Feedwater temperature control methods and systems
Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip
2014-04-22
A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Open cycle ocean thermal energy conversion steam control and bypass system
Wittig, J. Michael; Jennings, Stephen J.
1980-01-01
Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.
Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Downhole steam generator with improved preheating, combustion and protection features
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.
Steam exit flow design for aft cavities of an airfoil
Storey, James Michael; Tesh, Stephen William
2002-01-01
Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control of the probe influence on the flow field in LP steam turbine
NASA Astrophysics Data System (ADS)
Kolovratník, Michal; Yun, Kukchol; Bartoš, Ondřej
For measuring the fine droplets properties in the wet steam expanding in the steam turbines the light extinction probes are usually used. The paper presents CFD modelling of the extinction probe influence on the wet steam flow field at the measurement position. The aim is to get a basic information about the influence of the flow field deviation on the measured data, in other words, of necessity to correct the measured data. The basic modelling procedure is described, as well as the supposed simplifications and the factor considering the change in the steam density in the measuring slot of the probe. The model is based on the experimental data that were achieved during the developmental measurements in the steam turbine 1090 MW in the power station Temelín. The experimental measurement was done in the cooperation with the Doosan Škoda Power s.r.o.
K-65-12.8 condensing steam turbine
NASA Astrophysics Data System (ADS)
Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.
2016-11-01
A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
Flow patterns and transition characteristics for steam condensation in silicon microchannels
NASA Astrophysics Data System (ADS)
Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting
2011-07-01
This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.
Spiral inlets for steam turbines
NASA Astrophysics Data System (ADS)
Škach, Radek; Uher, Jan
2017-09-01
This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
REFLECTOR CONTROL OF A BOILING-WATER REACTOR
Treshow, M.
1962-05-22
A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)
The Effects of Alarm Display, Processing, and Availability on Crew Performance
2000-11-01
snow Instrumentation line leakage Small LOCA Steam generator tube rupture Small feedwater leakage inside containment Cycling of main steam...implemented. • Due to primary pressure controller failure, pressure heater banks cycle between on and off. 8.00 CF1 CF2 CF3 CF4 CF5...temperatures after the high-pressure pre- heaters flows into the steam generators number of active emergency feedwater pumps openings of the condensate
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
NASA Astrophysics Data System (ADS)
Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi
2017-01-01
In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.
Lachenmeier, Dirk W; Plato, Leander; Suessmann, Manuela; Di Carmine, Matthew; Krueger, Bjoern; Kukuck, Armin; Kranz, Markus
2015-01-01
The determination of the alcoholic strength in spirits and liqueurs is required to control the labelling of alcoholic beverages. The reference methodology prescribes a distillation step followed by densimetric measurement. The classic distillation using a Vigreux rectifying column and a West condenser is time consuming and error-prone, especially for liqueurs that may have problems with entrainment and charring. For this reason, this methodology suggests the use of an automated steam distillation device as alternative. The novel instrument comprises an increased steam power, a redesigned geometry of the condenser and a larger cooling coil with controllable flow, compared to previously available devices. Method optimization applying D-optimal and central composite designs showed significant influence of sample volume, distillation time and coolant flow, while other investigated parameters such as steam power, receiver volume, or the use of pipettes or flasks for sample measurement did not significantly influence the results. The method validation was conducted using the following settings: steam power 70 %, sample volume 25 mL transferred using pipettes, receiver volume 50 mL, coolant flow 7 L/min, and distillation time as long as possible just below the calibration mark. For four different liqueurs covering the typical range of these products between 15 and 35 % vol, the method showed an adequate precision, with relative standard deviations below 0.4 % (intraday) and below 0.6 % (interday). The absolute standard deviations were between 0.06 % vol and 0.08 % vol (intraday) and between 0.07 % vol and 0.10 % vol (interday). The improved automatic steam distillation devices offer an excellent alternative for sample cleanup of volatiles from complex matrices. A major advantage are the low costs for consumables per analysis (only distilled water is needed). For alcoholic strength determination, the method has become more rugged than before, and there are only few influences that would lead to incomplete distillation. Our validation parameters have shown that the performance of the method corresponds to the data presented for the reference method and we believe that automated steam distillation, can be used for the purpose of labelling control of alcoholic beverages.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1982-01-01
Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Laboratory investigations of the physics of steam flow in a porous medium
Herkelrath, W.N.; Moench, A.F.
1982-01-01
Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.
Investigation of the effect of pressure increasing in condensing heat-exchanger
NASA Astrophysics Data System (ADS)
Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.
2017-11-01
The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.
STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, R.O.; Steamer, A.G.
1960-10-01
Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)
Downhole steam quality measurement
Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.
1985-06-19
The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.
Analysis of experimental characteristics of multistage steam-jet electors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-02-01
A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.
The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, S.S. Jr.; Tyran, Craig K.
1986-01-21
For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
NASA Astrophysics Data System (ADS)
Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua
2018-04-01
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
NASA Astrophysics Data System (ADS)
CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin
2017-07-01
Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.
Heat up and potential failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, andmore » relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Truesdell, A.H.; Nathenson, M.; Frye, G.A.
1981-01-01
Wellbore and reservoir processes in a steam well in the Castle Rock field of The Geysers have been studied by means of down-hole pressure and temperature measurements and analyses of ejected water and steam produced under bleed and full flow. Down-hole measurements show that below a vapor zone there is liquid water in the well in pressure equilibrium with reservoir steam at a depth of 2290 m. The progressive decreases, from 1973 to 1977, of pressure and temperature in the vapor zone indicate that wellbore heat loss is high enough to condense a large fraction of the steam inflow. The chemical composition of water ejected from the well is consistent with an origin from wellbore condensation of steam. Calculations using the differences in gas and isotopic compositions between bleed and full-flow steam show that about half of the full-flow steam originated as liquid water in the reservoir and that about 30% of the steam entering the well under bleed was condensed in the wellbore and drained downward. Heat loss calculations are also consistent with this amount of condensation. ?? 1981.
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
Potential applications for amylose inclusion complexes produced by steam jet cooking
USDA-ARS?s Scientific Manuscript database
Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...
Steam cooling system for a gas turbine
Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.
A fast response miniature probe for wet steam flow field measurements
NASA Astrophysics Data System (ADS)
Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.
2016-12-01
Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.
NASA Astrophysics Data System (ADS)
Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.
2018-01-01
The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric parameters is described.
PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.L.
1961-02-01
BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less
Laboratory investigations of steam flow in a porous medium
Herkelrath, W.N.; Moench, A.F.; O'Neal, II
1983-01-01
Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
Steam flooding from mine workings, a viable alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayler, M.F.; Brechtel, C.
1987-05-01
The advent of steam flooding has given new life to several fields in California, substantially increasing the recoverable reserve. This process can be combined with a newly developed concept combining petroleum and mining technology. By placing mine workings 100 ft, more or less, below the bottom of the reservoir, it is possible to safely drill wells upward through the reservoir and complete them in such a way that all produced cuttings and fluids are contained within closed pipelines. Each completed well could serve as a steam injection well with continuous gravity-produced oil from the same well. As all fluids wouldmore » flow by gravity to a collection pipeline, the only needed pumps would be at the discharge within the mine shaft. Mine shafts serving the oil field could be placed in environmentally optimum sites roughly one mile apart, eliminating many of the visually objectionable disturbances. Production wells could be placed on one acre or even closer spacing, whatever good engineering dictates. Automatic controls can continuously monitor and control production from each well. Assuming one-acre well spacing, continuous steam flooding, and production from each well, a detailed analysis of anticipated mining costs indicate oil production costs under $5/bbl are possible. Even at $10/BO, a positive cash flow within two years after the start of shaft sinking is expected.« less
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
On calculation of a steam-water flow in a geothermal well
NASA Astrophysics Data System (ADS)
Shulyupin, A. N.; Chermoshentseva, A. A.
2013-08-01
Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.
NASA Astrophysics Data System (ADS)
Su, Yun; Li, Jun
2016-12-01
Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn.
Steam distribution and energy delivery optimization using wireless sensors
NASA Astrophysics Data System (ADS)
Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.
2011-05-01
The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Thermodynamic wetness loss calculation in nozzle and turbine cascade: nucleating steam flow
NASA Astrophysics Data System (ADS)
Joseph, Joby; Subramanian, Sathyanarayanan; Vigney, K.; Prasad, B. V. S. S. S.; Biswas, D.
2017-11-01
Rapid expansion of steam in turbines and nozzles cause condensation. The formation of liquid droplets due to condensation results in wetness losses, which include aerodynamic losses (due to friction between liquid droplets and the vapour), thermodynamic losses (due to irreversible latent heat addition), and braking losses (due to the impact of liquid droplets on the turbine blade). In this study, a numerical investigation of the thermodynamic loss in a nucleating steam flow is performed. The thermodynamic loss is calculated using the change in entropy due to condensation. The effect of different operating conditions on the thermodynamic loss is estimated for a nozzle and turbine cascade in a nucleating flow. The non-equilibrium condensation in high-speed steam flows is modelled using Eulerian-Eulerian approach.
Code of Federal Regulations, 2013 CFR
2013-07-01
... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d). i. Measuring...
Code of Federal Regulations, 2014 CFR
2014-07-01
... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... items in 2.a, 2.b, and 2.c of this table. 4. Carbon adsorber a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3546(d) or § 63.3556(d...
Code of Federal Regulations, 2014 CFR
2014-07-01
... add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling... regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
Condensation heat transfer and flow friction in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng
2008-11-01
An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.
Wilson, Ian D.; Wesorick, Ronald R.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.
Treshow, M.
1959-02-10
A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. Temperature of the carbon bed...
Proposed Performance Evaluation Acceptance Test for Heat Recovery Incinerators
1988-08-01
steam and the cooling water (if used). = Qye + Qwe = Mass flow of steam or water x enthalpy change. Qye = Wye x (hout - hin) Qwe = Wwe x (hout - hin...cooling water (if used). = Qye + Qwe = . Mass flow of steam or water x enthalpy change. Qye = Wye x (hout - hin) Qwe = Wwe x (hout - hin) = Wwe x (tout...transferred to recovery liquid (e.g., steam) Btu/hr 0.293 W Qwe Heat in water (cooling or Btu/hr 0.293 W quench) r Waste - S Sulfur lb/lb - kg/kg t
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Application of a single-fluid model for the steam condensing flow prediction
NASA Astrophysics Data System (ADS)
Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.
2016-10-01
One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.
An attempt to make a reliable assessment of the wet steam flow field in the de Laval nozzle
NASA Astrophysics Data System (ADS)
Dykas, Sławomir; Majkut, Mirosław; Smołka, Krystian; Strozik, Michał
2018-02-01
This paper presents the results of research on the wet steam flow with spontaneous condensation in the de Laval nozzle. A comparison is made between the results of numerical modelling performed for two cases of boundary conditions obtained using an in-house CFD code and the Ansys CFX commercial package. The numerical modelling results are compared to the results of experimental testing carried out on an in-house laboratory steam tunnel. The differences between the numerical results produced by the two codes in terms of place and intensity of condensations of steam to water point to the difficulty in correct modelling of this type of flows and emphasize the need for further studies in this field.
Chemical tailoring of steam to remediate underground mixed waste contaminents
Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.
1999-01-01
A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.
43 CFR 3275.16 - What standards apply to installing and maintaining meters?
Code of Federal Regulations, 2012 CFR
2012-10-01
...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...
43 CFR 3275.16 - What standards apply to installing and maintaining meters?
Code of Federal Regulations, 2011 CFR
2011-10-01
...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...
43 CFR 3275.16 - What standards apply to installing and maintaining meters?
Code of Federal Regulations, 2014 CFR
2014-10-01
...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...
43 CFR 3275.16 - What standards apply to installing and maintaining meters?
Code of Federal Regulations, 2013 CFR
2013-10-01
...; (2) You must calibrate meters measuring steam or hot water flow with a turbine, vortex, ultrasonics... frequent; and (3) You must calibrate meters measuring steam or hot water flow with an orifice plate...
In Situ Steam Fracture Experiments.
1984-12-31
pressure and tempera- ture data for use in validation of multi-phase flow models describing - condensation/vaporization, heat-transfer, and fluid/vapor...provide an excellent base for development and/or verification of steam-fracture models for low- permeability materials where heat transfer is significant...representative of post-shot cavity conditions. Steam flow tests have been performed at S-CUBED in a 3-meter long by 20-centimeter diameter sand column. In
Experimental study on steam condensation with non-condensable gas in horizontal microchannels
NASA Astrophysics Data System (ADS)
Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai
2013-07-01
This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.
Downhole steam quality measurement
Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert
1987-01-01
An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.
NASA Astrophysics Data System (ADS)
Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.
2018-01-01
Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected—PR. d,e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected—PR. d,e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record of total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle. 2. Record and report the total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f a. Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and 1. Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle.2. Record and report the total...
NASA Astrophysics Data System (ADS)
Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng
2018-04-01
In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.
Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit
Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig
2002-01-01
In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
Experimental investigation on flow in diffuser of 1090 MW steam turbine
NASA Astrophysics Data System (ADS)
Hoznedl, Michal; Sedlák, Kamil; Mrózek, Lukáš; Bednář, Lukáš; Kalista, Robert
2016-06-01
The paper deals with flow of wet water steam in diffuser of turbine engine 1090 MW on saturated water steam. Experimental measurements were done while the turbine was in operation for a wide range of outputs. Defining the outlet velocity from the last stage and with knowledge of static pressures on the diffuser outlet, it is possible to define the contribution of the diffuser to the whole low pressure part efficiency.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
Investigation and mitigation of condensation induced water hammer by stratified flow experiments
NASA Astrophysics Data System (ADS)
Kadakia, Hiral J.
This research primarily focuses on the possibility of using stratified flow in preventing an occurrence of condensation induced water hammer (CIWH) in horizontal pipe involving steam and subcooled water. A two-phase flow loop simulating the passive safety systems of an advanced light water reactor was constructed and a series of stratified flow experiments were carried out involving a system of subcooled water, saturated water, and steam. Special instruments were designed to measure steam flow rate and subcooled liquid velocity. These experiments showed that when flow field conditions meet certain criteria CIWH does occur. Flow conditions used in experiments were typically observed in passive safety systems of an advanced light water cooled reactor. This research summarizes a) literature research and other experimental data that signify an occurrence of CIWH, b) experiments in an effort to show an occurrence of CIWH and the ability to prevent CIWH, c) qualitative and quantitative results to underline the mechanism of CIWH, d) experiments that show CIWH can be prevented under certain conditions, and e) guidelines for the safe operating conditions. Based on initial experiment results it was observed that Bernoulli's effect can play an important role in wave formation and instability. A separate effect table top experiment was constructed with plexi-glass. A series of entrance effect tests and stratified experiments were carried out with different fluids to study wave formation and wave bridging. Special test series experiments were carried out to investigate the presence of a saturated layer. The effect of subcooled water and steam flow on wedge length and depth were recorded. These experiments helped create a model which calculates wedge and depth of wedge for a given condition of steam and subcooled water. A very good comparison between the experiment results and the model was obtained. These experiments also showed that the presence of saturated layer can mitigate the CIWH. Flow conditions require to mitigate the CIWH must be such that subcooled water is laminar and steam flow rate is less than critical. Finally, a data bank of containing large number of experiments was created and guidelines for safe filling and draining of the system involving steam and subcooled water were created. Also several suggestions are provided to stop CIWH in case it does occur.
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
Vacuum chamber with a supersonic flow aerodynamic window
Hanson, Clark L.
1982-01-01
A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Vacuum chamber with a supersonic-flow aerodynamic window
Hanson, C.L.
1980-10-14
A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
NASA Astrophysics Data System (ADS)
Yun, Kukchol; Tajč, L.; Kolovratník, M.
2016-03-01
The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.
SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2011-04-01
An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.
Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J.L.; Siebe, D.A.; Boyack, B.E.
This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm{sup 2} break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less
Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J.L.; Siebe, D.A.; Boyack, B.E.
This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm[sup 2] break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2014 CFR
2014-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2011 CFR
2011-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2013 CFR
2013-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2012 CFR
2012-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-03-01
Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
System Modeling for Ammonia Synthesis Energy Recovery System
NASA Astrophysics Data System (ADS)
Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team
2015-11-01
An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, W.C.; Newby, R.A.; Bannister, R.L.
1999-04-27
A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.
1999-01-01
A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.
Mlosek, R K; Woźniak, W; Gruszecki, L; Stapa, R Z
2014-02-01
Endovascular procedures are gaining more and more popularity as treatment of great saphenous vein (GSV) incompetence. The purpose of the present study was to assess the efficacy of steam GSV ablation. Steam ablation using the steam vein sclerosis system (CERMA, France) was performed in 20 patients with GSV incompetence. The efficacy of the procedure was evaluated using ultrasound and the following parameters were assessed: changes in lumen diameter, GSV wall thickness, reflux and presence/absence of blood flow. The GSV steam ablation resulted in the obliteration of the vein lumen in all patients - reflux or blood flow were not observed in any subject. A significant decrease of GSV lumen diameter and an increase of GSV wall thickness were also observed in all subjects following the procedure. No postoperative complications were noted. The steam ablation technique was also positively assessed by the patients. Steam ablation is an endovascular surgical technique, which can become popular and widely used due to its efficacy and safety. It is also easy to use and patient-friendly. The research on its use should be continued.
