-related disruption in US exports. Assuming a direct correlation between GDP reductions and reduced demand for US exports, we estimated that the illustrative outbreak would cost from approximately $13 million to approximately $64 million (1 country) to $8 billion to $41 billion (9 countries) and place 1,500 to almost 1.4 million export-related US jobs at risk. Our analysis illustrates how global health security is enhanced, and the US economy is protected, when public health threats are rapidly detected and contained at their source. PMID:29405775
Impact of a Hypothetical Infectious Disease Outbreak on US Exports and Export-Based Jobs.
Bambery, Zoe; Cassell, Cynthia H; Bunnell, Rebecca E; Roy, Kakoli; Ahmed, Zara; Payne, Rebecca L; Meltzer, Martin I
We estimated the impact on the US export economy of an illustrative infectious disease outbreak scenario in Southeast Asia that has 3 stages starting in 1 country and, if uncontained, spreads to 9 countries. We used 2014-2016 West Africa Ebola epidemic-related World Bank estimates of 3.3% and 16.1% reductions in gross domestic product (GDP). We also used US Department of Commerce job data to calculate export-related jobs at risk to any outbreak-related disruption in US exports. Assuming a direct correlation between GDP reductions and reduced demand for US exports, we estimated that the illustrative outbreak would cost from $16 million to $27 million (1 country) to $10 million to $18 billion (9 countries) and place 1,500 to almost 1.4 million export-related US jobs at risk. Our analysis illustrates how global health security is enhanced, and the US economy is protected, when public health threats are rapidly detected and contained at their source.
Analysis of the Transportation Network for the Export of US Steam Coal.
1984-09-01
companies own transshipment facilities at some locations which they use even in the face of a cost disadvantage. The first factor explains a large part of...railfihli.12J - 4) and (railfilillI1 > 64) then netcl[hJ :- ROUND(0.94 * railfil[i,5J) else5 ~netcl[hJ :- 0;- (ABS* if ( raMli [i,121 -5) and (railfil...shipment * netcOfhl (3 *raiLfiifi,51); if (railfil~i,121 -0) and (railfilillJ > 12) then netcl[hJ :- ROUND(4.6 * raMli [i,5J) else netcl~hJ :- 0; (* manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979,more » while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)« less
78 FR 69669 - Intent To Conduct a Detailed Economic Impact Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... EXPORT-IMPORT BANK Intent To Conduct a Detailed Economic Impact Analysis This notice is to inform the public that the Export-Import Bank of the United States has received an application for a loan... United States. Interested parties may submit comments on this transaction by email to economic.impact...
The Export Trading Company Act of 1982 and the photovoltaics industry: An assessment
NASA Technical Reports Server (NTRS)
Enfield, S.; Laporta, C.
1983-01-01
The potential advantages of recent export promotion legislation for the U.S. photovoltaics industry were assessed. The provisions of the Export Trading Company Act of 1982 were reviewed and the export trade sector was surveyed to determine what impact the Act is haviang on export company activity. The photovoltaics industry was then studied to determine whether the Act offers particular advantages for promoting its product overseas.
Vacuum chamber with a supersonic flow aerodynamic window
Hanson, Clark L.
1982-01-01
A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Vacuum chamber with a supersonic-flow aerodynamic window
Hanson, C.L.
1980-10-14
A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Water droplet erosion of stainless steel steam turbine blades
NASA Astrophysics Data System (ADS)
Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.
2017-08-01
Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... facilities that would permit gas to be received by pipeline at the terminal and liquefied for subsequent... the LNG exports in the requested authorization will not have a material impact on domestic natural gas...-Term Authorization To Export Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice...
NASA Astrophysics Data System (ADS)
Yun, Kukchol; Tajč, L.; Kolovratník, M.
2016-03-01
The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.
76 FR 6616 - Notice of Inquiry; Solicitation of Views on the Impact of Slow Steaming
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... their underlying businesses, capacity availability, container availability, ocean freight rates, fuel..., space availability, and container availability. 5. Are different services, i.e., slow steaming vs... capacity in the U.S. trades and/or its ability to maintain adequate availability of containers at...
Globalisation and Its Impact on VET. Review of Research.
ERIC Educational Resources Information Center
Hobart, Barry
The impact of globalization on vocational education and training (VET) in Australia was examined through a literature review. Special attention was paid to the following topics: the growing export orientation in Australian industry (industrial growth in Australia's economy, growth in Australian exports, "knowledge intensity" in the…
NASA Astrophysics Data System (ADS)
Exports Science Definition Team
2016-04-01
Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.
NASA Astrophysics Data System (ADS)
Hossler, Katie; Bauer, James E.
2013-04-01
Riverine exports of carbon (C) and organic matter (OM) are regulated by a variety of natural and anthropogenic factors. Understanding the relationships between these various factors and C and OM exports can help to constrain global C budgets and allow assessment of current and future anthropogenic impacts on both riverine and global C cycles. We quantified the effects of multiple natural and anthropogenic controls on riverine export fluxes and compositions of particulate organic C, dissolved organic C, and dissolved inorganic C for a regional group of eight rivers in the northeastern U.S. Potential controls related to hydrogeomorphology and regional climate, soil order, soil texture, bedrock lithology, land use, and anthropogenic factors were analyzed individually, collectively, and at scales of both local and regional influence. Factors related to hydrogeomorphology and climate, followed in importance by land use and anthropogenic factors, exhibited the strongest impacts on riverine C exports and compositions, particularly at smaller localized scales. The effects of hydrogeomorphology and climate were primarily related to volumetric flow, which resulted in greater exports of terrestrial and total C. Principal anthropogenic factors included impacts of wastewater treatment plants (WWTPs) and river impoundments. The presence of WWTPs as well as anthropogenic use of carbonate-based materials (e.g., limestone) may have substantially increased riverine C exports, particularly fossil C exports, in the study region. The presence of nuclear power plants in the associated watersheds is also discussed because of the potential for anthropogenic 14C inputs and subsequent biasing of aquatic C studies utilizing natural abundance 14C.
Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis
2017-01-01
Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries—the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan—plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market. PMID:28594886
Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.
Gutierrez, Luciano
2017-01-01
Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.
77 FR 36536 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $22.5 million... sold in South Korea. Interested parties may submit comments on this transaction by email to economic...
78 FR 34660 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $99 million comprehensive loan... economic[email protected] or by mail to 811 Vermont Avenue NW., Room 442, Washington, DC 20571, within 14...
77 FR 6563 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $1.74 billion loan... and Korea. Interested parties may submit comments on this transaction by email to economic[email protected
78 FR 11884 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $500 million direct loan to support... transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW., Room 442, Washington...
75 FR 48333 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $53 million long- term guarantee to... Europe. Interested parties may submit comments on this transaction by e-mail to economic[email protected
78 FR 37539 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $63 million loan guarantee to support... on this transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW., Room...
78 FR 12316 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $115 million direct loan to support... on this transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW., Room...
75 FR 20993 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application to guarantee approximately... transaction by e- mail to economic[email protected] or by mail to 811 Vermont Avenue, NW., Room 1238...
78 FR 6322 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank United is re-notifying this transaction due to a request for increased financing. The foreign... comments on this transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW...
77 FR 77078 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $448 million loan guarantee to support... parties may submit comments on this transaction by email to economic[email protected] or by mail to 811...
78 FR 39728 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... EXPORT-IMPORT BANK Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $675 million direct loan to support... be sold in Turkey. Interested parties may submit comments on this transaction by email to economic...
77 FR 47840 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank United is re-notifying this transaction due to a request for increased... transaction by email to economic[email protected] or by mail to 811 Vermont Avenue, NW., Room 442, Washington...
77 FR 26277 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $35 million... transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW., Room [[Page 26278
Chemistry of Earth's Putative Steam Atmosphere
NASA Astrophysics Data System (ADS)
Fegley, B.; Schaefer, L.
2007-12-01
The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
...-Water Reactors] Steam Generator Tubes'' [Reference 7] and NEI [Nuclear Energy Institute] 97-06, ``Steam... CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared for these... the required structural margins of the SG tubes for both normal and accident conditions. Nuclear...
Biocompatibility differences with respect to the dialyzer sterilization method.
Müller, T F; Seitz, M; Eckle, I; Lange, H; Kolb, G
1998-01-01
The impact of the method of sterilization (steam vs. ethylene oxide, ETO) on indices of biocompatibility is investigated using polysulfone membranes. Eight patients were treated with a random choice of the high-flux membranes F60S (steam) and F60 (ETO) and the low-flux membrane F6 (ETO). Blood samples were taken prior to and 5, 15, 30, 60, and 180 min after the start of hemodialysis. White blood cell count, platelet count, and plasma concentrations of polymorphonuclear neutrophil elastase, complements C3a and C5a, and beta2-microglobulin were determined. The dialysis procedure was associated with a significant decrease in white blood cell count and beta2-microglobulin level and a significant increase in polymorphonuclear neutrophil elastase and complement C3a and C5a levels. However, the steam-sterilized F60S membrane had a significantly lower impact on the biocompatibility indices than the ETO-sterilized F60 and F6 membranes (p < 0.05 or p < 0.001 for the individual markers). We conclude that using steam instead of ETO for sterilization may improve the biocompatibility of membranes.
Insights into public export promotion programs in an emerging economy: the case of Malaysian SMEs.
Ayob, Abu H; Freixanet, Joan
2014-10-01
This study evaluates the impact of public export promotion programs (EPPs) among small and medium-sized enterprises (SMEs) in Malaysia. Three indicators, level of awareness, frequency of use, and perception of usefulness, were examined according to a firm's export status. The global evaluation suggests that exporters are more frequent users of EPPs and perceive them to be more useful than non-exporters. Nonetheless, both groups demonstrate higher levels of awareness, are frequent users, and perceive the programs relating to export info/knowledge are more usefulness than programs relating to financial assistance. Further analysis also reveals that the frequency of use and the perception of usefulness for most programs are positively related to export experience, but not to export turnover. This study offers insights into the effectiveness of export programs for encouraging export initiation and expansion in an emerging economy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wu, Li; Wang, Bujun
2016-07-01
We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.
75 FR 24700 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application to provide short-term... transaction by e-mail to economic[email protected] or by mail to 811 Vermont Avenue, NW., Room 1238, Washington...
78 FR 47317 - Intent To Conduct a Detailed Economic Impact Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... EXPORT-IMPORT BANK OF THE UNITED STATES Intent To Conduct a Detailed Economic Impact Analysis This notice is to inform the public that the Export-Import Bank of the United States has received an... to economic[email protected] or by mail to 811 Vermont Avenue NW., Room 442, Washington, DC 20571...
76 FR 54467 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $25.1 million... may submit comments on this transaction by e-mail to economic[email protected] or by mail to 811...
77 FR 29344 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $4.3 billion direct... economic[email protected] or by mail to 811 Vermont Avenue NW., Room 947, Washington, DC 20571, within 14...
75 FR 27778 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $49.3 million... may submit comments on this transaction by e-mail to economic[email protected] or by mail to 811...
77 FR 69453 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $20.4 million long... economic[email protected] or by mail to 811 Vermont Avenue NW., Room 947, Washington, DC 20571, within 14...
75 FR 148 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $70 million direct... comments on this transaction by e-mail to economic[email protected] or by mail to 811 Vermont Avenue, NW...
77 FR 40612 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $694 million long... parties may submit comments on this transaction by email to economic[email protected] or by mail to 811...
75 FR 28021 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $400 million long... may submit comments on this transaction by e-mail to economic[email protected] or by mail to 811...
78 FR 30920 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $650 million long... transaction by email to economic[email protected] or by mail to 811 Vermont Avenue NW., Room 947, Washington...
77 FR 65686 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $14 million loan... economic[email protected] or by mail to 811 Vermont Avenue NW., Room 442, Washington, DC 20571, within 14...
76 FR 28225 - Economic Impact Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... EXPORT-IMPORT BANK OF THE UNITED STATES Economic Impact Policy This notice is to inform the public that the Export-Import Bank of the United States has received an application for a $47 million long... parties may submit comments on this transaction by e-mail to economic[email protected] or by mail to 811...
Lin, Jing; Gwyneth Tan, Yuan Xin; Leong, Lai Peng; Zhou, Weibiao
2018-06-20
Quercetin, a natural antiglycative agent, was incorporated into steamed bread to produce a functional food that has high potential to lower the risk of diabetes. With the incorporation of quercetin at 1.20, 2.40, and 3.60%, the volume of steamed bread significantly decreased and the hardness of the crumb correspondingly increased with incremental quercetin content, while incorporation levels below 1.20% had no impact. Within this range of enrichment (1.2-3.6%), quercetin negatively affected the yeast activity with significantly less CO2 produced in dough during proofing. The wheat protein structure was altered by quercetin in terms of a higher level of β-sheets and a lower level of β-turns. The antioxidant capacity of the steamed bread with quercetin (0.05-0.2%) was significantly enhanced dose-dependently. A high inhibitory activity of quercetin-enriched steamed bread (0.05-0.2%) against fluorescent advanced glycation endproducts (AGEs) via several different mechanisms was observed. The inhibition of total AGEs from 0.2% quercetin-enriched steamed bread was around 40% during in vitro protein glycation. Overall, the results support quercetin-enriched steamed bread to be a promising functional food with high antioxidant and antiglycation properties.
NASA Astrophysics Data System (ADS)
Nkosi, S. B.; Pretorius, J. H. C.
2017-07-01
The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.
Toughness testing and high-temperature oxidation evaluations of advanced alloys for core internals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Pint, Bruce A.; Chen, Xiang
2016-09-16
Alloy X-750 was procured from Carpenter Technology and Bodycote in this year. An appropriate TMT was developed on Alloy 439 to obtain materials with refined grain size for property screening tests. Charpy V-notch impact tests were completed for the three ferritic steels Grade 92, Alloy 439, and 14YWT. Fracture toughness tests at elevated temperatures were completed for 14YWT. The tests will be completed for the other alloys in next fiscal year. Steam oxidation tests of the three ferritic steels, 316L, and Zr–2.5Nb have been completed. The steam tests of the Ni-based superalloys and the other austenitic stainless steels will bemore » continued and finished in next fiscal year. Performance ranking in terms of steam oxidation resistance and impact/fracture toughness of the alloys will be deduced.« less
Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed
Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt
2012-01-01
Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....
Thermodynamic wetness loss calculation in nozzle and turbine cascade: nucleating steam flow
NASA Astrophysics Data System (ADS)
Joseph, Joby; Subramanian, Sathyanarayanan; Vigney, K.; Prasad, B. V. S. S. S.; Biswas, D.
2017-11-01
Rapid expansion of steam in turbines and nozzles cause condensation. The formation of liquid droplets due to condensation results in wetness losses, which include aerodynamic losses (due to friction between liquid droplets and the vapour), thermodynamic losses (due to irreversible latent heat addition), and braking losses (due to the impact of liquid droplets on the turbine blade). In this study, a numerical investigation of the thermodynamic loss in a nucleating steam flow is performed. The thermodynamic loss is calculated using the change in entropy due to condensation. The effect of different operating conditions on the thermodynamic loss is estimated for a nozzle and turbine cascade in a nucleating flow. The non-equilibrium condensation in high-speed steam flows is modelled using Eulerian-Eulerian approach.
Sattar, Abdus; Kroeze, Carolien; Strokal, Maryna
2014-03-15
The objective of this study is to assess the impact of food production on river export of nutrients to the coastal waters of the Bay of Bengal in the past (1970 and 2000) and the future (2030 and 2050), and the associated potential for coastal eutrophication. We model nutrient export from land to sea, using the Global NEWS (Nutrient Export from WaterSheds) approach. We calculate increases in river export of N and P over time. Agricultural sources account for about 70-80% of the N and P in rivers. The coastal eutrophication potential is high in the Bay. In 2000, nutrient discharge from about 85% of the basin area of the Bay drains into coastal seas contributes to the risk of coastal eutrophication. By 2050, this may be 96%. We also present an alternative scenario in which N and P inputs to the Bay are 20-35% lower than in the baseline. Copyright © 2014 Elsevier Ltd. All rights reserved.
The asymmetric impact of natural disasters on China's bilateral trade
NASA Astrophysics Data System (ADS)
Meng, Y.; Yang, S.; Shi, P.; Jeager, C. C.
2015-10-01
Globalization and technological revolutions are making the world more interconnected. International trade is an important approach linking the world. Since the 2011 Tohoku earthquake and tsunami in Japan shocked the global supply chain, more attention has been paid to the global impact of large-scale disasters. China is the second largest trader in the world and faces frequent natural disasters. Therefore, this study proposes a gravity model for China's bilateral trade tailored to national circumstances and estimates the impact of natural disasters in China and trading partner countries on Chinese imports and exports. We analyzed Chinese and trading partner statistical data from 1980 to 2012. Study results show the following: (1) China's natural disasters have a positive impact on exports but have no significant impact on imports; (2) trading partner countries' natural disasters reduce Chinese imports and exports; (3) both development level and land area of the partners are important in determining the intensity of natural disaster impacts on China's bilateral trade. The above findings suggest that the impact of natural disasters on trade is asymmetric and significantly affected by other factors, which demand further study.
The asymmetric impact of natural disasters on China's bilateral trade
NASA Astrophysics Data System (ADS)
Meng, Y.; Shi, P.; Yang, S.; Jeager, C. C.
2015-03-01
Globalization and technological revolutions are making the world more interconnected. International trade is one of the major approaches linking the world. Since the 2011 Tohoku earthquake and tsunami in Japan shocked the global supply chain, more attention has been paid to the global impact of large-scale disasters. China is the second largest trader in the world and faces the most frequent natural disasters. Therefore, this study proposes a gravity model for China's bilateral trade tailored to national circumstances, and estimates the impact of natural disasters in China and trading partner countries on Chinese imports and exports. We analyzed Chinese and trading partner statistical data from 1980 to 2012. Study results show that: (1) China's natural disasters have a positive impact on imports, but have no significant impact on exports, (2) trading partner countries' natural disasters reduce Chinese imports and exports, (3) both development level and land area of the partners are important in determining the intensity of natural disaster impacts on China's bilateral trade. The above findings suggest that the impact of natural disasters on trade is asymmetric and significantly affected by other factors, which demand further study.
Time-dependent Calculations of an Impact-triggered Runaway Greenhouse Atmosphere on Mars
NASA Technical Reports Server (NTRS)
Segura, T. L.; Toon, O. B.; Colaprete, A.
2003-01-01
Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.
The impact of the export and import of raw logs on domestic timber supplies and prices.
David R. Darr; Richard W. Haynes; Darius M. Adams
1980-01-01
Reviews U.S. foreign and domestic markets for softwood construction materials, giving special consideration to trade patterns among Japan, Canada, and the United States. For alternative assumptions about market responses to a ban of U.S. softwood log exports, displays impacts on selected measures of U.S. softwood stumpage, lumber, and plywood markets.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF12-18-000; Docket No. PF12-20-000] Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Oregon LNG Export Project and Washington Expansion Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meetings [[Page 59604
A simulation of the hydrothermal response to the Chesapeake Bay bolide impact
Sanford, W.E.
2005-01-01
Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-03
Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilersmore » sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.« less
Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export
Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.
2013-01-01
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491
NASA Astrophysics Data System (ADS)
Rabalais, Mark E.
The purpose of this study is to examine the relationship between exposure to the arts and performance in Science, Technology, Engineering, and Math (STEM) subjects. STEAM, an integration of arts-based instruction into science and math related fields, is viewed as an alternative to traditional STEM academies. The literature briefly examines the current state of STEM programs and the deficiencies in graduate quality and quantity and the call from employers for a more innovative workforce. Advocates for STEAM argue for arts as a means to improve creativity, collaboration, risk-taking and exploration. Arguments against arts in STEM are grounded in political opinions concerning arts funding and logistical complications of implementing STEAM. However, some schools and STEM programs have embraced the STEAM premise and have begun to integrate arts into the traditional curriculum. The 2009 National Assessment of Educational Progress (NAEP) dataset was utilized to determine a correlation between the number of arts credits earned and mathematics/science achievement. Results from the NAEP dataset indicated a correlation between the amount of arts credits and increased achievement scores in science and math. The same correlation was found when controlling for demographic factors such as gender, race, and socio-economic status (SES). Overall, the arts' greatest impact was on students identified as "at-risk" or underrepresented in STEM fields. Controlling for these variable groups, one can note the quantifiable differences in scores. Overall, findings of the study provide empirical support for the addition of arts in STEM.
Short- and long-run exchange rate effects on forest product trade: evidence from panel data
Torjus F. Bolksejo; Joseph Buongiorno
2006-01-01
Impacts of exchange rates on international forest products trade are widely debated, but the empirical evidence regarding this issue is still inconclusive. Here, we report findings of the impacts of the exchange rates on the main forest product imports and exports of the US, from January 1989 to November 2004. Export data consisted of monthly series of the main...
A fast response miniature probe for wet steam flow field measurements
NASA Astrophysics Data System (ADS)
Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.
2016-12-01
Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.
Bolivia Country Analysis Brief
2015-01-01
Hydrocarbons, primarily natural gas, are an important element of Bolivia's economy and account for 8% of the country's GDP. Bolivia's hydrocarbon exports accounted for 54% of total export revenue in 2014. The recent drop in oil prices caused Bolivia's energy export revenues to fall by nearly 1% to $6.57 billion in 2014 and is expected to negatively impact the amount of investment in hydrocarbon projects in Bolivia.
Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.
Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less
James A. Turner; Joseph Buongiorno; Shushuai Zhu; Jeffrey P. Prestemon
2007-01-01
The possible impact of Nectria fuckeliana Booth on the forests and forest industries of New Zealand, a significant exporter of industrial roundwood, was estimated for different scenarios of the spread of the fungal pest and trade measure responses in export markets. An economic model was used to assess the direct effect of the pest and the potential...
Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality.
Wang, Pei; Tao, Han; Jin, Zhengyu; Xu, Xueming
2016-06-01
Impact of water extractable arabinoxylan from rye bran on frozen steamed bread dough quality was investigated in terms of the bread characteristics, ice crystallization, yeast activity as well as the gluten molecular weight distribution and glutenin macropolymer content in the present study. Results showed that water extractable arabinoxylan significantly improved bread characteristics during the 60-day frozen storage. Less water was crystallized in the water extractable arabinoxylan dough during storage, which could explain the alleviated yeast activity loss. For all the frozen dough samples, more soluble high molecular weight (Mw ≈ 91,000-688,000) and low molecular weight (Mw ≈ 91,000-16,000) proteins were derived from glutenin macropolymer depolymerization. Nevertheless, water extractable arabinoxylan dough developed higher glutenin macropolymer content with lowered level of soluble low molecular weight proteins throughout the storage. This study suggested water extractable arabinoxylan from rye bran had great potential to be served as an effective frozen steamed bread dough improver. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martian rampart crater ejecta - Experiments and analysis of melt-water interaction
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Sheridan, M. F.
1983-10-01
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology.
Castro-González, Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando
2015-07-01
Benefits of fish consumption are widely known, but there is little information about nutrient values of raw and cooked fish. The aim was to study the impact that six cooking techniques have on the nutritional composition of two fish species with low content of adverse nutrients in renal diet. Raw and steamed, foiled with aluminum, foiled with banana leaf, gas oven-baked, microwave oven-coked and fried lightly samples were chemically analyzed to determine their protein, phosphorus and lipid content. Crevalle jack: all methods increased lipid and protein content and fatty acids (FA) varied in all cooking methods. Phosphorus decreased in the steamed and microwave oven-cooked samples. Red drum: foiled and fried lightly increased lipid content compared to the raw sample. FA concentration changed in all cooking methods. Protein increased with every technique and phosphorus decreased in the steamed and gas oven-baked samples. Renal patients should preferably consume crevalle jack steamed or microwave oven-cooked and red drum steamed or gas oven-baked.
Adjusting export tax rebates to reduce the environmental impacts of trade: Lessons from China.