Design with constructal theory: Steam generators, turbines and heat exchangers
NASA Astrophysics Data System (ADS)
Kim, Yong Sung
This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.
NASA Astrophysics Data System (ADS)
Avetisyan, A. R.; Lazarev, L. Ya.
2017-07-01
This article is a brief overview of some scientific and engineering ideas in the sphere of two-phase gas dynamics that were developed by the team of the Problem Laboratory of Turbomachines, Department of Steam and Gas Turbines, Moscow Power Engineering Institute (NRU MPEI, National Research University), under the leadership of Mikhail Efimovich Deich since 1963 and the analysis of their development and influence on the current state of the problem. At the early stages of the studies on two-phase media, the problem of the measurement of physical parameters of phases was especially urgent. The characteristics of probes for the measurement of one-phase flows in the presence of drops were studied, and the corrections for the influence of the second phase were obtained. However, the main focus was the development of new methods, and the optical method using a laser light source that is currently used at the leading laboratories of the world was chosen as the main method. The study of the wet-steam flow in nozzles is one of the first stages of the research on the problem. In these studies, the wave structure of supersonic wet-steam flows (condensation jumps and shock waves, Mach waves, turbulent condensation, periodic condensation nonstationarity, etc.) was investigated in detail. At present, like in the earlier studies, much attention is paid to the study of the influence of the addition of surface-active substance (SASs) on the wet-steam flow. The study of the wet-steam motion in steam-turbine stages was performed simultaneously with physical studies as the practical application of the obtained results. The development of computer technology in the 21st century contributed to the elaboration of the theoretical methods for the calculation of wet-steam flows in elements of power devices.
NASA Astrophysics Data System (ADS)
John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.
2005-12-01
Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.
Correction coefficient for see-through labyrinth seal
NASA Astrophysics Data System (ADS)
Hasnedl, Dan; Epikaridis, Premysl; Slama, Vaclav
In a steam turbine design, the flow-part design and blade shapes are influenced by the design mass-flow through each turbine stage. If it would be possible to predict this mass-flow more precisely, it will result in optimized design and therefore an efficiency benefit. This article is concerned with improving the prediction of losses caused by the seal leakage. In the common simulation of the thermodynamic cycle of a steam turbine, analytical formulas are used in order to simulate the seal leakage. Therefore, this article describes an improvement of analytical formulas used in a turbine heat balance calculation. The results are verified by numerical simulations and experimental data from the steam test rig.
Burdgick, Steven Sebastian; Burns, James Lee
2002-01-01
A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.
Fifarek, R.H.; Rye, R.O.
2005-01-01
The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this environment was unusually slow, which provided sufficient time for the uptake of groundwater and partial to complete SO42--H2S isotopic exchange. The slow steam velocities were likely related to the dispersal of the steam column as it entered the tuffs and possibly to intermediate exsolution rates from magmatic brine. The low ??D values may also partly reflect continuous degassing of the mineralizing magma. Similarly, data for steam-heated alunite (??34S=12.3??? to 27.2???; ??18OSO4=11.7??? to 13.0???; ??18OOH=6.6??? to 9.4???; ??D=-59??? to -42???) are unusual and indicate a strong magmatic influence, relatively high temperatures (140 to 180 ??C, based on ??18 OSO4-OH fractionations), and partial to complete sulfur isotopic exchange between steam-heated sulfate and H2S. Restricted lithologically controlled fluid flow in the host tuffs allowed magmatic condensate to supplant meteoric groundwater at the water table and create the high-temperature low-pH conditions that permitted unusually rapid SO42--H2S isotopic equilibration (50-300 days) and (or) long sulfate residence times for this environment. Late void-filling barite (??34S=7.4??? to 29.7???; ??18OSO4=-0.4??? to 15.1???) and later void-filling goethite (??18O=-11.8??? to 0.2???) document a transition from magmatic condensate to dominantly meteoric water in steam-heated fluids during cooling and collapse of the hydrothermal system. These steam-heated fluids oxidized the top ???300 m of the deposit by leaching sulfides, redistributing metals, and precipitating barite??acanthite??gold and goethite-hematite ??gold. Steam-heated oxidation, rather than weathering, was critical to forming the orebody in that it not only released encapsulated gold but likely enriched the deposit to ore-grade Au concentrations. ?? 2004 Elsevier B.V. All rights reserved.
Recent Work on Flow Boiling and Condensation in a Single Microchannel
NASA Astrophysics Data System (ADS)
Quan, Xiaojun; Wang, Guodong; Cheng, Ping; Wu, Huiying
2007-06-01
Recent visualization and measurements results on flow boiling of water and condensation of steam in a single microchannel, carried out at Shanghai Jiaotong University, is summarized in this paper. For flow boiling of water, experiments were conducted in a single microchannel with a trapezoidal cross-section having a hydraulic diameter of 186 μm and a length of 30 mm. A boiling flow pattern map in terms of heat flux versus mass flux, showing the unstable and stable boiling flow regimes in the microchannel, is obtained. For the investigation of condensation, experiments were carried out for steam condensing inside a single microchannel with a length of 60mm having a hydraulic diameter of 87 μm and 120μm respectively. The location of transition from annular flow to plug/slug flow in a microchannel is found to be dependent on both the dimensionless condensation heat transfer rate as well as the Reynolds number of the steam. The frequency for the occurrence of the injection flow is found to increase with the increasing mass flux.
A New Microstructure Device for Efficient Evaporation of Liquids
NASA Astrophysics Data System (ADS)
Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice
Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself cannot be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 7. A maximum power density of 1400 kW·m-2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapour is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.
Dilute Acid and Autohydrolysis Pretreatment
NASA Astrophysics Data System (ADS)
Yang, Bin; Wyman, Charles E.
Exposure of cellulosic biomass to temperatures of about 120-210°C can remove most of the hemicellulose and produce cellulose-rich solids from which high glucose yields are possible with cellulase enzymes. Furthermore, the use of dilute sulfuric acid in this pretreatment operation can increase recovery of hemicellulose sugars substantially to about 85-95% of the maximum possible versus only about 65% if no acid is employed. The use of small-diameter tubes makes it possible to employ high solids concentrations similar to those preferred for commercial operations, with rapid heat-up, good temperature control, and accurate closure of material balances. Mixed reactors can be employed to pretreat larger amounts of biomass than possible in such small-diameter tubes, but solids concentrations are limited to about 15% or less to provide uniform temperatures. Pretreatment of large amounts of biomass at high solids concentrations is best carried out using direct steam injection and rapid pressure release, but closure of material balances in such “steam gun” devices is more difficult. Although flow of water alone or containing dilute acid is not practical commercially, such flow-through configurations provide valuable insight into biomass deconstruction kinetics not possible in the batch tubes, mixed reactors, or steam gun systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Paul A.; Liao, Chang-hsien
2007-11-15
A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less
Steam generator for liquid metal fast breeder reactor
Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.
1985-01-01
Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.
Bistable flow occurrence in the 2D model of a steam turbine valve
NASA Astrophysics Data System (ADS)
Pavel, Procházka; Václav, Uruba
2017-09-01
The internal flow inside a steam turbine valve was investigated experimentally using PIV measurement. The valve model was proposed to be two-dimensional. The model was connected to the blow-down wind tunnel. The flow conditions were set by the different position of the valve plug. Several angles of the diffuser by diverse radii were investigated concerning flow separation and flow dynamics. It was found that the flow takes one of two possible bistable modes. The first regime is characterized by a massive flow separation just at the beginning of the diffuser section on the one side. The second regime is axisymmetric and the flow separation is not detected at all.
Martian rampart crater ejecta - Experiments and analysis of melt-water interaction
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Sheridan, M. F.
1983-10-01
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology.
Low chemical concentrating steam generating cycle
Mangus, James D.
1983-01-01
A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.
Transient analysis of a molten salt central receiver (MSCR) in a solar power plant
NASA Astrophysics Data System (ADS)
Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.
2016-05-01
Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.
Pilot-scale steam aging of steel slags.
Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr
2017-06-01
Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.
NASA Astrophysics Data System (ADS)
Orlik, V. G.; Reznik, L. B.
1984-02-01
A method, instruments and devices were developed and model and field studies were performed of the flow of steam and moisture downstream from the last stage of a K-300-240 turbine in the vicinity of the vertical separating rib. The quantity of moisture flowing toward the drive wheel of the last stage over the inner cone of the exhaust tube was measured, and found to decrease with increasing temperature, disappearing at 140 C. When the turbine is loaded, moisture appears on the cone at approximately 60 MW, reaching 60 kg/hr at nominal mode and increasing with decreasing steam superheating temperature, to 80 kg/hr at 60 MW and 365 C. The steam receiving section of the condenser was found to be overloaded since the cross section of its drains was not designed to receive steam with excess moisture content. Excessive twisting of the steam flow beyond the last stage in the direction of rotation was experimentally determined. The quantity of erosion-dangerous moisture downstream from the last stage depends on the temperature difference between turbine exhaust and the machine room in which it is located.
Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units
NASA Astrophysics Data System (ADS)
Legkostupova, V. V.; Sudakov, A. V.
2015-03-01
The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the separator; separated layout of the of the separator and steam reheater; and use of transversely finned tube bundles for organizing cross flow of steam over the tubes.
Reflux cooling experiments on the NCSU scaled PWR facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doster, J.M.; Giavedoni, E.
1993-01-01
Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Experimental research of flow parameters on the last stage of the steam turbine 1090 MW
NASA Astrophysics Data System (ADS)
Sedlák, Kamil; Hoznedl, Michal; Bednář, Lukáš; Mrózek, Lukáš; Kalista, Robert
2016-06-01
This article deals with a brief description of measurement and evaluation of flow parameters at the output from the last stage of the low pressure steam turbine casing for the saturated steam with the nominal power 1090 MW. Measurement was carried out using a seven-hole pneumatic probe traversing along the length of the blade in several peripheral positions under nominal and selected partial modes. The result is knowledge of distribution of the static, dynamic and total pressure along the length of the blade and velocity distribution including their components. This information is the input data for determination of efficiency of the last stage, the loss coefficient of the diffuser and other significant parameters describing efficiency of selected parts of the steam turbine.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
Some aspects of steam-water flow simulation in geothermal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulyupin, Alexander N.
1996-01-24
Actual aspects of steam-water simulation in geothermal wells are considered: necessary quality of a simulator, flow regimes, mass conservation equation, momentum conservation equation, energy conservation equation and condition equations. Shortcomings of traditional hydraulic approach are noted. Main questions of simulator development by the hydraulic approach are considered. New possibilities of a simulation with the structure approach employment are noted.
Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
NASA Astrophysics Data System (ADS)
Mitra, D.; Dhir, V. K.; Catton, I.
2009-10-01
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.
1994-06-09
Competitive Neural Nets Speed Complex Fluid Flow Calculations 1-366 T. Long, E. Hanzevack Neural Networks for Steam Boiler MIMO Modeling and Advisory Control...Gallinr The Cochlear Nucleus and Primary Cortex as a Sequence of Distributed Neural Filters in Phoneme IV-607 Perception J. Antrobus, C. Tarshish, S...propulsion linear model, a fuel flow actuator modelled as a linear second order system with position and rate limits, and a thrust vectoring actuator
Gas turbine row #1 steam cooled vane
Cunha, Frank J.
2000-01-01
A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yortsos, Yanis C.
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Anderson, N M; Walker, P N
2011-08-01
This study was carried out to investigate segmented-flow aseptic processing of particle foods. A pilot-scale continuous steam sterilization unit capable of producing shelf stable aseptically processed whole and sliced mushrooms was developed. The system utilized pressurized steam as the heating medium to achieve high temperature-short time processing conditions with high and uniform heat transfer that will enable static temperature penetration studies for process development. Segmented-flow technology produced a narrower residence time distribution than pipe-flow aseptic processing; thus, whole and sliced mushrooms were processed only as long as needed to achieve the target F₀ = 7.0 min and were not overcooked. Continuous steam sterilization segmented-flow aseptic processing produced shelf stable aseptically processed mushrooms of superior quality to conventionally canned mushrooms. When compared to conventionally canned mushrooms, aseptically processed yield (weight basis) increased 6.1% (SD = 2.9%) and 6.6% (SD = 2.2%), whiteness (L) improved 3.1% (SD = 1.9%) and 4.7% (SD = 0.7%), color difference (ΔE) improved 6.0% (SD = 1.3%) and 8.5% (SD = 1.5%), and texture improved 3.9% (SD = 1.7%) and 4.6% (SD = 4.2%), for whole and sliced mushrooms, respectively. Segmented-flow aseptic processing eliminated a separate blanching step, eliminated the unnecessary packaging of water and promoted the use of bag-in-box and other versatile aseptic packaging methods. Segmented-flow aseptic processing is capable of producing shelf stable aseptically processed particle foods of superior quality to a conventionally canned product. This unique continuous steam sterilization process eliminates the need for a separate blanching step, reduces or eliminates the need for a liquid carrier, and promotes the use of bag-in-box and other versatile aseptic packaging methods. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard
2017-06-01
At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
Wagner, Jr., Edward P.
1999-01-01
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
Quasi-Porous Plug With Vortex Chamber
NASA Technical Reports Server (NTRS)
Walsh, J. V.
1985-01-01
Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.
Erecting Gas Storage Facilities and Oil Centers
1975-01-21
these allow steam to flow from the steam lines into the storage tank and to hydraulic seals , then into the water via steam -jet conveyors. The...of the dry gas tank is similar to that of a steam engine. There is a special seal between the plate and the wall. The plate, by the action of gas...stable and sealed during the entire period of use. The formation of cracks and the leakage of gas through them may create danger for above-ground
Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L
2017-04-01
Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L
Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less
Cleansing technique using high-velocity steam-air micromist jet spray.
Fukuda, Koichi; Ishihara, Masayuki; Murakami, Kaoru; Nakamura, Shingo; Sato, Yoko; Kuwabara, Masahiro; Fujita, Masanori; Kiyosawa, Tomoharu; Yokoe, Hidetaka
2017-10-01
Application of a high-velocity steam-air micromist jet spray (HVS-AMJS; micromist average diameter: 2.4 μm) for cleansing the skin is proposed. Low-pressure steam is mixed with compressed air (pH 6.5) in a nozzle, and then sprayed at a pressure of ≦0.25 MPa and a velocity of ≧0.34 m/s on the skin or surface of material located approximately 5-10 cm from the nozzle. The temperature on the sprayed surface and water flow rate could be controlled between 42 °C and 46 °C and at approximately 50 mL/min, respectively. Compared with ultrasonic cleansing with tap water and rubbing with only tap water, the HVS-AMJS successfully removed fluorescent lotion covering pieces of wood and significantly reduced both the number of coliforms and the total viable counts on pieces of wood and gauze. Furthermore, the HVS-AMJS effectively removed oily ink from the skin of hairless rats, and temporarily elevated the skin temperature and blood flow, indicating massage effects. The striking characteristics of this cleansing technique using HVS-AMJS are not only its ability to remove microbes and residue without using any chemicals or detergents but also its massage effects.
Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase
Moench, A.F.; Atkinson, P.G.
1978-01-01
A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.
Cooling circuit for steam and air-cooled turbine nozzle stage
Itzel, Gary Michael; Yu, Yufeng
2002-01-01
The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.
Thermoelastic steam turbine rotor control based on neural network
NASA Astrophysics Data System (ADS)
Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.
2015-12-01
Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.
System and method for determining coolant level and flow velocity in a nuclear reactor
Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd
2013-09-10
A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen
NASA Astrophysics Data System (ADS)
Wood, E. Sooby; White, J. T.; Grote, C. J.; Nelson, A. T.
2018-04-01
Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is absent from the literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U3Si2 in H2O. Reported here are thermogravimetric data for U3Si2 exposed to flowing steam at 250-470 °C. Additionally the response of U3Si2 to flowing Ar-6% H2 from 350 to 400 °C is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U3Si2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. This mechanism is accelerated in flowing Ar-H2 at the same temperatures.
Experimental and Theoretical Studies of Condensation on a Horizontal Tube Row with Vapour Shear
NASA Astrophysics Data System (ADS)
Aoune, Azzeddine
Available from UMI in association with The British Library. This thesis presents an experimental and theoretical investigation into the effect of vapour shear on the condensation of steam flowing vertically downwards over a single horizontal tube and a horizontal tube in a row. Honda and Fujii's conjugate heat transfer analysis has been adapted and modified to take account of property variation with temperature and release of sensible heat to the condensing film. In industrial condensers, even in the first row, the vapour velocity profile around a tube is affected by the presence of its neighbours. This work extends Honda and Fujii's analysis to investigate the effect of tube spacing on the heat transfer. The finite element method was used to obtain the velocity field around the tube in a row and subsequently the boundary layer equations for the condensate and vapour film along with the heat flow in the tube wall were solved simultaneously. Data have been obtained at absolute pressures of 0.8 and 0.9 bar and for steam superheat up to 40 degC. Approach steam velocities up to 25 m/s were covered. Cooling water velocities and temperatures were in the range 0.68-1.16 m/s and 18-43^circ C, respectively. Honda et al (67), Roshko's flow, theory was found to fit the data for the steam flowing over the isolated tube. The theoretical data for the latter agreed well with the Shekriladze and Gomelauri (2) and Rose (40) correlations and Honda et al (67), potential flow, theory. On | Nu| Re^{-1/2} versus F basis, an average enhancement of 50% in condensate film heat transfer was observed in the case of steam flowing over the tube in a row compared to the isolated tube. This compared with the predicted value of 23% enhancement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... using a carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
Wagner, E.P. Jr.
1999-01-12
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.
NASA Astrophysics Data System (ADS)
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
Heat up and failure of BWR upper internals during a severe accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Heat up and failure of BWR upper internals during a severe accident
Robb, Kevin R.
2017-02-21
In boiling water reactors, the shroud dome, separators, and dryers above the core are made of approximately 100,000 kg of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. In this scenario, the upper internals can also be heated by thermal radiation from the hot degrading core. Historically, models of the upper internals have been relatively simple in severe accident codes. The upper internals are typically modeled in MELCOR as two lumped volumes with simplifiedmore » heat transfer characteristics and no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. The MELCOR modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. Consistent with a previous study, the results indicate that the upper internals can reach high temperatures during a severe accident sufficient to lose their structural integrity and relocate. Finally, the additional 100 metric tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.« less
Downhole steam generator having a downhole oxidant compressor
Fox, Ronald L.
1983-01-01
Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.
Optical steam quality measurement system and method
Davidson, James R.; Partin, Judy K.
2006-04-25
An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.
Steam Reforming of Methyl Fuel - Phase I
1977-06-30
best catalyst . 2.0 TEST DESCRIPTION 2.1 Technical Background The basic reactions occurring in steam reforming of methanol are CH3OH + H20 CO2 + 3H 2...chamber contains the test catalyst . The fuel feed tank was filled with premixed methanol /gasoline mixture. Fuel flow as well as water flow were measured...carbon-oxygen bond formation and therefore follows a different mechanism than the methanol reaction . Different catalysts promote these types of
Receiver System: Lessons Learned from Solar Two
NASA Astrophysics Data System (ADS)
Litwin, R. Z.
2002-03-01
The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565DGC by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.
Receiver System: Lessons Learned From Solar Two
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITWIN, ROBERT Z.; PACHECO, JAMES E.
The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design,more » Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.« less
Steam ejector-condenser: stage I of a differential vacuum pumping station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, C.L.; Alger, T.W.
1981-04-01
A steam ejector-condenser unit was built and tested to produce a 10 Torr (13.3 x 10/sup 2/Pa) vacuum with a 2 cm aperture to the atmosphere. This unit is the first stage of a differential vacuum pumping station that will be used with the Experimental Test Accelerator. The accelerator's electron beam will pass through a series of openings from a high vacuum (5 x 10/sup -6/ Torr) to the atmosphere. The differential system consists of four vacuum pumping units separated by 2 cm-diam apertures. Superheated steam is injected near the final beamline orifice to reduce the quantity of atmospheric airmore » flowing into the steam ejector--condenser unit. The steam ejector in the condenser vessel is open at its center to permit passage of the accelerator beam. Five nozzles mounted in a conical array produce the ejector vacuum of 10 Torr. The ejector exhausts into the condenser and forms a barrier to air flow into the lower pressure region. This feature permits high volume cold trapping and cryopumping of water vapor in the remaining lower-pressure stages. Tests have proven that the steam ejector--condenser is a reliable operating unit and suitable for long-term, steady-state accelerator operation.« less
NASA Astrophysics Data System (ADS)
Degraff, James M.; Long, Philip E.; Aydin, Atilla
1989-09-01
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.
Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes
NASA Astrophysics Data System (ADS)
Nikitin, N. N.; Semenov, V. P.
2008-03-01
We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
New Generation Strategic Submarine Study
1977-01-01
Ship Propulsion System . 111-22 III- A -6 Simplified Functional Diagram - Steam-Feed Flow System . 111-23 III- A -7...16 Aa Tabte XIZ- A -3 System (Element) Functional Analysis ResuZts--Engineering p Plant Subsystem SYSTEM (ELEMENT) FUNCTION Ll A . Ship Propulsion 1...FUNCTION A . Ship Propulsion (cont’d) 9. SSTG Throttle Valves * Provide frequency control of the ship’s service turbine generators, startup and
Transonic flow of steam with non-equilibrium and homogenous condensation
NASA Astrophysics Data System (ADS)
Virk, Akashdeep Singh; Rusak, Zvi
2017-11-01
A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.
NASA Astrophysics Data System (ADS)
Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.
2017-11-01
The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
17. Internal view of boiler in steam space above return ...
17. Internal view of boiler in steam space above return flues. View looks forward in ship toward fireboxes; tubes (flues) below carry hot combustion gases from return chamber to smoke chamber. From thence gasses flow through vertical pipe at left into steam stack, and eventually to ship's smokestack. Inclined and radiating straps are stays used to reinforce boiler plates against distortion under pressure. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen
Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John; ...
2018-01-17
Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less
Flow testing of the Newberry 2 research drillhole, Newberry volcano, Oregon
Ingebritsen, S.E.; Carothers, W.W.; Mariner, R.H.; Gudmundsson, J.S.; Sammel, E.A.
1986-01-01
A 20 hour flow test of the Newberry 2 research drillhole at Newberry Volcano produced about 33,000 kilograms of fluid. The flow rate declined from about 0.8 kilograms per sec to less than 0.3 kilograms per sec during the course of the test. The mass ratio of liquid water to vapor was about 3:2 at the separator and stayed fairly constant throughout the test. The vapor phase was about half steam and half CO2 by weight. The average enthalpy of the steam/water mixture at the separator was about 1 ,200 kilojoules per kilogram. Because of the low flow rate and the large temperature gradient into the surrounding rocks, heat loss from the wellbore was high; a simple conductive model gives overall losses of about 1,200 kilojoules per kilogram of H2O produced. The actual heat loss may have been even higher due to convective effects, and it is likely that the fluid entering the bottom of the wellbore was largely or entirely steam and CO2. (Author 's abstract)
U 3Si 2 behavior in H 2O: Part I, flowing steam and the effect of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Elizabeth Sooby; White, Joshua Taylor; Grote, Christopher John
Recent interest in U 3Si 2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H 2O environments is absent from the literature. The behavior of U 3Si 2 in H 2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U 3Si 2 in H 2O. Reported here are thermogravimetric data for U 3Si 2 exposed to flowing steam at 250–470 °C. Additionally the response of U 3Si 2 to flowing Ar-6% H 2 from 350 to 400 °Cmore » is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U 3Si 2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. In conclusion, this mechanism is accelerated in flowing Ar-H 2 at the same temperatures.« less
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.
2016-03-01
The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.
NASA Astrophysics Data System (ADS)
Gribin, V. G.; Gavrilov, I. Yu.; Tishchenko, A. A.; Tishchenko, V. A.; Alekseev, R. A.
2017-05-01
This paper is devoted to the wave structure of a flow at its near- and supersonic velocities in a flat turbine cascade of profiles in the zone of phase transitions. The main task was investigation of the mechanics of interaction of the condensation jump with the adiabatic jumps of packing in a change of the initial condition of the flow. The obtained results are necessary for verification of the calculation models of the moisture-steam flow in the elements of lotic parts of the steam turbines. The experimental tests were made on a stand of the wet steam contour (WSC-2) in the Moscow Power Engineering Institute (MPEI, National Research University) at various initial states of steam in a wide range of Mach numbers. In the investigation of the wave structure, use was made of an instrument based on the Schlieren-method principle. The amplitude-frequency characteristics of the flow was found by measurement of static pressure pulsations by means of the piezo resistive sensors established on a bandage plate along the bevel cut of the cascade. It is shown that appearance of phase transitions in the bevel cut of the nozzle turbine cascade leads to a change in the wave structure of the flow. In case of condensation jump, the system of adiabatic jumps in the bevel cut of the cascade becomes nonstationary, and the amplitude-frequency characteristics of static pressure pulsations are restructured. In this, a change in the frequency pulsations of pressure and amplitude takes place. It is noted that, at near-sonic speeds of the flow and the state of saturation at the input, the low-frequency pulsations of static pressure appear that lead to periodic disappearance of the condensation jump and of the adiabatic jump. As a result, in this mode, the flow discharge variations take place.
Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
Andrew, Renny; Gokak, D T; Sharma, Pankaj; Gupta, Shalini
2016-12-01
Today, the impending stringent environmental norms and concerns about the depletion of fossil fuel reserves have added impetus on development of cutting edge technologies for production of alternative fuels from renewable sources, like biomass. The concept of biomass pyro-gasification offers a platform for production of (a) hydrogen, (b) hydrocarbons and (c) value added chemicals, etc. In this context, there exists potential for hydrogen production from biomass by superheated steam gasification. Apart from H 2 , gaseous products of biomass steam gasification contain CO, CH 4 and other hydrocarbons that can be converted to hydrogen through cracking, steam reforming and water gas shift reactions. In the present work, the characteristics of biomass steam gasification in an indigenously designed rotary tubular coiled-downdraft reactor for high value gaseous fuel production from rice husk was studied through a series of experiments. The robust reactor system enhances biomass conversion to gaseous products by improved mass and heat transfer within the system induced by a coiled flow pattern with increased heat transfer area. Also, the system has improved upon the reliability of operation and offered greater continuity of the process and easier control in comparison with a conventional process by making use of an innovative gas cooler assembly and efficient venturi-mixing system for biomass and steam. Subsequently, the effects of reactor temperature, steam-to-biomass ratio and residence time on overall product gas yield and hydrogen yield were investigated. From the experimental results, it can be deduced that an optimum reactor temperature of 750 °C, steam-to-biomass ratio of 2.0 and a residence time of 3.0 min contributed highest gas yield (1.252 Nm 3 kg -1 moisture-free biomass). Based on the obtained experimental results, a projected potential hydrogen yield of 8.6 wt% of the moisture-free biomass could be achieved, and is also practical for production of pure hydrogen. © The Author(s) 2016.
Steam dispatching control system demonstration at Fort Benjamin Harrison. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diks, C.L.; Moshage, R.E.; Lin, M.C.
1993-07-01
Currently most Army Central steam heating systems operate by maintaining a constant steam pressure regardless of actual steam demand. This method offers some operational convenience, but is often the cause of significant energy losses. Researchers at the U.S. Army Construction Engineering Research Laboratories (USACERL) have investigated the Steam Dispatching Control System (SDCS), a control system that lowers supply steam pressure-and therefore steam temperature-to slightly above the amount needed to meet the steam demand. The lower Steam temperature and reduction in steam loss (from leaks and faulty traps) result in lower heat losses and higher energy savings. Limiting steam pressure canmore » diminish the amount of excess heat loss in the distribution system while still meeting the demand. The Army's Facilities Engineering Applications Program (FEAP) chose Fort Benjamin Harrison, IN, as the Army demonstration site for SDCS. Researchers found that use of SDCS is technically and economically viable improvement over current operating procedures. Analysis based on demonstration results show that the simple payback for SDCS is less than 1 year. The results of this demonstration are generally applicable to installations with a large central heating plant and a substantial steam distribution system. Findings, indicate that energy savings form SDCS are significant regardless of what type of fuel powers the boiler. The authors note that, during the initial evaluation of a potential SDCS application, attention must be paid to the condensate return to ensure that it will operate properly. Fort Benjamin Harrison, IN, Steam Dispatching Control System(SDCS), Central heating plants, energy conservation.« less
Pyrometer mount for a closed-circuit thermal medium cooled gas turbine
Jones, Raymond Joseph; Kirkpatrick, Francis Lawrence; Burns, James Lee; Fulton, John Robert
2002-01-01
A steam-cooled second-stage nozzle segment has an outer band and an outer cover defining a plenum therebetween for receiving cooling steam for flow through the nozzles to the inner band and cover therefor and return flow through the nozzles. To measure the temperature of the buckets of the stage forwardly of the nozzle stage, a pyrometer boss is electron beam-welded in an opening through the outer band and TIG-welded to the outer cover plate. By machining a hole through the boss and seating a linearly extending tube in the boss, a line of sight between a pyrometer mounted on the turbine frame and the buckets is provided whereby the temperature of the buckets can be ascertained. The welding of the boss to the outer band and outer cover enables steam flow through the plenum without leakage, while providing a line of sight through the outer cover and outer band to measure bucket temperature.
Film cooling air pocket in a closed loop cooled airfoil
Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian
2002-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.
Geothermal energy control system and method
Matthews, Hugh B.
1976-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...
2016-01-01
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Post-extraction algal residue in steam-flaked corn-based diets for beef cattle
USDA-ARS?s Scientific Manuscript database
The effects of post-extraction algal residue (PEAR) as N source 23 in steam-flaked corn-based (SFC) beef cattle finishing diets on intake, duodenal flow, digestion, ruminal microbial efficiency, ruminal parameters, and blood constituents were evaluated. Ruminally and duodenally cannulated steers (BW...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant L. Hawkes; James E. O'Brien; Greg Tao
2011-11-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified formore » this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.« less
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Staiger, P. J.
1982-01-01
The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.
Effect of steam addition on cycle performance of simple and recuperated gas turbines
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1979-01-01
Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.
Method to prevent/mitigate steam explosions in casting pits
Taleyarkhan, Rusi P.
1996-01-01
Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.
Mandal, Sanchita; Sarkar, Binoy; Igalavithana, Avanthi Deshani; Ok, Yong Sik; Yang, Xiao; Lombi, Enzo; Bolan, Nanthi
2017-12-01
Objective of this study was to investigate the mechanisms of 2,4-Dichlorophynoxy acetic acid (2,4-D) sorption on biochar in aqueous solutions. Sorption isotherm, kinetics, and desorption experiments were performed to identify the role of biochars' feedstock and production conditions on 2,4-D sorption. Biochars were prepared from various green wastes (tea, burcucumber, and hardwood) at two pyrolytic temperatures (400 and 700°C). The tea waste biochar produced at 700°C was further activated with steam under a controlled flow. The sorption of 2,4-D was strongly dependent on the biochar properties such as specific surface area, surface functional groups, and microporosity. The steam activated biochar produced from tea waste showed the highest (58.8mgg -1 ) 2,4-D sorption capacity, which was attributed to the high specific surface area (576m 2 g -1 ). The mechanism of 2,4-D removal from aqueous solution by biochar is mainly attributed to the formation of heterogeneous sorption sites due to the steam activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; O'Brien, James
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase withmore » a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for the low quality inlet period, the RCIC turbine shaft work dramatically decreases and results in a much reduced pump injection flow rate, and the mixture flow rate through the turbine increases due to the high liquid phase flow rate. The net effect for this period is net removal of coolant from the primary loop. With the periodic addition and removal of coolant to the primary loop, the self-regulation mode of the RCIC system can be maintained for a quite long time. Both the IHEM and Moody’s models generate similar phenomena; however noticeable differences can be observed.« less
Visualization experiments on steam injection in Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Xianli; Haghighi, M.; Yortsos, Y.C.
1992-03-01
Flow visualization experiments have been successfully employed in reservoir engineering research for many years. They involve 2-D geometries in transparent Hele-Shaw cells and glass micromodels. Although much work has been done on immiscible flows (drainage or imbibition), visualization of steamfloods, which constitute a major part of current EOR methods, has not been attempted to data. In this paper, we present experimental results on steam injection in a transparent, pyrex glass Hele-Shaw cell. Both synthetic (Dutrex 739) and natural heavy oils were used under a variety of conditions, including effects of gravity.
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Thermally-enhanced oil recovery method and apparatus
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1987-01-01
A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.
2006-01-01
Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.
Clocking of stators in one and half stage of axial steam turbine
NASA Astrophysics Data System (ADS)
Němec, Martin; Jelínek, Tomáš; Milčák, Petr
2018-06-01
An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences the flow structures in the next stator in steam multistage turbines. The stage - stator interaction has been studied in this work. The detailed measurement with a pneumatic probes and fast response pressure probes behind the rotor and the second stator were performed to gain the useful data to analyze the impact. The detailed flow field measurement was carried out in the nominal stage regime (given by the stage isentropic Mach number 0.3 and velocity ratio u/c 0.68). The clocking effect of the stators is discussed and detailed unsteady flow analysis is shown.
Source model of volcanic tremor: two-phase flow instability in a pipe-valve system
NASA Astrophysics Data System (ADS)
Fujita, E.