Song, Peng; Mao, Xianqiang; Corsetti, Gabriel
2015-09-15
Export tax rebates are an important policy instrument for stimulating exports, which many developing countries make use of. However, excessive export tax rebates and inappropriate structural arrangements can lead to over-production in highly polluting industries and cause the environment to deteriorate. This paper, taking China as the study case, tests and verifies the statistical significance of the causal relationship between export tax rebates and pollution emissions. With a computable general equilibrium modeling, the current study further analyzes the effectiveness of export tax rebate adjustments aimed at alleviating environmental pressure for different time periods. It is found that before 2003, export tax rebates primarily promoted exports and boosted foreign exchange reserves, and highly polluting sectors enjoyed above-average export tax rebates, which led to increased pollution emissions. Between 2003 and 2010, the export tax rebate system was reformed to reduce support for the highly polluting export sectors, which led to decreases in emissions. Canceling export tax rebates for highly polluting sectors is shown to be the most favorable policy choice for improving the environmental performance of China's international trade. This study can serve as reference for other developing countries which similarly rely on export tax rebates, so that they can adjust their policies so as to combine economic growth with pollution control. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Fresnel collector process heat experiment at Capitol Concrete Products
NASA Technical Reports Server (NTRS)
Hauger, J. S.
1981-01-01
An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.
My Morning Coffee: The Effect of Climate Change on the Economies of Coffee-Producing Countries
NASA Astrophysics Data System (ADS)
Shilling, K.; Brauman, K. A.
2012-12-01
Through its effect on export crops, climate change will have important effects on economic systems and government capacity in sub-Saharan Africa. We show that climate change effects on three important export crops - coffee, cocoa and cotton - will undermine large portions of the economy, not just the rural farmers who grow these crops. Our analysis is based high-resolution data on crop location, temperature, and water requirements in conjunction with new projections for temperature increases and precipitation changes in sub-Saharan Africa. Our focus on export crops is distinct from most work on the effects of climate change on agriculture, which often focuses on subsistence and food crops. We posit that substantial and important effects on the economy and political systems will come from negative impacts on cash crops, which underpin many economies in sub-Saharan Africa. For instance, 3% of cropland in Uganda (and 2% in Ethiopia) is used for coffee production and over 3.5 million households are involved in the sector; by contrast, 7% of cropland in Uganda (and 11% in Ethiopia) is used for maize, which contributes much less to the formal economy. The relationship between the value of coffee exported and government revenue illustrates the importance of coffee to political and economic stability. A drop in the export value of coffee by 10% in Uganda will drive government revenue down by 20%, and while there is uncertainty around the exact impact of climate change, it is likely that production will take a turn for the worse. We use these factors to assess reliance of select country's economy on these crops, from the farmer to the exporter; the sensitivity of the crops to variation in the climate; and the subsequent impact on government capacity. Our research illustrates how strongly the impacts of climate change are linked to economic and political structures.
J. Grogan; M. Schulze
2008-01-01
requires producer nations to certify that exported supplies were obtained in a manner non-detrimental to the speciesâ survival in its role in the ecosystem. Non-detriment findings based on annual export quotas should verify that current harvest rates are sustainable with respect to total commercial stocks. In order to assess this impact, a method for converting export...
ERIC Educational Resources Information Center
O'Connor, Robert
In this lesson, student teams roleplay an import-export company's purchasing department. Students consider the reasons for the U.S. trade deficit and develop a plan to help their company achieve an import-export balance. Teams will research international trade and economic issues that impact trade balance. Students are provided with background…
Revealing the hidden health costs embodied in Chinese exports.
Jiang, Xujia; Zhang, Qiang; Zhao, Hongyan; Geng, Guannan; Peng, Liqun; Guan, Dabo; Kan, Haidong; Huo, Hong; Lin, Jintai; Brauer, Michael; Martin, Randall V; He, Kebin
2015-04-07
China emits a considerable amount of air pollutants when producing goods for export. Previous efforts have emphasized the magnitude of export-related emissions; however, their health consequences on the Chinese population have not been quantified. Here, we present an interdisciplinary study to estimate the health impact of export-related air pollution. The results show that export-related emissions elevated the annual mean population weighted PM2.5 by 8.3 μg/m(3) (15% of the total) in 2007, causing 157,000 deaths and accounting for 12% of the total mortality attributable to PM2.5-related air pollution. Compared to the eastern coastal provinces, the inner regions experience much larger export-related health losses relative to their economic production gains, owing to huge inter-regional disparities in export structures and technology levels. A shift away from emission-intensive production structure and export patterns, especially in inner regions, could significantly help improve national exports while alleviating the inter-regional cost-benefit inequality. Our results provide the first quantification of health consequences from air pollution related to Chinese exports. The proposed policy recommendations, based on health burden, economic production gains, and emission analysis, would be helpful to develop more sustainable and effective national and regional export strategies.
Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël
2018-03-01
The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Heat tolerance of two Cladonia species and Campylopus praemorsus in a hot steam vent area of Hawaii.
Kappen, Ludger; Smith, Clifford W
1980-01-01
Temperatures were measured in soil, Cladonia skottsbergii, Cl. oceanica, and Campylopus praemorsus growing in the almost barren geothermal area at Puhimau, Hawaii. The measurements were made in the early morning in winter when insolation and air temperatures were minimal and the geothermal effects were predominant. Measurements were made on healthy, dew moistened plants. Close to steam vents Campylopus praemorsus forms thick cushions on hot soil and temperatures up to 29.8°C are recorded in the active parts of the moss. Cladonia oceanica grows exclusively on moss in this area, but not as close to steam vents as the moss itself. Maximum temperatures were 27.2°C in stunted and 23°C in ramified growth forms. In this area Cl. skottsbergii normally colonizes tree stumps of Metrosideros only where the steam is already cool. Maximum temperatures were 23°C in normal thalli, through higher temperatures were measured in partly damaged or killed thalli overhanging the stump where they are immersed in hot steam. With respect to heat tolerance only Campylopus can be considered as adapted to the hot environment. Therefore it is able to colonize the hot dry soil while deriving its moisture from adjacent steam vents. The lichens, particularly Cl. skottsbergii, are not adapted and are as sensitive to heat as most other lichens. Therefore they can only survive where there is at most a small geothermal impact yet they are obviously dependent on moisture from the steam vents.
NASA Astrophysics Data System (ADS)
Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau-Cornec, E. C.; Van Der Merwe, P.; Dehairs, F.
2015-06-01
This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October-November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm-1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and/or grazing activity. C : Th ratios of sinking particles sampled with drifting sediment traps in most cases showed very good agreement with ratios for particles collected via ISP deployments (>53 μm particles). Carbon export production varied between 3.5 ± 0.9 and 11.8 ± 1.3 mmol m-2 d-1 from the upper 100 m and between 1.8 ± 0.9 and 8.2 ± 0.9 mmol m-2 d-1 from the upper 200 m. The highest export production was found inside the PF meander with a range of 5.3 ± 1.0 to 11.8 ± 1.1 mmol m-2 d-1 over the 19-day survey period. The impact of Fe fertilization is highest inside the PF meander with 2.9-4.5-fold higher carbon flux at 200 m depth in comparison to the HNLC control station. The impact of Fe fertilization was significantly less over the central plateau (stations A3 and E-4W) and in the northern branch of the bloom (station F-L) with 1.6-2.0-fold higher carbon flux compared to the reference station R. Export efficiencies (ratio of export to primary production and ratio of export to new production) were particularly variable with relatively high values in the recirculation feature (6 to 27 %, respectively) and low values (1 to 5 %, respectively) over the central plateau (station A3) and north of the PF (station F-L), indicating spring biomass accumulation. Comparison with KEOPS1 results indicated that carbon export production is much lower during the onset of the bloom in austral spring than during the peak and declining phases in late summer.
78 FR 28594 - Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... draft competitiveness report, and Ex-Im Bank economic impact policy update. Public Participation: The... EXPORT-IMPORT BANK OF THE UNITED STATES Advisory Committee Meeting ACTION: Notice of Open Meeting of the Advisory Committee of the Export- Import Bank of the United States (Ex-Im Bank). Time and...
Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...
Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés
2005-06-10
The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Relevance of Global Health Security to the US Export Economy.
Cassell, Cynthia H; Bambery, Zoe; Roy, Kakoli; Meltzer, Martin I; Ahmed, Zara; Payne, Rebecca L; Bunnell, Rebecca E
To reduce the health security risk and impact of outbreaks around the world, the US Centers for Disease Control and Prevention and its partners are building capabilities to prevent, detect, and contain outbreaks in 49 global health security priority countries. We examine the extent of economic vulnerability to the US export economy posed by trade disruptions in these 49 countries. Using 2015 US Department of Commerce data, we assessed the value of US exports and the number of US jobs supported by those exports. US exports to the 49 countries exceeded $308 billion and supported more than 1.6 million jobs across all US states in agriculture, manufacturing, mining, oil and gas, services, and other sectors. These exports represented 13.7% of all US export revenue worldwide and 14.3% of all US jobs supported by all US exports. The economic linkages between the United States and these global health security priority countries illustrate the importance of ensuring that countries have the public health capacities needed to control outbreaks at their source before they become pandemics.
Relevance of Global Health Security to the US Export Economy
Cassell, Cynthia H.; Bambery, Zoe; Roy, Kakoli; Meltzer, Martin I.; Ahmed, Zara; Payne, Rebecca L.
2017-01-01
To reduce the health security risk and impact of outbreaks around the world, the US Centers for Disease Control and Prevention and its partners are building capabilities to prevent, detect, and contain outbreaks in 49 global health security priority countries. We examine the extent of economic vulnerability to the US export economy posed by trade disruptions in these 49 countries. Using 2015 US Department of Commerce data, we assessed the value of US exports and the number of US jobs supported by those exports. US exports to the 49 countries exceeded $308 billion and supported more than 1.6 million jobs across all US states in agriculture, manufacturing, mining, oil and gas, services, and other sectors. These exports represented 13.7% of all US export revenue worldwide and 14.3% of all US jobs supported by all US exports. The economic linkages between the United States and these global health security priority countries illustrate the importance of ensuring that countries have the public health capacities needed to control outbreaks at their source before they become pandemics. PMID:29199867
Effect of Increased Natural Gas Exports on Domestic Energy Markets
2012-01-01
This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.
Understanding sub-annual patterns of catchment dissolved inorganic nitrogen (DIN) export is critical for predicting and mitigating impacts of coastal eutrophication, such as algal blooms and hypoxic areas, which are often seasonal phenomena. We developed the first calibrated glob...
Urban land cover is commonly associated with degraded stream habitat including flashier hydrology, increased pollutant export, and lower ecological health , collectively termed “urban stream syndrome.” Pollutant export from urban areas can also contribute to water quality issues...
Potential Transportation Impacts of Expanded U.S.-Cuba Trade, Final Report
DOT National Transportation Integrated Search
2018-02-02
Before 1960, the United States and Cuba were major trading partners. At that time, Cuba was the seventh largest export market for U.S. products. In the years since then, U.S. trade with Cuba has been highly regulated. Exports have been mostly prohibi...
75 FR 51025 - Application to Export Electric Energy; Vitol Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Fomicheva, Yana Yu.; Gagarskiy, Sergey V.; Sergeev, Andrey N.; Smirnov, Sergey N.; Zagorulko, Alexey M.
2018-04-01
The results of strobe-photographic study of steam-gas cavities formation in a bulk of saline as a result of high-power Yb,Er:Glass laser pulses impact are presented. The data on dynamics of laser pulse transmission through the laserproduced steam-gas cavity for different values of the distance h between the fiber end and the cuvette bottom (quartz plate) are presented. It was observed that the steam-gas cavity might be used for effective non-contact delivery of laser radiation to the submerged target: transmission value at maximum steam-gas cavity size reached 0.87 for h = 0.5 mm. The influence of steam-gas cavities parameters on ablation efficiency of eye lens destruction in vitro is also discussed. The ablation of cataract eye lens in liquid environment is more effective than in air. The efficiency of eye lens ablation decreases with the increase of h . The maximal values of ablation efficiency (2.14·10-3 mm3/pulse) were obtained in the case of underwater ablation at h = 0 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
Energy Conversion Alternatives Study (ECAS)
NASA Technical Reports Server (NTRS)
1977-01-01
ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.
Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiwen; King, David L.
2006-10-11
Gas phase hydrodesulfurization of JP-8 light fraction was investigated over CoMo/Al2O3 and NiMo/Al2O3 catalysts. Use of a light fraction provides a fuel that is more easily desulfurized, and allows the process to operate in the vapor phase. This study investigated the utilization of reformate (syngas) from a steam reformer rather than pure H2 as gas feed to HDS unit. This is consistent with what might be available to the military during operation in the field. Dry syngas functions almost as well as pure H2 in the HDS reaction, and sulfur levels below 5ppmw are readily obtained from a feed initiallymore » containing 320ppmw sulfur. Addition of steam at 40 vol% to the gas feed has a significant negative impact on HDS performance with CoMo/Al2O3, but only a small effect with NiMo/Al2O3. The impacts of various process conditions on S removal efficiency were examined and will be described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.
A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less
NASA Astrophysics Data System (ADS)
Dudziak, T.; Boron, L.; Homa, M.; Nowak, R.; Horton, N.; Sheppard, R.; Purgert, R. M.; Siewiorek, A.; Sobczak, N.; Sobczak, J. J.
2017-01-01
This work presents results observed after the first 5 h of oxidation of Haynes® 282® alloy. The steam oxidation tests have been carried out in pure water at 760 °C for 1, 2 and 5 h, respectively, using an accurate thermogravimetric balance technique. The alloy used for comparison in this work was fabricated using three different methods. The initial steam oxidation performance of the commercially wrought alloy Haynes® 282® was compared with a fabricated cast alloy and a HIP/PM alloy. The results show that in terms of corrosion resistance, fabrication techniques appear to have little impact on steam oxidation performance and behavior. The exposed Ni-based alloys all developed the oxide scales consisting mainly of Cr2O3 phase mixed with some TiO2, while internal Al and Ti precipitations along the grain boundaries were observed both in Haynes® 282® wrought and HIP/PM alloy.
Current techniques in acid-chloride corrosion control and monitoring at The Geysers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirtz, Paul; Buck, Cliff; Kunzman, Russell
1991-01-01
Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less
1998-12-01
be adjusted to fix it? Inside the Defense Department, the Defense Technology Security Agency ( DTSA ) handles export policy. For the past several years... DTSA has been working with the State, Commerce, and Defense Departments to strike a balance between national security and the economic needs of the...nation’s defense industry to export.46 DTSA reviews the export application (received from either from State or Com- merce) and forwards it to the
1989-06-01
ORGANZA - 0% If applicable) 8( ADDRESS (C t Stare a-d ZIP CooI 10 SOUPCE O FKNDNG NMBERS PROGRAM PROAECT TASK . ORK )NIT ELEMENT NO NO NO .<ESSiON NO...investigations which ended up in a total restructuring of their export process. Both Norway and Japan started a heavy lobbying process as well, in an effort...respective controls. Norway permanently suspended all sales to the Soviet Union and initiated a total restructuring of their export process. Japan
The Impact of Sino-Indian Energy Security Ambitions on Burma’s Domestic and Foreign Politics
2011-12-01
and India. 142 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and Inflation in Myanmar,” IDE Discussion Paper, no.225 (March...The Arab State, 87. 162 Luciani, ed., The Arab State, 89. 163 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and...Inflation in Myanmar,” IDE Discussion Paper, no.225 (March 2011): 3. 164 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and
A flexible environmental reuse/recycle policy based on economic strength.
Tsiliyannis, C A
2007-01-01
Environmental policies based on fixed recycling rates may lead to increased environmental impacts (e.g., landfilled wastes) during economic expansion. A rate policy is proposed, which is adjusted according to the overall strength or weakness of the economy, as reflected by overall packaging demand and consumption, production and imports-exports. During economic expansion featuring rising consumption, production or exports, the proposed flexible policy suggests a higher reuse/recycle rate. During economic slowdown a lower rate results in lower impacts. The flexible target rates are determined in terms of annual data, including consumption, imports-exports and production. Higher environmental gains can be achieved at lower cost if the flexible policy is applied to widely consumed packaging products and materials associated with low rates, or if cleaner recycling technology is adopted.
75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... the proposed action will not adversely impact on the reliability of the U.S. electric power supply... from electric utilities, Federal power marketing agencies and other entities within the United States... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...
Control Techtronics International
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.
1995-12-31
Polish graded coal can be burned in existing stoker boilers and meet the 1998 Air Quality standard. This is accomplished with the Control Techtronics microprocessor-based combustion controller accurately and repeatedly: (a) matching the combustion air to the coal firing rate, with continuous stack sensor feedback; (b) continuously varying the boiler`s firing rate based on output water temperature or steam pressure; (c) continuously varying the exhaust fan`s speed to maintain minimum negative pressure in the boiler`s combustion chamber; and recirculating a portion of the flue gas, at varying amounts throughout the boiler`s firing rate. Systems for five boilers have been installedmore » and are operating on MPEC`s Balicka plant in Krakow. Control Techtronics International has $10 million of U.S. Export-Import Bank funds available for similar projects throughout Poland.« less
Agricultural conservation practices can help mitigate the impact of climate change.
Wagena, Moges B; Easton, Zachary M
2018-09-01
Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural CPs to CSAs can provide nearly the same level of water quality effects as more widespread adoption. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arel, Hasan Şahan
The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.
Corn ethanol production, food exports, and indirect land use change.
Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J
2012-06-05
The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.
NASA Astrophysics Data System (ADS)
Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun
2018-03-01
This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.
Exporting DBCP and other banned pesticides: consideration of ethical issues.
Lowry, L K; Frank, A L
1999-01-01
Many developed countries permit the export of pesticides that are banned, restricted, or unregistered within their own borders. This practice, which leads to the exposure of agricultural workers in developing countries to high levels of pesticides that are not permitted in the country of manufacture, raises many ethical issues as well as economic, social, political, and public health issues. Worldwide attempts to control export of such pesticides, through the FAO/UNEP Prior Informed Consent program, moves this issue in the right direction. This article explores the current U.S. and international practices, using the specific example of export of DBCP to banana-producing countries. The actions taken by multinational corporations, manufacturers of the pesticides, and public health officials in both the exporting and importing countries are explored, along with the impacts on workers, local economies, governments, and the environment.
NASA Astrophysics Data System (ADS)
Zuhdi, Ubaidillah
2014-03-01
The purpose of this study is to analyze the impacts of final demand changes on total output of Japanese Information and Communication Technologies (ICT) sectors in future time. This study employs one of analysis tool in Input-Output (IO) analysis, demand-pull IO quantity model, in achieving the purpose. There are three final demand changes used in this study, namely (1) export, (2) import, and (3) outside households consumption changes. This study focuses on "pure change" condition, the condition that final demand changes only appear in analyzed sectors. The results show that export and outside households consumption modifications give positive impact while opposite impact could be seen in import change.
Impacts of U.S. Export Control Policies on Science and Technology Activities and Competitiveness
2009-02-25
coffee table. However, under the current export control regime, the stand was considered ‘ITAR hardware’ and we were required to have two security...should survive without an effective method for pruning items from the control lists when they no longer serve a significant definable national
Perry, B D; Kalpravidh, W; Coleman, P G; Horst, H S; McDermott, J J; Randolph, T F; Gleeson, L J
1999-08-01
A pilot study of the economic impact of foot and mouth disease (FMD) in the countries and region of South-East Asia is described. Previous economic impact assessments are reviewed and summarised and a synthesis of these contributions is constructed. A framework for the future economic impact of the disease is then developed, incorporating analyses at the sectoral (production system), national and regional levels. Data requirements for such studies are also identified. Integrated epidemiological and economic models for impact assessment were developed and applied to the case study country of Thailand. The models were used to evaluate the economic viability of FMD control programmes in the country. Scenarios evaluated include the effect of improving vaccination coverage and thus reducing productivity losses, and the effect of eventual eradication of the disease. The results indicate that economic returns to the high expenditures incurred in FMD control could be achieved in the short term if greater international trade in pork products was made possible and export prices higher than those in the domestic market could be attained. If FMD were to be eradicated from Thailand in 2010, the eradication would be economically viable, even without exports, with a predicted benefit-cost ratio of 3.73. With additional exports, the economic justification for control becomes much stronger with a benefit-cost ratio of up to 15:1 being achieved. If eradication is not achieved until 2020, returns remain positive without exports, but at a lower rate. The authors propose that the integrated epidemiological and economic models developed be applied to other countries of the region to gain a more accurate insight into the future benefits of FMD control and eradication in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
NASA Astrophysics Data System (ADS)
Greco, F.
2008-12-01
This research considers the historical impact of virtual water into the geophysical arena by considering it as a human-led phenomenon that impacts the hydrologic system and, consequently, the environment as a whole. This paper is in line with the idea of including the humans into the water-balance model, and it is deepening the idea that this has to be done not only at the light of each watershed, but globally, looking at the role of water-trade embedded in food and tradable goods. Starting from a definition of what virtual water is, this research explores the role of crops export in the early U.S. Colonial time. As early as 1630 a huge biomass from here was already exported to the UK (the fur trade). In 1700 the tobacco export started, along with cereals exports and timber. An entire ecosystem has been "exported" in terms of water-embedded-in-goods. This was the beginning of a massive depletion of bio-mass stocks and flows, a raise in nitrogen discharge into the environment and its impact on the hydrological systems ( CUAHSI Summer Institute findings). Immigration and its effects on the water balance is also considered in this work. The experiment of interdisciplinary work of CUAHSI Summer Institute 2008 has proven that there is space for a historical reconstruction of evidence of human-led changes to the hydrological systems. This has been possible through the analysis of material stocks and flows, water-balance analysis of these stocks and flows, including human-led changes like international trade and population growth. This proposal will argue that these changes can also be identified by the term of 'socio- economic metabolism', in which societies are trading their goods internationally but taking the primary resources, including water, locally. This work will put the basis for the history of virtual water and its implications on both socio-economic metabolism and local geophysical changes.
Seasonal exports of phosphorus from intensively fertilised nested grassland catchments.
Lewis, Ciaran; Rafique, Rashad; Foley, Nelius; Leahy, Paul; Morgan, Gerard; Albertson, John; Kumar, Sandeep; Kiely, Gerard
2013-09-01
We carried out a one year (2002) study of phosphorus (P) loss from soil to water in three nested grassland catchments with known P input in chemical fertilizer and animal liquid slurry applications. Chemical fertilizer was applied to the grasslands between March and September and animal slurry was applied over the twelve months. The annual chemical P fertilizer applications for the 17 and 211 ha catchments were 16.4 and 23.7 kg P/ha respectively and the annual slurry applications were 10.7 and 14.0 kg P/ha, respectively. The annual total phosphorus (TP) export in stream-flow was 2.61, 2.48 and 1.61 kg P/ha for the 17, 211 and 1524 ha catchments, respectively, compared with a maximum permissible (by regulation) annual export of ca. 0.35 kg P/ha. The export rate (ratio of P export to P in land applications) was 9.6% and 6.6% from the 17 and 211 ha catchments, respectively. On average, 70% of stream flow and 85% of the P export occurred during the five wet months (October to February) indicating that when precipitation is much greater than evaporation, the hydrological conditions are most favourable for P export. However the soil quality and land use history may vary the results. Particulate P made up 22%, 43% and 37% of the TP export at the 17, 211 and 1524 ha catchment areas, respectively. As the chemical fertilizer was spread during the grass growth months (March to September), it has less immediate impact on stream water quality than the slurry applications. We also show that as the catchment scale increases, the P concentrations and P export decrease, confirming dilution due to increasing rural catchment size. In the longer term, the excess P from fertilizer maintains high soil P levels, an antecedent condition favourable to P loss from soil to water. This study confirms the significant negative water quality impact of excess P applications, particularly liquid animal slurry applications in wet winter months. The findings suggest that restricted P application in wet months can largely reduce the P losses from soil to water.
Yang, Jeongpil
2011-06-30
Ginseng has always been the typical export item in Korean history. Until the 18th century, exporting ginseng was wild ginseng from the mountains. Since the 19th century, exporting ginseng became red ginseng, which was red due to steaming and drying process. Red ginseng was produced by Gaesung merchants, so that these merchants were able to gain the control of the output. Gaesung merchants of the 19th century exported red ginseng to China and made huge economic success. However, when the Korean Empire and Japanese colonial government established red ginseng monopoly, it essentially blocked Gaesung traders from manufacturing and exporting any further of its prized commodity. Then, the traders turned to sun-dried white ginseng as a substitute to red ginseng. As a result, white ginseng production dramatically increased after 1914, which in turn made Gaesung merchants newly aware of the commercial value of white ginseng, which was previously ignored. The traders made good use of the traditional medicine herb market, which opened annually, to promote the expansion of white ginseng sales. Moreover, the merchants also adopted modern marketing techniques, as they founded companies to handle solely white ginseng sales, refreshed packaging to raise commodity values, and made an effort in advertising and mail order sales. Due to such endeavors, demand for white ginseng grew exponentially both in domestic and foreign markets, which generated steady growth of white ginseng prices despite the rapid increase of its supply. This phenomenon naturally brought about the rich economic accomplishments of Gaesung merchants. Through the white ginseng sales activities of Gaesung merchants in post-1910s era, two facts can be newly uncovered. First, the mass consumption of white ginseng today in Korean society took a full-scale step after the 1910s. Second, it was a widely-held view that during the Japanese rule, majority of Korean traditional merchants were economically ruined, while a small minority collaborated with the colonial government to obtain economic success. However, Gaesung merchants in 1910s successfully commercialized white ginseng not with the aid of the Japanese but with their own efforts alone. Such fact reveals that there were other types of traditional merchants during the Japanese colonial period who cannot be explained with the common theory.