2003-12-01
Volcanic tremor at a shallow depth beneath the volcano is inferred to link to hydrothermal activities powered by heat supply from magma. In this study, we developed numerical simulations of the instabilities of the water-steam two-phase flow in a pipe-valve system and considered the source mechanism of volcanic tremor. The experiments of two-phase flow by Veziroglu and Lee [1968] revealed the two kinds of oscillating modes, density wave oscillation with the period of a few seconds and pressure drop oscillation with the period of dozens of seconds. These modes were mainly controlled by the pressure difference between inlet and outlet, flux rate of fluid and heat supply rate. Especially, the former mode appears when the flux rate is small and the latter does when the pressure difference and heat supply rate are larger. We performed some preliminary numerical simulation of these oscillations in water-steam flow in a cylindrical conduit. As an example, we assume the flow in conduit of 4 m length with the valves at inlet and outlet with the conditions of non-slip at the wall. As initial conditions, the inlet and outlet pressures are fixed to be 1.2E5 Pa and 1.0E5 Pa, respectively, water temperature of 370 K, heat supply of 1.0E6 - 2.0E7W/m3. The friction except the valve area is assumed to be 1000kg/m3. After the heating condition becomes stable, we shut the valve at the outlet and detect the significant oscillation. In case of the heat supply of 1.1E7W/m3, density drop oscillation with the period of 0.16s has appeared. In this model, the oscillation originates from the density change due to vaporization, and its information arrives at the outlet with the velocity of two-phase flow. The cycle of heating and boiling controls the interval of the tremor occurrence and the period is determined by the length of the pipe and the flow velocity. The shut of valve physically corresponds to geometrical narrowing, choking, and non-linear effect of flow and/or surrounding medium.
Statistical methods for the quality control of steam cured concrete : final report.
DOT National Transportation Integrated Search
1971-01-01
Concrete strength test results from three prestressing plants utilizing steam curing were evaluated statistically in terms of the concrete as received and the effectiveness of the plants' steaming procedures. Control charts were prepared to show tren...
A high-temperature gas-and-steam turbine plant operating on combined fuel
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.
2015-11-01
A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.
NASA Astrophysics Data System (ADS)
Gihm, Yong Sik; Kwon, Chang Woo
2017-02-01
Multiple exposures of peperite within the Cretaceous Buan Volcanics, southwest Korea, have been examined in order to determine variations in their textural characteristics and to investigate their mode of formation. Along undulating boundaries between rhyolite (lava flow) and deformed host sediment expressed as a series of load and flame structures, exposures commonly contain two distinct types of peperite. Type-1 peperites are composed mostly of rounded juvenile clasts at their base and polyhedral juvenile clasts at their upper levels, interpreted to have formed via a two-stage process. Firstly, abrasion of juvenile clasts occurred after their fragmentation due to shear stress imparted by the overlying and still-moving lava flow, forming rounded juvenile clasts. Subsequent in situ quenching fragmentation of the lava flow produced clasts with platy to polyhedral shapes immediately after emplacement of the lava flow. Type-2 peperites laterally extend into the interior of featureless rhyolite as layers that decrease in thickness with increasing distance away from the flame zone. These layers exhibit horizontal textural variations, ranging from poorly sorted mixtures of ash- to block-sized angular juvenile clasts in the proximal zone, to closely packed polyhedral and tabular juvenile clasts with jigsaw-crack textures in the middle and distal zones. Type-2 peperite are inferred to have formed due to internal steam explosions that resulted from an expansion of heated pore water (leading to an increase in pore fluid pressure) that had been vertically injected into the interior of the rhyolite from the flame zone. The proximal zone, composed mainly of poorly sorted mixtures of juvenile clasts, represents the explosion sites. Juvenile clasts in the middle and distal zones are interpreted to have formed due to three separate processes: the development of fractures in the rhyolite during the internal steam explosions, injection of the host sediment through the fractures, and in situ quenching fragmentation. Deformation of the host sediment exerted an important control on peperite-forming processes, with the internal steam explosions suggested to have formed the closely packed, juvenile clasts with a jigsaw-crack texture rather than the clasts that are widely dispersed.
Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya
2013-01-16
A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.
Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.
Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R
1999-09-01
Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Y.; Ohsawa, S.; Kitaoka, K.
The central part of Kyushu Island, southwest Japan, is located at the junction of the Southwest Japan Arc and the Ryukyu Arc, where a graben (Beppu-Shimabara Graben) has been formed by the rifting tectonic movement. There are many Quaternary volcanoes and active geo- and hydro-thermal fields within the Graben. The Beppu hydrothermal system extends around the Tsurumi-Garandake volcanoes at the eastern end of the Graben. This report will deal with the hydrothermal system beneath the volcanoes specially focusing on Garandake. Modest or violent fumarolic activities are visible near the summit of Garandake (1045 m in height). The total water(steam) outputmore » is 1.4 kg/s and its heat output 3.8 MW, while the heat output from the ground surface of 5.5 x 10{sup 4} m{sup 2} is 19.5 MW estimated by a heat balance analysis based on infrared radiation measurements (Yuhara et al., 1987). Thus the main process of heat discharge from Garandake, totally 23.3 MW, is the radiation from the ground surface. The geothermal gradient observed in a well drilled near the summit indicates that the large heat output is caused by some special process different from conduction because the heat flow by conduction is estimated to be 0.03 MW, which is very small compared with the observed output. Allis and Yusa (1989) suggested that a two-phase flow system is developed in Garandake. The two-phase flow, steam rising and water failing, acts as a heat pipe, by which a large quantity of (latent) heat can be transported upwards. Applying the theory of two-phase flow (Yusa and Oishi, 1989) to the Garandake system, the upflow rate of steam is estimated to be 10.3 kg/s at 100{degrees}C; the temperature near the ground surface, A part of rising steam (1.4 kg/s) flows out through fumaroles, and the remnant condenses to flow downwards. If the system is vapor-dominated, the intrinsic permeability at the shallow part should be about 1 darcy.« less
Pretest analysis document for Semiscale Test S-FS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.H.
This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY21 code for Semiscale Test S-FS-1. The test will simulate the double-ended offset shear of the main steam line at the exit of the broken loop steam generator (downstream of the flow restrictor) and the subsequent plant recovery. The recovery portion of the test consists of a plant stabilization phase and a plant cooldown phase. The recovery procedures involve normal charging/letdown operation, pressurizer heater operation, secondary steam and feed of the unaffected steam generator, and pressurizer auxiliary spray. The test will be terminated after the unaffected steam generator and pressurizermore » pressures and liquid levels are stable, and the average priamry fluid temperature is stable at about 480 K (405/sup 0/F) for at least 10 minutes.« less
Film cooling for a closed loop cooled airfoil
Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael
2003-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.
Method to prevent/mitigate steam explosions in casting pits
Taleyarkhan, R.P.
1996-12-24
Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.
NASA Astrophysics Data System (ADS)
Portnova, N. M.; Smirnov, Yu B.
2017-11-01
A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.
Open cycle ocean thermal energy conversion system
Wittig, J. Michael
1980-01-01
An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.
A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paget, J.A.
1959-10-01
BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less
NASA Astrophysics Data System (ADS)
Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo
2015-12-01
In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.
Bore tube assembly for steam cooling a turbine rotor
DeStefano, Thomas Daniel; Wilson, Ian David
2002-01-01
An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.
Equilibrium model analysis of waste plastics gasification using CO2 and steam.
Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C
2017-12-01
Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.
Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.
Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong
2015-03-01
Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of Swirler Shape on Two-Phase Swirling Flow in a Steam Separator
NASA Astrophysics Data System (ADS)
Kataoka, Hironobu; Shinkai, Yusuke; Tomiyama, Akio
Experiments on two-phase swirling flow in a separator are carried out using several swirlers having different vane angles, different hub diameters and different number of vanes to seek a way for improving steam separators of uprated boiling water reactors. Ratios of the separated liquid flow rate to the total liquid flow rate, flow patterns, liquid film thicknesses and pressure drops are measured to examine the effects of swirler shape on air-water two-phase swirling annular flows in a one-fifth scale model of the separator. As a result, the following conclusions are obtained for the tested swirlers: (1) swirler shape scarcely affects the pressure drop in the barrel of the separator, (2) decreasing the vane angle is an effective way for reducing the pressure drop in the diffuser of the separator, and (3) the film thickness at the inlet of the pick-off-ring of the separator is not sensitive to swirler shape, which explains the reason why the separator performance does not depend on swirler shape.
A computational approach to real-time image processing for serial time-encoded amplified microscopy
NASA Astrophysics Data System (ADS)
Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi
2016-03-01
High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.
Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure
Loth, John L.; Smith, William C.; Friggens, Gary R.
1982-01-01
The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.
Method and apparatus for fuel gas moisturization and heating
Ranasinghe, Jatila; Smith, Raub Warfield
2002-01-01
Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.
Cooling system for a bearing of a turbine rotor
Schmidt, Mark Christopher
2002-01-01
In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.
Effect of sonication treatment on fibrilating snake fruit (Sallaca) frond fiber
NASA Astrophysics Data System (ADS)
Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil
2018-02-01
Aim of this research is to investigate influence of chemical and sonication treatment on fibrillating and mechanical properties of snake fruit frond fiber. The presence of surface impurities and the large amount of hydroxyl groups in natural fibers make less attractive for polymeric materials reinforcement. Effort to remove the impurities can be done by few treatments that consist of physical, chemical and mechanical treatment. Snake fruit frond bundle fiber were firstly subjected to chemical treatments with alkali solution, steaming at 2 bar and steam explosion at 6 bar by 40 times releasing of steam. Advanced treatment is done by flowing ultrasonic wave at 20 kHz by 90 - 210 watt. The output of fibrillation can reach fiber in range 10 - 25 nm compared with 10.72 µm in diameter for sonication and 6 bar in pressure of steam with 40x of rapidly steam release respectively.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
NASA Astrophysics Data System (ADS)
Sari, Ataallah; Sabziani, Javad
2017-06-01
Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.
Catalytic glycerol steam reforming for hydrogen production
NASA Astrophysics Data System (ADS)
Dan, Monica; Mihet, Maria; Lazar, Mihaela D.
2015-12-01
Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.
Retrofitting Steam Turbines with Expired Service Life
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.; Babiev, A. N.; Kremer, V. L.
2018-06-01
Many pieces of equipment installed at thermal power stations (TPS) have an expired service life or are close to expiry and are obsolete. In addition, the structure of heat consumption by end users has changed. Among the ways for solving the problem of aging equipment is the retrofitting of turbines that allows for service life recovery and improvement of their performance to the modern level. The service life is recovered through replacement of high-temperature assemblies and parts of a turbine, and the performance is improved by retrofitting and major overhaul of low-temperature assemblies. Implementation of modern engineering solutions and numerical methods in designing upgraded flow paths of steam turbines considerably improves the turbine effectiveness. New flow paths include sabre-like guide vanes, integrally-machined shrouds, and effective honeycomb or axial-radial seals. The flow paths are designed using optimization and hydraulic simulation methods as well as approaches for improving the performance on the turbine blading and internal steam flow paths. Retrofitting of turbines should be performed to meet the customers' needs. The feasibility of implementation of one or another alternative must be determined on a case-by-case basis depending on the turbine conditions, the availability of reserves for generating live steam and supplying circulation water, and the demands and capacities for generation and delivery of power and heat. The main principle of retrofitting is to retain the foundation and the auxiliary and heat-exchange equipment that is fit for further operation. With the example of PT-60-130 and T-100-130, the experience is presented of a comprehensive approach to retrofitting considering the customer's current needs and the actual equipment conditions. Due to the use of modern engineering solutions and procedures, retrofitting yields updating and upgrading of the turbine at a relatively low cost.
49 CFR 230.67 - Responsibility for inspection and repairs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders § 230.67 Responsibility for inspection and repairs. The steam locomotive owner and/or operator shall inspect and repair all steam locomotives and tenders under their control. All defects...
77 FR 4615 - Proposed Agency Information Collection Activities; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
...: Inspection and Maintenance of Steam Locomotives (Formerly Steam Locomotive Inspection). OMB Control Number.... Affected Public: 82 Steam Locomotive Owners/Operators. Abstract: The Locomotive Boiler Inspection Act (LBIA... the inspection of locomotives. The original LBIA was expanded to cover the entire steam locomotive and...
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
USDA-ARS?s Scientific Manuscript database
Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...
USDA-ARS?s Scientific Manuscript database
Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...
Hydrogen generation utilizing integrated CO2 removal with steam reforming
Duraiswamy, Kandaswamy; Chellappa, Anand S
2013-07-23
A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.
Gas turbine combustor transition
Coslow, Billy Joe; Whidden, Graydon Lane
1999-01-01
A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.
Gas turbine combustor transition
Coslow, B.J.; Whidden, G.L.
1999-05-25
A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.
Tests of a 2-Stage, Axial-Flow, 2-Phase Turbine
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1982-01-01
A two phase flow turbine with two stages of axial flow impulse rotors was tested with three different working fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen and water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam and water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen and water and Refrigerant 22 were 86 percent of theoretical. At that fraction of theoretical, the efficiencies of optimized two phase turbines would be in the low 60 percent range with organic working fluids and in the mid 50 percent range with steam and water. The recommended turbine design is a two stage axial flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.
THE STAL DOUBLE-ROTATION RADIAL FLOW STEAM TURBO-GENERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-06-01
The principles of operation, constructional features and the advantages that are claimed for the doublerotation radial flow type over the axial flow type are described, as well as its developments to meet both the requirements of very large outputs and the special needs of nuclear power stations. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbiener, W.A.; Cudnik, R.A.; Dykhuizen, R.C.
Experimental studies were conducted in a /sup 2///sub 15/-scale model of a four-loop pressurized water reactor at pressures to 75 psia to extend the understanding of steam-water interaction phenomena and processes associated with a loss-of-coolant accident. Plenum filling studies were conducted with hydraulic communication between the cold leg and core steam supplies and hot walls, with both fixed and ramped steam flows. Comparisons of correlational fits have been made for penetration data obtained with hydraulic communication, fixed cold leg steam, and no cold leg steam. Statistical tests applied to these correlational fits have indicated that the hydraulic communication and fixedmore » cold leg steam data can be considered to be a common data set. Comparing either of these data sets to the no cold leg steam data using the statistical test indicated that it was unlikely that these sets could be considered to be a common data set. The introduction of cold leg steam results in a slight decrease in penetration relative to that obtained without cold leg steam at the same value of subcooling of water entering the downcomer. A dimensionless parameter which is a weighted mean of a modified Froude number and the Weber number has been proposed as a scaling parameter for penetration data. This parameter contains an additional degree of freedom which allows data from different scales to collapse more closely to a single curve than current scaling parameters permit.« less
Removal of Fluorides and Chlorides from Zinc Oxide Fumes by Microwave Sulfating Roasting
NASA Astrophysics Data System (ADS)
Li, Zhiqiang; Zhang, Libo; Chen, Guo; Peng, Jinhui; Zhou, Liexing; Yin, Shaohua; Liu, Chenhui
2015-10-01
Dechlorination and defluorination from zinc oxide dust by microwave sulfating roasting was investigated in this study. According to proposed reactions in the process, detailed experiments were systematically conducted to study the effect of roasting temperature, holding time, air and steam flow rates on the efficiency of the removal of F and Cl. The results show that 92.3% of F and 90.5% of Cl in the fume could be purified when the condition of the roasting temperature of 650 °C, holding time at 60 min, air flow of 300 L/h and steam flow of 8 ml/min was optimized. Our investigation indicates that microwave sulfating roasting could be a promising new way for the dechlorination and defluorination from zinc oxide dust.
Rotor and stator assembly configured as an aspirating face seal
NASA Technical Reports Server (NTRS)
Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)
1999-01-01
A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.
Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jayne; Ludwig, Peter; Brand, Larry
2013-04-01
This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. Themore » guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.« less
Parametres pour l'instabilite fluidelastique: Derivees de stabilite et amortissement diphasique
NASA Astrophysics Data System (ADS)
Charreton, Constant
Heat exchangers and steam generators are crucial components in nuclear power plants. Water heated by nuclear fission is flowing through thousands of tubes inside a steam generator. Heat is transmitted to a second water network, external to the tubes. Steam is generated from the water of the secondary to power the turbines that produce electrical power. In this process, two-phase cross flow across the tubes causes several excitation phenomena. Vibration induced on the tubes can compromise the structural integrity of the steam generator, and can lead to power plant shutdowns. Better understanding of parameters at stake would lead to improved power plant safety and reliability. Fluidelastic instability is without doubt one of the most destructive vibration phenomena. It causes the steam generator tubes to collide against one another. This can lead to premature wear on the tubes, cracks due to fatigue and eventually, leaks leading to radioactive water contamination. Therefore, predicting conditions leading to fluidelastic instability would allow to control the damage on the tubes. In this thesis, we aim at identifying the key parameters to predict fluidelastic instability. To do so, a theoretical approach is based on the quasi-steady model. It is shown that the equation used to predict fluidelastic instability comprises two parameters that are hard to characterize. There is, on one hand, the derivative of the lift coefficient on a cylinder, and damping on the other hand. The main objective of this project is to measure these parameters experimentally. Knowing that the sign of the lift coefficient derivative is a sufficient indicator of fluidelastic instability, this derivative was measured. The experiments were carried out on the center tube of an array. The flow is single-phase and values of Reynolds number are low to moderate, thus filling a gap in the literature. Indeed, the lift coefficient derivative is known for high values of the Reynolds number only. Meanwhile, numerical methods are developed. They are based on the direct resolution of Navier-Stokes equations with the finite-element method, and on potential flow theory. Results for the lift coefficient derivative are compared to the measurements. Furthermore, the influence of geometric parameters of the array are investigated. The trend in the results show that the derivative of the lift coefficient becomes Reynolds independent for high values. From the literature and the measurements, a relationship is proposed for the lift coefficient derivative with respect to the Reynolds number. Values are injected in the quasi-steady model to predict the critical velocity for the onset of instability of a single flexible tube. Stability maps for various Reynolds numbers are proposed, using typical values for the tube damping. However, the maps do not compare well with critical velocities found in the literature for high values of the Reynolds number. Stability tests would be necessary to confirm the validity of the maps for low Reynolds, as fluidelastic has never been investigated in this range of Reynolds number. Yet, for high values of the Reynolds number, it seems like the quasi-steady model fails to predict the behavior of the experiments. An accurate value for the total damping of a tube is required to locate instability results on a map. However, in steam generators subjected to two-phase flow, damping on a tube is much more important than for single-phase flow. Yet, its origin is unknown. Therefore, we measured two-phase damping for internal flow using a specific test section. Indeed, a few studies on two-phase flow suggest that the damping mechanism is the same for a tube in cross-flow and for a tube subjected to internal flow. The present study focuses on the physics underlying the two-phase damping mechanism. The test bench consists of a sliding rigid tube subjected to upward internal two-phase flow. It essentially is a mass-spring system subjected to a transverse sinusoidal force. The damping is extracted from the frequency response function of the tube. Meanwhile, gas phase motion is characterized through video processing of the oscillating tube. The relative amplitude of the gas phase is related to two-phase flow damping values via a model of the forces acting on the bubbles. Varying excitation parameters such as frequency and excitation force confirms that two-phase damping is a viscous (velocity dependent) dissipation mechanism. Its direct relation with flow pattern transitions was confirmed. Furthermore, the combination of the videos and the analytical model suggests that the power dissipated by the drag force on the bubbles is significant in the two-phase damping mechanism. However, the model over-predicts the amplitude of the gas phase. This suggests that pseudo-turbulence generated by the motion of the tube is to be considered. The results of this study form an experimental database that can be used as input for fluidelastic instability models. Particularly, two-phase flow experiments will eventually help validating numerical methods, regarding the damping as well as the behavior of the gas phase. This work contributes to modeling and understanding two-phase flow induced vibration.
Steam disinfestation as a methyl bromide alternative in California cut flower nurseries
USDA-ARS?s Scientific Manuscript database
Steam may be an effective alternative to methyl bromide in cut flower production in California. Advantages of steam include broad spectrum pest control and a zero hour re-entry interval. The principle disadvantage of sheet steaming is cost effectiveness due to current energy prices and application...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
40 CFR 1700.5 - Discharges not requiring control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...
Dehumidification System with Steam Permeability Films
NASA Astrophysics Data System (ADS)
Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo
In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.
NASA Astrophysics Data System (ADS)
Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin
2013-11-01
Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.
Oxygen-hydrogen torch is a small-scale steam generator
NASA Technical Reports Server (NTRS)
Maskell, C. E.
1966-01-01
Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Haomin; Solberg, Jerome; Merzari, Elia
This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO formore » structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation« less
Yuan, Haomin; Solberg, Jerome; Merzari, Elia; ...
2017-08-01
This study describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980 s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLOmore » for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Haomin; Solberg, Jerome; Merzari, Elia
This study describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980 s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLOmore » for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.
1997-02-01
Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmedmore » by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.« less
Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal
2010-05-01
A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.
Analysis on Operating Parameter Design to Steam Methane Reforming in Heat Application RDE
NASA Astrophysics Data System (ADS)
Dibyo, Sukmanto; Sunaryo, Geni Rina; Bakhri, Syaiful; Zuhair; Irianto, Ign. Djoko
2018-02-01
The high temperature reactor has been developed with various power capacities and can produce electricity and heat application. One of heat application is used for hydrogen production. Most hydrogen production occurs by steam reforming that operated at high temperature. This study aims to analyze the feasibility of heat application design of RDE reactor in the steam methane reforming for hydrogen production using the ChemCAD software. The outlet temperature of cogeneration heat exchanger is analyzed to be applied as a feed of steam reformer. Furthermore, the additional heater and calculating amount of fuel usage are described. Results show that at a low mass flow rate of feed, its can produce a temperature up to 480°C. To achieve the temperature of steam methane reforming of 850°C the additional fired heater was required. By the fired heater, an amount of fuel usage is required depending on the Reformer feed temperature produced from the heat exchanger of the cogeneration system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, K.H.
Tube-to-tube support interaction characterisitics were determined experimentally on a single tube, multi-span geometry, representative of the Westinghouse Model 51 steam generator economizer design. Results, in part, became input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). More importantly, the test data reported here have been used to validate two analytical wear prediction codes; the WECAN code, which was developed by Westinghouse, and the ABAQUS code which has been enhanced for EPRI by Foster Wheeler to enable simulation of gap conditions (including fluid film effects) for various support geometries.
Utilization of operating experience to prevent piping failures at steam plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.S.; Dietrich, E.B.
1999-11-01
The key to preventing flow-accelerated corrosion (FAC) induced piping failures in steam plants is the development and implementation of a methodical program for assessing plant susceptibility to FAC and managing the effects of FAC. One of the key elements of an effective FAC program is the accurate and comprehensive utilization of plant-specific and industry-wide operating experience. Operating experience should be used to develop the program to identify specific areas for inspection or replacement, and to maintain an effective program. This paper discusses the utilization of operating experience in FAC programs at nuclear power plants, fossil plants and other steam plants.
NASA Astrophysics Data System (ADS)
Arkadyev, B. A.
2015-10-01
Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.
2009-01-01
The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.
LM-research opportunities and activities at Beer-Sheva
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesin, S.
1996-06-01
Energy conversion concepts based on liquid metal (LM) magnetohydrodynamic (MHD) technology was intensively investigated at the Center for MHD Studies (CMHDS), in the Ben-Gurion University of the Negev in Israel. LMMHD energy conversion systems operate in a closed cycle as follows: heat intended for conversion into electricity is added to a liquid metal contained in a closed loop of pipes. The liquid metal is mixed with vapor or gas introduced from outside so that a two-phase mixture is formed. The gaseous phase performs a thermodynamic cycle, converting a certain amount of heat into mechanical energy of the liquid metal. Thismore » energy is converted into electrical power as the metal flows across a magnetic field in the MHD channel. Those systems where the expanding thermodynamic fluid performs work against gravitational forces (natural circulation loops) and using heavy liquid metals are named ETGAR systems. A number of different heavy-metal facilities have been specially constructed and tested with fluid combinations of mercury and steam, mercury and nitrogen, mercury and freon, lead-bismuth and steam, and lead and steam. Since the experimental investigation of such flows is a very difficult task and all the known measurment methods are incomplete and not fully reliable, a variety of experimental approaches have been developed. In most experiments, instantaneous pressure distribution along the height of the upcomer were measured and the average void fraction was calculated numerically using the one-dimensional equation for the two-phase flow. The research carried out at the CMHDS led to significant improvements in the characterization of the two-phase phenomena expected in the riser of ETGAR systems. One of the most important outcomes is the development of a new empirical correlation which enables the reliable prediction of the velocity ratio between the LM and the steam (slip), the friction factor, as well as of the steam void fraction distribution along the riser.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2015-03-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less
Catalytic glycerol steam reforming for hydrogen production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro
2015-12-23
Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterizedmore » through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.« less
Study on steam pressure characteristics in various types of nozzles
NASA Astrophysics Data System (ADS)
Firman; Anshar, Muhammad
2018-03-01
Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.
Methods and systems for producing syngas
Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D
2013-02-05
Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009
NASA Astrophysics Data System (ADS)
Gordeev, E.; Droznin, V.
2009-12-01
The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.
TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng L. Y.; Baek J.; Cuadra,A.
2013-11-10
A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic tomore » initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.« less
2015-08-20
elevated temperatures with sub- stoichiometric oxygen to produce primarily hydrogen and carbon monoxide (called syngas). Syngas can be used for the...of the gasifier and flows downward concurrently with nitrogen, pure oxygen , and steam. The EFG operates at very high temperatures (nominal 2,700... temperature slagging gasifiers), these components are cracked and thermally converted to product gas, especially in the presence of steam and oxygen . For
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leskovar, Matjaz; Koncar, Bostjan
An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steammore » explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)« less
Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level
NASA Astrophysics Data System (ADS)
Fakhrazari, Amin; Boroushaki, Mehrdad
2008-06-01
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.
Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James
2012-01-01
Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.
Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)
2006-05-17
water /steam/ oil piping networks, refinery systems, gas-turbine secondary flow -path and cooling networks...friction factor, f, which is a function of the local Reynolds number and the wall surface roughness . For the viscous flow examples presented below, the...3.5 4 4.5 Time ( s ) V el oc ity (m / s ) Line 2 Inlet 25% 50% 75% Exit Velocity Figure 4. Water transient viscous pipe flow using
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15...
Code of Federal Regulations, 2010 CFR
2010-07-01
... regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any...
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15...
Steam plant startup and control in system restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, F.P. de; Westcott, J.C.
1994-02-01
The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.
Diffuse CO2 degassing at Vesuvio, Italy
NASA Astrophysics Data System (ADS)
Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido
2004-10-01
At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.
NASA Astrophysics Data System (ADS)
Begum, A. Yasmine; Gireesh, N.
2018-04-01
In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.
NASA Astrophysics Data System (ADS)
Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.
2017-02-01
The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.
A high-speed photographic system for flow visualization in a steam turbine
NASA Technical Reports Server (NTRS)
Barna, G. J.
1973-01-01
A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.
The influence of surface-active agents in gas mixture on the intensity of jet condensation
NASA Astrophysics Data System (ADS)
Yezhov, YV; Okhotin, VS
2017-11-01
The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and the thermal conductivity of the liquid jet. The first circumstance leads to deterioration of the condensation process, the second to the intensification of this process. There is obviously an optimum value of concentration of the additive surfactants to the vapour when the condensation process is maximum. According to the developed design methodology contact condensation can evaluate these optimum conditions, their practical effect in the field study.
Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine
2013-01-01
Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.
Condensation Behavior in a Microchannel Heat Exchanger
NASA Astrophysics Data System (ADS)
Kaneko, Akiko; Takeuchi, Genki; Abe, Yutaka; Suzuki, Yutaka
A small and high performance heat exchanger for small size energy equipments such as fuel cells and CO2 heat pumps is required in these days. In author's previous studies, the heat exchanger consisted of microchannels stacked in layers has been developed. It has resistance to pressure of larger than 15 MPa since it is manufactured by diffusion bond technique. Thus this device can be applied for high flow rate and pressure fluctuation conditions as boiling and condensation. The objectives of the present study are to clarify the heat transfer performance of the prototype heat exchanger and to investigate the thermal hydraulic behavior in the microchannel for design optimization of the device. As the results, it is clarified that the present device attained high heat transfer as 7 kW at the steam condensation, despite its weight of only 230 g. Furthermore, steam condensation behavior in a glass capillary tube, as a simulated microchannel, in a cooling water pool was observed with various inlet pressure and temperature of surrounding water. Relation between steam-water two-phase flow structure and the overall heat transfer coefficient is discussed.
Injection flow during steam condensation in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Yu, Mengmeng; Cheng, Ping; Wu, Xinyu
2007-08-01
An experimental investigation with the combined use of visualization and measurement techniques was performed on flow pattern transitions and wall temperature distributions in the condensation of steam in silicon microchannels. Three sets of trapezoidal silicon microchannels, having hydraulic diameters of 53.0 µm, 77.5 µm and 128.5 µm, respectively, were tested under different flow and cooling conditions. It was found that during the transitions from the annular flow to the slug/bubbly flow, a peculiar flow pattern injection flow appeared in silicon microchannels. The location at which the injection flow occurred was dependent on the Reynolds number, condensation number and hydraulic diameter. With increase in the Reynolds number, or decrease in the condensation number and hydraulic diameter, the injection flow moved towards the channel outlet. Based on the experimental results, a dimensionless correlation for the location of injection flow in functions of the Reynolds number, condensation number and hydraulic diameter was proposed for the first time. This correlation can be used to determine the annular flow zone and the slug/bubbly flow zone, and further to determine the dominating condensation flow pattern in silicon microchannels. Wall temperature distributions were also explored in this paper. It was found that near the injection flow, wall temperatures have a rapid decrease in the flow direction, while upstream and downstream far away from the injection flow, wall temperatures decreased mildly. Thus, the location of injection flow can also be determined based on the wall temperature distributions. The results presented in this paper help us to better understand the condensation flow and heat transfer in silicon microchannels.
K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsden, A.A.; Harlow, F.H.
1977-10-01
The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less
Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs
NASA Technical Reports Server (NTRS)
Holman, R. R.; Lippert, T. E.
1976-01-01
The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.
NASA Astrophysics Data System (ADS)
Prokhorov, V. B.; Chernov, S. L.; Kirichkov, V. S.
2017-09-01
The desire to increase the efficiency of using the heat of burned solid fuel leads to the significant growth of the initial steam parameter at steam-turbine plants. At the maximum temperatures of fresh and secondary steam of 700-720°C, the price of connecting of steam pipelines between the boiler and turbine is up to 20% of the price of a power plant unit, which dictates the necessity to decrease their length. One of the methods to achieve this is the application of an inverter firebox. An M-shaped profile of boiler, allowing one to decrease the length of heat-resistant steam pipelines, was developed at NRU MPEI. A distinctive feature of the profile is two inclined connecting gas flues between the firebox and convective shaft, starting from the gas windows located in the lower third of the firebox height. The boiler was designed for the steam production of 2493 t/h with the parameters of fresh steam of 35 MPa and 710°C. Thermal and aerodynamic calculations made it possible to get the sizes of boiler and dimensions of heating surfaces, and they also allow one to get the values of temperatures in the characteristic points along the gas path. On the basis of the results of calculations, the coefficient of efficiency of the boiler was 93.07% and the fuel consumption was 91.13 kg/s. For this boiler, the technology of effective stepwise burning of coal in a direct-flow-vortex torch (DFVT) in a system of vertical and horizontal tangential torches in the mode of solid slag removal, previously successively used in boilers with a traditional profile and upgraded to an inverter firebox, is proposed. The layouts of the direct-flow burners and nozzles for even and odd vertical sections of the firebox and also in a horizontal section were proposed. Organization of staged air supply in the vertical direction with a high fraction of in-firebox recycle of hot gases leads to low concentration of nitrogen oxides.
Simulation of a main steam line break with steam generator tube rupture using trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, S.; Querol, A.; Verdu, G.
A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less
2012-08-01
techniques and STEAM imager. It couples the high-speed capability of the STEAM imager and differential phase contrast imaging of DIC / Nomarski microscopy...On 10 TPE chips, we obtained 9 homogenous and strong bonds, the failed bond being due to operator error and presence of air bubbles in the TPE...instruments, structural dynamics, and microelectromechanical systems (MEMS) via laser-scanning surface vibrometry , and observation of biomechanical motility
Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.
Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2013 CFR
2013-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2010 CFR
2010-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2014 CFR
2014-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2012 CFR
2012-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels
NASA Astrophysics Data System (ADS)
Fang, Chen; Steinbrenner, Julie E.; Wang, Fu-Min; Goodson, Kenneth E.
2010-04-01
While microchannel condensation has been the subject of several recent studies, the critical impact of wall hydrophobicity on the microchannel condensation flow has received very little attention. The paper experimentally studies steam condensation in a silicon microchannel 286 µm in hydraulic diameter with three different wall hydrophobicities. It is found that the channel surface wettability has a significant impact on the flow pattern, pressure drop and heat transfer characteristic. Spatial flow pattern transition is observed in both hydrophobic and hydrophilic channels. In the hydrophobic channel, the transition from dropwise/slugwise flow to plug flow is induced by the slug instability. In the hydrophilic channel, the flow transition is characterized by the periodic bubble detachment, a process in which pressure evolution is found important. Local temperature measurement is conducted and heat flux distribution in the microchannel is reconstructed. For the same inlet vapor flux and temperature, the hydrophobic microchannel yields higher heat transfer rate and pressure drop compared to the hydrophilic channel. The difference is attributed to the distinction in flow pattern and heat transfer mechanism dictated by the channel hydrophobicity. This study highlights the importance of the channel hydrophobicity control for the optimization of the microchannel condenser.