2012-01-01
This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... integrated U.S. natural gas pipeline system. GLLC notes that due to the Gulf LNG Terminal's direct access to multiple major interstate pipelines and indirect access to the national gas pipeline grid, the Project's... possible impacts that the Export Project might have on natural gas supply and pricing. Navigant's analysis...
Incidence of Russian log export tax: A vertical log-lumber model
Ying Lin; Daowei Zhang
2017-01-01
In 2007, Russia imposed an ad valorem tax on its log exports that lasted until 2012. In this paper, weuse a Muth-type equilibrium displacement model to investigate the market and welfare impacts of this tax, utilizing a vertical linkage between log and lumber markets and considering factor substitution. Our theoretical analysis indicates...
75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
.... Twin Rivers has requested an export authorization in order to be able to supply emergency power as... proposed action will not adversely impact on the reliability of the U.S. electric power supply system... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES...
Clocking of stators in one and half stage of axial steam turbine
NASA Astrophysics Data System (ADS)
Němec, Martin; Jelínek, Tomáš; Milčák, Petr
2018-06-01
An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences the flow structures in the next stator in steam multistage turbines. The stage - stator interaction has been studied in this work. The detailed measurement with a pneumatic probes and fast response pressure probes behind the rotor and the second stator were performed to gain the useful data to analyze the impact. The detailed flow field measurement was carried out in the nominal stage regime (given by the stage isentropic Mach number 0.3 and velocity ratio u/c 0.68). The clocking effect of the stators is discussed and detailed unsteady flow analysis is shown.
Sandford, Richard C; Hawkins, Jane M B; Bol, Roland; Worsfold, Paul J
2013-07-01
Co-deployment of two reagentless UV sensors for high temporal resolution (15 min) real time determination of wintertime DOC and nitrate-N export from a grassland lysimeter plot (North Wyke, Devon, UK) is reported. They showed rapid, transient but high impact perturbations of DOC (5.3-23 mg CL(-1)) and nitrate-N export after storm/snow melt which discontinuous sampling would not have observed. During a winter freeze/thaw cycle, DOC export (1.25 kg Cha(-1)d(-1)) was significantly higher than typical UK catchment values (maximum 0.25 kg Chad(-1)) and historical North Wyke data (0.7 kg Cha(-1)d(-1)). DOC concentrations were inversely correlated with the key DOC physico-chemical drivers of pH (January r=-0.65), and conductivity (January r=-0.64). Nitrate-N export (0.8-1.5 mg NL(-1)) was strongly correlated with DOC export (r ≥ 0.8). The DOC:NO3-N molar ratios showed that soil microbial N assimilation was not C limited and therefore high N accrual was not promoted in the River Taw, which is classified as a nitrate vulnerable zone (NVZ). The sensor was shown to be an effective sentinel device for identifying critical periods when rapid ecosystem N accumulation could be triggered by a shift in resource stoichiometry. It is therefore a useful tool to help evaluate land management strategies and impacts from climate change and intensive agriculture. Copyright © 2013 Elsevier B.V. All rights reserved.
Exporters for Production of Amino Acids and Other Small Molecules.
Eggeling, Lothar
Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.
Regulation of mRNA Trafficking by Nuclear Pore Complexes
Bonnet, Amandine; Palancade, Benoit
2014-01-01
Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662
NASA Astrophysics Data System (ADS)
Bauer, J. E.; Hossler, K.
2012-12-01
Riverine exports of carbon (C) and organic matter (OM) are regulated by a variety of natural and anthropogenic factors. Understanding the relationships between these various factors and C and OM exports can help to constrain global C budgets, as well allow assessment of current and future anthropogenic impacts on both riverine and global C cycles. We quantified the effects of multiple natural and anthropogenic controls on riverine export fluxes and compositions of particulate organic C (POC), dissolved organic C (DOC), and dissolved inorganic C (DIC) for a regional group of eight rivers in the northeastern U.S. For allochthonous and aged C contributions to POC, DOC and DIC exports, we first estimated fractional contributions from six potential sources for POC and DOC (i.e., modern C3 plant material (C3-OC), modern C4 plant material (C4-OC), modern algal material (algal OC), slow-turnover soil OC (slow SOC; turnover time 25 yr), passive-turnover soil OC (passive SOC; turnover time 5,000 yr) and fossil OC and four potential sources for DIC (i.e., modern atmospheric CO2 exchange, carbonate dissolution, POC remineralization and DOC remineralization) using a novel time-varying isotope mixing model. Using these estimated source contributions, we then estimated the allochthonous proportions of (a) the POC and DOC pools to be the C3-OC, C4-OC, slow SOC, passive SOC, and fossil OC contributions; and (b) the DIC pools to be the dissolved carbonates, remineralized allochthonous POC, and remineralized allochthonous DOC contributions. We considered aged C to be anything older than ˜ 60 yr, which included passive SOC and fossil OC for POC and DOC and dissolved carbonates and aged fractions of remineralized POC and DOC for DIC. Potential controls related to hydrogeomorphology and regional climate, soil order, soil texture, bedrock lithology, land use, and additional anthropogenic factors were analyzed collectively, individually, and at scales of both local and regional influence. Factors related either to hydrogeomorphology and climate or to anthropogenic factors exhibited the strongest impacts on riverine C exports and compositions, particularly at broader regional scales. The effect of hydrogeomorphology and climate was primarily one of size, as larger watersheds with greater discharge exported more total C and terrestrial C. Principal anthropogenic factors included impacts of wastewater treatment plants (WWTPs) and river impoundments. The presence of WWTPs as well as anthropogenic use of carbonate-based materials (e.g., limestone) may have substantially increased riverine C exports, particularly fossil C exports, in the study region. The presence of nuclear power plants in the associated watersheds is also discussed because of the potential for anthropogenic 14C inputs and subsequent biasing of aquatic C studies utilizing natural abundance 14C.
ERIC Educational Resources Information Center
Feng, Haiying; Beckett, Gulbahar H.; Huang, Dawang
2013-01-01
This article examines the evolution of national research policy in China over the past three decades and its recent shift in emphasis from "import" to "import-export" oriented internationalization. Based on a policy review and interviews with three groups of academics--six journal editors in the humanities and social sciences,…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... traditional steam turbine generators. The Project would contain the central receiver or tower, a solar field... the Final Environmental Impact Statement for the Quartzsite Solar Energy Project and the Yuma Field...: Notice of Availability. SUMMARY: Quartzsite Solar Energy (QSE) has requested to interconnect the...
Cumulative biological impacts of The Geysers geothermal development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownell, J.A.
1981-10-01
The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxicmore » to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.« less
Mesoscale Effects on Carbon Export: A Global Perspective
NASA Astrophysics Data System (ADS)
Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.
2018-04-01
Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.
78 FR 66929 - Intent To Conduct a Detailed Economic Impact Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... EXPORT-IMPORT BANK Intent To Conduct a Detailed Economic Impact Analysis AGENCY: Policy and... Federal Register notice informing the public of its intent to conduct a detailed economic impact analysis... subject to a detailed economic impact analysis. DATES: The Federal Register notice published on August 5...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, K.M.
1983-07-01
The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development tomore » local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.« less
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
Su, Yun; Li, Jun; Song, Guowen
2018-06-01
The moisture from skin sweat and atmospheric water affects the thermal protective performance provided by multilayer protective clothing. Four levels of moisture content were selected to evaluate the impact of moisture on thermal protection under dry (thermal radiation) and wet (thermal radiation and low-pressure steam) heat exposure. Also, the role of moisture and its relationship with exposure time were analyzed based on skin heat flux and Henriques integral value. The addition of moisture to a fabric system was found to result in differences in second-degree and third-degree skin burn times. When moisture is added to a fabric system, it both acts as a thermal conductor to present a negative effect and provides a positive effect owing to thermal storage of water and evaporative heat loss. The positive or negative effects of moisture are mainly dependent on the thermal exposure time, the moisture content and the presence of hot steam.
NASA Astrophysics Data System (ADS)
Colléter, Mathieu; Gascuel, Didier; Albouy, Camille; Francour, Patrice; Tito de Morais, Luis; Valls, Audrey; Le Loc'h, François
2014-11-01
Marine protected areas (MPAs) are implemented worldwide as an efficient tool to preserve biodiversity and protect ecosystems. We used food web models (Ecopath and EcoTroph) to assess the ability of MPAs to reduce fishing impacts on targeted resources and to provide biomass exports for adjacent fisheries. Three coastal MPAs: Bonifacio and Port-Cros (Mediterranean Sea), and Bamboung (Senegalese coast), were used as case studies. Pre-existing related Ecopath models were homogenized and ecosystem characteristics were compared based on network indices and trophic spectra analyses. Using the EcoTroph model, we simulated different fishing mortality scenarios and assessed fishing impacts on the three ecosystems. Lastly, the potential biomass that could be exported from each MPA was estimated. Despite structural and functional trophic differences, the three MPAs showed similar patterns of resistance to simulated fishing mortalities, with the Bonifacio case study exhibiting the highest potential catches and a slightly inferior resistance to fishing. We also show that the potential exports from our small size MPAs are limited and thus may only benefit local fishing activities. Based on simulations, their potential exports were estimated to be at the same order of magnitude as the amount of catch that could have been obtained inside the reserve. In Port Cros, the ban of fishing inside MPA could actually allow for improved catch yields outside the MPA due to biomass exports. This was not the case for the Bonifacio site, as its potential exports were too low to offset catch losses. This insight suggests the need for MPA networks and/or sufficiently large MPAs to effectively protect juveniles and adults and provide important exports. Finally, we discuss the effects of MPAs on fisheries that were not considered in food web models, and conclude by suggesting possible improvements in the analysis of MPA efficiency.
Meo, S A; Usmani, A M
2014-01-01
This study aimed to compare the impact of Research&Development (R&D) expenditures on research publications, patents and high-tech exports among European countries. In this study, 47 European countries were included. The information regarding European countries, their per capita Gross Domestic Product (GDP), R&D spending, number of universities, indexed scientific journals, high technology exports and number of patents were collected. We recorded the total number of research documents in various science and social sciences subjects during the period 1996-2011. The main source for information was World Bank, Web of Science, Thomson Reuters and SCImago/Scopus. The mean GDP per capita for all the European countries is 23372.64 ± 3588.42 US$, yearly per capita spending on R&D 1.14 ± 0.13 US$, number of universities 48.17 ± 10.26, mean number of Institute of Scientific Information (ISI) indexed journal per country 90.72 ± 38.47, high technology exports 12.86 ± 1.59 and number of patent applications 61504.23 ± 22961.85. The mean of research documents published in various science and social science subjects among all the European countries during the period 1996-2011 is 213405.70 ± 56493.04. Spending on R&D, number of universities, indexed journals, high technology exports and number of patents have a positive correlation with number of published documents in various science and social science subjects. We found a positive correlation between patent application and high-tech exports. However, there was no association between GDP per capita and research outcomes. It is concluded that, the most important contributing factors towards a knowledge based economy are spending on R&D, number of universities, scientific indexed journals and research publications, which in turn give a boast to patents, high technology exports and ultimately GDP.
Impact of exporting dependence on livestock production systems, industry structure, and research.
Macmillan, K L; Kirton, A H
1997-02-01
From 84 to 93% of New Zealand's annual production from livestock is exported to over 100 markets throughout the world. This export dependence has produced production systems that are low-cost because the Mediterranean maritime climate allows animals to graze outdoors throughout the year without provision for housing and with minimal requirements for cropping, harvesting, and forage storage. These systems exploit the inherent tendencies for ruminants to have annual production cycles that can be synchronized to use the seasonal availability of pasture, but this means that processing facilities must handle peak supply for brief periods. Processing technology can reduce the impact of peaks in supply that may not match market demand. The disadvantages of seasonality in processing costs are outweighed by lower production costs, as well as by the opportunity to manage large numbers of animals per labor unit. Cooperative structures that are owned by livestock producers are a common feature, especially in New Zealand's dairy industry. This continued preference for cooperatives may reflect the need to have a guaranteed processor for a perishable product such as milk, as well as sharing the risk in an export industry that has scant control over prices received. In addition, management systems for ruminant livestock can only respond slowly to changes in market demand because their production cycles last at least 12 mo and only one or two offspring are produced in each cycle. Export marketing of livestock products is complicated by trade barriers and by dumping of subsidized surpluses. Negotiations to eliminate these practices may mean that livestock production systems in many countries will have to adopt some principles similar to those developed in New Zealand, not because of export dependence but because this dependence has created low-cost systems.
Potential impacts of urban land expansion on Asian airborne pollutant outflows
NASA Astrophysics Data System (ADS)
Tao, Wei; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Lin; Zhang, Jiachen; Yi, Kan; Tao, Shu
2017-07-01
Eastern part of China (EPC) has experienced rapid urbanization during the past few decades. Here we investigate the impacts of urban land expansion over EPC on the export of Asian pollutants to the western Pacific during January, April, July, and October of 2009 using the Weather Research and Forecasting model coupled to Chemistry (WRF/Chem) and a single-layer urban canopy scheme. Over urbanizing areas, increases in the urban land fraction result in a linearly enhanced uplift of surface primary pollutants to higher altitudes. We further examine how this local effect would change outflows of Asian pollutants to the western Pacific using the tagged black carbon (BC) and carbon monoxide (CO) tracers emitted from EPC (denoted by BCt and COt, respectively). Overall, a 0.1 increase in the fraction of land area that is urban over EPC would linearly (R2 = 0.70-0.96) increase the mean tropospheric eastward export of BCt and COt across meridional planes (i.e., 135°E and 150°E) by 4-40% and 1-6% in different months, respectively. The relative perturbation in exporting efficiency generally maximizes during July while minimizes during April. The urbanization-export relationship is largely driven by the elevation effect and is also impacted by urbanization-forced changes in zonal winds. The spatial pattern of the response of BCt over the downwind Pacific differs from that of COt mainly due to aerosol-cloud interactions. Our findings demonstrate that extensive urban land expansion could substantially impact climate and air quality from a local scale to a regional scale, especially for shorter-lived air pollutants such as BC and other aerosols.
Ethical Issues in Transnational Eye Banking.
Martin, Dominique E; Kelly, Richard; Jones, Gary L A; Machin, Heather; Pollock, Graeme A
2017-02-01
To review ethical issues that may arise in the setting of transnational eye banking activities, such as when exporting or importing corneal tissue for transplantation. A principle-based normative analysis of potential common dilemmas in transnational eye banking activities was performed. Transnational activities in eye banking, like those in other fields involving procurement and use of medical products of human origin, may present a number of ethical issues for policy makers and professionals. Key ethical concerns include the potential impact of export or import activities on self-sufficiency of corneal tissue supply within exporting and importing countries; potential disclosure requirements when obtaining consent or authorization for ocular tissue donation when donations may be exported; and difficulties inherent in assuring equity in the allocation of tissues available for export and in establishing and respecting standards of safety and quality across different jurisdictions. Further analysis of specific ethical issues in eye banking is necessary to inform development of guidelines and other governance tools that will assist policy makers and professionals to support ethical practice.
Microbially driven export of labile organic carbon from the Greenland ice sheet
NASA Astrophysics Data System (ADS)
Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.
2017-04-01
Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.
NASA Astrophysics Data System (ADS)
Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.
2017-09-01
In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.
Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance.
Liu, Maodian; Chen, Long; Wang, Xuejun; Zhang, Wei; Tong, Yindong; Ou, Langbo; Xie, Han; Shen, Huizhong; Ye, Xuejie; Deng, Chunyan; Wang, Huanhuan
2016-06-21
Exports from mainland China are a significant source of mercury (Hg) in the adjacent seas (Bohai Sea, Yellow Sea, East China Sea, and South China Sea) near China. A total of 240 ± 23 Mg was contributed in 2012 (30% from natural sources and 70% from anthropogenic sources), including Hg from rivers, industrial wastewater, domestic sewage, groundwater, nonpoint sources, and coastal erosion. Among the various sources, the Hg from rivers amounts to 160 ± 21 Mg and plays a dominant role. The Hg that is exported from mainland China increased from 1984 to 2013; the contributions from rivers, industrial wastewater, domestic sewage and groundwater increased, and the contributions from nonpoint sources and coastal erosion remained stable. A box model is constructed to simulate the mass balance of Hg in these seas and quantify the sources, sinks and Hg biogeochemical cycle in the seas. In total, 160 Mg of Hg was transported to the Pacific Ocean and other oceans from these seas through oceanic currents in 2012, which could have negative impacts on the marine ecosystem. A prediction of the changes in Hg exportation through 2030 shows that the impacts of terrestrial export might worsen without effective pollution reduction measures and that the Hg load in these seas will increase, especially in the seawater of the Bohai Sea, Yellow Sea, and East China Sea and in the sea margin sediments of the Bohai Sea and East China Sea.
Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; ...
2015-01-01
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainabilitymore » metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO 2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and impact, and socio-political impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainabilitymore » metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO 2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and impact, and socio-political impacts.« less
Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Diethelm, Stefan; Van herle, Jan
This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H 2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I- V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.
Verardi, A; Blasi, A; De Bari, I; Calabrò, V
2016-12-01
The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact. Copyright © 2015 Elsevier Inc. All rights reserved.
Does export product quality matter for CO2 emissions? Evidence from China.
Gozgor, Giray; Can, Muhlis
2017-01-01
This paper re-estimates the environmental Kuznets curve (EKC) in China. To this end, it uses the unit root tests with structural breaks and the autoregressive-distributed lag (ARDL) estimations over the period 1971-2010. The special role is given to the impact of export product quality on CO 2 emissions in the empirical models. The paper finds that the EKC hypothesis is applicable in China. It also observes the positive effect from energy consumption to CO 2 emissions. In addition, it finds that the export product quality is negatively associated with CO 2 emissions. The paper also argues potential implications.
Agricultural growth, the status of women, and fertility.
Whittington, L A; Stapleton, D C
1995-08-01
This study tests the hypothesis that fertility is affected differently by economic growth depending upon the specific sector (agriculture, manufacturing, heavy industry, and services) where growth occurred. The hypothesis is that fertility responses are not identical across sectors. The sample includes 51 World Bank member countries in varying stages of development. The econometric model pertains to 1965-88 and the percentage change in the total fertility rate (TFR). During the study period the average TFR declined by over 22%, but the extent of change varied by country and included, for instance, countries such as Ethiopia that experienced fertility increases from 5.8 to 6.5. Hong Kong's TFR declined by 66% from 4.7 to 1.6. Analysis included measures of changes in gross domestic product (GDP) for each of the four sectors and change in real per capita exports in agricultural commodities, resources, and manufactured products. Changes in educational status and changes in infant mortality were also included in some models. There were mixed results for the impact of total GDP. Sectoral analysis shows a positive, small significant impact on TFR from changes in the GDP per capita in agriculture (domestic and export products), and a negative, small significant impact from manufacturing growth. Heavy industry and services produced insignificant impact. In the model with only domestic consumption, results show a stronger coefficient and continued significance for agricultural productivity, agricultural exports, and manufacturing changes per capita. Manufacturing exports produced a negative, insignificant impact. The null hypothesis is rejected only in models comparing aggregate GDP in agriculture and manufacturing industries plus control variables (excluding heavy industry and services). Only secondary education was a negative, significant determinant of fertility. Infant mortality was insignificant when sectoral growth and education were included in the model. The evidence supports the thesis that growth depending on the sector leads to fertility decline, and economic growth has a negative effect on fertility if employment opportunities for women are improved.
Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory
2014-01-01
Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.
Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai
2018-05-15
To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.
Themis - A solar power station
NASA Astrophysics Data System (ADS)
Hillairet, J.
The organization, goals, equipment, costs, and performance of the French Themis (Thermo-helio-electric-MW) project are outlined. The program was begun for both the domestic energy market and for export. The installation comprises a molten eutectic salt loop which receives heat from radiators situated in a central tower. The salt transfers the heat to water for steam generation of electricity. A storage tank holds enough molten salt to supply one day's reserve of power, 40 MWh. A field of heliostats directs the suns rays for an estimated 2400 hr/yr onto the central receiver aperture, while 11 additional parabolic concentrators provide sufficient heat to keep the salt reservoir at temperatures exceeding 200 C. In a test run of several months during the spring of 1982 the heliostats directed the sun's rays with an average efficiency of 75 percent, yielding 2.3 MW of power at a system efficiency of 20.5 percent in completely automatic operation.
Cross, Paul; Edwards, Rhiannon T; Nyeko, Philip; Edwards-Jones, Gareth
2009-05-01
The export of vegetables from African countries to European markets presents consumers with an ethical dilemma: should they support local, but relatively well-off farmers, or poorer farmers from distant countries? This paper considers the issue of farm worker health in the U.K. and Uganda, and considers the dilemma facing U.K. consumers if Uganda achieves their aim of exporting more vegetables to the U.K. Self-reported health scores of 1,200 farm workers in the U.K. and Uganda were measured with the internationally recognised SF-36 questionnaire and compared to an international population norm. The age-corrected health status of U.K. farm workers was significantly lower than the population norm, whereas Ugandans scored significantly higher (indicating good health) for physical health and lower for mental health. If Ugandan produce enters U.K. markets, then consumers may wish to consider both the potential benefits that enhanced trade could offer Ugandan farmers compared with its impacts on U.K. workers.
NASA Astrophysics Data System (ADS)
Komkov, M. A.; Moiseev, V. A.; Tarasov, V. A.; Timofeev, M. P.
2015-12-01
Some ecological problems related to heavy-oil extraction and ways for minimizing the negative impacts of this process on the biosphere are discussed. The ecological hazard of, for example, frequently used multistage hydraulic fracturing of formation is noted and the advantages and perspectives of superheated steam injection are considered. Steam generators of a new type and ecologically clean and costeffective insulating for tubing pipes (TPs) are necessary to develop the superheated steam injection method. The article is devoted to solving one of the most important and urgent tasks, i.e., the development and usage of lightweight, nonflammable, environmentally safe, and cost-effective insulating materials. It is shown that, for tubing shielding operating at temperatures up to 420°C, the most effective thermal insulation is a highly porous material based on basalt fiber. The process of filtration deposition of short basalt fibers with a bunch of alumina thermal insulation tubing pipe coatings in the form of cylinders and cylindrical shells from liquid pulp is substantiated. Based on the thermophysical characteristics of basalt fibers and on the technological features of manufacturing highly porous coating insulation, the thickness of a tubing pipe is determined. During the prolonged pumping of the air at an operating temperature of 400°C in the model sample of tubing pipes with insulation and a protective layer, we find that the surface temperature of the thermal barrier coating does not exceed 60°C. Introducing the described technology will considerably reduce the negative impact of heavy-oil extraction on the biosphere.
Donald F. Flora; Wendy J. McGInnls
1992-01-01
Several recently emplaced and potential Northwest timber policies are causing considerable market turbulence. Estimated were price and volume changes induced by three supply-side policies (a state-log export embargo, forest replanning, and spotted owl reservations) and the demand slide of 1990-91. Impacts were gauged separately and together by using a four-sector model...
Analyses of impacts of China's international trade on its water resources and uses
NASA Astrophysics Data System (ADS)
Zhang, Z. Y.; Yang, H.; Shi, M. J.; Zehnder, A. J. B.; Abbaspour, K. C.
2011-04-01
This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year-1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356
Economically dispatching cogeneration facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, E.
Economic dispatching has been used by utilities to meet the energy demands of their customers for decades. The objective was to first load those units which cost the least to run and slowly increase the loading of more expensive units as the incremental energy price increased. Although this concept worked well for utility based systems where incremental costs rose with peak demand, the independent power producers(IPPs) and the power purchase agreements (PPAs) have drastically changed this notion. Most PPAs structured for the IPP environment have negotiated rates which remain the same during peak periods and base their electrical generation onmore » specific process steam requirements. They also must maintain the required production balance of process steam and electrical load in order to qualify as a Public Utility Regulatory Policies Act (PURPA) facility. Consequently, economically dispatching Cogeneration facilities becomes an exercise in adhering to contractual guidelines while operating the equipment in the most efficient manner possible for the given condition. How then is it possible to dispatch a Cogeneration facility that maintains the electrical load demand of JFK Airport while satisfying all of its heating and cooling needs? Contractually, Kennedy International Airport Cogen (KIAC) has specific obligations concerning electrical and thermal energy exported to JFK Airport. The facility`s impressive array of heating and cooling apparatuses together with the newly installed cogen fulfilled the airport`s needs by utilizing an endless combination of new and previously installed equipment. Moreover, in order to economically operate the plant a well structured operating curriculum was necessary.« less
Attanapola, Chamila T
2004-06-01
Since the economic liberalization in 1977, a large number of Sri Lankan women have entered the labour market and engaged in income-generating activities. Some women choose to travel abroad as domestic workers, while others choose to work in export-processing industries. This process has a profound impact on gender and gender roles in Sri Lanka. Young rural women have changed their traditional women's roles to become independent daughters, efficient factory workers and partially modernized women. Even though changing gender roles are identified as a positive impact of industrial work, the new social, cultural, and legal environments of industrial work have negative impacts on these women's lives. This paper explores health impacts of changing gender roles and practices of young rural women, focusing on the experiences of female workers in export-processing industries. Further, it contributes to the literature on gender and health, and on qualitative approaches within health geographic studies. A model is formulated to suggest a conceptual framework for studying women's health. The model describes the determinant factors of individual health status based on the question of who (personal attributes) does what (type of work) where (place), when and how (behaviours). These are also determinant factors of gender and gender roles of a society. The three types of health problems (reproductive, productive and mental health) of a woman, in this case a female industrial worker, are determined by her gender roles and practices associated with these roles.
The mineral sector and economic development in Ghana: A computable general equilibrium analysis
NASA Astrophysics Data System (ADS)
Addy, Samuel N.
A computable general equilibrium model (CGE) model is formulated for conducting mineral policy analysis in the context of national economic development for Ghana. The model, called GHANAMIN, places strong emphasis on production, trade, and investment. It can be used to examine both micro and macro economic impacts of policies associated with mineral investment, taxation, and terms of trade changes, as well as mineral sector performance impacts due to technological change or the discovery of new deposits. Its economywide structure enables the study of broader development policy with a focus on individual or multiple sectors, simultaneously. After going through a period of contraction for about two decades, mining in Ghana has rebounded significantly and is currently the main foreign exchange earner. Gold alone contributed 44.7 percent of 1994 total export earnings. GHANAMIN is used to investigate the economywide impacts of mineral tax policies, world market mineral prices changes, mining investment, and increased mineral exports. It is also used for identifying key sectors for economic development. Various simulations were undertaken with the following results: Recently implemented mineral tax policies are welfare increasing, but have an accompanying decrease in the output of other export sectors. World mineral price rises stimulate an increase in real GDP; however, this increase is less than real GDP decreases associated with price declines. Investment in the non-gold mining sector increases real GDP more than investment in gold mining, because of the former's stronger linkages to the rest of the economy. Increased mineral exports are very beneficial to the overall economy. Foreign direct investment (FDI) in mining increases welfare more so than domestic capital, which is very limited. Mining investment and the increased mineral exports since 1986 have contributed significantly to the country's economic recovery, with gold mining accounting for 95 percent of the mineral sector's contribution. The mining sector in general is identified as a leading sector for economic development.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-10-18
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.
Ye, Linzheng; Zhu, Xijing; Wang, Lujie; Guo, Ce
2018-01-01
Ultrasonic vibration honing technology is an effective means for materials difficult to machine, where cavitation occurs in grinding fluid under the action of ultrasound. To investigate the changes of single cavitation bubble characteristics in the grinding area and how honing parameters influence bubble characteristics, a dynamic model of single cavitation bubble in the ultrasonic vibration honing grinding area was established. The model was based on the bubble dynamics and considered the condensation and evaporation of kerosene steam and honing processing environment. The change rules of bubble radius, temperature, pressure and number of kerosene steam molecules inside the bubble were numerically simulated in the process of bubble moving. The results show that the condensation and evaporation of kerosene steam can help to explain the changes of temperature and pressure inside the bubble. Compared with ultrasonic vibration, the amplitude of bubble radius is greatly suppressed in the ultrasonic honing environment. However, the rate of movement of the bubble is faster. Meanwhile, the minimum values of pressure and temperature are larger, and the number of kerosene steam molecules is less. By studying the effect of honing factors on the movement of the cavitation bubble, it is found that honing pressure has a greater influence on bubble evolution characteristics, while rotation speed of honing head has a minor effect and the reciprocating speed of honing head has little impacts. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-01-01
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased. PMID:28773963
Heat up and potential failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, andmore » relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Modeling the Impact of Arctic Shipping Pollution on Air Quality off the Coast of Northern Norway
NASA Astrophysics Data System (ADS)
Thomas, J. L.; Law, K.; Marelle, L.; Raut, J.; Jalkanen, J.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.; Fast, J. D.
2013-12-01
As the Arctic is undergoing rapid and potentially irreversible changes, such as the shrinking and thinning of sea-ice cover, the levels of atmospheric pollution are expected to rise dramatically due to the emergence of local pollution sources including shipping. Shipping routes through the Arctic (such as Russia's Northern Sea Route) are already used as an alternative to the traditional global transit shipping routes. In summer 2012, the ACCESS (Arctic Climate Change, Economy, and Society) aircraft campaign focused on studying pollution sources off the coast of northern Norway to quantify emissions from shipping and other anthropogenic pollution sources. To complement these measurements, a regional chemical transport model is used to study the impact of shipping pollution on gas and aerosol concentrations in the region. WRF-Chem (The Weather Research and Forecasting Model with Chemistry, which simulates gas and aerosols simultaneously with meteorology) is run with real time shipping emissions from STEAM (Ship Traffic Emission Assessment Model) for July 2012. The STEAM model calculates gas and aerosol emissions of marine traffic based on the ship type and location provided by the Automatic Identification System (AIS). Use of real time position, speed, and ship specific information allows for development of emissions with very high spatial (1x1 km) and temporal (30 min) resolution, which are used in the regional model runs. STEAM emissions have been specifically generated for shipping off the coast of Norway during the entire ACCESS campaign period. Simulated ship plumes from high-resolution model runs are compared to aircraft measurements. The regional impact of current summertime shipping is also examined. At present, relatively light ship traffic off the coast of northern Norway results in only a small impact of shipping pollution on regional atmospheric chemistry. The impact of increased future shipping on regional atmospheric chemistry is also assessed.
Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study
NASA Astrophysics Data System (ADS)
Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris
2017-04-01
The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries, considerable changes in the biogeochemical responses observed. In conclusion, unlike the models that do not represent the fish explicitly, we demonstrate how marine biogeochemical processes are impacted by the activity of fish assemblages and fisheries exploitation.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Resource nationalism in Indonesia—Effects of the 2014 mineral export ban
Lederer, Graham W.
2016-09-27
Resource nationalism encompasses a broad range of political and economic actions taken by Governments to regulate the extraction of natural resources within their borders. Policies such as increased tariffs or export restrictions can have far-reaching economic effects on international trade. As the Governments of several developing countries consider enacting nationalistic policies, an examination of the 2014 mineral export ban in Indonesia provides an instructive example of the possible impacts of resource nationalism. Significant changes in the production and trade of unprocessed (that is, ores and concentrates) and processed (that is, refined metal) aluminum, copper, and nickel before and after the export ban form the basis of this study.The U.S. Geological Survey (USGS) National Minerals Information Center (NMIC) tracks production and trade of mineral commodities between producer and consumer countries. Materials flow studies clarify the effects of an export ban on different mineral commodities by assessing changes in production, processing capacity, and trade. Using extensive data collection and monitoring procedures, the USGS NMIC investigated the effects of resource nationalism on the flow of mineral commodities from Indonesia to the global economy.
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
2005-01-01
field. Poultry Swine Cattle Feed for Livestock Export (grain) Export (food) Food and Industrial Ethanol High Fructose Corn Syrup In a similar manner...terrestrial nutrients. The United States has significant resources in good soils, extensive natural water distribution, and a technology base that allows...yield to provide a 2-fold (vs 98) increase in carbon output per unit input. Develop systems approaches to minimize impact on land, air, and water
Quantifying export production in the Southern Ocean: Implications for the Baxs proxy
NASA Astrophysics Data System (ADS)
Hernandez-Sanchez, Maria T.; Mills, Rachel A.; Planquette, HéLèNe; Pancost, Richard D.; Hepburn, Laura; Salter, Ian; Fitzgeorge-Balfour, Tania
2011-12-01
The water column and sedimentary Baxs distribution around the Crozet Plateau is used to decipher the controls and timing of barite formation and to evaluate how export production signals are recorded in sediments underlying a region of natural Fe fertilization within the Fe limited Southern Ocean. Export production estimated from preserved, vertical sedimentary Baxs accumulation rates are compared with published export fluxes assessed from an integrated study of the biological carbon pump to determine the validity of Baxs as a quantitative proxy under different Fe supply conditions typical of the Southern Ocean. Detailed assessment of the geochemical partitioning of Ba in sediments and the lithogenic end-member allows appropriate correction of the bulk Ba content and determination of the Baxs content of sediments and suspended particles. The upper water column distribution of Baxs is extremely heterogeneous spatially and temporally. Organic carbon/Baxs ratios in deep traps from the Fe fertilized region are similar to other oceanic settings allowing quantification of the inferred carbon export based on established algorithms. There appears to be some decoupling of POC and Ba export in the Fe limited region south of the Plateau. The export production across the Crozet Plateau inferred from the Baxs sedimentary proxy indicates that the Fe fertilized area to the north of the Plateau experiences enhanced export relative to equivalent Southern Ocean settings throughout the Holocene and that this influence may also have impacted the site to the south for significant periods. This interpretation is corroborated by alternative productivity proxies (opal accumulation, 231Paxs/230Thxs). Baxs can be used to quantify export production in complex settings such as naturally Fe-fertilized (volcanoclastic) areas, providing appropriate lithogenic correction is undertaken, and sediment focusing is corrected for along with evaluation of barite preservation.
Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes
NASA Astrophysics Data System (ADS)
Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; da Rocha, Humberto Ribeiro; Gloor, Emanuel
2016-12-01
We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.
Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna
2013-12-01
Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.
Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José
2018-07-01
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of fructans and dietary fibre profiles in raw and steamed vegetables.
Kalala, Gaétan; Kambashi, Bienvenu; Everaert, Nadia; Beckers, Yves; Richel, Aurore; Pachikian, Barbara; Neyrinck, Audrey M; Delzenne, Nathalie M; Bindelle, Jérôme
2017-12-18
Dietary fibre (DF) has many positive effects on human health associated with its functionality in the gastrointestinal tract. These benefits vary according to the type of DF. Vegetables can be a natural source of DF in the diet. However, to provide adequate nutritional advice, the content and profile of their various DF types must be characterised. This study aimed to determine the DF profile of 29 vegetables cultivated in Wallonia (Belgium) and the impact of steaming on these profiles. Using a combination of enzymatic, gravimetric and chromatographic methods, fructans, total dietary fibre (TDF), low- and high-molecular-weight soluble dietary fibre (SDF), and insoluble dietary fibre (IDF) were analysed. Results show that the DF content varies considerably among the 29 investigated vegetable varieties and species, but the influence of steaming is limited to a shift from IDF to high-molecular-weight SDF for 18 of the 29 tested vegetables, while fructans are preserved with not actual reduction in the DP.
Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H
2012-07-11
In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.
Surface laser alloying of 17-4PH stainless steel steam turbine blades
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Wang, Liang; Zhang, Qunli; Kong, Fanzhi; Lou, Chenghua; Chen, Zhijun
2008-09-01
As a known high-quality precipitation hardening stainless steel with high strength, high antifatigue, excellent corrosion resistance and good weldability, 17-4PH has been widely used to produce steam turbine blades. However, under the impact of high-speed steam and water droplets, the blades are prone to cavitation, which could lead to lower efficiency, shorter life time, and even accidents. In this article, the 17-4PH blade's surface was alloyed using a high power CO 2 laser. The microstructure and microhardness of hardened 17-4PH were tested by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and a microhardness tester. After laser alloying, the surface layer was denser and the grain refined, while the microhardness of the surface (average 610HV 0.2) was about one times higher than that of the substrate material (330HV 0.2). The friction coefficient of the laser-alloyed 17-4PH layer was much lower than that of the substrate.
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
NASA Astrophysics Data System (ADS)
Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau, E.; Van Der Merwe, P.; Dehairs, F.
2014-11-01
The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October-November 2011), we examined upper-ocean Particulate Organic Carbon (POC) export using the 234Th approach. We aimed at characterizing the spatial and the temporal variability of POC export production at high productivity sites over and downstream the Kerguelen plateau. Export production is compared to a High Nutrient Low Chlorophyll area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities relative to its parent nuclide 238U were observed at all stations in surface waters, indicating that scavenging by particles occurred during the early stages of the phytoplankton bloom. 234Th export was lowest at reference station R-2 (412 ± 134 dpm m-2 d-1) and highest inside a~permanent meander of the Polar Front (PF) at stations E (1995 ± 176 dpm m-2 d-1, second visit E-3) where a detailed time series was obtained as part of a~pseudo-lagrangian study. 234Th export over the central plateau was relatively limited at station A3 early (776 ± 171 dpm m-2 d-1, first visit A3-1) and late in the survey (993 ± 223 dpm m-2 d-1, second visit A3-2), but it was higher at high biomass stations TNS-8 (1372 ± 255 dpm m-2 d-1) and E-4W (1068 ± 208 dpm m-2 d-1) in waters which could be considered as derived from plateau. Limited 234Th export of 973 ± 207 dpm m-2 d-1 was also found in the northern branch of the Kerguelen bloom located downstream of the island, north of the PF (station F-L). The 234Th results support that Fe fertilization increased particle export in all iron fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth), but more moderate over the central Kerguelen plateau and in the northern plume of the Kerguelen bloom (∼2-fold at 200 m depth). The C : Th ratio of large (> 53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems were used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (range: 3.1 ± 0.1-10.5 ± 0.2 μmol dpm-1) with no clear site related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential loss of carbon relative to 234Th possibly due to heterotrophic degradation and/or grazing activity. Comparison of the C : Th ratios within sinking particles obtained with the drifting sediment traps showed in most cases very good agreement to those collected via ISP deployments (> 53 μm particles). Carbon export production varied between 3.5 ± 0.9 mmol m-2 d-1 and 11.8 ± 1.3 mmol m-2 d-1 from the upper 100 m and between 1.8 ± 0.9 mmol m-2 d-1 and 8.2 ± 0.9 mmol m-2 d-1 from the upper 200 m. Highest export production was found inside the PF meander with a range of 5.4 ± 0.7 mmol m-2 d-1 to 11.8 ± 1.1 mmol m-2 d-1 at 100 m depth decreasing to 5.3 ± 1.0 mmol m-2 d-1 to 8.2 ± 0.8 mmol m-2 d-1 at 200 m depth over the 19 day survey period. The impact of Fe fertilization is highest inside the PF meander with 2.9- up to 4.5-fold higher carbon flux at 200 m depth in comparison to the HNLC control station. The impact of Fe fertilization was significantly less over the central plateau (stations A3 and E-4W) and in the northern branch of the bloom (station F-L) with 1.6- up to 2.0-fold higher carbon flux compared to the reference station R. Export efficiencies (ratio of export to primary production) were particularly variable with relatively high values in the recirculation feature (6-27%) and low values (1-5%) over the central plateau (station A3) and north of the PF (station F-L) indicating spring biomass accumulation. Comparison with KEOPS1 results indicated that carbon export production is much lower during the onset of the bloom in austral spring in comparison to the peak and declining phase in late summer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
..., and hydrogen generation after a postulated loss-of-coolant accident. Therefore, both of these... quality. There are no impacts to historical and cultural resources. In addition, there are also no known...
NASA Astrophysics Data System (ADS)
Henders, Sabine; Persson, U. Martin; Kastner, Thomas
2015-12-01
Production of commercial agricultural commodities for domestic and foreign markets is increasingly driving land clearing in tropical regions, creating links and feedback effects between geographically separated consumption and production locations. Such teleconnections are commonly studied through calculating consumption footprints and quantifying environmental impacts embodied in trade flows, e.g., virtual water and land, biomass, or greenhouse gas emissions. The extent to which land-use change (LUC) and associated carbon emissions are embodied in the production and export of agricultural commodities has been less studied. Here we quantify tropical deforestation area and carbon emissions from LUC induced by the production and the export of four commodities (beef, soybeans, palm oil, and wood products) in seven countries with high deforestation rates (Argentina, Bolivia, Brazil, Paraguay, Indonesia, Malaysia, and Papua New Guinea). We show that in the period 2000-2011, the production of the four analyzed commodities in our seven case countries was responsible for 40% of total tropical deforestation and resulting carbon losses. Over a third of these impacts was embodied in exports in 2011, up from a fifth in 2000. This trend highlights the growing influence of global markets in deforestation dynamics. Main flows of embodied LUC are Latin American beef and soybean exports to markets in Europe, China, the former Soviet bloc, the Middle East and Northern Africa, whereas embodied emission flows are dominated by Southeast Asian exports of palm oil and wood products to consumers in China, India and the rest of Asia, as well as to the European Union. Our findings illustrate the growing role that global consumers play in tropical LUC trajectories and highlight the need for demand-side policies covering whole supply chains. We also discuss the limitations of such demand-side measures and call for a combination of supply- and demand-side policies to effectively limit tropical deforestation, along with research into the interactions of different types of policy interventions.
NASA Astrophysics Data System (ADS)
Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.
2014-12-01
Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.
International trade of health services: global trends and local impact.
Lautier, Marc
2014-10-01
Globalization is a key challenge facing health policy-makers. A significant dimension of this is trade in health services. Traditionally, the flow of health services exports went from North to South, with patients travelling in the opposite direction. This situation is changing and a number of papers have discussed the growth of health services exports from Southern countries in its different dimensions. Less attention has been paid to assess the real scope of this trade at the global level and its potential impact at the local level. Given the rapid development of this area, there are little empirical data. This paper therefore first built an estimate of the global size and of the growth trend of international trade in health services since 1997, which is compared with several country-based studies. The second purpose of the paper is to demonstrate the significant economic impact of this trade at the local level for the exporting country. We consider the case of health providers in the South-Mediterranean region for which the demand potential, the economic effects and the consequence for the health system are presented. These issues lead to the overall conclusion that different policy options would be appropriate, in relation to the nature of the demand. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Trade-driven relocation of air pollution and health impacts in China.
Wang, Haikun; Zhang, Yanxu; Zhao, Hongyan; Lu, Xi; Zhang, Yanxia; Zhu, Weimo; Nielsen, Chris P; Li, Xin; Zhang, Qiang; Bi, Jun; McElroy, Michael B
2017-09-29
Recent studies show that international trade affects global distributions of air pollution and public health. Domestic interprovincial trade has similar effects within countries, but has not been comprehensively investigated previously. Here we link four models to evaluate the effects of both international exports and interprovincial trade on PM 2.5 pollution and public health across China. We show that 50-60% of China's air pollutant emissions in 2007 were associated with goods and services consumed outside of the provinces where they were produced. Of an estimated 1.10 million premature deaths caused by PM 2.5 pollution throughout China, nearly 19% (208,500 deaths) are attributable to international exports. In contrast, interprovincial trade leads to improved air quality in developed coastal provinces with a net effect of 78,500 avoided deaths nationwide. However, both international export and interprovincial trade exacerbate the health burdens of air pollution in China's less developed interior provinces. Our results reveal trade to be a critical but largely overlooked consideration in effective regional air quality planning for China.International and domestic interprovincial trade of China are entangled, but their health impacts have been treated separately in earlier studies. Here Wang. quantify the complex impacts of trade on public health across China within an integrative framework.
Heat Pumps and Combined Heat and Power | Climate Neutral Research Campuses
heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a take advantage of large central heating plants and steam distribution systems that are available on climate impact. The material handling and combustion systems used for coal are often suitable for partial
NASA Astrophysics Data System (ADS)
Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik
2014-02-01
Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.
Sun, Xuejun; Wang, Kang; Kang, Shichang; Guo, Junming; Zhang, Guoshuai; Huang, Jie; Cong, Zhiyuan; Sun, Shiwei; Zhang, Qianggong
2017-01-01
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th-20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from <1 to 20.8 ng L -1 , and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m -2 yr -1 . Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, X.; Zhang, Q.
2016-12-01
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th to 20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from < 1 to 20.8 ng L-1, and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m-2 yr-1. Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate.
Arctic Ocean Freshwater: How Robust are Model Simulations
NASA Technical Reports Server (NTRS)
Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.;
2012-01-01
The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.
Wagena, Moges B; Collick, Amy S; Ross, Andrew C; Najjar, Raymond G; Rau, Benjamin; Sommerlot, Andrew R; Fuka, Daniel R; Kleinman, Peter J A; Easton, Zachary M
2018-05-16
Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO 3 -), phosphorus (P), and sediment, and emissions of nitrous oxide (N 2 O) and di-nitrogen (N 2 ). Model-average (±standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 ± 12.3%), NO 3 - (17.3 ± 6.4%), dissolved P (32.3 ± 18.4%), total P (24.8 ± 16.9%), and sediment (25.2 ± 16.6%) export, and a slight increases in N 2 O (0.3 ± 4.8%) and N 2 (0.2 ± 11.8%) emissions. Conversely, decreases in summer flow (-29.1 ± 24.6%) and the export of dissolved P (-15.5 ± 26.4%), total P (-16.3 ± 20.7%), sediment (-20.7 ± 18.3%), and NO 3 - (-29.1 ± 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N 2 O (-26.9 ± 15.7%) and N 2 (-36.6 ± 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.
2018-01-01
Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.
Impacts of geothermal energy developments on hydrological environment in hot spring areas
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2015-12-01
Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count decreased greatly after deliberation, suggesting a response from providing scientific evidence on the issue.
Earth After the Moon Forming Impact
NASA Technical Reports Server (NTRS)
Zahnle, Kevin
2006-01-01
The Hadean Earth is widely and enduringly pictured as a world of exuberant volcanism, exploding meteors, huge craters, infernal heat, and billowing sulfurous steams; i.e., a world of fire and brimstone punctuated with blows to the head. In the background the Moon looms gigantic in the sky. The popular image has given it a name that celebrates our mythic roots. A hot early Earth is an inevitable consequence of accretion. The Moon-forming impact ensured that Earth as we know it emerged from a fog of silicate vapor. The impact separated the volatiles from the silicates. It took -100 years to condense and rain out the bulk of the vaporized silicates, although relatively volatile elements may have remained present in the atmosphere throughout the magma ocena stage. The magma ocean lasted approx. 2 Myr, its lifetime prolonged by tidal heating and thermal blanketing by a thick (CO2-rich steam atmosphere. Water oceans condensed quickly after the mantle solidified, but for some 10-100 Myr the surface would have stayed warm (approx. 500 K) until the CO2 was removed into the mantle. Thereafter the faint young Sun suggests that a lifeless Earth would always have been evolving toward a bitterly cold ice world, but the cooling trend was frequently interrupted by volcanic or impact induced thaws.
Analysis and prediction of leucine-rich nuclear export signals.
la Cour, Tanja; Kiemer, Lars; Mølgaard, Anne; Gupta, Ramneek; Skriver, Karen; Brunak, Søren
2004-06-01
We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators of the subcellular location of proteins. This regulation has an impact on transcription and other nuclear processes, which are fundamental to the viability of the cell. NESs are studied in relation to cancer, the cell cycle, cell differentiation and other important aspects of molecular biology. Our conclusion from this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden Markov models in the prediction algorithm and verify the method on the most recently discovered NESs. The NES predictor (NetNES) is made available for general use at http://www.cbs.dtu.dk/.
NREL, NYSERDA, and Con Edison Partner on Home Energy Management Systems |
at large scale, the overall impact could be a win-win for both homeowners and utilities, which could sources. Founded in 1823, Con Edison provides electric, gas, and steam service to 10 million people who
Development of infrared heating technology for tomato peeling
USDA-ARS?s Scientific Manuscript database
The commercial lye and steam peeling methods used in tomato processing industry are water- and energy-intensive and have a negative impact on the environment. To develop alternative peeling methods, we conducted comprehensive studies of using infrared (IR) heating for tomato peeling. The three major...