NASA Astrophysics Data System (ADS)
Bozhko, V. V.; Gorin, A. V.; Zaitsev, I. V.; Kovalev, I. A.; Nosovitskii, I. A.; Orlik, V. G.; Lomagin, S. N.; Chernov, V. P.
2017-03-01
At turbine starts with low steam flow rates in idle mode, the low-pressure rotor blades consume energy, causing the ventilation heating of the stages and creating higher depression in them than in the condenser. This leads to the return steam flows in the exhaust of the low-pressure cylinder (LPC), reducing the heat due to the moisture of starting steam damps and cooling injections. It is shown that, as a result of upgrading with the transition to fully milled shroud platforms of rotor blades, the depression in the stages decreases and their cooling efficiency is reduced due to the removal of an elastic turn of the rotor blades under the action of centrifugal forces and seal of them by periphery. Heating the rotor blades of the last stages exceeds the temperature threshold of soldering resistance of stellite plates (150°C), and their mass strips begin. The start-up circuit providing both the temperature retention of the last stages lower the soldering resistance threshold due to overwetting the steam damps up to saturation condition and the high degree of removal from the dump steam of excessive erosive-dangerous condensed moisture was proposed, applied, and tested at the operating power unit. The investment in the development and application of the new start-up circuit are compensated in the course of a year owing to guaranteed prevention of the strips of stellite plates that lengthens the service life of the rotor blades of the last stages as well as increase of the rotor blade efficiency due to the sharp decrease of erosive wear of the profiles and reduction of their surface roughness. This reduces the annual consumption of equivalent fuel by approximately 1000 t for every 100 MW of installed capacity.
An expert system for diagnostics and estimation of steam turbine components condition
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.
2017-11-01
The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.
Functional characterization of steam jet-cooked buckwheat flour as a fat replacer in cake-baking.
Min, Bockki; Lee, Seung Mi; Yoo, Sang-Ho; Inglett, George E; Lee, Suyong
2010-10-01
With rising consumer awareness of obesity, the food industry has a market-driven impetus to develop low-fat or fat-free foods with acceptable taste and texture. Fancy buckwheat flour was thus subjected to steam jet-cooking and the performance of the resulting product in cake-baking was evaluated as a fat replacer. Steam jet-cooking caused structural breakdown and starch gelatinization of buckwheat flour, thus increasing its water hydration properties. In the pasting measurements, steam jet-cooked buckwheat flour exhibited high initial viscosity, while no peak viscosity was observed. Also, the suspensions of steam jet-cooked buckwheat flour exhibited shear-thinning behaviors, which were well characterized by the power law model. When shortening in cakes was replaced with steam jet-cooked buckwheat gels, the specific gravity of cake batters significantly increased, consequently affecting cake volume after baking. However, shortening replacement with steam jet-cooked buckwheat up to 20% by weight appeared to be effective in producing cakes as soft as the control without volume loss. When buckwheat flour was thermomechanically modified by steam jet-cooking, it was successfully incorporated into cake formulations for shortening up to 20% by weight, producing low-fat cakes with comparable volume and textural properties to the control. Copyright © 2010 Society of Chemical Industry.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahari, S.; Hajela, S.; Rammohan, H. P.
2012-07-01
700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG andmore » PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)« less
Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.
Zhang, Mingxing; Chen, Haiyan
2018-04-20
Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50 = 4.785 μm, and another particle size is d 50 = 8.999 μm. For particle size d 50 = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
49 CFR 230.23 - Responsibility for general construction and safe working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MAINTENANCE STANDARDS Boilers and Appurtenances § 230.23 Responsibility for general construction and safe... construction of the steam locomotive boilers under their control. The steam locomotive owner shall establish the safe working pressure for each steam locomotive boiler, after giving full consideration to the...
75 FR 45080 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... revisions concern oxides of nitrogen (NO X ) emissions from boilers, steam generators and process heaters... 1--Submitted Rule Local agency Rule No. Rule title Adopted Submitted SJVUAPCD 4308 Boilers, Steam... regulations that control NO X emissions. Rule 4308 limits NO X and CO emissions from boilers, steam generators...
Materials Performance in USC Steam Portland
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.R. Holcomb; J. Tylczak; R. Hu
2011-04-26
Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less
ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,
TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
1977-01-01
circumstances for determining the onset with light scattering is that in which the laser is so powerful and/or the detector so sensitive that the...sec Boltzmann’s constant 1.38 x 10~16 ergs/mole, wave number length of detector window latent heat of vaporisation mass flow rate of steam In...constant, distance from light scattering volume to detector S supersaturation ratio, p /p t time T local temperature of vapor T temperature in
Rotordynamic Forces Developed by Labyrinth Seals
1984-11-01
the prediction of leakage and the rotordynamic coefficients of Eq. (1) for labyrinth seals . A copy of reference DI) is attached. In comparison to... Leakage of Steam Through Labyrinth Glands," Trans. ASME, Vol. 57, 1935, pp. 115-122. 16. John, E. A. Jamea, Gas Dynamios, Wylie, 1979. -19- • ]{ o -Cr...Quadratic-Upstream Di iferemcing in Uigh Reynolds Number Illiptic a. Xgli. A.. ’"the Leakage of Steam Through Labyrinth flows," of P ohAa. ab o.. l 9
Dual-water mixture fuel burner
Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.
1986-08-05
A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.
ARTIST: An International Project Investigating Aerosol Retention in a Ruptured Steam Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guentay, S.; Dehbi, A.; Suckow, D.
2002-07-01
Steam generator tube ruptures (SGTR) with a concurrent stuck open safety relief valve are counted among the risk dominant accident sequences because of the potential for radioactive products to bypass the containment. Owing to the absence of relevant empirical data and the complexity of the geometry and controlling processes, the aerosol removal in the steam generator (SG) tubes and in the secondary side is not well understood. Therefore, little or no credit is usually taken for aerosol retention due to natural processes in the various components of a SG. To help reduce the uncertainties associated with fission product release followingmore » an SGTR sequence, the Paul Scherrer Institut has initiated an international experimental project to be performed in the ARTIST (AeRosol Trapping In a Steam generaTor) facility in the time period from 2002 to 2007. The ARTIST test section is a scaled model of a real SG, and is comprised of a 264-tube bundle with a maximum height of 3.8 m, as well as one full-size droplet separator and one full-size steam dryer. The ARTIST facility is capable of producing soluble and insoluble aerosols and entrain them at sonic gas flow rates (up to 0.25 kg/s, thus matching comparable values predicted by the codes. In addition, aerosols can be generated at prototypical concentrations (up to 5 g/m{sup 3}) and sizes (0.2-5 mm AMMD). State of the art instrumentation is used (Low-pressure impactors, photometers, on-line particle sizer, online droplet sizer, etc.). The ARTIST project will simulate the flow and retention of aerosol-borne fission products in the SG, and provide a unique database to support safety assessments and analytical models. The project is foreseen in seven phases: 1) Aerosol retention in the tube under dry secondary side conditions, 2) Aerosol retention in the near field close to break under dry conditions, 3) Aerosol retention in the bundle far field under dry conditions, 4) Aerosol retention in the separator and dryer under dry conditions, 5) Aerosol retention in the bundle section under wet conditions, 6) Droplet retention in separator and dryer sections and 7) Integral tests to examine overall retention in the SG unit. The project will investigate phenomena at the separate effect and integral levels, and will also address selected accident management (AM) issues. The kick-off experiments are scheduled for the first half of 2002, and some early results will be summarized at the meeting. (authors)« less
Steam Oxidation Testing in the Severe Accident Test Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pint, Bruce A.; McMurray, Jake W.
2016-08-01
Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO 2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the coremore » during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.« less
METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS
Hoffman, J.D.; Ballou, J.K.
1957-11-19
A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.
The Development of a Small High Speed Steam Microturbine Generator System
NASA Astrophysics Data System (ADS)
Alford, Adrian; Nichol, Philip; Frisby, Ben
2015-08-01
The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.
NASA Astrophysics Data System (ADS)
Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo
Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.D.
An apparatus is described for reducing hydrocarbon fuel requirements for haber ammonia synthesis by the supply of selected gases to the second reformer of such system, comprising a first cylindrical conduit, a second smaller coaxial cylinder inside of the first conduit, forming a first annular space therebetween, the downstream end of said second conduit closed, and a plurality of circumferentially-spaced orifices in the wall of said conduit upstream of the closed end. Means are provided to supply air at selected pressure p1, temperature and flow rate to the first annular space, means to supply at least methane at a pressuremore » p2 greater than p1, to said second conduit, so that the concentration of methane in the air will be less than the lower explosive limit, and means to shield the jets of gas from the orifices in the second conduit , as they flow radially outwardly across the annular space. Means are also provided for adding steam in selected ratio with the methane prior to flow into the second conduit, whereby air, methane and steam are mixed together prior to flow into the second haber reformer.« less
Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu
2017-01-03
Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
Steam Reformer With Fibrous Catalytic Combustor
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1987-01-01
Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
Steam Hydrocarbon Cracking and Reforming
ERIC Educational Resources Information Center
Golombok, Michael
2004-01-01
The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
Addition agents effects on hydrocarbon fuels burning
NASA Astrophysics Data System (ADS)
Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.
2016-01-01
Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.
NASA Astrophysics Data System (ADS)
Ismail, Firas B.; Thiruchelvam, Vinesh
2013-06-01
Steam condenser is one of the most important equipment in steam power plants. If the steam condenser trips it may lead to whole unit shutdown, which is economically burdensome. Early condenser trips monitoring is crucial to maintain normal and safe operational conditions. In the present work, artificial intelligent monitoring systems specialized in condenser outages has been proposed and coded within the MATLAB environment. The training and validation of the system has been performed using real operational measurements captured from the control system of selected steam power plant. An integrated plant data preparation scheme for condenser outages with related operational variables has been proposed. Condenser outages under consideration have been detected by developed system before the plant control system"
Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations
NASA Astrophysics Data System (ADS)
Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.
2018-05-01
Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.
The simulation of organic rankine cycle power plant with n-pentane working fluid
NASA Astrophysics Data System (ADS)
Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi
2016-02-01
In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.
Two-stage solar power tower cavity-receiver design and thermal performance analysis
NASA Astrophysics Data System (ADS)
Pang, Liping; Wang, Ting; Li, Ruihua; Yang, Yongping
2017-06-01
New type of two-stage solar power tower cavity-receiver is designed and a calculating procedure of radiation, convection and flow under the Gaussian heat flux is established so as to determine the piping layout and geometries in the receiver I and II and the heat flux distribution in different positions is obtained. Then the main thermal performance on water/steam temperature, steam quality, wall temperature along the typical tubes and pressure drop are specified according to the heat transfer and flow characteristics of two-phase flow. Meanwhile, a series of systematic design process is promoted and analysis on thermal performance of the two receivers is conducted. Results show that this type of two-stage cavity-receivers can minimize the size and reduce the mean temperature of receiver I while raise the average heat flux, thus increase the thermal efficiency of the two receivers; besides, the multiple serpentine tubes from header can make a more uniform distribution of the outlet parameters, preventing wall overheated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin
Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G
2014-06-01
In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.
Milios, K; Mataragas, M; Pantouvakis, A; Drosinos, E H; Zoiopoulos, P E
2011-03-30
The aim of this study was to quantify the hygienic status of a lamb slaughterhouse by means of multivariate statistical analysis, to demonstrate how the microbiological data could be exploited to improve the lamb slaughter process by constructing control charts and to evaluate the potential effect of an intervention step such as steam application on the microbiological quality of lamb carcasses. Results showed that pelt removal and evisceration were hygienically uncontrolled. TVC and Enterobacteriaceae progressively increased from the stage 'after pelt removal of hind and forelegs/before final pulling' to the stage 'after evisceration/before pluck removal' thus indicating possible deposition of microorganisms during these operations. It seems that the processing stages of freshly produced carcasses were better distinguished by Enterobacteriaceae, with evisceration contributing mostly to the final Enterobacteriaceae counts. Application of steam during the lamb slaughter process reduced microbial counts without adverse effects on the organoleptic characteristics of the carcasses. Moreover, the construction of control charts showed that decontamination with steam contributed to the maintenance of an in control process compared to that before the application of steam, suggesting the potential use of steam as an intervention step during the lamb slaughter process. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-03-22
upper use temperature under high tensile stress (allows long life , dimensional control, low residual CMC stress) Matrix Creep , Fiber Creep Long... creep life due to steam was more significant at 28%. However, at 22 MPa, the presence of steam appeared to be beneficial and extended creep
Solar process steam for a pharmaceutical company in Jordan
NASA Astrophysics Data System (ADS)
Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.
2016-05-01
This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.
High pressure/high temperature thermogravimetric apparatus. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calo, J.M.; Suuberg, E.M.
1999-12-01
The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C andmore » 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Mt. Etna, Sicily as seen from STS-62
1994-03-05
STS062-85-195 (4-18 March 1994) --- A thin plume of steam blows southward from the summit of Mt. Etna, the active volcano on the island of Sicily. The summit is capped with snow but the dark lava flow along the eastern flank (the 1991-93 flow) is clearly visible. The coastal city south of Etna is Catania.
Improved Steam Turbine Leakage Control with a Brush Seal Design
NASA Astrophysics Data System (ADS)
Turnquist, Norman; Chupp, Raymond E.; Pastrana, Ryan; Wolfe, Chris; Burnett, Mark
2002-10-01
This paper presents an improved steam turbine leakage control system with a brush seal design. The contents include: 1) Typical Design Characteristics; 2) Typical Brush Seal Locations; 3) Reduced Leakage Rates; 4) Performance Benefits; 5) System Considerations; 6) Rotor Dynamics; 7) Laboratory Tests and 8) Field Experience.
Assessment and control design for steam vent noise in an oil refinery.
Monazzam, Mohammad Reza; Golmohammadi, Rostam; Nourollahi, Maryam; Momen Bellah Fard, Samaneh
2011-06-13
Noise is one of the most important harmful agents in work environment. Noise pollution in oil refinery industries is related to workers' health. This study aimed to determine the overall noise pollution of an oil refinery operation and its frequency analysis to determine the control plan for a vent noise in these industries. This experimental study performed in control unit of Tehran Oil Refinery in 2008. To determine the noise distributions, environmental noise measurements were carried out by lattice method according to basic information and technical process. The sound pressure level and frequency distribution was measured for each study sources subject separately was performed individually. According to the vent's specification, the measured steam noise characteristics reviewed and compared to the theoretical results of steam noise estimation. Eventually, a double expansion muffler was designed. Data analysis and graphical design were carried out using Excel software. The results of environmental noise measurements indicated that the level of sound pressure was above the national permitted level (85 dB (A)). The Mean level of sound pressure of the studied steam jet was 90.3 dB (L). The results of noise frequency analysis for the steam vents showed that the dominant frequency was 4000 Hz. To obtain 17 dB noise reductions, a double chamber aluminum muffler with 500 mm length and 200 mm diameter consisting pipe drilled was designed. The characteristics of steam vent noise were separated from other sources, a double expansion muffler was designed using a new method based on the level of steam noise, and principle sound frequency, a double expansion muffler was designed.
An Improved Model for a Once-through Counter-Cross-Flow Waste Heat Recovery Unit
1983-09-01
RAnkine Cycle Energy Recovery (RACER) system. As conceived, the RACER system will be an unfired waste heat recovery system designed to convert waste... heater to arrive at the feedwater inlet. For the given geometry and flow conditions, the model will calcu- late the water inlet temperature consistent...when given feedwater inlet temperature, steam outlet tempera- ture, operating pressure, inlet and outlet gas conditions and gas flow rate. In this
McDermott, D.J.; Schrader, K.J.; Schulz, T.L.
1994-05-03
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.
1994-01-01
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
Study of advanced radial outflow turbine for solar steam Rankine engines
NASA Technical Reports Server (NTRS)
Martin, C.; Kolenc, T.
1979-01-01
The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applicationsmore » such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. 54 refs., 7 figs., 22 tabs.« less
Taming a wild geothermal research well in yellowstone national park
Fournier, Robert O.; Pisto, Larry M.; Howell, Bruce B.; Hutchnson, Roderick A.; ,
1993-01-01
In November 1992 the valve at the top of a U.S. Geological Survey drill hole in Yellowstone National Park parted from the casting as a result of corrosion. This allowed uncontrolled venting of boiling water and steam from the well at an estimated liquid flow rate of about 25-50 gallons per minute. A flow diverter assembly was designed, fabricated and installed on the well within 16 days, which allowed drill rods to be safely stripped into the well through on annular Blow-Out Preventer. Once this was accomplished it was a relatively routine matter to set a packer in the casting and cement the well shut permanently. The drill hole was brought under control and cemented shut within 18 days of the wellhead failure at a total cost of $47,066, which was about $5,000 less than anticipated.