Gunter, Amanda B; Hermans, Anne; Bosnich, Whynn; Johnson, Douglas A; Harris, Linda J; Gleddie, Steve
2016-12-01
Cereal infection by the broad host range fungal pathogen Fusarium graminearum is a significant global agricultural and food safety issue due to the deposition of mycotoxins within infected grains. Methods to study the intracellular effects of mycotoxins often use the baker's yeast model system (Saccharomyces cerevisiae); however, this organism has an efficient drug export network known as the pleiotropic drug resistance (PDR) network, which consists of a family of multidrug exporters. This study describes the first study that has evaluated the potential involvement of all known or putative ATP-binding cassette (ABC) transporters from the PDR network in exporting the F. graminearum trichothecene mycotoxins deoxynivalenol (DON) and 15-acetyl-deoxynivalenol (15A-DON) from living yeast cells. We found that Pdr5p appears to be the only transporter from the PDR network capable of exporting these mycotoxins. We engineered mutants of Pdr5p at two sites previously identified as important in determining substrate specificity and inhibitor susceptibility. These results indicate that it is possible to alter inhibitor insensitivity while maintaining the ability of Pdr5p to export the mycotoxins DON and 15A-DON, which may enable the development of resistance strategies to generate more Fusarium-tolerant crop plants. © 2016 Her Majesty the Queen in Right of Canada. MicrobiologyOpen published by John Wiley & Sons Ltd.
Cappuyns, Valérie; Kessen, Bram
2012-01-01
The choice between different options for the remediation of a contaminated site traditionally relies on economical, technical and regulatory criteria without consideration of the environmental impact of the soil remediation process itself. In the present study, the environmental impact assessment of two potential soil remediation techniques (excavation and off-site cleaning and in situ steam extraction) was performed using two life cycle assessment (LCA)-based evaluation tools, namely the REC (risk reduction, environmental merit and cost) method and the ReCiPe method. The comparison and evaluation of the different tools used to estimate the environmental impact of Brownfield remediation was based on a case study which consisted of the remediation of a former oil and fat processing plant. For the environmental impact assessment, both the REC and ReCiPe methods result in a single score for the environmental impact of the soil remediation process and allow the same conclusion to be drawn: excavation and off-site cleaning has a more pronounced environmental impact than in situ soil remediation by means of steam extraction. The ReCiPe method takes into account more impact categories, but is also more complex to work with and needs more input data. Within the routine evaluation of soil remediation alternatives, a detailed LCA evaluation will often be too time consuming and costly and the estimation of the environmental impact with the REC method will in most cases be sufficient. The case study worked out in this paper wants to provide a basis for a more sounded selection of soil remediation technologies based on a more detailed assessment of the secondary impact of soil remediation.
Environmental Myopia: The Case for Bifocals
ERIC Educational Resources Information Center
North, Chris; Hutson, Garrett
2011-01-01
Domestic and international tourists have major impacts on Aotearoa/New Zealand, both positive and negative. In 2010, tourism was the biggest export earner and continues to grow. Environmental consequences of tourism are also growing. Ways of addressing the environmental impacts caused by a mobile society continue to be debated from a variety of…
Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M; Ahlquist, Paul; Sherer, Nathan M
2016-04-01
Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.
Pocock, Ginger M.; Becker, Jordan T.; Swanson, Chad M.; Ahlquist, Paul; Sherer, Nathan M.
2016-01-01
Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent “burst-like” transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm. PMID:27070420
Digital science games' impact on sixth and eighth graders' perceptions of science
NASA Astrophysics Data System (ADS)
Peng, Li-Wei
2009-12-01
The quasi-experimental study investigated sixth and eighth graders' perceptions of science with gender, grade levels, and educational experiences as the variables. The Theory of Planned Behavior (Ajzen, 1985) claims that attitude toward the behavior, subjective norm, and perceived behavioral control play a major role in people's intentions, and these intentions ultimately impact their behavior. The study adopted a quantitative research approach by conducting a science perceptions survey for examining students' self-efficacy in learning science (i.e., perceived behavioral control), value of science (i.e., attitude toward the behavior), motivation in science (i.e., attitude toward the behavior), and perceptions of digital science games in science classes (i.e., perceived behavioral control). A total of 255 participants' responses from four rural Appalachian middle school science classrooms in southeastern Ohio were analyzed through a three-way ANCOVA factorial pre-test and post-test data analysis with experimental and comparison groups. Additionally, the study applied a semi-structured, in-depth interview as a qualitative research approach to further examine STEAM digital science games' and Fellows' impact on students' perceptions of science. Eight students in the experimental group were interviewed. Interview data were analyzed with an inductive method. The results found in the three-way ANCOVA data analysis indicated that the diversity of educational experiences was a significant factor that impacted sixth and eighth graders' perceptions of science. Additionally, the interaction of gender and educational experiences was another significant factor that impacted sixth and eighth graders' perceptions of science. The findings of the two short-answer questions identified the reasons why the participants liked or disliked science, as well as why the participants would or would not choose a career in science. The conclusions of the semi-structured, in-depth interview supported that the interviewees' perceptions of the STEAM digital science games and Fellows ranged from neutral to positive. Seven out of eight of the interviewees commented that the STEAM digital science games and Fellows enhanced the interviewees' perceptions of science and their choice of careers. Five out of eight of the interviewees intended to have careers in science.
Geothermal Electricity Production Basics | NREL
. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a California. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped . Since Yellowstone is protected from development, the only dry steam plants in the country are at The
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of terrestrially derived materials (such as nutrients, sediments, and pollutants) to the coastal ocean, but a global quantification of the fate of this delivery is lacking. Nutrients can accumulate on shelves, potentially driving high levels of primary production with negative consequences like hypoxia, or be exported across the shelf to the open ocean where impacts are minimized. Global biogeochemical models cannot resolve the relatively small-scale processes governing river plume dynamics and cross-shelf export; instead, river inputs are often parameterized assuming an "all or nothing" approach. Recently, Sharples et al. (2017), https://doi.org/10.1002/2016GB005483 proposed the SP number—a dimensionless number relating the estimated size of a plume as a function of latitude to the local shelf width—as a simple estimator of cross-shelf export. We extend their work, which is solely based on theoretical and empirical scaling arguments, and address some of its limitations using a numerical model of an idealized river plume. In a large number of simulations, we test whether the SP number can accurately describe export in unforced cases and with tidal and wind forcings imposed. Our numerical experiments confirm that the SP number can be used to estimate export and enable refinement of the quantitative relationships proposed by Sharples et al. We show that, in general, external forcing has only a weak influence compared to latitude and derive empirical relationships from the results of the numerical experiments that can be used to estimate riverine freshwater export to the open ocean.
4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...
4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Land-use and alternative bioenergy pathways for waste biomass.
Campbell, J E; Block, E
2010-11-15
Rapid escalation in biofuels consumption may lead to a trade regime that favors exports of food-based biofuels from tropical developing countries to developed countries. There is growing interest in mitigating the land-use impacts of these potential biofuels exports by converting biorefinery waste streams into cellulosic ethanol, potentially reducing the amount of land needed to meet production goals. This increased land-use efficiency for ethanol production may lower the land-use greenhouse gas emissions of ethanol but would come at the expense of converting the wastes into bioelectricity which may offset fossil fuel-based electricity and could provide a vital source of domestic electricity in developing countries. Here we compare these alternative uses of wastes with respect to environmental and energy security outcomes considering a range of electricity production efficiencies, ethanol yields, land-use scenarios, and energy offset assumptions. For a given amount of waste biomass, we found that using bioelectricity production to offset natural gas achieves 58% greater greenhouse gas reductions than using cellulosic ethanol to offset gasoline but similar emissions when cellulosic ethanol is used to offset the need for more sugar cane ethanol. If bioelectricity offsets low-carbon energy sources such as nuclear power then the liquid fuels pathway is preferred. Exports of cellulosic ethanol may have a small impact on the energy security of importing nations while bioelectricity production may have relatively large impacts on the energy security in developing countries.
Fighting the Epidemic of Nuclear Plant Leaks.
ERIC Educational Resources Information Center
Udell, Richard A.
1983-01-01
The current epidemic of steam generator tube leaks alone should put to rest the rosy future once envisioned for nuclear power. It is impossible to regulate quality into a nuclear plant; it must be built and designed that way. The economic impact of the leaks is discussed. (RM)
Cleaning, disinfection and sterilization of surface prion contamination.
McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E
2013-12-01
Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Shrimp culture in Thailand: environmental impacts and social responses.
Gronski, R
2000-01-01
Black tiger shrimp (Penaeus monodon) is a major aquaculture commodity among Southeast Asian producers and remains a popular food export world-wide. Food brokers in Japan and the United States purchase huge quantities of these farmed shrimp and return significant foreign exchange earnings to developing nations like Thailand, a major producer and exporter since the early 1990s. However, coastal areas cannot sustain intensive shrimp farm production and local growers often end up in debt. Can the needs of farm communities around the world be suitably met when they join into a corporate-managed and export-oriented food system? What are the sustainable benefits and eventual costs to susceptible localities? The shrimp industry in Thailand reveals the difficult terrain to cross and powerful obstacles to overcome if authentic sustainable development is to be realized.
Lord, Christopher L.; Ospovat, Ophir; Wente, Susan R.
2017-01-01
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae. We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. PMID:27932586
Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk
2011-09-20
A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less
Ahn-Jarvis, J H; Teegarden, M D; Schwartz, S J; Lee, K; Vodovotz, Y
2017-12-15
Food processing alters the physicochemical state of soy which can enhance chemical and enzymatic conversion of isoflavones to their aglycone forms. This study investigated the role of β-glycosidase from processed soy-ingredient mixture (SIM) or almonds, and examined the impact of isoflavone composition in mediating conversion to aglycones. β-Glycosidase activity was quantified using p-nitrophenol-β-d-glucopyranoside and SIM isoflavone extracts. Almond β-glycosidase activity was significantly (p<0.001) reduced after roasting (99% reduction) or steaming (97% reduction) compared to raw almonds. SIM β-glycosidase activity, however, increased, with steaming by 66% (p<0.001) and with roasting by 52% (p=0.022), compared to raw SIM. After incubation with β-glycosidase, percentage of aglycone (total aglycone/total isoflavones) in SIM isoflavone extracts increased significantly in raw (35%), fermented (48%), roasted (88%) and steamed (91%) SIM, compared to their initial (∼5%) compositions. Manipulation of β-glycosidase activity and isoflavone composition can be used to modulate aglycone content in soy food products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kusch, Peter; Knupp, Gerd; Hergarten, Marcus; Kozupa, Marian; Majchrzak, Maria
2006-04-28
Gas chromatography with simultaneous flame-ionization detection (FID) and a nitrogen-phosphorus detection (NPD) as well as gas chromatography-mass spectrometry (GC/MS) has been used to characterize long-chain primary alkyl amines after derivatization with trifluoroacetic anhydride (TFAA). Electron impact ionization- (EI) and negative chemical ionization (NCI) mass spectra of trifluoroacetylated derivatives of the identified tert-octadecylamines are presented for the first time. The corrosion inhibiting alkyl amines were applied in a water-steam circuit of energy systems in the power industry. Solid-phase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated tert-octadecylamines in boiler water, superheated steam and condensate samples from the power plant. The estimated values were: 89 microg l(-1)(n = 5, RSD = 7.8%), 45 microg l(-1) (n = 5, RSD = 5.4%) and 37 microg l(-1)(n = 5, RSD = 2.3%), respectively.
Production of D-lactic acid from sugarcane bagasse using steam-explosion
NASA Astrophysics Data System (ADS)
Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi
2012-03-01
This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.
Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O; Bell, S A; Heinonen, M; Cooper, J R
2016-01-01
Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, (BIPM), in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for this long standing metrological problem, such as are suggested here. PMID:26877551
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule
2014-08-19
Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in determining net emissions effects resulting from energy export projects and related policy decisions.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
Steam cooling system for a gas turbine
Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.
Downhole steam quality measurement
Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.
1985-06-19
The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.
Project delay analysis of HRSG
NASA Astrophysics Data System (ADS)
Silvianita; Novega, A. S.; Rosyid, D. M.; Suntoyo
2017-08-01
Completion of HRSG (Heat Recovery Steam Generator) fabrication project sometimes is not sufficient with the targeted time written on the contract. The delay on fabrication process can cause some disadvantages for fabricator, including forfeit payment, delay on HRSG construction process up until HRSG trials delay. In this paper, the author is using semi quantitative on HRSG pressure part fabrication delay with configuration plant 1 GT (Gas Turbine) + 1 HRSG + 1 STG (Steam Turbine Generator) using bow-tie analysis method. Bow-tie analysis method is a combination from FTA (Fault tree analysis) and ETA (Event tree analysis) to develop the risk matrix of HRSG. The result from FTA analysis is use as a threat for preventive measure. The result from ETA analysis is use as impact from fabrication delay.
Macroscopic and Molecular Investigations of Copper Sorption by a Steam-Activated Biochar
Excessive Cu concentration in water systems can negatively impact biological systems. Because Cu can form strong associations with organic functional groups, we examined the ability of biochar (an O-C-enriched organic bioenergy by-product) to sorb Cu frmo solution. In a batch e...
ERIC Educational Resources Information Center
Martorell, Almudena; Gutierrez-Recacha, Pedro; Irazabal, Marcia; Marsa, Ferran; Garcia, Mercedes
2011-01-01
Family impact (or family burden) is a concept born in the field of mental health that has successfully been exported to the ambit of intellectual disability (ID). However, differences in family impact associated with severe mental health disorders (schizophrenia), to ID or to mental health problems in ID should be expected. Seventy-two adults with…
The international hardwood lumber market and potential impacts on your bottom line
Bill Luppold; Matthew Bumgardner
2014-01-01
Even if you don't sell logs or lumber to foreign customers, the international hardwood market can impact your business in significant ways, and smart business leaders are taking notice so that they are ready for shifting market impacts. Many people believe that lumber exporting is only an opportunity for larger sawmills. However, even if you have a portable mill...
49 CFR 230.65 - Steam blocking view of engine crew.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...
USDA-ARS?s Scientific Manuscript database
Projected climate change can impact various aspects of agricultural systems, including the nutrient and sediment loads exported from agricultural fields. This study evaluated the potential changes in runoff, sediment, nitrogen, and phosphorus loads using projected climate estimates from 2041 – 2070 ...
Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Shingledecker, John P.; Kung, Steve
2016-01-01
Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scalesmore » formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several generic heat exchanger channel shapes and cross-sectional areas. Implications for the evolution of stresses in the oxide scales formed on sCO2 heat exchangers, and ensuing critical oxide thicknesses for exfoliation, were derived and compared with expectations for an equivalent conventional tubular heat exchanger in a steam cycle (for a given alloy).« less
Little, Paul; Stuart, Beth; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Rabago, David; Richards-Hall, Samantha; Williamson, Ian; Yao, Guiqing; Raftery, James; Zhu, Shihua; Moore, Michael
2016-01-01
Background: Systematic reviews support nasal saline irrigation for chronic or recurrent sinus symptoms, but trials have been small and few in primary care settings. Steam inhalation has also been proposed, but supporting evidence is lacking. We investigated whether brief pragmatic interventions to encourage use of nasal irrigation or steam inhalation would be effective in relieving sinus symptoms. Methods: We conducted a pragmatic randomized controlled trial involving adults (age 18–65 yr) from 72 primary care practices in the United Kingdom who had a history of chronic or recurrent sinusitis and reported a “moderate to severe” impact of sinus symptoms on their quality of life. Participants were recruited between Feb. 11, 2009, and June 30, 2014, and randomly assigned to 1 of 4 advice strategies: usual care, daily nasal saline irrigation supported by a demonstration video, daily steam inhalation, or combined treatment with both interventions. The primary outcome measure was the Rhinosinusitis Disability Index (RSDI). Patients were followed up at 3 and 6 months. We imputed missing data using multiple imputation methods. Results: Of the 961 patients who consented, 871 returned baseline questionnaires (210 usual care, 219 nasal irrigation, 232 steam inhalation and 210 combined treatment). A total of 671 (77.0%) of the 871 participants reported RSDI scores at 3 months. Patients’ RSDI scores improved more with nasal irrigation than without nasal irrigation by 3 months (crude change −7.42 v. −5.23; estimated adjusted mean difference between groups −2.51, 95% confidence interval −4.65 to −0.37). By 6 months, significantly more patients maintained a 10-point clinically important improvement in the RSDI score with nasal irrigation (44.1% v. 36.6%); fewer used over-the-counter medications (59.4% v. 68.0%) or intended to consult a doctor in future episodes. Steam inhalation reduced headache but had no significant effect on other outcomes. The proportion of participants who had adverse effects was the same in both intervention groups. Interpretation: Advice to use steam inhalation for chronic or recurrent sinus symptoms in primary care was not effective. A similar strategy to use nasal irrigation was less effective than prior evidence suggested, but it provided some symptomatic benefit. Trial registration: ISRCTN, no. 88204146. PMID:27431306
Little, Paul; Stuart, Beth; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Rabago, David; Richards-Hall, Samantha; Williamson, Ian; Yao, Guiqing; Raftery, James; Zhu, Shihua; Moore, Michael
2016-09-20
Systematic reviews support nasal saline irrigation for chronic or recurrent sinus symptoms, but trials have been small and few in primary care settings. Steam inhalation has also been proposed, but supporting evidence is lacking. We investigated whether brief pragmatic interventions to encourage use of nasal irrigation or steam inhalation would be effective in relieving sinus symptoms. We conducted a pragmatic randomized controlled trial involving adults (age 18-65 yr) from 72 primary care practices in the United Kingdom who had a history of chronic or recurrent sinusitis and reported a "moderate to severe" impact of sinus symptoms on their quality of life. Participants were recruited between Feb. 11, 2009, and June 30, 2014, and randomly assigned to 1 of 4 advice strategies: usual care, daily nasal saline irrigation supported by a demonstration video, daily steam inhalation, or combined treatment with both interventions. The primary outcome measure was the Rhinosinusitis Disability Index (RSDI). Patients were followed up at 3 and 6 months. We imputed missing data using multiple imputation methods. Of the 961 patients who consented, 871 returned baseline questionnaires (210 usual care, 219 nasal irrigation, 232 steam inhalation and 210 combined treatment). A total of 671 (77.0%) of the 871 participants reported RSDI scores at 3 months. Patients' RSDI scores improved more with nasal irrigation than without nasal irrigation by 3 months (crude change -7.42 v. -5.23; estimated adjusted mean difference between groups -2.51, 95% confidence interval -4.65 to -0.37). By 6 months, significantly more patients maintained a 10-point clinically important improvement in the RSDI score with nasal irrigation (44.1% v. 36.6%); fewer used over-the-counter medications (59.4% v. 68.0%) or intended to consult a doctor in future episodes. Steam inhalation reduced headache but had no significant effect on other outcomes. The proportion of participants who had adverse effects was the same in both intervention groups. Advice to use steam inhalation for chronic or recurrent sinus symptoms in primary care was not effective. A similar strategy to use nasal irrigation was less effective than prior evidence suggested, but it provided some symptomatic benefit. ISRCTN, no. 88204146. © 2016 Canadian Medical Association or its licensors.
NASA Technical Reports Server (NTRS)
1974-01-01
An econometric investigation into the markets for agricultural commodities is summarized. An overview of the effort including the objectives, scope, and architecture of the analysis and the estimation strategy employed is presented. The major empirical results and policy conclusions are set forth. These results and conclusions focus on the economic importance of improved crop forecasts, U.S. exports, and government policy operations. A number of promising avenues of further investigation are suggested.
Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo
2014-02-15
Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production. Copyright © 2013 Elsevier B.V. All rights reserved.
49 CFR 230.63 - Smoke box, steam pipes and pressure parts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and...
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
NASA Astrophysics Data System (ADS)
VanLoocke, A.; Bernacchi, C. J.; Twine, T. E.; Kucharik, C. J.
2012-12-01
Numerous socio-economic and environmental pressures have driven the need to increase domestic renewable energy production in the Midwest. The primary attempt at addressing this need has been to use maize; however, the leaching of residual nitrate from maize fertilizer into runoff drives the formation of the Gulf of Mexico hypoxic or "Dead" zone which can have significant environmental impacts on the marine ecosystems. As a result of the threat to benthic organisms and fisheries in this region, The Mississippi Basin/Gulf of Mexico Task Force has set in place goals to reduce the size of the hypoxic zone from the current size of ~ 20,000 km2 to < 5000 km2 by the year. It is predicted that annual dissolved inorganic nitrate (DIN) export would have to decrease by 30 to 55% to meet this goal. An alternative option to meet the renewable energy needs while reducing the environmental impacts associated with DIN export is to produce high-yielding, low fertilizer input perennial grasses such as switchgrass and miscanthus. Miscanthus and switchgrass have been shown to greatly reduce nitrate leaching at the plot scale, even during the establishment phase. This reduction in leaching is attributed to the perennial nature and the efficient recycling of nutrients via nutrient translocation. While these feedstocks are able to achieve higher productivity than maize grain with fewer inputs, they require more water, presenting the potential for environmental impacts on regional hydrologic cycle, including reductions in streamflow. The goal of this research is to determine the change in streamflow in the Mississippi-Atchafalaya River Basin (MARB) and the export of nitrogen from fertilizer to the Gulf of Mexico. To address this goal, we adapted a vegetation model capable of simulating the biogeochemistry of current crops as well as miscanthus and switchgrass, the Integrated Biosphere Simulator - agricultural version (Agro-IBIS) and coupled it with a hydrology model capable of simulating streamflow and nitrogen export, the Terrestrial Hydrology Model with Biogeochemistry. Simulations were conducted at varying fertilizer application rates and fraction coverages of miscanthus and switchgrass across the MARB. Data analysis indicated that there were reductions in runoff and streamflow throughout the MARB, with the largest differences occurring in drier portions of the regions. However differences in streamflow were only statistically resolved when miscanthus production was above 25% coverage and switchgrass above 35%. Compared to streamflow, statistically significant reductions in nitrogen export occurred at lower percent coverage, with unfertilized miscanthus having significant reductions at 10% and switchgrass at 25% coverage respectively, however this effect was smaller at higher fertilizer application rates. These results indicate that, given targeted management strategies, there is potential for miscanthus and switchgrass to provide key ecosystem services by reducing the export of DIN, while avoiding hydrologic impacts of reduced streamflow.
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Infectious diseases affect marine fisheries and aquaculture economics
Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.
2015-01-01
Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.
Infectious Diseases Affect Marine Fisheries and Aquaculture Economics
NASA Astrophysics Data System (ADS)
Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.
2015-01-01
Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.
Infectious diseases affect marine fisheries and aquaculture economics.
Lafferty, Kevin D; Harvell, C Drew; Conrad, Jon M; Friedman, Carolyn S; Kent, Michael L; Kuris, Armand M; Powell, Eric N; Rondeau, Daniel; Saksida, Sonja M
2015-01-01
Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.
Potential Impacts of Urban Land Expansion on Asian Outflows of Air Pollutants
NASA Astrophysics Data System (ADS)
Wei, T.; Liu, J.; Tao, S.; Ban-Weiss, G. A.