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Simulation and analysis of main steam control system based on heat transfer calculation
NASA Astrophysics Data System (ADS)
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
NASA Astrophysics Data System (ADS)
Galaev, S. A.; Ris, V. V.; Smirnov, E. M.; Babiev, A. N.
2018-06-01
Experience gained from designing exhaust hoods for modernized versions of K-175/180-12.8 and K-330-23.5-1 steam turbines is presented. The hood flow path is optimized based on the results of analyzing equilibrium wet steam 3D flow fields calculated using up-to-date computation fluid dynamics techniques. The mathematical model constructed on the basis of Reynolds-averaged Navier-Stokes equations is validated by comparing the calculated kinetic energy loss with the published data on full-scale experiments for the hood used in the K-160-130 turbine produced by the Kharkiv Turbine-Generator Works. Test calculations were carried out for four turbine operation modes. The obtained results from validating the model with the K-160-130 turbine hood taken as an example were found to be equally positive with the results of the previously performed calculations of flow pattern in the K-300-240 turbine hood. It is shown that the calculated coefficients of total losses in the K-160-130 turbine hood differ from the full-scale test data by no more than 5%. As a result of optimizing the K-175/180-12.8 turbine hood flow path, the total loss coefficient has been decreased from 1.50 for the initial design to 1.05 for the best of the modification versions. The optimized hood is almost completely free from supersonic flow areas, and the flow through it has become essentially more uniform both inside the hood and at its outlet. In the modified version of the K-330-23.5-1 turbine hood, the total loss coefficient has been decreased by more than a factor of 2: from 2.3 in the hood initial design to a value of 1.1 calculated for the hood final design version and sizes adopted for developing the detailed design. Cardinally better performance of both the hoods with respect to their initial designs was achieved as a result of multicase calculations, during which the flow path geometrical characteristics were sequentially varied, including options involving its maximally possible expansion and removal of the guiding plates producing an adverse effect.
Composition of steam in the system NaCl-KCl-H2O-quartz at 600°C
Fournier, Robert O.; Thompson, J. Michael
1993-01-01
In the system NaCl-KCl-H2O, with and without ??-quartz present, steam was equilibrated in a large-volume reaction vessel with brine and/or precipitated salt at 600??C and pressures ranging from about 100 to 0.4 MPa. Episodically, steam was extracted for chemical analysis, accompanied by a decrease in pressure within the reaction vessel. In the absence of precipitated salt, within the analytical uncertainty stoichiometric quantities of Cl and total alkali, metals (Na + K) dissolve in steam coexisting with chloriderich brine. In contrast, in the presence of precipitated salt (in our experiments halite with some KCl in solid solution), significant excess chloride as associated hydrogen chloride (HCl0??) dissolves in steam. The HCl0 is generated by the reaction of steam with solid NaCl(s), producing solid NaOH(s) that diffuses into halite, forming a solid solution. In our quasistatic experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCl have apparently resulted in higher model fractions of NaOH(s) in solid solution in halite. This, in turn, resulted in incrementally higher concentrations of associated NaOHo dissolved in steam. Addition of quartz to the system NaCl + KC1 + H2O resulted in an order of magnitude increase in the concentration of HCl0 dissolved in steam, apparently as a consequence of the formation of sodium disilicate by reaction of silica with NaOH(s). The measured dissolved silica in steam saturated with alkali halides at 600??C in the pressure range 7-70 MPa agrees nicely with calculated values of the solubility of ??-quartz obtained using the equation of Fournier and Potter (1982), corrected for dissolved salt by the method of fournier (1983). Na K ratios in steam at 600??C tend to be slightly greater than in coexisting brine. When precipitated halite is present, larger mole fractions of NaOH(s) in solid solution in that halite apparently result in even larger Na K ratios in coexisting steam. Precipitation of more halite as a consequence of repeated depressurization episodes results in decreased Na K ratios in both the brine and coexisting steam phases, indicating that the lower pressures begin to favor K over Na in the vapor. When steam is in contact with precipitated salts in the absence of brine, the Na K ratio in the steam is less than that of the bulk composition of the salt-H2O system. ?? 1993.
NASA Astrophysics Data System (ADS)
Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi
2015-10-01
Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.
Testing of the Multi-Fluid Evaporator Engineering Development Unit
NASA Technical Reports Server (NTRS)
Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David
2007-01-01
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elders, W.A.; Williams, A.E.; Hoagland, J..
1981-01-01
Studies of cuttings and cores at Cerro Prieto have now been extended to more than 50 boreholes. The aims of this petrological and isotopic work are to determine the shape of the reservoir, its physical properties, and its temperature distribution and flow regime before the steam field was produced.
NASA Astrophysics Data System (ADS)
Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.
2016-06-01
This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.
Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air
NASA Astrophysics Data System (ADS)
Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.
2016-05-01
The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.
Interaction of sea water and lava during submarine eruptions at mid-ocean ridges
Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.
2003-01-01
Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.
On the effect of moving blade grid on the flow field characteristics
NASA Astrophysics Data System (ADS)
Procházka, Pavel; Uruba, Václav; Pešek, Luděk; Bula, VÍtězslav
2018-06-01
The motivation of this paper is the continual development of the blades for the last stage of the steam turbine. The biggest problem is the slenderness of such blades and the extreme sensitivity to aeroelastic vibrations (flutter) caused by the instabilities present in the flow. This experimental research is dealing with the aeroelastic binding of the moving blades located in the blade grid with the flow field and vice versa. A parallelogram is used to ensure one order of freedom of the blade. The grid has five blades in total, three of them are driven by force control using three shakers. The deviation as well as force response is measured by strain gauges and dynamometers. The flow field statistical as well as dynamical characteristics are measured by optical method Particle Image Velocimetry. The grid is connected to the blow-down wind tunnel with velocity range up to 40 m/s. The aeroelastic binding is investigated in dependency on used actuation frequency and maximal amplitude (the intensity of force actuation) and on different Reynolds numbers. The flow field and the wake behind each individual blade are studied and the maximal interaction is examined for individual inter-blade phase angle of the grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
An investigation of a flow field in one and half axial turbine stage
NASA Astrophysics Data System (ADS)
Němec, Martin; Jelínek, Tomáš; Milčák, Petr
2017-09-01
An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences a flow structures in the next stator in steam multistage turbines. The detailed measurement behind the rotor and the second stator was performed with a pneumatic probes to gain a useful data for an impact analysis. Various rotor shroud clearances were also tested to capture the shroud outlet flow field influences.
Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form
Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; ...
2015-12-31
We proposed sodalites as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. We produced two samples made using a steam reformer samples using nonradioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of themore » non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 C) 9 and 40 C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. Moreover, the similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki
2006-07-01
The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, R.P.; Chavez, F.C.; Garcia, S.E.
1997-12-31
In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less
US PWR steam generator management: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, C.S. Jr.
1997-02-01
This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less
Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kervinen, T.; Riikonen, V.; Ritonummi, T.
A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less
Passive containment cooling system
Billig, P.F.; Cooke, F.E.; Fitch, J.R.
1994-01-25
A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.
Mt. Etna, Sicily as seen from STS-64
1994-09-19
STS064-71-037 (9-20 Sept. 1994) --- Mt. Etna on Sicily displays a steam plume from its summit. Geologists attribute the volcano's existence to the collision of tectonic plates. Unlike the sudden, explosive eruption at Rabaul, Mt. Etna's activity is ongoing and is generally not explosive - Etna's slopes have been settled with villages and cultivated land for centuries. Other Mediterranean volcanoes (like Santorini) have experienced large catastrophic eruptions. Etna recently finished a two-year eruption (ending in 1993), marked by relatively gentle lava flows down the eastern flank. It has been continually degassing since then, according to the geologists, producing an omnipresent steam plume, as seen here. The 1993 flow is difficult to identify in this image because it lies within shadows on the eastern flank, but small cinder cones on the western flank mark earlier episodes of volcanic activity. Photo credit: NASA or National Aeronautics and Space Administration
Passive containment cooling system
Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.
1994-01-01
A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.
Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J
2017-08-01
In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François
2016-04-01
In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.
Brush Seals for Improved Steam Turbine Performance
NASA Technical Reports Server (NTRS)
Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter
2006-01-01
GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.
The Influence of Inlet Asymmetry on Steam Turbine Exhaust Hood Flows.
Burton, Zoe; Hogg, Simon; Ingram, Grant L
2014-04-01
It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. "A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,"Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing-plane approach. The results show that the circumferential asymmetry can be successfully transferred in both directions between the exhaust hood flow and that through the LSB, by using the NLH. This paper also suggests that for exhaust hoods of generous axial length, little change in C p is observed when the circumferential asymmetry is captured. However, the predicted flow structure is significantly different, which will influence the design and placement of the exhaust hood internal "furniture."
Design Evolution and Verification of the A-3 Chemical Steam Generator
NASA Technical Reports Server (NTRS)
Kirchner, Casey K.
2009-01-01
Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized configuration. Multiple solutions for this issue have been proposed, with the leading concept being a change to the operational definition of "idle mode," with the generator running in a lower heat flux condition.
Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P
2011-10-01
Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor
NASA Astrophysics Data System (ADS)
Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji
1994-07-01
A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.
An experimental study of the role of subsurface plumbing on geothermal discharge
Namiki, Atsuko; Ueno, Yoshinori; Hurwitz, Shaul; Manga, Michael; Munoz-Saez, Carolina; Murphy, Fred
2016-01-01
In order to better understand the diverse discharge styles and eruption intervals observed at geothermal features, we performed three series of laboratory experiments with differing plumbing geometries. A single, straight conduit that connects a hot water bath (flask) to a vent (funnel) can originate geyser-like periodic eruptions, continuous discharge like a boiling spring, and fumarole-like steam discharge, depending on the conduit length and radius. The balance between the heat loss from the conduit walls and the heat supplied from the bottom determines whether and where water can condense which in turn controls discharge style. Next, we connected the conduit to a cold water reservoir through a branch, simulating the inflow from an external water source. Colder water located at a higher elevation than a branching point can flow into the conduit to stop the boiling in the flask, controlling the periodicity of the eruption. When an additional branch is connected to a second cold water reservoir, the two cold reservoirs can interact. Our experiments show that branching allows new processes to occur, such as recharge of colder water and escape of steam from side channels, leading to greater variation in discharge styles and eruption intervals. This model is consistent with the fact that eruption duration is not controlled by emptying reservoirs. We show how differences in plumbing geometries can explain various discharge styles and eruption intervals observed in El Tatio, Chile, and Yellowstone, USA.
NASA Astrophysics Data System (ADS)
Wahid, A.; Taqwallah, H. M. H.
2018-03-01
Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.
APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND
Treshow, M.
1963-07-23
A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...
2018-03-03
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Gadon, M E; Melius, J M; McDonald, G J; Orgel, D
1994-06-01
Through a leak in the steam heating system, the anticorrosive agent 2-diethylaminoethanol was released into the air of a large office building. Irritative symptoms were experienced by most of the 2500 employees, and 14 workers developed asthma within 3 months of exposure. This study was undertaken to review clinical characteristics of these asthmatics. Environmental exposure monitoring data and medical records were reviewed. Seven of 14 cases were defined as "confirmed" and 7 of 14 as "suspect," using the National Institute for Occupational Safety and Health surveillance case definition of occupational asthma. Spirometry was positive in 4 of 14 of the cases and peak flow testing in 10 of 14. Three cases were diagnosed on the basis of work-related symptoms and physical examination alone. The study suggests that acute exposure to the irritating steam additive 2-diethylaminoethanol was a contributing factor in the development of clinical asthma in this population.
Desulfurization sorbent regeneration
Jalan, V.M.; Frost, D.G.
1982-07-07
A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.
Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.
Lima, Isabel M; Marshall, Wayne E
2005-04-01
Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.
Jalan, Vinod M.; Frost, David G.
1984-01-01
A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.
Immediate use steam sterilization: moving beyond current policy.
Seavey, Rose
2013-05-01
Immediate-use steam sterilization (IUSS) is steam sterilization intended for immediate use. IUSS may cause an increased risk of infection to patients because of stress and time constraints placed on staff. When IUSS is used, it is vital to properly carry out the complete multistep process according to the manufacturer's written validated instructions for use. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
120. View inside power house showing 1929 AllisChalmers steam turbine ...
120. View inside power house showing 1929 Allis-Chalmers steam turbine with engine housing removed; control panel in background. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL
Active cooling-based surface confinement system for thermal soil treatment
Aines, R.D.; Newmark, R.L.
1997-10-28
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.
Active cooling-based surface confinement system for thermal soil treatment
Aines, Roger D.; Newmark, Robin L.
1997-01-01
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.
Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang
2015-01-01
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.
Optimization of steam generators of NPP with WWER in operation with variable load
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.
2017-11-01
The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.
Cilingir, Altug; Geckili, Onur; Parlar, Zeynep; Gencel, Burc; Bozdag, Ergun; Temiz, Vedat
2013-09-01
This study investigated the possible detrimental effects of steam treatment on the surface of type III dental stone, which is a common laboratory material used for the construction of removable dentures. Forty dental stone specimens were prepared and divided into four groups (A, B, C and D), and group A was used as the control group. The other groups were treated with steam from a standard distance for varying durations (30, 60 and 120 s). The duration of steam cleaning significantly increased Ra values (F = 63.150, p = 0.000). Similarly, the duration of steam application was directly correlated with the weight changes (F = 17.721, p = 0.000). A significant amount of dental stone can be removed from the surface while treating with steam. These studies demonstrated that expanded periods of steam cleaning cause weight loss and abrade the surface of type III dental stones; therefore, these devices should be used with caution during denture fabrication procedures. © 2012 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
Second law analysis of a conventional steam power plant
NASA Technical Reports Server (NTRS)
Liu, Geng; Turner, Robert H.; Cengel, Yunus A.
1993-01-01
A numerical investigation of exergy destroyed by operation of a conventional steam power plant is computed via an exergy cascade. An order of magnitude analysis shows that exergy destruction is dominated by combustion and heat transfer across temperature differences inside the boiler, and conversion of energy entering the turbine/generator sets from thermal to electrical. Combustion and heat transfer inside the boiler accounts for 53.83 percent of the total exergy destruction. Converting thermal energy into electrical energy is responsible for 41.34 percent of the total exergy destruction. Heat transfer across the condenser accounts for 2.89 percent of the total exergy destruction. Fluid flow with friction is responsible for 0.50 percent of the total exergy destruction. The boiler feed pump turbine accounts for 0.25 percent of the total exergy destruction. Fluid flow mixing is responsible for 0.23 percent of the total exergy destruction. Other equipment including gland steam condenser, drain cooler, deaerator and heat exchangers are, in the aggregate, responsible for less than one percent of the total exergy destruction. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the plant. The results show that high first law efficiency does not mean high second law efficiency. Therefore, the second law analysis has been proven to be a more powerful tool in pinpointing real losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other steam power plants and other thermal systems.
High-efficiency condenser of steam from a steam-gas mixture
NASA Astrophysics Data System (ADS)
Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.
2017-12-01
The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
NASA Astrophysics Data System (ADS)
Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry
2015-12-01
Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.
Investigation of Tokamak Solid Divertor Target Options.
1981-05-26
but materials are not known which could operate at the high resulting wall temperatures . Mist- steam flows would also demand a relatively high ...flux P = coolant density = bulk coolant viscosity w = coolant viscosity at average wall temperature = units conversion At high heat loads and moderate...therefore, the inner wall temperature will be over 300 OF, posing a high temp- erature materials challenge. E. Swirl and Mixed Flow Schemes Extensive work
Improved Filed Evaluation of NAPL Dissolution and Source Longevity
2011-10-01
waterflood, a non- condensable vapor flow (i.e., soil vapor extraction), a steamflood, and the co-injection of air and steam. The purpose of the testing was...are typically inserted into groundwater monitoring wells where they passively intercept ambient groundwater flow. Inside the PFM is a permeable...mean soil particle diameter θ = soil porosity U = groundwater velocity νw = kinematic viscosity of water β = mass transfer correlation
Heat-flow studies in the northwest geysers geothermal field, California
Williams, Colin F.; Galanis, S. Peter; Moses, Thomas H.; Grubb, Frederick V.; ,
1993-01-01
Temperature and thermal conductivity data were acquired from 3 idle production wells in the Northwest Geysers. Heat-flow profiles derived from data recorded in the caprock which overlies the steam reservoir reveal a decrease of heat flow with depth in 2 of the 3 wells. These observations contradict the generally accepted theory that conductive heat flow is constant with depth within The Geysers caprock. There are several possible explanations for this, but the available data suggest that these profiles reflect a local recession or cooling of the reservoir top within the past 5000 to 10000 years.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... States in sufficient and reasonably available quantities and of a satisfactory quality), with respect to...) Thermostatic Regulator Valves that regulate the flow of hot water or low pressure steam through free-standing...
Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim
2015-01-01
Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.
Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P
2008-01-01
This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed.
Li, S; Vestergren, A Schiller; Wall, H; Trattner, S; Pickova, J; Ivarsson, E
2017-08-01
This study investigated the dietary effect of steam-pelleted rapeseed (RS) diets with different inclusion levels on the fatty acid composition of chicken meat and the expression of lipid metabolism-related genes in the liver. Experimental diets included 6 different wheat-soybean meal based diets either in nonpelleted or steam-pelleted form supplemented with 80, 160, and 240 g RS/kg feed and one nonpelleted wheat-soybean meal based diet without RS supplementation as the control. These diets were fed to newly hatched broiler chickens (Ross 308) for 34 days. Compared to the control diet, steam-pelleted diets containing 160 or 240 g/kg RS significantly increased the content of omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) in the breast and drumstick, while their meat yields were not affected. Moreover, the mRNA levels of fatty acid desaturase 1 (FADS1) and acyl-coenzyme A oxidase 1 (ACOX1) in their livers increased. Therefore, steam-pelleted diets with 160 or 240 g/kg RS can be used to increase the n-3 LC-PUFA content in chicken meat without compromising meat yield. © 2017 Poultry Science Association Inc.
Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C
2014-02-01
Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.
InSAR Monitoring of Surface Deformation in Alberta's Oil Sands
NASA Astrophysics Data System (ADS)
Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.
2013-05-01
Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.
Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen
NASA Technical Reports Server (NTRS)
Powell, Eugene A.
1988-01-01
The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.
Continuous pumping of steam into the wells of the Camp Pirital deposit in Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanfranchi, E.A.
The Campo Pirital deposit was opened in 1956. The maximal oil extraction occured in 1961 and by 1965, it was reduced. Steam pumping was begun in 1965. The extraction rose to 731 cubic meters per day by May, 1967 and by 1976, the extraction again fell. The introduction of a test plan for continuous steam pumping into the sand collectors was begun in July, 1976. Loose carbonate, finely grained sandstones of pale gray and gray to green color, interlayered by clay and carbonate lutites, are typical deposits for this region. The test plan is a model of 9 wells (onemore » pumping (N) well and eight operational (E) wells). The operational wells are located at a distance of 34.4 to 187 meters from the pumping well. At the end of five years of use of the test plan, the following positive results may be discussed: the flow rates of the wells remained constant, no steam blowout was noted in the wells, the front of heat is shifted to the upper part of the structure and so on. Therefore, the test project is recommended for expansion and three new installations will be positioned near the first.« less
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
Method of operating a two-stage coal gasifier
Tanca, Michael C.
1982-01-01
A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.
Burdgick, Steven Sebastian; Itzel, Gary Michael
2001-01-01
A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.
Process for making unsaturated hydrocarbons using microchannel process technology
Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric
2011-04-12
The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.
NASA Technical Reports Server (NTRS)
Wood, Peter C.; Wydeven, Theodore
1987-01-01
The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.
In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong
2017-07-01
The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).
Eastern hemlock decline in riparian areas from Maine to Alabama
D.E. Evans; W.M. Aust; C.A. Dolloff; B.S. Templeton
2010-01-01
Eastern hemlock (Tsuga canadensis) is an integral component of Appalachian forest ecosystems and is valued for its ecological functions and aesthetic qualities. It is a foundation tree species in riparian systems and is known to moderate steam temperatures and base flow.
Microbiological evaluation of the steam sterilization of assembled laparoscopic instruments 1
de Camargo, Tamara Carolina; Graziano, Kazuko Uchikawa; Almeida, Alda Graciele Claudio dos Santos; Suzuki, Karina; da Silva, Cely Barreto; Pinto, Flávia Morais Gomes
2016-01-01
ABSTRACT Objective: assess the safety of steam sterilization of assembled laparoscopic instruments with challenge contamination. Method: a laboratory experimental study, using as test samples trocars and laparoscopic graspers. Geobacillus stearothermophillus ATCC-7953 was used, with a microbial population of 106UFC/Filter paper substrate, removed from the biological indicator. Three of them were introduced into each instrument at the time of assembly, and sterilized at pressurized saturated steam, 134oC for 5 minutes. After sterilization, the instrument was disassembled and each filter paper substrate was inoculated in soybean casein culture and incubated at 56oC for 21 days. In case of absence of growth, they were subjected to heat shock of 80oC, for 20 minutes and re-incubated for 72 hours. Sample size: 185 graspers and 185 trocars, with 95% power. We paired the experiments with comparative negative control groups (5 graspers and 5 trocars with challenge contamination, sterilized disassembled) and positive control (30 filter paper supports, unsterilized), subject to the same incubation procedures. Results: there was no microbial growth in experimental and negative control. The results of the positive control were satisfactory. Conclusion: this study provided strong scientific evidence to support the safety of steam sterilizing of the assembled laparoscopic instrument. PMID:27878222
Two-phase flow measurements with advanced instrumented spool pieces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnage, K.C.
1980-09-01
A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Ramadan, Abdulghani; Yamali, Cemil
2013-12-01
The problem of forced laminar film condensation of steam flowing downward a tier of horizontal cylinders is investigated numerically. The effects of free stream non-condensable gas, air concentration (m1,∞), free stream velocity (Reynolds number), cylinder diameter, and angle of inclination on the condensation heat transfer are analyzed. Two flow arrangements, inline and staggered, are analyzed and investigated. The mathematical model takes into account the effect of staggering of the cylinders and how condensation is affected at the lower cylinders when condensate does not fall on to the center line of the cylinders. Condensation heat transfer results are available in ranges from (U∞ = 1 - 30 m/s) for free stream velocity, (m1,∞ = 0.01 -0.8) for free stream air mass fraction and (D = 12.7 -50.8 mm) for cylinder diameter. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed. This results from the presence of small amounts of free stream air mass fractions in the steam-air mixture and increase in the cylinder diameter. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Down the bank, a rapid decrease in the vapor side heat transfer coefficient is noticed. It may be resulted from the combined effects of inundation, decrease in the vapor velocity and increase in the non-condensable gas (air) at the bottom cylinders in the bank.
Cooling of core debris and the impact on containment pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.W.
1981-07-01
An evaluation of the core debris/water interactions associated with a postulated meltdown of a PWR and its impact on the containment pressure is presented. In the event of a complete core meltdown in a PWR, the interaction of molten debris with water in the bottom head of the reactor vessel could result in complete evaporation of water and breach of the vessel wall. In the reactor cavity, the debris-water interaction may lead to a rapid generation of steam, which could lead to pressures beyond the containment building limit. Previous analysis of the debris-water interactions with the MARCH code was basedmore » on the single-sphere model, in which the internal and surface heat transfer are the controlling mechanisms. In this study, the potential in-vessel and ex-vessel debris-water interactions are analyzed in terms of porous debris bed models. The debris cooling and steam generation are controlled by the hydrodynamics of the two-phase flow. The porous models developed by Dhir-Catton and by Lipinski were examined and used to test their impact on containment dynamics. The tests include several particle sizes from 1 mm to 50 mm. Detailed transient data on the pressure, temperature, and mass of steam in the containment building was obtained for all cases. Bands of pressure variation which represents the possible pressure rise under accident conditions were obtained for the Dhir-Catton model and for the Lipinski model. The results show that, for the case of a wet cavity, the magnitude of the predicted pressure rises is not strongly affected by the different models. The occurrence of the peak pressure, however, is considerably delayed by using the debris bed model. For the case of a dry cavity, a large reduction of the peak pressure is obtained by using the debris bed model.« less
Countercurrent flow absorber and desorber
Wilkinson, William H.
1984-01-01
Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
[Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].
Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai
2014-12-01
To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.
Production of superheated steam from vapor-dominated geothermal reservoirs
Truesdell, A.H.; White, D.E.
1973-01-01
Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.
NASA Astrophysics Data System (ADS)
Parchevsky, V. M.; Guryanova, V. V.
2017-01-01
A computational and experimental procedure for construction of the two-dimensional separation curve (TDSC) for a horizontal steam generator (SG) at a nuclear power station (NPS) with VVER-reactors. In contrast to the conventional one-dimensional curve describing the wetness of saturated steam generated in SG as a function of the boiler water level at one, usually rated, load, TDSC is a function of two variables, which are the level and the load of SGB that enables TDSC to be used for wetness control in a wide load range. The procedure is based on two types of experimental data obtained during rated load operation: the nonuniformity factor of the steam load at the outlet from the submerged perforated sheet (SPS) and the dependence of the mass water level in the vicinity of the "hot" header on the water level the "cold" end of SG. The TDSC prediction procedure is presented in the form of an algorithm using SG characteristics, such as steam load and water level as the input and giving the calculated steam wetness at the output. The zoneby-zone calculation method is used. The result is presented in an analytical form (as an empirical correlation) suitable for uploading into controllers or other controls. The predicted TDSC can be used during real-time operation for implementation of different wetness control scenarios (for example, if the effectiveness is a priority, then the minimum water level, minimum wetness, and maximum turbine efficiency should be maintained; if safety is a priority, then the maximum level at the allowable wetness and the maximum water inventory should be kept), for operation of NPS in controlling the frequency and power in a power system, at the design phase (as a part of the simulation complex for verification of design solutions), during construction and erection (in developing software for personnel training simulators), during commissioning tests (to reduce the duration and labor-intensity of experimental activities), and for training.
Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer
NASA Astrophysics Data System (ADS)
Song, Yong Jae
The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet steam mass flow rate increased, the length required for complete condensation also increased. Comparison of tube centerline temperature profiles was also used to examine the effect of inlet pressure on the heat transfer performance. From this assessment, it was determined that as the inlet pressure increased, the length required for complete condensation decreased. The investigation of tube bundle effects was conducted by comparing the condensate flow rates. The experimental results showed that the upper tubes in the bundle had better heat transfer performance than the lower tubes. In regard to modeling of the heat exchanger in this study, for the primary side, an empirical correlation was developed herein to provide Nusselt numbers for condensation heat transfer in horizontal tubes with noncondensable gases. Nusselt numbers were correlated as: Nu = 106.31·Re m0.147·W a-0.843. The empirical model for condensation heat transfer coefficients and the secondary-side model were integrated within a Matlab program to provide an analysis tool for horizontal tube bundle condenser heat exchangers. Also on the secondary side, two phase heat transfer coefficients were modeled considering both convective boiling and nucleate boiling as: hTP = 10.03·exp(-2.28·alpha)· hCV + 0.076·exp[3.73x10-6·(Re f-1.6x105)]·hNB.
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
49. Photocopy of scale drawing (from Station 'L' office files, ...
49. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawings, 1930 FLOW DIAGRAM OF THE STEAM GENERATION PROCESS AT STATION 'L' - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
Gou, P.F.; Townsend, H.E.; Barbanti, G.
1994-04-05
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.
Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo
1994-01-01
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.
Solid oxide fuel cell power plant having a bootstrap start-up system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Michael T
The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less
Proppant-flowback control in high-temperature wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
Proppant flowback following fracturing treatments can be controlled by use of resin-coated proppant, inorganic fibers, or polymer strips. Each of these technologies has limitations. Resin-coated proppants cannot be used above 374 F and require an activator below 158 F. Thermoplastic strips cannot be used at temperatures above their melting point. Glass fibers have been used successfully for proppant-flowback control, but they cannot be used at reservoir temperatures below 302 F, they provide only short-term control in carbonate reservoirs, and they cannot be used in an environment where they would be exposed to HF. A new high-performance fiber for proppant-flow-back controlmore » has been developed to overcome these limitations. In laboratory testing, these fibers were resistant to steam, diesel, xylene, HCl, and mud acid at temperatures up to 482 F for periods up to 7 months. Field testing in deep, hot, carbonate reservoirs confirmed the performance of the new fiber. Case histories of gas wells are given.« less
Bohachevsky, I.O.; Torrey, M.D.
1986-06-10
An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.
Iguchi, Hiroko; Magara, Jin; Nakamura, Yuki; Tsujimura, Takanori; Ito, Kayoko; Inoue, Makoto
2015-12-01
This study aimed to investigate how the activity of the masseter (Mas) and suprahyoid (Hyoid) muscles is influenced by the physical properties of food, how changes in the rheological properties of food differ between different foods during the process of food reduction, and how different salivary flow rates affect bolus-making capability during masticatory behavior in healthy humans. Ten healthy adults participated in this study. Electromyographic (EMG) recordings were obtained from the Mas and Hyoid muscles, and 15 g of steamed rice and rice cake was prepared as test foods. In the ingestion test, the subjects were asked to eat each food in their usual manner. The chewing duration, number of chewing cycles before the first swallow, Mas and Hyoid EMG activity, and chewing cycle time were compared between the foods. Total chewing duration was divided into three substages: early, middle, and late; chewing cycle time and EMG activity per chewing cycle of each substage were compared between the foods and among the substages. In the spitting test, the rheological properties of the bolus at the end of each substage were compared between the foods and among the substages. Finally, stimulated salivary flow rates were measured and the relationships between salivary flow rate and chewing duration, EMG activity, and changes in physical food characteristics were investigated. There were significant differences in total chewing duration and the number of chewing cycles, but not in chewing cycle time, between the foods, which had similar hardness values. The EMG activity levels of the Mas and Hyoid per chewing cycle for the rice cake were significantly greater than for the steamed rice throughout the recording periods. While Mas activity did not change among the substages during chewing, Hyoid EMG activity decreased as chewing progressed. Chewing cycle time also gradually decreased as chewing progressed. The hardness of both foods initially increased, then gradually decreased back to baseline. The adhesiveness of the rice cake initially increased, and did not fall throughout the recording period; the adhesiveness of the steamed rice did not significantly change. Cohesiveness barely changed in either of the two foods during chewing, but was significantly greater for the rice cake than for the steamed rice. Finally, a correlation between the stimulated salivary flow rate and chewing performance was evident only in a change in Mas EMG activity. The current results demonstrate that the activities of the Mas and Hyoid muscles changed as chewing progressed, and were affected by hardness, adhesiveness, and cohesiveness. Salivary flow rate may affect the changes in Mas activity during the process of bolus formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing
Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... on behalf of MPSA for authority to manufacture and repair steam and natural gas power generation... existing scope of manufacturing authority to include additional finished products--steam and natural gas..., mechanical seals and rings, actuators, thermocouple assemblies, vibration sensors, and automated controllers...
Advanced gas turbines breathe new life into vintage reheat units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This article describes the repowering of reheat units with advanced gas turbines. The topics of the article include a project overview, plant configuration including heat recovery steam generators and the plant-wide distributed control system, upgrade of existing steam turbines, gas turbine technology, reliability, availability, maintenance features, and training.
Nozzle dam having a unitary plug
Veronesi, L.; Wepfer, R.M.
1992-12-15
Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.
Nozzle dam having a unitary plug
Veronesi, Luciano; Wepfer, Robert M.
1992-01-01
Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Steam-load-forecasting technique for central-heating plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M.C.; Carnahan, J.V.
Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less
NASA Astrophysics Data System (ADS)
Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.
2013-12-01
More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While lava flows have been seen to eventually melt through up to 5 m of snow, melting generally is relatively slow (cm / hr); presence of ash cover on snow slows melting. Temperatures of meltwater discharging from beneath lava flows at Tolbachik were up to 40 deg C, which is similar to maximum temperatures measured during experiments. While meltwater discharge was documented on both subhorizontal and steeper slows (~10 degrees), the only explosive activity was observed where topography likely prevented fast meltwater escape from beneath lava. All of these observations hopefully will lead to a new and better understanding of the hazards associated with lava-ice/snow interactions. Meltwater discharge from beneath 'a'a flow.
HYDRAULIC CHARACTERIZATION FOR STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK
Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. This is primarily the result of the complexity of the fracture framework, which governs the groundwater flow pathways and...
Countercurrent flow absorber and desorber
Wilkinson, W.H.
1984-10-16
Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.
NASA Astrophysics Data System (ADS)
Sawadogo, Teguewinde
This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)
Bio-syngas production from agro-industrial biomass residues by steam gasification.
Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge
2016-12-01
This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.
2017-12-01
Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.
A coordinated MIMO control design for a power plant using improved sliding mode controller.
Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi
2014-03-01
For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, D.
1996-12-31
This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, Didi
1996-01-26
This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
NASA Astrophysics Data System (ADS)
Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Bilan, V. N.; Kadkina, I. V.
2016-11-01
The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer's requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1. The information is also presented on the use of the existing foundations, the fact that the overall dimensions of the turbine unit compartment are not changed, the selection of the new turbine type, and the solutions adopted on the basis of this information as to LPC blading, steam admission type, issues associated with thermal displacements, etc.
Bennett, Charles L.
2010-06-15
A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.
Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias
2016-09-01
This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2006-01-01
16 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of an ancient, cratered, hummocky (rough) lava flow at just the point where it encroached upon a small impact crater east of the volcano, Tharsis Tholus. The lava flow was thin enough and didn't have sufficient energy to flow into and bury the crater. Instead, it took the path of least of resistance, around the crater. Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...