2016-12-01
We investigate the impacts of urban land expansion over Eastern China (EC) on the export of black carbon (BC), carbon monoxide (CO) and ozone (O3) to the West Pacific during the January, April, July and October of 2009, using WRF/Chem model coupled with the tracers tagging technique and an up-to-date single layer urban canopy scheme updated with the treatment of urban hydrological processes. Our model simulations could reproduce well the vertical profiles of Asian outflows of BC and CO observed during the A-FORCE period (March to April of 2009). Over urbanizing areas, increment in urban land fraction could linearly elevate primary pollutants from the lower boundary layer to higher altitudes, and perturb the thermal, hydrological, and kinetic exchange processes between land surface and the atmosphere aloft through all seasons (such local impacts highest in July but lowest in January). Furthermore, we find robust linear relationships exist between urban land fraction (averaged over EC) and export of BC emitted from EC across meridional planes over the western Pacific (e.g., 140 °E). Specifically, each 10% increase in urban land fraction over EC enhances the eastward mass fluxes of BC by about 5%-10% in January and July, and 10%-20% in April and October, respectively, in the free troposphere, which is the dominant pathway for Asian outflows. Such a linear relationship is relatively weaker for CO and only appears in April and October. The different response patterns between BC and CO arise from their distinct physical and chemical properties. Even with decreased vegetation (and reduced biogenic emissions), the O3 concentrations at the surface and 800 hPa over urbanizing areas both tend to increase. However, no clear trend is observed for the export of O3 over West Pacific for all four months. Urban land expansion facilitates the uplift of local pollutants, but also changes the large-scale circulation pattern (the perturbation cyclone over the downwind Pacific acts to impede the eastward transpacific transport), both playing important roles on the efficiency that Asian emissions are exported. Our finding indicates that the extensive urban land expansion would significantly impact the local climate and air quality, which also have a large impact on long-range transboundary transport.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
50 CFR 648.21 - Procedures for determining initial annual amounts.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; virtual population analysis results; levels of noncompliance by harvesters or individual states; impact of...: (A) Total world export potential of mackerel producing countries. (B) Total world import demand of...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Examining the impacts of oil price changes on economic indicators: A panel approach
NASA Astrophysics Data System (ADS)
Lim, Kah Boon; Sek, Siok Kun
2017-04-01
The impact of oil price on global economy is evident from many studies and research findings. In this study, we extend the research on examining the impact of oil price changes on economic indicators in terms of economic growth and inflation by comparing different groups of economies (high income versus low income countries and oil importing versus oil exporting countries). Our main objective is to reveal if such impact varies across country income level/ development and oil dependency. In addition, we also seek to compare the impacts of oil price relative to the other factors indicators (money supply, foreign direct investment, exchange rate, government expenditure, inflation and gross domestic product) on economy. For the purpose of this study, the co-integration regression (DOLS and FMOLS) techniques are applied to the panel dataset of four groups of economies which contain 10 countries in each panel dataset. The analysis results show that oil price is not the main determinant although it can have a significant impact on inflation and economic growth across all groups of economies. The three main determinants of economic growth are exchange rate, aggregate demand and government expenditure while the determinants of inflation are aggregate supply and exchange rate. Furthermore, our result also concludes that oil price has a positive impact in oil exporting economies but it shows a negative impact in oil importing economies due to the oil dependency factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Weiwei; Randerson, James T.; Moore, J. Keith
We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less
Fu, Weiwei; Randerson, James T.; Moore, J. Keith
2016-09-16
We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less
International food trade reduces environmental effects of nitrogen pollution in China.
Shi, Yaxing; Wu, Shaohua; Zhou, Shenglu; Wang, Chunhui; Chen, Hao
2016-09-01
The globalization of agricultural trade has dramatically altered global nitrogen flows by changing the spatial pattern of nitrogen utilization and emissions at a global scale. As a major trading country, China uses a large amount of nitrogen, which has a profound impact on global nitrogen flows. Using data on food production and trade between China and 26 other countries and regions, we calculated nitrogen inputs and outputs in food production ecosystem in each country. We estimated nitrogen flows in international food trade and analyzed their impact on nitrogen pollution in China. We divided nitrogen flows into embodied and virtual nitrogen flows. Embodied nitrogen is taken up by the plant and incorporated into the final food product, whereas virtual nitrogen is lost to the environment throughout the food production process and is not contained in the final food product. Our results show that China mainly imports food products from America and Asia, accounting for 95 % of all imported food. Asia (mainly Japan) and Europe are the main exporters of food from China, with Japan and the EU accounting for 17 and 10 % of all exported food, respectively. Total nitrogen inputs and outputs in food production in China were 55,400 and 61,000 Gg respectively, which were much higher than in other countries. About 1440 and 950 Gg of embodied and virtual nitrogen respectively flow into China through the food trade, mainly from food-exporting countries such as the USA, Argentina, and Brazil. Meanwhile, 177 and 160 Gg of embodied and virtual nitrogen respectively flow out of China from the export of food products, mainly to Japan. China's net food imports have reduced 720 and 458 Gg for nitrogen utilization and outputs, respectively, which accounted for 1.3 and 0.78 % of total nitrogen inputs and outputs in China. These results suggest that food trade in China has a profound effect on nitrogen flows and has greatly reduced environmental impacts on nitrogen pollution in China.
Analysis of experimental characteristics of multistage steam-jet electors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-02-01
A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.
5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...
5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Steamer of steam circulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onodera, M.
1986-09-23
A conveyor steamer is described which consists of: a room enclosed with heat-insulated walls, floor, and ceiling, the room having an entrance and an exit for goods to be steamed, a conveyor means for carrying the goods to be steamed, the conveyor means traversing into the entrance of the room, through the room, and out of the exit of the room; a source of heated primary steam; first pipe means, arranged beneath the conveyor means, for jetting the heated primary steam upwardly from across the floor of the room; second pipe means disposed across the entire ceiling of the roommore » arranged above the conveyor means, for scavenging spent steam from across the entire ceiling of the room; and an ejector-condenser means, interconnected between the first pipe means, the source of primary heated steam and the second pipe means, for mixing the spent steam from the second pipe means with the heated primary steam in the first pipe means; whereby the spent steam mixed with the heated primary steam is caused to recirculate in the first pipe means through the room, thus saving energy and consuming less heated primary steam so that cost reductions will result.« less
Wilson, Ian D.; Wesorick, Ronald R.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.
NASA Astrophysics Data System (ADS)
Sheppard, S. C.; Bittman, S.
2015-02-01
Ammonia (NH3) emissions from agriculture to the atmosphere, along with emissions of other pollutants from a variety of sources, are of concern to agriculture worldwide. National emissions from agricultural sources in Canada are linked to domestic consumption and export demand for agricultural products. The onus to limit emissions is often directed to the producers, but the marketplace and consumer are also responsible for the environmental impact of their choices. This objective of this study was to quantitatively link agricultural NH3 emissions to per person consumption of food and protein and to agricultural exports from Canada. There are substantial differences in the NH3 emissions per unit consumed protein among the various food types. As a result, shifts in the Canadian diet have had a large impact on relative per person NH3 emissions. From 1981 to 2006, the total per person protein intake in the Canadian diet increased about 5%, but NH3 emission related to that diet decreased 20%. This is largely related to consumption of less beef, which has a high emission per unit of meat or protein, and more poultry and cereals which have much lower emissions. Although these changes in diet were not because of environmental concerns by the consumers, they had substantial effects on national-level emissions. These consumer driven effects may well exceed the possible effects of best management practices intended to address NH3 emissions at the producer level. Note that the Canadian population has increased 50% from 1981 to 2006 and meat and egg exports increased 570%, so that total emissions from food production in Canada have increased. Our results imply there will be further effects on national NH3 emissions because of dietary and export drivers that are generally outside the scope of agro-environmental policy.
The geomicrobiology of the Greenland Ice Sheet: impact on DOC export (Invited)
NASA Astrophysics Data System (ADS)
Wadham, J. L.; Stibal, M.; Lawson, E. C.; Barnett, M. J.; Hasan, F.; Telling, J.; Anesio, A.; Lis, G.; Cullen, D.; Butler, C.; Tranter, M.; Nienow, P. W.
2010-12-01
The Greenland Ice Sheet (GrIS) is the largest mass of ice in the northern hemisphere, and contributes ~370 km3 in runoff annually to the Arctic Ocean. While recent work has highlighted runoff increases of up to 100% from the GrIS over the next century, very little is known about the associated impacts upon rates of sediment-bound and dissolved organic carbon export from the ice sheet to the coastal ocean. This is relevant given recent work that has suggested that the high proportion of labile dissolved organic carbon (DOC) present in glacial runoff may be important in sustaining the productivity of ecosystems downstream. Here we report the phylogenetic and functional diversity of micro-organisms inhabiting the surface and basal regions of the Greenland Ice Sheet (at Leverett Glacier, SW Greenland), and whose activity influences the biogeochemical composition of runoff. Real time PCR data on runoff, together with 16S-rRNA bacterial clone libraries on sediments, demonstrate a subglacial microbial community that contrasts phylogenetically and functionally with the ice sheet surface ecosystem. We envisage that large sectors of the subglacial environment are microbially active, with overridden paleosols and in-washed surface organic matter providing a carbon substrate for a range of metabolic pathways. This includes methanogenesis which proceeds at rates similar to deep ocean sediments and via a CO2/H2 pathway. These subglacial microbial communities serve to chemically modify the DOC composition of meltwater inputs from the ice sheet surface and modulate the reactivity of bulk DOC exported in runoff. Evidence for subglacial microbial influences on DOC in runoff includes elevated concentrations of dissolved carbohydrates (e.g. glucose and fructose of up to 1 μmol/L), which are preferentially exported during subglacial outburst events. We examine the temporal changes in DOC export in runoff from the ice sheet over a full melt season, and consider how changes in total runoff over the coming century may perturb this contribution.
Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T
2012-03-16
Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0.1-100 ppm (v/v). A complete analysis can be conducted in less than 10 min. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.
Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico
2018-03-22
The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.
Holt, J; Leach, A W; Johnson, S; Tu, D M; Nhu, D T; Anh, N T; Quinlan, M M; Whittle, P J L; Mengersen, K; Mumford, J D
2018-02-01
The production of an agricultural commodity involves a sequence of processes: planting/growing, harvesting, sorting/grading, postharvest treatment, packing, and exporting. A Bayesian network has been developed to represent the level of potential infestation of an agricultural commodity by a specified pest along an agricultural production chain. It reflects the dependency of this infestation on the predicted level of pest challenge, the anticipated susceptibility of the commodity to the pest, the level of impact from pest control measures as designed, and any variation from that due to uncertainty in measure efficacy. The objective of this Bayesian network is to facilitate agreement between national governments of the exporters and importers on a set of phytosanitary measures to meet specific phytosanitary measure requirements to achieve target levels of protection against regulated pests. The model can be used to compare the performance of different combinations of measures under different scenarios of pest challenge, making use of available measure performance data. A case study is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model parameters and results are illustrative and do not imply a particular level of fruit fly infestation of these exports; rather, they provide the most likely, alternative, or worst-case scenarios of the impact of measures. As a means to facilitate agreement for trade, the model provides a framework to support communication between exporters and importers about any differences in perceptions of the risk reduction achieved by pest control measures deployed during the commodity production chain. © 2017 Society for Risk Analysis.
Lord, Christopher L; Ospovat, Ophir; Wente, Susan R
2017-03-01
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100 Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100 Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100 Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100 Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100 Δ and msn5 Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. © 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Kisilidjan hf - A unique diatomite plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigurdsson, F.
This paper gives a short description of Kisilidjan hf. (The Icelandic Diatomite Plant, Ltd.), a description of the production, the use of geothermal steam in the plant, steam supply, steam use, steam price, experience associated with the use of steam, and some conclusions.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Impact of the climate change on the performance of the steam and gas turbines in Russia
NASA Astrophysics Data System (ADS)
Fedotova (Kasilova, E. V.; Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.
2017-11-01
The power generating industry is known to be vulnerable to the climate change due to the deteriorating efficiency of the power equipment. Effects for Russia are not completely understood yet. But they are already detected and will be more pronounced during the entire current century, as the Russian territory is one of the areas around the world where the climate change is developing most rapidly. An original climate model was applied to simulate the change of the air temperature across Russia for the twenty-first century. The results of the climate simulations were used to conduct impact analysis for the steam and gas turbine performance taking into account seasonal and spatial heterogeneity of the climate change across the Russian territory. Sensitivity of the turbines to the climatic conditions was simulated using both results of fundamental heat transfer research and empirical performance curves for the units being in operation nowadays. The integral effect of the climate change on the power generating industry was estimated. Some possible challenges and opportunities resulted from the climate change were identified.
Sources and potential application of waste heat utilization at a gas processing facility
NASA Astrophysics Data System (ADS)
Alshehhi, Alyas Ali
Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.
A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2
Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.
2016-01-01
The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...
49 CFR 230.21 - Steam locomotive number change.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed...
Experimental research of heterogeneous nuclei in superheated steam
NASA Astrophysics Data System (ADS)
Bartoš, Ondřej; Kolovratník, Michal; Šmíd, Bohuslav; Hrubý, Jan
2016-03-01
A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.
Comparison of geothermal power conversion cycles
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1976-01-01
Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.
Controversy, Conflict and Compromise: A History of the Lower Snake River Development
1994-01-01
floods. Most of the Bonneville Flood’s impact can be seen along the upper Snake because the Missoula floods covered all evidence of Bonneville along the...engines, but found that an unsatisfactory long-term solution. He then bought the Starbuck Electric Power Company and ran a line the dozen or so miles...Steams papers, Cage4148, WSU MASC. [13) For excellent descriptions of the international grain trade of the 19th century and its impact on Inland
Cooling of core debris and the impact on containment pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.W.
1981-07-01
An evaluation of the core debris/water interactions associated with a postulated meltdown of a PWR and its impact on the containment pressure is presented. In the event of a complete core meltdown in a PWR, the interaction of molten debris with water in the bottom head of the reactor vessel could result in complete evaporation of water and breach of the vessel wall. In the reactor cavity, the debris-water interaction may lead to a rapid generation of steam, which could lead to pressures beyond the containment building limit. Previous analysis of the debris-water interactions with the MARCH code was basedmore » on the single-sphere model, in which the internal and surface heat transfer are the controlling mechanisms. In this study, the potential in-vessel and ex-vessel debris-water interactions are analyzed in terms of porous debris bed models. The debris cooling and steam generation are controlled by the hydrodynamics of the two-phase flow. The porous models developed by Dhir-Catton and by Lipinski were examined and used to test their impact on containment dynamics. The tests include several particle sizes from 1 mm to 50 mm. Detailed transient data on the pressure, temperature, and mass of steam in the containment building was obtained for all cases. Bands of pressure variation which represents the possible pressure rise under accident conditions were obtained for the Dhir-Catton model and for the Lipinski model. The results show that, for the case of a wet cavity, the magnitude of the predicted pressure rises is not strongly affected by the different models. The occurrence of the peak pressure, however, is considerably delayed by using the debris bed model. For the case of a dry cavity, a large reduction of the peak pressure is obtained by using the debris bed model.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Steam Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... inside the cab and one accessible from the ground on each exterior side of the steam locomotive. ...
Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti
2015-11-01
Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.
Towards an energy-friendly and cleaner solvent-extraction of vegetable oil.
Kong, Weibin; Baeyens, Jan; Qin, Peiyong; Zhang, Huili; Tan, Tianwei
2018-07-01
The extraction of vegetable oils is an energy-intensive process. It has moreover a significant environmental impact through hexane emissions and through the production of organic-loaded wastewater. A rice bran oil process was selected as the basis, since full data were available. By using Aspen Plus v8.2 simulation, with additional scripts, several improvements were examined, such as using heat exchanger networks, integrating a Vapor Recompression Heat Pump after the evaporation and stripping, and examining a nitrogen stripping of hexane in the rice bran meal desolventizing unit followed by a gas membrane to recover hexane. Energy savings by the different individual and combined improvements are calculated, and result in a 94.2% gain in steam consumption and a 73.8% overall energy saving. The power consumption of the membrane unit reduces the overall energy savings by about 5%. Hexane separation and enrichment by gas membranes facilitates its condensation and re-use, while achieving a reduction of hexane emissions by over 50%. Through the considerable reduction of required steam flow rates, 61% of waste water is eliminated, mostly as organic-loaded steam condensate. Through overall energy savings, 52% of related CO 2 emissions are eliminated. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.
2013-12-01
Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.
Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations
NASA Astrophysics Data System (ADS)
Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.
2017-04-01
Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.
Effects of virtual water flow on regional water resources stress: A case study of grain in China.
Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute
2016-04-15
Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.
The impact of trade costs on rare earth exports : a stochastic frontier estimation approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanyal, Prabuddha; Brady, Patrick Vane; Vugrin, Eric D.
The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second,more » the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.« less
A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism
Williams, Emily A.; Mba Medie, Felix; Bosserman, Rachel E.; Johnson, Benjamin K.; Reyna, Cristal; Ferrell, Micah J.; Champion, Matthew M.; Abramovitch, Robert B.
2016-01-01
ABSTRACT Mycobacterial pathogens use the ESAT-6 system 1 (Esx-1) exporter to promote virulence. Previously, we used gene disruption and complementation to conclude that the MMAR_0039 gene in Mycobacterium marinum is required to promote Esx-1 export. Here we applied molecular genetics, proteomics, and whole-genome sequencing to demonstrate that the MMAR_0039 gene is not required for Esx-1 secretion or virulence. These findings suggest that we initially observed an indirect mechanism of genetic complementation. We identified a spontaneous nonsense mutation in a known Esx-1-associated gene which causes a loss of Esx-1 activity. We show that the Esx-1 function was restored by nonsense suppression. Moreover, we identified a polar mutation in the ppsC gene which reduced cellular impermeability but did not impact cytotoxicity in macrophages. Our studies reveal insight into Esx-1 export, nonsense suppression, and cell envelope lipid biogenesis. PMID:27789543
Efflux systems in bacteria and their metabolic engineering applications.
Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F
2015-11-01
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
49 CFR 230.90 - Draw gear between steam locomotive and tender.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive...
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, Paul W.; Bannister, Ronald L.
1995-01-01
A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
NASA Astrophysics Data System (ADS)
Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.
2008-08-01
Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×10 6 t y -1) was one order of magnitude lower than export associated with natural resuspension (8.5×10 6 t y -1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.
The Chinese import ban and its impact on global plastic waste trade
Wang, Shunli
2018-01-01
The rapid growth of the use and disposal of plastic materials has proved to be a challenge for solid waste management systems with impacts on our environment and ocean. While recycling and the circular economy have been touted as potential solutions, upward of half of the plastic waste intended for recycling has been exported to hundreds of countries around the world. China, which has imported a cumulative 45% of plastic waste since 1992, recently implemented a new policy banning the importation of most plastic waste, begging the question of where the plastic waste will go now. We use commodity trade data for mass and value, region, and income level to illustrate that higher-income countries in the Organization for Economic Cooperation have been exporting plastic waste (70% in 2016) to lower-income countries in the East Asia and Pacific for decades. An estimated 111 million metric tons of plastic waste will be displaced with the new Chinese policy by 2030. As 89% of historical exports consist of polymer groups often used in single-use plastic food packaging (polyethylene, polypropylene, and polyethylene terephthalate), bold global ideas and actions for reducing quantities of nonrecyclable materials, redesigning products, and funding domestic plastic waste management are needed. PMID:29938223
Laboratory investigations of the physics of steam flow in a porous medium
Herkelrath, W.N.; Moench, A.F.
1982-01-01
Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.
NASA Astrophysics Data System (ADS)
Terry, R. L.; Funning, G.; Floyd, M.
2017-12-01
The Geysers geothermal field in California, which provides a large portion of northern California's power, has seen declining steam pressures over the past three decades, accompanied by surface subsidence. Together, these two phenomena are likely the result of the exploitation of the reservoir without adequate time for natural restoration. To combat the decline in steam pressures, The Geysers began injecting imported wastewater into the geothermal reservoir in 1997 and expanded injection in 2003. In 2012 and 2013, we installed three continuously recording GPS stations in The Geysers to closely monitor crustal deformation due to both the extraction of steam and the injection of wastewater. To assess the impact of the current injection and extraction activities on the geothermal reservoir, we analyze the position time-series from these GPS stations alongside wastewater injection and steam extraction data. We use common-mode filtering to remove any regionally-correlated noise from our GPS time series, and also estimate and subtract any seasonal signals present. To predict the effect of injection and production on surface movement, we summed the monthly time series of well data within a rectangular grid framework. We then use an array of Mogi sources based on each grid cell's total volume change to calculate the expected surface deformation due to these volume changes at depth. The temporal resolution provided by GPS allows us to characterize more accurately the properties of the subsurface geothermal reservoir related to forcing. For example, based on a similar spatiotemporal relationship between injection and seismicity, we hypothesize that there may be a delayed deformation response following injection, related to the permeability of the reservoir, and are undertaking detailed comparisons between our time series data to identify this response. Overall changes in the sense and rate of vertical motion in the field due to injection over time are also expected. We anticipate that the impact of discovering a relationship between injection and surface deformation will be of great importance in maintaining and managing geothermal resources in the future.
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
49 CFR 230.21 - Steam locomotive number change.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed... all documentation related to the steam locomotive by showing the old and new numbers: Old No. 000 New...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
7 CFR 160.8 - Steam distilled wood turpentine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...
21 CFR 880.6880 - Steam sterilizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam. (b...
Origin and transport of chloride in superheated geothermal steam
Truesdell, A.H.; Haizlip, J.R.; Armannsson, H.; D'Amore, F.
1989-01-01
Hydrogen chloride (HCl) is a known component of some volcanic gases and volcanic-related hydrothermal systems. It has recently been discovered in superheated steam in exploited geothermal systems, usually as a result of HCl-induced corrosion of well casing and steam gathering systems. Evaluation of four geothermal systems (Tatun, Taiwan; Krafla, Iceland; Larderello, Italy and The Geysers, USA) which produce CI-bearing steam provides evidence for the presence of Cl as HCl and the natural reservoir conditions which can produce HCl-bearing steam. Theoretical calculations defining the physical and chemical conditions of the reservoir liquid which can produce HCl-bearing steam are presented. The main factors are pH, temperature and Cl concentration. Lower pH, higher temperature and higher chlorinity allow more HCl to be volatilized with steam. In order to reach the surface in steam, the HCl cannot contact liquid water in which it is more soluble, essentially limiting transport to superheated steam. Temperature, pH and Cl concentration of reservoir liquids in each of the geothermal systems evaluated combine differently to produce HCl-bearing steam. ?? 1989.
NASA Astrophysics Data System (ADS)
Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin
To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, P.W.; Bannister, R.L.
1995-07-11
A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.
The Impact of Imports and Exports on a Country's Quality of Life
ERIC Educational Resources Information Center
Sirgy, M. Joseph; Lee, Dong-Jin; Miller, Chad; Littlefield, James E.; Atay, Eda Gurel
2007-01-01
This paper is a sequel to Sirgy et al. ("Social Ind. Res." 68(3) (2004) 251), "The Impact of Globalization on a Country's Quality of Life: Toward an Integrated Model" published in "Social Indicators Research." That paper conceptualized globalization in terms of the free flow of four major components: (1) goods and services, (2) people, (3)…
Microbial and Chemical Shelf-Life of Vacuum Steam-Pasteurized Whole Flaxseed and Milled Flaxseed.
Shah, Manoj; Eklund, Bridget; Conde Lima, Luiz Gustavo; Bergholz, Teresa; Hall, Clifford
2018-02-01
Flaxseed is an oilseed with many health benefits. Flaxseed may be consumed raw or in processed form. In the raw form, there is a potential for microbial contamination. Several pasteurization methods have been used to reduce microbial contamination. However, such treatments may affect chemical properties of foods. In this study, vacuum steam-pasteurization was conducted on whole flaxseed and milled flaxseed using 4 different conditions (3 min at 75 °C, 3 min at 90 °C, 9 min at 90 °C, and 3 min at 105 °C). Microbial and chemical shelf-life was monitored for 28 wk (36 wk for aerobic plate counts). Significant reduction (P < 0.05) in microbial counts (total aerobic plate counts, and yeast and mold counts) occurred after pasteurization and during storage of both whole flaxseed and milled flaxseed. Although both the moisture content and a w increased after pasteurization, they were similar to the unpasteurized samples during storage. Peroxide value, free fatty acid, headspace volatiles, fatty acid profiles, oil content, and secoisolariciresinol diglucoside (SDG) content were chemical indices measured. Only small changes were observed in the chemical indices after vacuum steam-pasteurization for both pasteurized whole flaxseed and milled flaxseed as compared to the unpasteurized flaxseed at most instances. Vacuum steam-pasteurization can be used as a safe alternative for the microbial reduction of low-moisture products, such as flaxseed, without significantly affecting chemical stability. Vacuum steam-pasteurization can be effectively used for the treatment of whole flaxseed and milled flaxseed to reduce spoilage microorganisms, such as total aerobes and yeasts and molds. In addition, this pasteurization method had minimal effects on several chemical shelf-life parameters with positive impact on SDG of the processed flaxseed. © 2018 Institute of Food Technologists®.
Forney, Charles F; Fan, Lihua; Bezanson, Gregory S; Ells, Timothy C; LeBlanc, Denyse I; Fillmore, Sherry
2018-04-01
Rapid methods to detect bacterial pathogens on food and strategies to control them are needed to mitigate consumer risk. This study assessed volatile emissions from whole cantaloupe melons (Cucumis melo) as an indicator of Listeria contamination and in response to steam vapor decontamination. Cantaloupe were inoculated with Listeria innocua, a nonpathogenic surrogate for L. monocytogenes, then exposed to 85 °C steam for 240 s (4 min) followed by rapid chilling and storage for 0, 7, 10, or 14 days at 4, 7, or 10 °C. Volatile emissions from whole melons were collected on Carbopack B/Carboxen 1000 headspace collection tubes and analyzed by gas chromatography-mass spectroscopy following thermal desorption. Introduction of L. innocua to cantaloupe rind resulted in a reduction of aromatic compound emission. However, this response was not unique to Listeria contamination in that steam vapor treatment also reduced emission of these compounds. As well, steam vapor treatment diminished the number of viable Listeria and indigenous microflora while causing physiological injury to melon rind. Heat treatment had no significant effects on flesh firmness, color, titratable acidity, or soluble solids, but the production of typical aroma volatiles during postharvest ripening was inhibited. No unique volatile compounds were detected in Listeria contaminated melons. While changes in volatile emissions were associated with Listeria inoculation, they could not be differentiated from heat treatment effects. Results indicate that volatile emissions cannot be used as a diagnostic tool to identify Listeria contamination in whole cantaloupe melons. The detection of pathogen contamination on fresh produce is a continuing challenge. Using a nondestructive screening method, the presence of surrogate Listeria innocua on fresh whole cantaloupes was shown to alter the emissions of aromatic volatiles from whole cantaloupes. However, these altered emissions were not found to be unique to Listeria spp. and therefore cannot be used as a definitive indicator of Listeria contamination. © 2018 Institute of Food Technologists®.
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick
2016-01-01
Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
Steam dispatching control system demonstration at Fort Benjamin Harrison. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diks, C.L.; Moshage, R.E.; Lin, M.C.
1993-07-01
Currently most Army Central steam heating systems operate by maintaining a constant steam pressure regardless of actual steam demand. This method offers some operational convenience, but is often the cause of significant energy losses. Researchers at the U.S. Army Construction Engineering Research Laboratories (USACERL) have investigated the Steam Dispatching Control System (SDCS), a control system that lowers supply steam pressure-and therefore steam temperature-to slightly above the amount needed to meet the steam demand. The lower Steam temperature and reduction in steam loss (from leaks and faulty traps) result in lower heat losses and higher energy savings. Limiting steam pressure canmore » diminish the amount of excess heat loss in the distribution system while still meeting the demand. The Army's Facilities Engineering Applications Program (FEAP) chose Fort Benjamin Harrison, IN, as the Army demonstration site for SDCS. Researchers found that use of SDCS is technically and economically viable improvement over current operating procedures. Analysis based on demonstration results show that the simple payback for SDCS is less than 1 year. The results of this demonstration are generally applicable to installations with a large central heating plant and a substantial steam distribution system. Findings, indicate that energy savings form SDCS are significant regardless of what type of fuel powers the boiler. The authors note that, during the initial evaluation of a potential SDCS application, attention must be paid to the condensate return to ensure that it will operate properly. Fort Benjamin Harrison, IN, Steam Dispatching Control System(SDCS), Central heating plants, energy conservation.« less
Environmental Law and the Export of Pollution.
ERIC Educational Resources Information Center
Davis, John F.
1984-01-01
Environmental problems do not stop at state boundaries; they reach beyond local or national jurisdictions and require international control. Problems concerning air quality, water pollution, and indirect pollution are discussed. Environmental legislation can have a significant impact. (RM)
76 FR 68128 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... Bureau of Industry and Security senior management. 3. Presentation from DuPont on impact of export controls. 4. Report on Composite Working Group and other working groups. 5. Discussion of proposed changes...
Earth after the Moon-forming Impact
NASA Technical Reports Server (NTRS)
Zahnle, K. J.
2006-01-01
The Hadean Earth is widely and enduringly pictured as a world of exuberant volcanism, exploding meteors, huge craters, infernal heat, and billowing sulfurous steams; i.e., a world of fire and brimstone punctuated with blows to the head. In the background the Moon looms gigantic in the sky. The popular image has given it a name that celebrates our mythic roots. A hot early Earth is an inevitable consequence of accretion. The Moon-forming impact ensured that Earth as we know it emerged from a fog of silicate vapor. The impact separated the volatiles from the silicates. It took approx. 100 years to condense and rain out the bulk of the vaporized silicates, although relatively volatile elements may have remained present in the atmosphere throughout the magma ocena stage. The magma ocean lasted approx. 2 Myr, its lifetime prolonged by tidal heating and thermal blanketing by a thick CO2-rich steam atmosphere. Water oceans condensed quickly after the mantle solidified, but for some 10-100 Myr the surface would have stayed warm (approx. 500 K) until the CO2 was removed into the mantle. Thereafter the faint young Sun suggests that a lifeless Earth would always have been evolving toward a bitterly cold ice world, but the cooling trend was fiequently interrupted by volcanic or impact induced thaws. A cartoon history of water, temperature, and carbon dioxide in the aftermath of the moon-formining-impact is shown. How long it stays hot depends on how long it takes to scrub the C02 out of the atmosphere.
Zooplankton and the Ocean Carbon Cycle.
Steinberg, Deborah K; Landry, Michael R
2017-01-03
Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
... Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which underwent test operation for two years as part of DOE's Clean Coal Technology Program... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance the...
Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.
1979-01-01
This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.
Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook
2016-01-01
The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (p<0.05), whereas protein content, redness value (a*-value), hardness, gumminess, and chewiness of superheated steam cooked chicken steak was lower than that in the other cooking treatments (p<0.05). Fat content and ash content, springiness, and cohesiveness were not significantly different among the chicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p<0.05), whereas no difference in flavor scores were observed among the other treatments (p>0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656
Investigation of the effect of pressure increasing in condensing heat-exchanger
NASA Astrophysics Data System (ADS)
Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.
2017-11-01
The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.
49 CFR 230.63 - Smoke box, steam pipes and pressure parts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...
49 CFR 230.63 - Smoke box, steam pipes and pressure parts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...
49 CFR 230.63 - Smoke box, steam pipes and pressure parts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...
49 CFR 230.63 - Smoke box, steam pipes and pressure parts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...
21 CFR 200.11 - Use of octadecylamine in steam lines of drug establishments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Use of octadecylamine in steam lines of drug... SERVICES (CONTINUED) DRUGS: GENERAL GENERAL General Provisions § 200.11 Use of octadecylamine in steam... octadecylamine in steam lines where the steam may be used for autoclaving surgical instruments and gauze if the...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias
Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less
Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.
Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf
2017-12-19
We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.
Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export
Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana
2013-01-01
The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173
Shull, James J.; Ernst, Robert R.
1962-01-01
The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel. PMID:13988774
Thomas, Marco; Sonntag, Eric; Müller, Regina; Schmidt, Stefanie; Zielke, Barbara; Fossen, Torgils; Stamminger, Thomas
2015-09-01
The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for efficient replication. Here, we demonstrate that pUL69 is posttranslationally modified via arginine methylation and that the protein methyltransferase PRMT6 mediates this modification. Furthermore, arginine residues with a crucial function for RNA export and for binding of the cellular RNA export factor UAP56 as well as PRMT6 were mapped within the arginine-rich R1 motif of pUL69. Importantly, we demonstrated that mutation of those arginines did not alter the secondary structure of R1, suggesting that they may serve as critical methylation substrates. In summary, our study reveals a novel posttranslational modification of pUL69 which has a significant impact on the function of this important viral regulatory protein. Since PRMTs appear to be amenable to selective inhibition by small molecules, this may constitute a novel target for antiviral therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
STEAM GENERATOR FOR NUCLEAR REACTOR
Kinyon, B.W.; Whitman, G.D.
1963-07-16
The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)
Ryan, M.J.
1987-05-04
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.
Experiences with industrial solar process steam generation in Jordan
NASA Astrophysics Data System (ADS)
Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus
2017-06-01
At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.
Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.
Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R
1999-09-01
Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).
Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-03-01
Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.
Ssegane, Herbert; Negri, M. Cristina
2016-09-16
Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less
Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping
2017-12-01
Socioeconomic development in lake watersheds is closely related with lake nutrient pollution. As the second largest freshwater lake in China, the Dongting Lake has been experiencing an increase in nutrient loading and a growing risk of eutrophication. This study aimed to reveal the likely impacts of the socioeconomic development of the Dongting Lake watershed on the phosphorous pollution in the lake. We estimated the contributions from different sources and sub-watersheds to the total phosphorous (TP) export and loading from the Dongting Lake watershed under two most likely socioeconomic development scenarios. Moreover, we predicted the likely permissible and actual TP loadings to the Dongting Lake. Under both two scenarios, three secondary sub-watersheds-the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area-are expected to dominate the contribution to the TP export from the Dongting Lake watershed in 2020. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-are predicted to be the major contributors to the TP loading from the entire watershed. The two scenarios are expected to have a slight difference in TP export and lake TP loading. Livestock husbandry is expected to be the predominant anthropogenic TP source in each of the sub-watersheds under both scenarios. Compared to 2010, permissible TP loading is not expected to increase but actual TP loading is predicted to grow significantly in 2020. Our study provides methodologies to identify the key sources and regions of lake nutrient loading from watersheds with complex socioeconomic context, and to reveal the potential influences of socioeconomic development on nutrient pollution in lake watersheds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ssegane, Herbert; Negri, M. Cristina
Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Kovalenko, E. V.; Nikolaenkova, E. K.; Tren'kin, V. B.
2012-09-01
The intermediate separation and steam reheating system and its equipment are described. Problems concerned with the presence of condensate in the stack's lower chamber and in the removing chamber, with cavitation failure of the separated moisture pumps, with misalignment of heating steam flowrates, with unstable draining of heating steam condensate, with occurrence of self oscillations, etc. are considered. A procedure for determining the level in removing heating steam condensate from steam reheater elements is proposed. Technical solutions for ensuring stable operation of the intermediate separation and steam reheating system and for achieving smaller misalignment between the apparatuses are developed.
Thermoelastic steam turbine rotor control based on neural network
NASA Astrophysics Data System (ADS)
Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.
2015-12-01
Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.
Steam generator support system
Moldenhauer, J.E.
1987-08-25
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.
Steam generator support system
Moldenhauer, James E.
1987-01-01
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.
Conflicting hydropower development and aquatic ecosystem conservation in Bhutan
NASA Astrophysics Data System (ADS)
Wi, S.; Yang, Y. C. E.
2017-12-01
Hydropower is one of the clean energy sources that many Himalayan countries are eager to develop to solve their domestic energy deficit issue such as India, Nepal and Pakistan. Like other Himalayan countries, Bhutan also has a great potential for hydropower development. However, Bhutan is one of few countries that has a domestic energy surplus and export its hydropower generation to neighboring countries (mainly to India). Exporting hydropower is one of the major economic sources in Bhutan. However, constructions of dams and reservoirs for hydropower development inevitably involve habitat fragmentation, causing a conflict of interest with the pursuit of value in aquatic ecosystem conservation. The objectives of this study is to 1) develop a distributed hydrologic model with snow and glacier module to simulate the hydrologic regimes of seven major watersheds in Bhutan; 2) apply the hydrologic model to compute hydropower generation for all existing and potential dams; 3) evaluate cascade impacts of each individual dam on downstream regions by employing three hydro-ecological indicators: the River Connectivity Index (RCI), Dendritic Connectivity Index (DCI), total affected river stretch (ARS), and 4) analyze the tradeoffs between hydropower generation and river connectivity at the national scale by means of a multiple objective genetic algorithm. Modeling results of three Pareto Fronts between ecological indicators and hydropower generation accompany with future energy export targets from the government can inform dam selections that maximizing hydropower generation while minimizing the impact on the aquatic ecosystem (Figure 1a). The impacts of climate change on these Pareto front are also explored to identify robust dam selection under changing temperature and precipitation (Figure 1b).
Chantemargue, B; Di Meo, F; Berka, K; Picard, N; Arnion, H; Essig, M; Marquet, P; Otyepka, M; Trouillas, P
2018-03-10
The ABCC4/MRP4 exporter has a clinical impact on membrane transport of a broad range of xenobiotics. It is expressed at key locations for drug disposition or effects such as in the liver, the kidney and blood cells. Several polymorphisms and mutations (e.g., p.Gly187Trp) leading to MRP4 dysfunction are associated with an increased risk of toxicity of some drugs. So far, no human MRP4 structure has been elucidated, precluding rationalization of these dysfunctions at a molecular level. We constructed an atomistic model of the wild type (WT) MRP4 and the p.Gly187Trp mutant embedded in different lipid bilayers and relaxed them for hundreds of nanoseconds by molecular dynamics simulations. The WT MRP4 molecular structure confirmed and ameliorated the general knowledge about the transmembrane helices and the two nucleotide binding domains. Moreover, our model elucidated positions of three generally unresolved domains: L 1 (linker between the two halves of the exporter); L 0 (N-terminal domain); and the zipper helices (between the two NBDs). Each domain was thoroughly described in view of its function. The p.Gly187Trp mutation induced a huge structural impact on MRP4, mainly affecting NBD 1 structure and flexibility. The structure of transporter enabled rationalization of known dysfunctions associated with polymorphism of MRP4. This model is available to the pharmacology community to decipher the impact of any other clinically observed polymorphism and mutation on drug transport, giving rise to in silico predictive pharmacogenetics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fixation of compressive deformation in wood by pre-steaming
M. Inoue; N. Sekino; T. Morooka; R.M. Rowell; M. Norimoto
2008-01-01
Wood block specimens pre-steamed at 120-220 °C for 5-20 min were compressed in the radial direction. The recovery of set decreased with increasing pre-steaming temperature and time. The reduction of set recovery correlated with the amount of weight loss in steaming irrespective of pre-steaming temperature and time. The weight loss for the highest level of...
Case study of McCormick place cogeneration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overstreet, E.L.
1994-12-31
In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. Themore » McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment.« less
Section 7 reactor incident file general information from 1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1969-01-10
At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less
Spicher, G; Peters, J; Borchers, U
1999-02-01
For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.
Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit
2016-01-01
This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788
Kraus, Johanna M.; Schmidt, Travis S.; Walters, David; Wanty, Richard B.; Zuellig, Robert E.; Wolf, Ruth E.
2014-01-01
The effects of aquatic contaminants are propagated across ecosystem boundaries by aquatic insects that export resources and contaminants to terrestrial food webs; however, the mechanisms driving these effects are poorly understood. We examined how emergence, contaminant concentration, and total contaminant flux by adult aquatic insects changed over a gradient of bioavailable metals in streams and how these changes affected riparian web-building spiders. Insect emergence decreased 97% over the metal gradient, whereas metal concentrations in adult insects changed relatively little. As a result, total metal exported by insects (flux) was lowest at the most contaminated streams, declining 96% among sites. Spiders were affected by the decrease in prey biomass, but not by metal exposure or metal flux to land in aquatic prey. Aquatic insects are increasingly thought to increase exposure of terrestrial consumers to aquatic contaminants, but stream metals reduce contaminant flux to riparian consumers by strongly impacting the resource linkage. Our results demonstrate the importance of understanding the contaminant-specific effects of aquatic pollutants on adult insect emergence and contaminant accumulation in adults to predict impacts on terrestrial food webs.
Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit
2016-07-07
This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.
14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. ...
14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Evaluating export container pooling options in MN, WI, and MI's Upper Peninsula.
DOT National Transportation Integrated Search
2013-04-01
Research was undertaken to investigate the issues impacting the expansion of containerized cargo in : Wisconsin, Minnesota and the Upper Peninsula of Michigan. Best practices in container pooling, load matching, : inland ports and electronic tracking...
NASA Astrophysics Data System (ADS)
Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.
NASA Astrophysics Data System (ADS)
Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima
2017-04-01
Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC exports at the peatland scale before and after the restoration. This simple conceptual model requires few data to operate. Its application on different sites with contrasted settings (hydrological and climatic conditions) could provide insight on the dominant hydrological processes and their impact on DOC dynamics in peatlands. Binet S., Gogo S., Laggoun-Défarge F., A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology, Journal of Hydrology, Volume 499, 30 August 2013, Pages 132-139, ISSN 0022-1694, http://dx.doi.org/10.1016/j.jhydrol.2013.06.035.
Moore-Colyer, Meriel Jean Scott; Lumbis, Kimberly; Longland, Annette; Harris, Patricia
2014-01-01
Five different hays were used to determine the effect of 5 different soaking and steaming treatments on the water soluble carbohydrate and microbial (bacteria and mould) contents of UK hay. Hays were subjected to the following 5 treatments: 1. Dry; 2. Steamed for 50 minutes in the Haygain- 600 steamer; 3. Soaked in water at 16°C for 9 hours; 4. Steamed then soaked and 5. Soaked then steamed. Post treatment hays were tested for water soluble carbohydrates, bacteria and mould contents. Differences between means were determined using ANOVA and least significant difference with hay (5), bale (3) and treatment (5) as fixed factors, thus n = 75. Protein and ash proportions were unaltered in any of the treatments. Soaked, steamed then soaked and soaked then steamed treatments were all equally effective at reducing water soluble carbohydrates, with significantly (P<0.05) lower mean contents (79–83 g/kg DM) compared with 126 and 122 g/kg dry matter (DM) for dry and steamed respectively. Steamed and soaked then steamed had significantly (P<0.05) less bacteria (1.04×103 and 4.9×102 CFU/g DM) compared with soaked which increased CFU/g DM from 6.0×104 in dry hay up to 3.5×105. Mould contents CFU/g DM were significantly (P<0.05) reduced by steaming (2) and soaking then steaming (1.9) but no difference was seen between dry (1148), soaked (692) or steamed then soaked (501). Soaking for 9 hours followed by steaming for 50 minutes in the Haygain steamer was the most effective method for reducing water soluble carbohydrates and microbial contamination in hay. Soaking or steaming+soaking lowered water soluble carbohydrates but significantly reduced the hygienic quality of the hay which could potentially compromise the health of the horse. PMID:25426729
Steam atmosphere drying exhaust steam recompression system
Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.
1994-03-08
This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.
Steam atmosphere drying exhaust steam recompression system
Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.
1994-01-01
This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.
Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification.
Hamilton, Gavin; Middleton, Michael S; Bydder, Mark; Yokoo, Takeshi; Schwimmer, Jeffrey B; Kono, Yuko; Patton, Heather M; Lavine, Joel E; Sirlin, Claude B
2009-07-01
To compare PRESS and STEAM MR spectroscopy for assessment of liver fat in human subjects. Single-voxel (20 x 20 x 20 mm) PRESS and STEAM spectra were obtained at 1.5T in 49 human subjects with known or suspected fatty liver disease. PRESS and STEAM sequences were obtained with fixed TR (1500 msec) and different TE (five PRESS spectra between TE 30-70 msec, five STEAM spectra between TE 20-60 msec). Spectra were quantified and T2 and T2-corrected peak area were calculated by different techniques. The values were compared for PRESS and STEAM. Water T2 values from PRESS and STEAM were not significantly different (P = 0.33). Fat peak T2s were 25%-50% shorter on PRESS than on STEAM (P < 0.02 for all comparisons) and there was no correlation between T2s of individual peaks. PRESS systematically overestimated the relative fat peak areas (by 7%-263%) compared to STEAM (P < 0.005 for all comparisons). The peak area given by PRESS was more dependent on the T2-correction technique than STEAM. Measured liver fat depends on the MRS sequence used. Compared to STEAM, PRESS underestimates T2 values of fat, overestimates fat fraction, and provides a less consistent fat fraction estimate, probably due to J coupling effects. (c) 2009 Wiley-Liss, Inc.
Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi
2017-01-01
The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.
3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF ...
3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF STEAM PLANT BUILDING, FROM SOUTHWEST. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Horizontal steam generator thermal-hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubra, O.; Doubek, M.
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less
Export Time of Earthquake-Derived Landslides in Active Mountain Ranges
NASA Astrophysics Data System (ADS)
Croissant, T.; Lague, D.; Steer, P.; Davy, P.
2016-12-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its evacuation (high Vs/QT). By combining our newly derived export time functions with the frequency-magnitude of earthquake intensity and the induced sediment production, we investigate the sediment export of several plausible earthquake scenarii in different mountain ranges (New Zealand, Taiwan, Nepal).
Impacts of the Doha Round framework agreements on dairy policies.
Suzuki, N; Kaiser, H M
2005-05-01
Dairy is highly regulated in many countries for several reasons. Perishability, seasonal imbalances, and inelastic supply and demand for milk can cause inherent market instability. Milk buyers typically have had more market power than dairy farmers. Comparative production advantages in some countries have led to regulations and policies to protect local dairy farmers by maintaining domestic prices higher than world prices. A worldwide consensus on reduction of border measures for protecting dairy products is unlikely, and dairy will probably be an exception in ongoing World Trade Organization (WTO) negotiations. Under the Doha Round framework agreements, countries may name some products such as dairy as "sensitive," thereby excluding them from further reforms. However, new Doha Round framework agreements depart from the current WTO rule and call for product-specific spending caps. Such caps will greatly affect the dairy sector because dairy accounts for much of the aggregate measure of support (AMS) in several countries, including the United States and Canada. Also, the amounts of dairy AMS in several countries may be recalculated relative to an international reference price. In addition, all export subsidies are targeted for elimination in the Doha Round, including export credit programs and state trading enterprises, which will limit options for disposing of surplus dairy products in foreign markets. Currently, with higher domestic prices, measures for cutting or disposing of surpluses have been used in many countries. Supply control, which is not regulated by WTO rules, remains as an option. Although explicit export subsidies are restricted by WTO rules, many countries use esoteric measures to promote dairy exports. If countries agree to eliminate "consumer financed" export subsidies using a theoretical definition and measurements proposed herein as Export Subsidy Equivalents (ESE), dairy exports in many countries may be affected. Although domestic supports and export subsidies will be reduced in the Doha Round, possible exclusion of "sensitive" products from tariff reduction will help some countries' dairy sectors survive after those final agreements. A key concern for those countries will be the simultaneous restriction of surplus-disposing measures. With fewer marketing options for surpluses, countries that continue border protection and high internal prices will likely be forced to use domestic supply control programs in the future.
Examining the intersection between splicing, nuclear export and small RNA pathways.
Nabih, Amena; Sobotka, Julia A; Wu, Monica Z; Wedeles, Christopher J; Claycomb, Julie M
2017-11-01
Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Boiler That is Capable of Supplying Either Steam or Hot Water—(A) Testing. For purposes of EPCA, before... supplying either steam or hot water either by testing the boiler in the steam mode or by testing it in both... supplying either steam or hot water either by testing the boiler for both efficiencies in steam mode, or by...
Steaming of Red Oak Prior to Kiln-Drying: Effects on Moisture Movement
Robert A. Harris; James G. Schroeder; Stan C. Addis
1989-01-01
Red oak boards were steamed prior to kiln-drying to determine the effect of steaming on initial moisture content (MC), moisture distribution, and drying rate. Four hours of steaming in a saturated steam atmosphere caused a drop of approximately 10 percent in initial MC, a reduced moisture gradient through the thickness of the boards, and an increase in drying rate...
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F
2017-01-01
In this work different biorefinery scenarios were investigated, concerning the co-production of bioethanol and electricity from available lignocellulose at a typical sugar mill, as possible extensions to the current combustion of bagasse for steam and electricity production and burning trash on-filed. In scenario 1, the whole bagasse and brown leaves is utilized in a biorefinery and coal is burnt in the existing inefficient sugar mill boiler. Scenario 2 & 3 are assumed with a new centralized CHP unit without/with coal co-combustion, respectively. Also, through scenarios 4 & 5, the effect of water insoluble loading were studied. All scenarios provided energy for the sugarmill and the ethanol plant, with the export of surplus electricity. Economic analysis determined that scenario 1 was the most viable scenario due to less capital cost and economies-of scale. Based on Life Cycle Assessment (LCA) results, scenario 2 outperformed the other scenarios, while three scenarios showed lower contribution to environmental burdens than the current situation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate Change Impact Study with CMIP5 and Comparison with CMIP3
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.
2016-12-01
One of significant uncertainties in climate change impact study is the selection of climate model projection including the choosing of greenhouse gas emission scenarios. With the new generation of climate model projection, CMIP5, coming into use, CCTAG selected 11 climate models and two RCPs (rcp4.5 and rcp8.5) for California. Previous DWR climate change study was based on 6 CMIP3 climate models and two emission scenarios (SRES A2 and B1) which were selected by CAT. It is an unanswered question that how the selection of these climate model projections and emission scenarios affect the assessment of climate change impact on future water supply of California CVP/SWP project. This work will run the water planning model CalSim in DWR with 44 CMIP5 and 12 CMIP3 climate model projections to investigate the sensitivity of climate model impact study on future water supply in the CVP/SWP region to the section of climate model projection. It was found that in 2060 CMIP5 projects the wetting trend in Northern California while CMIP3 projects the drying trend in the entire California on the average. And CMIP5 projects about half-degree more warming than CMIP3. As a result, Sacramento River rim inflow increases by 8% for CMIP5 and reduces by 3% for CMIP3. In spite of this difference in rim inflow, north of Delta carryover storage will be reduced both under CMIP5 (14%) and under CMIP3 (23%) in 2060. And south Delta export will be reduced both for CMIP5 (8%) and for CMIP3 (15%). Thus, The CC impact uncertainty caused by the selection of climate model projection (CMIP3 vs CMIP5) is about 7% in terms of Delta export and about 9% in terms of north of Delta carryover storage. This uncertainty is more than the one caused by the selection of sea level rise in that the climate change impact uncertainty caused by the selection of sea level rise (Zero vs 1.5ft SLR) is about 5% in terms of Delta export and about 4-5% in terms of North of Delta carryover storage.
Truesdell, A.H.; Nathenson, M.; Frye, G.A.
1981-01-01
Wellbore and reservoir processes in a steam well in the Castle Rock field of The Geysers have been studied by means of down-hole pressure and temperature measurements and analyses of ejected water and steam produced under bleed and full flow. Down-hole measurements show that below a vapor zone there is liquid water in the well in pressure equilibrium with reservoir steam at a depth of 2290 m. The progressive decreases, from 1973 to 1977, of pressure and temperature in the vapor zone indicate that wellbore heat loss is high enough to condense a large fraction of the steam inflow. The chemical composition of water ejected from the well is consistent with an origin from wellbore condensation of steam. Calculations using the differences in gas and isotopic compositions between bleed and full-flow steam show that about half of the full-flow steam originated as liquid water in the reservoir and that about 30% of the steam entering the well under bleed was condensed in the wellbore and drained downward. Heat loss calculations are also consistent with this amount of condensation. ?? 1981.
Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.
1995-12-31
This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pals, C.M.
1998-12-31
A liberal arts college in Los Angeles was plagued by inefficient use of low-pressure (LP) steam produced by its two 150 kWe cogeneration units. Poor integration of the LP cogen system into the college`s existing high-pressure (HP) steam boiler plant led to under-utilization of cogenerated steam during the non-space-heating season. Six years of inefficient operation was estimated to have cost the college $750,000 in lost utility and maintenance savings. To improve steam-plant operations, the college`s facilities management staff implemented a plan to convert HP steam loads to LP, replace HP steam boilers with LP equipment, and improve the use ofmore » cogenerated steam through the installation of a hot water thermal energy storage (TES) system. A study was commissioned that identified the plant`s peak winter steam requirements and the typical steam profile for the non-space-heating season. Data from this work helped draw two conclusions: (1) converting HP steam loads to LP would boost demand for cogenerated steam, and (2) a hot water thermal energy storage (TES) system could further utilize a portion of remaining excess cogen steam for the manufacture and storage of the kitchen`s domestic water for use during peak steam demand periods. Combined, these two measures were estimated to improve utilization of cogenerated LP steam by 11,000 pounds (5,000 kg) per day and reduce boiler fuel consumption by 40,000 therms (4,220,000 MJ) each season. In addition to this work, a major plant renovation project was completed, which included the replacement of a 60-year-old, 280 bhp (2,747 kW) HP steam boiler, with two new LP boilers. Conversion to LP and the start-up of the hot water TES was completed in May 1997. During the first year of operation, after the improvement, boiler gas savings exceeded 52,000 therms (5,486,000 MJ). Maintenance savings of $100,000 were also accrued by eliminating licensed HP boiler operators. All construction work described to improve energy efficiency and rehabilitate the steam plant cost $687,000 and is on track to produce a simple payback of 5.5 years. Overall, this paper demonstrates the energy and cost inefficiencies that may result if the opportunities to use waste heat from cogeneration systems are incorrectly identified.« less
Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.
Burns, Bruce R; Ward, Jonet; Downs, Theresa M
2013-12-01
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.
Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand
NASA Astrophysics Data System (ADS)
Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.
2013-12-01
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.
An investigation of a flow field in one and half axial turbine stage
NASA Astrophysics Data System (ADS)
Němec, Martin; Jelínek, Tomáš; Milčák, Petr
2017-09-01
An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences a flow structures in the next stator in steam multistage turbines. The detailed measurement behind the rotor and the second stator was performed with a pneumatic probes to gain a useful data for an impact analysis. Various rotor shroud clearances were also tested to capture the shroud outlet flow field influences.
46 CFR 11.903 - Licenses requiring examinations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OFFICER ENDORSEMENTS Subjects of Examinations and Practical Demonstrations of Competence § 11.903 Licenses... industry vessels; (22) Chief engineer steam/motor vessels; (23) First assistant engineer steam/motor vessels; (24) Second assistant engineer steam/motor vessels; (25) Third assistant engineer steam/motor...
49 CFR 230.66 - Design, construction, and maintenance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders § 230.66 Design, construction, and maintenance. The steam locomotive owner and operator are responsible for the general design, construction and maintenance of the steam locomotives and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... Unit 2 of the Healy Power Plant to demonstrate emissions control technologies. In 1994, the DOE... Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal-fired steam generator owned by AIDEA... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance electric...
ERIC Educational Resources Information Center
Chin, Christine; Osborne, Jonathan
2010-01-01
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12-14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam.…
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment. The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.
Arctic climatechange and its impacts on the ecology of the North Atlantic.
Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole
2008-11-01
Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.
NASA Astrophysics Data System (ADS)
Fu, W.; Randerson, J. T.; Moore, J. K.
2014-12-01
Ocean warming due to rising atmospheric CO2 has increasing impacts on ocean ecosystems by modifying the ecophysiology and distribution of marine organisms, and by altering ocean circulation and stratification. We explore ocean NPP and EP changes at the global scale with simulations performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the representative concentration pathway (RCP) 8.5 scenario, although models differ in their significantly in their direct temperature impacts on production and remineralization. The Earth system models used here project similar NPP trends albeit the magnitudes vary substantially. In general, projected changes in the 2090s for NPP range between -2.3 to -16.2% while export production reach -7 to -18% relative to 1990s. This is accompanied by increased stratification by 17-30%. Results indicate that globally reduced NPP is closely related to increased ocean stratification (R2=0.78). This is especially the case for global export production, that seems to be mostly controlled by the increased stratification (R2=0.95). We also identify phytoplankton community impacts on these patterns, that vary across the models. The negative response of NPP to climate change may be through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. There are large disagreements among the CMIP5 models in terms of simulated nutrient and oxygen concentrations for the 1990s, and their trends over time with climate change. In addition, potentially important marine biogeochemical feedbacks on the climate system were not well represented in the CMIP5 models, including important feedbacks with aerosol deposition and the marine iron cycle, and feedbacks involving the oxygen minimum zones and the marine nitrogen cycle. Thus, these substantial reductions in primary productivity and export production over the 21st century simulated under the RCP 8.5 scenario were likely conservative estimates, and may need to be revised as marine biogeochemistry in Earth System Models (ESMs) continues to be developed.
Thompson, Nathaniel; Lustgarten, Daniel; Mason, Bryan; Mueller, Enkhtuyaa; Calame, James; Bell, Stephen; Spector, Peter
2009-07-01
It has been proposed that microbubble (MB) monitoring can be used to safely titrate radiofrequency (RF) power. However, MB formation has been found to be an insensitive indicator of tissue temperature during RF delivery. We hypothesized that MB formation corresponds to surface-not tissue--temperature, and therefore would be an insensitive predictor of steam pops. An in vitro bovine heart model was used to measure surface and tissue temperatures during RF delivery under conditions designed to cause steam pops. Sensitivity of type II MB (MBII) formation as a predictor of steam pops and for surface temperatures more than 80 degrees C was calculated. Of 105 lesions delivered, 99 steam pops occurred. Twenty-one steam pops were preceded by MBII. MBII were seen in 26 lesions, five of which were not associated with steam pop. Surface temperature at onset of MBII was 87 +/- 9 degrees C versus a tissue temperature of 78 +/- 23 degrees C (P = 0.044). Surface temperature at the time of steam pops was 71 +/- 17 degrees C versus a tissue temperature of 102 +/- 17 degrees C (P < 0.0001). The sensitivity of MBII for steam pops was 21%, and 58% for detecting surface temperature in excess of 80 degrees C. MBII correlated better with surface temperature than with tissue temperature; steam pops, on the other hand, correlated better with tissue temperature. MBII was an insensitive marker of steam pops and surface temperature in excess of 80 degrees C. Therefore, MBII should not be used to titrate RF power.
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
Steam injection for in-situ remediation of DNAPLs in low permeability media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleep, B.
1996-08-01
The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPLmore » in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.« less
Nachbar, Henry D.
1992-12-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
Nachbar, Henry D.
1992-01-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
Equations for calculating the properties of dissociated steam
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Gudym, A. A.
2017-08-01
The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.
NASA Astrophysics Data System (ADS)
Budai, L.; Szabadi, E.; Hajdú, M.; Budai, M.; Klebovich, I.; Antal, I.
2015-04-01
Aims: Chitosan, a modified natural carbohydrate polymer, has received great attention in diverse scientific fields including pharmaceutical and biomedical research areas. Besides its low toxicity, mucoadhesiveness and biodegradability its special favourable rheological feature makes it a unique gelling agent for the design of ocular systems. Chitosan based (2.0 w/v %) ocular systems containing selected excipients were formulated in order to investigate the rheological influence of applied auxiliary materials. Rotational and oscillatory rheological properties of propylene glycol (1.0-20.0 w/v %), glycerin (1.0-5.0 w/v %) and castor oil (1.0-5.0 w/v %) containing chitosan gels were evaluated. The rheological behaviour of formulated ocular gels were compared before and after steam sterilization. Methods: Rotational and oscillatory rheological measurements were carried out with Kinexus Pro Rheometer. Comparison of flow curves and oscillatory frequency sweep measurements in the linear viscoelastic region made possible the evaluation of rheological effect of selected excipients. Results: In the applied concentration range the effect of propylene glycol among the selected excipients presents the most significant impact on rheology of chitosan formulations. Steam sterilization results in reduced viscosity in most of chitosan gels. However, the presence of polyols appears to prevent the degradation of chitosan after steam sterilization.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim
2013-12-06
Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.
Hardman-Mountford, Nick J.; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J. W.; Aiken, Jim
2013-01-01
Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches. PMID:24132201
DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.
Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...
49 CFR 230.70 - Safe condition.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and... of each day the locomotive is used, the steam locomotive operator shall ensure that: (1) The brakes on the steam locomotive and tender are in safe and suitable condition for service; (2) The air...
49 CFR 230.12 - Movement of non-complying steam locomotives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a) General...
49 CFR 230.67 - Responsibility for inspection and repairs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders § 230.67 Responsibility for inspection and repairs. The steam locomotive owner and/or operator shall inspect and repair all steam locomotives and tenders under their control. All defects...
77 FR 4615 - Proposed Agency Information Collection Activities; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
...: Inspection and Maintenance of Steam Locomotives (Formerly Steam Locomotive Inspection). OMB Control Number.... Affected Public: 82 Steam Locomotive Owners/Operators. Abstract: The Locomotive Boiler Inspection Act (LBIA... the inspection of locomotives. The original LBIA was expanded to cover the entire steam locomotive and...
Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang
2018-04-01
The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ryan, Michael J.
1988-01-01
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
Chemical tailoring of steam to remediate underground mixed waste contaminents
Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.
1999-01-01
A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.
Antioxidants from steamed used tea leaves and their reaction behavior.
Nomizu, Kayoko; Hashida, Koh; Makino, Rei; Ohara, Seiji
2008-07-01
The most efficient steaming conditions below 200 degrees C for extracting antioxidants from used tea leaves and their reaction behavior during the steaming treatment were investigated. The antioxidative activity of the steamed extracts increased with increasing steaming temperature, and the yield of the ethyl acetate extract fraction from each steamed extract showing the greatest antioxidative activity also increased. Caffeine, (-)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, (-)-epigallocatechin gallate and gallic acid were identified from the ethyl acetate extract fraction. Quantitative analyses demonstrated that the catechins with a 2,3-cis configuration decreased with increasing steaming temperature, whereas the corresponding epimers at the C-2 position increased. Each pair of epimers showed similar antioxidative activity to each other, indicating that the epimerization reaction did not contribute to the improved antioxidative activity. It is concluded from these results that the improvement in antioxidative activity at higher steaming temperatures was due to the increased yield of catechins and other antioxidants.
Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.
Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie
2017-08-01
Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent Developments in Superheated Steam Processing of Foods-A Review.
Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh
2016-10-02
Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.
Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen
NASA Astrophysics Data System (ADS)
Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo
2013-10-01
The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.
Methods of increasing thermal efficiency of steam and gas turbine plants
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Shutenko, M. A.
2017-11-01
Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.
NASA Astrophysics Data System (ADS)
Cahalan, R. C.; Dufek, J.
2015-12-01
A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.
NASA Astrophysics Data System (ADS)
Cohan, D. S.
2015-12-01
Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.
Chinese air pollution embodied in trade
NASA Astrophysics Data System (ADS)
Davis, S. J.
2014-12-01
Rapid economic development in China has been accompanied by high levels of air pollution in many areas of China. Although researchers have applied a range of methods to monitor and track pollutant emissions in the atmosphere, studies of the underlying economic and technological drivers of this pollution have received considerably less attention. I will present results of a series of studies that have quantified the air pollutants embodied in goods being traded both within China and internationally. The results show that trade is facilitating the concentration of pollution in less economically developed areas, which in turn export pollution-intensive goods to more affluent areas. However, the export-related pollution itself is sometimes transported long distances; for instance, we have quantified the impacts of the Chinese pollution embodied in internationally-exported goods on air quality in the US. These findings important implications for Chinese efforts to curb CO2 emissions and improve air quality. The research to be presented reflects the efforts of a multiple year, ongoing collaboration among interdisciplinary researchers in China, the US and the UK.
Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections.
Tamelander, Tobias; Spilling, Kristian; Winder, Monica
2017-12-01
The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system's response to environmental change and will improve the use of such models in management of coastal areas.
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.
1996-01-01
The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.
Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin
2011-06-01
The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. Copyright © 2011 Elsevier Ltd. All rights reserved.
22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, ...
22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, SHOWING TOPS OF DIESEL ENGINES AT FAR NORTH END, PRIOR TO INSTALLATION OF STEAM UNIT NO. 4. Ca. 1948 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Code of Federal Regulations, 2010 CFR
2010-01-01
... of equipment. Culinary steam used in direct contact with milk or dairy products shall be free from... used wherever applicable to insure a satisfactory and safe steam supply. Culinary steam shall comply with the 3-A Accepted Practices for a Method of Producing Steam of Culinary Quality, number 609. This...
49 CFR 230.37 - Steam test following repairs or alterations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam test following repairs or alterations. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.37 Steam test following repairs or alterations...
NASA Astrophysics Data System (ADS)
Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.
2012-04-01
As part of the Bonus-GoodHope expedition (late summer 2008; Feb-March) in the Atlantic sector of the Southern Ocean, we present combined 234Th and biogenic particulate barium (Baxs) results. These data are used to estimate the export of particulate organic carbon (POC) from the upper mixed layer and the impact of twilight zone remineralisation on the carbon export. Total 234Th activity in surface waters is depleted relative to its parent nuclide 238U (234Th/238U ratio ranging from 0.74 to 0.91), while equilibrium is reached at the base of the surface mixed-layer. The export fluxes of 234Th from the 100m horizon, as estimated using steady state (SS) and non steady state (NSS) models, reveal different latitudinal trends. SS 234Th export varies from 496 dpm m-2 d-1 in the subtropical domain of the Cape Basin to 1195 dpm m-2 d-1 close to the Polar Front (PF). NSS export representative for a 15 to 22 day period preceding the cruise, is consistently less than SS export in the sub-Antarctic Zone (SAZ, 150 dpm m-2 d-1) and the Polar Frontal Zone (PFZ, 440 dpm m-2 d-1) but is similar further south in the Antarctic Zone (AZ, 1217 dpm m-2 d-1) and the northern Weddell Gyre (N-WG; 757 dpm m-2 d-1). This reflects temporal variability of export north of the PF, while south of the PF the export system appears to be in steady state during this late summer situation. The POC:Th ratio of large (>53 µm) particles collected below the surface mixed layer increases from 1.7 µmol dpm-1 in the STZ to a maximum of 4.8 µmol dpm-1 at the Southern Antarctic Circumpolar Current Front (SACCF), suggesting a southward increase of the contribution of larger cells, such as diatoms, to sinking material. Using these POC:Th ratios we calculate that the POC SS export from the 100m horizon reaches 0.9-1.7 mmol m-2 d-1 in the STZ and the SAZ, 2.6-4.7 mmol m-2 d-1 in the PFZ, and 3.3 mmol m-2 d-1 in the N-WG. Below the export layer, in the mesopelagic zone (100-600 m), 234Th activities generally reach equilibrium with 238U, but sometimes also are in large excess (234Th/238U ratio > to 1.1). Such activity excesses reflect intense remineralisation/disaggregation of 234Th-bearing particles which is estimated to attenuate the original POC export flux by close to 100%. Increased biogenic particulate Ba (Baxs) contents in the mesopelagic zone, indicate enhanced remaineralisation of organic matter, and in general overlap with the areas of excess 234Th. Excluding two outliers, we found a general positive correlation for mesopelagic waters between POC remineralisation estimated from Baxs inventories and from 234Th excess. Our results indicate that POC export production in the Southern Ocean is strongly attenuated in the mesopelagic waters.
Vapor generator steam drum spray head
Fasnacht, Jr., Floyd A.
1978-07-18
A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.
Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1980-09-01
It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.
LAND-COVER CHANGE AND ITS IMPACT ON NUTRIENT EXPORT VARIANCE
Conversion of natural or semi-natural vegetation to anthropogenic use is widely cited as one of the principal threats to ecosystems worldwide. One consequence of these landcover conversions is increased input of nutrients into surface waters, which promotes eutrophication, noxiou...
ENHANCED: IMPORTING TIMBER, EXPORTING ECOLOGICAL IMPACT
Covering 32% of the planet, boreal forests are one of the last relatively intact terrestrial biomes, and are a critical carbon sink in global climate dynamics. Mature and old growth boreal forests provide a large number of products that are culturally and economically important, ...
Circadian dysregulation disrupts bile acid homeostasis
USDA-ARS?s Scientific Manuscript database
Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...
What Drives U.S. Gasoline Prices?
2014-01-01
This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.
Xing, Zhencheng; Wang, Jigan; Zhang, Jie
2018-09-01
Due to the increasing environmental burdens caused by dramatic economic expansion, eco-efficiency indicating how efficient the economic activity is with respect to its environmental impacts has become a topic of considerable interest in China. In this context, Economic Input-output Life Cycle Assessment (EIO-LCA) and Data Envelopment Analysis (DEA) are combined to assess the environmental impacts and eco-efficiency of China's 26 economic sectors. The EIO-LCA results indicate that Electricity Production and Supply sector is the largest net exporter in energy usage, CO 2 emission and exhaust emission categories, while Construction sector is the largest net importer for five impact categories except for water withdrawal. Moreover, Construction sector is found to be the destination of the largest sector-to-sector environmental impact flows for the five impact categories and make the most contributions to the total environmental impacts. Another key finding is that Agriculture sector is both the largest net exporter and the greatest contributor for water withdrawal category. DEA results indicate that seven sectors are eco-efficient while over 70% of China's economic sectors are inefficient and require significant improvements. The average target improvements range between 23.30% and 35.06% depending on the impact category. Further sensitivity analysis reveals that the average sensitivity ratios vary from 7.7% to 15.7% among the six impact categories, which are found to be negatively correlated with their improvement potentials. Finally, several policy recommendations are made to mitigate environmental impacts of China's economic sectors and improve their eco-efficiency levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Optical steam quality measurement system and method
Davidson, James R.; Partin, Judy K.
2006-04-25
An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.
NASA Astrophysics Data System (ADS)
Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.
2014-09-01
A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.
Modeling local chemistry in PWR steam generator crevices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, P.J.
1997-02-01
Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less
[Effectiveness and limits of the cleaners steam in hospitals].
Meunier, O; Meistermann, C; Schwebel, A
2009-05-01
We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, D.E.; Corletti, M.M.
1993-11-16
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, Douglas E.; Corletti, Michael M.
1993-01-01
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.
Potential economic impact of limiting the international trade of timber as a phytosanitary measure
Ruhong Li; J. Buongiorno; S. Zhu; J.A. Turner; J. Prestemon
2007-01-01
We assessed the impact on the world forest sector of reducing the risk of exotic pest spread by curtailing the roundwood trade. The analysis compared predictions from 2006 to 2015, with and without a gradual ban of roundwood exports between 2006 and 2010. With a ban on roundwood trade, world consumer expenditures for wood products and producer revenues would rise by 2...
The Impact of the University Education for an IT Career in Cluj-Napoca City
ERIC Educational Resources Information Center
Magdas, Ioana; Brad, Alexandru; Cristea, Daniela; Pop, Otilia Alexandra; Radu, Adina; Sicoe, Nicoleta
2013-01-01
Cluj-Napoca city is considered a major IT hub in Romania, and the leading exporter of IT services. The purpose of this article is to analyze the impact of University education on the future careers of IT students in city of Cluj-Napoca, Romania. In order to achieve this, a survey was conducted among the University students in the IT field in…
Innovative power conversion system for the French SFR prototype, ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cachon, L.; Biscarrat, C.; Morin, F.
2012-07-01
In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energeticmore » chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)« less
Steam disinfestation as a methyl bromide alternative in California cut flower nurseries
USDA-ARS?s Scientific Manuscript database
Steam may be an effective alternative to methyl bromide in cut flower production in California. Advantages of steam include broad spectrum pest control and a zero hour re-entry interval. The principle disadvantage of sheet steaming is cost effectiveness due to current energy prices and application...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... of Technical Specifications Task Force Traveler TSTF-510, Revision 2, ``Revision to Steam Generator..., Revision 2, ``Revision to Steam Generator [(SG)] Program Inspection Frequencies and Tube Sample Selection..., ``Steam Generator (SG) Program,'' Specification 5.6.7, ``Steam Generator Tube Inspection Report,'' and the...
40 CFR 408.270 - Applicability; description of the steamed and canned oyster processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... steamed and canned oyster processing subcategory. 408.270 Section 408.270 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Steamed and Canned Oyster Processing Subcategory § 408.270 Applicability; description of the steamed and canned oyster processing subcategory. The provisions of this subpart are...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...
Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.
2016-01-01
Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732
Water-controlled wealth of nations.
Suweis, Samir; Rinaldo, Andrea; Maritan, Amos; D'Odorico, Paolo
2013-03-12
Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries maintain a tiny fraction of their food production available for export, (ii) changes in consumption patterns, and (iii) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065
NASA Astrophysics Data System (ADS)
Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.
2016-12-01
Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.
NASA Astrophysics Data System (ADS)
Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.
2017-12-01
Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.
FREE-SURFACE SEPARATION OF STEAM AND WATER FOR APPLICATION IN A MARINE REACTOR AT 1000 PSIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steamer, A.G.; Ongman, H.D.
1960-07-13
A series of free-surface steam separation tests were carried out at 1000 psig to obtain data to aid in checking out analytical methods for the effect of ship-s motion on steam separation. Data are presented on the shape and height of the steam-water interface with respect to the indicated water level for two vessel sizes. Further data are presented on the effects of water level and downcomer water velocity on steam carryunder. (auth)
Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.
1997-05-01
The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.
2007-09-01
steam. The creep and recovery periods ranged from 3 min to 30 h. The laboratory air tests significantly exceeded the life of the monotonic creep ...orders of magnitude improvement in the creep life and rate. The presence of steam greatly reduced the performance of the material. The results in...steam. Mehrman also reported that prior fatigue subsequently improved in air but creep performance but in steam creep performance remained poor
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Donaldson, A. Burl; Hoke, Donald E.
1983-01-01
An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.