Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
French Regulatory practice and experience feedback on steam generator tube integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandon, G.
1997-02-01
This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less
Heat transfer with hockey-stick steam generator. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E; Gabler, M J
1977-11-01
The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...
Determination of tube-to-tube support interaction characteristics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, K.H.
Tube-to-tube support interaction characteristics were determined on a multi-span tube geometry representative of the hot-leg side of the C-E, System 80 steam generator design. Results will become input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). Correlation of test data reported here with similar data obtained from the wear tests will be performed in an attempt to make predictions about the long-term fretting behavior of steam generator tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Swensen, E.C.; Abitante, P.A.
1990-10-01
A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstratedmore » the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...
Reliable steam generators: how KWU solved beginning problems for its customers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, B.; Engl, G.; Froehlich, K.
This paper describes improvements in inspection and maintenance techniques, the adaptation of a secondary-side concept, and the optimization of water chemistry to achieve the highest possible operational reliability of steam generator performance. In the late 1970s and the early 1980s steam generators of several pressurized water reactors delivered by Kraftwerk Union (KWU) experienced corrosion-induced tube-wall degradation. As a result of these findings and the similar experience in US plants, KWU initiated a systematic program to retain the operational history of the plants at their historically outstanding level. By a combination of improvement in the balance of plant, reduction of themore » phosphate conditioning, and even a change to an all-volatile treatment as well as by the performance of tubesheet lancing, the tube degradation in KWU steam generators is nearly halted and no other known corrosion mechanisms exist that could impair the life expectancy of the steam generators. Nevertheless, repair and cleaning techniques have been developed and are available for application, if necessary, such as tube plugging, tube sleeving, or even partial tube replacement as well as chemical cleaning of the steam generator's secondary side.« less
Steam generator design for solar towers using solar salt as heat transfer fluid
NASA Astrophysics Data System (ADS)
González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo
2017-06-01
Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
Hydrogen-based power generation from bioethanol steam reforming
NASA Astrophysics Data System (ADS)
Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.
2015-12-01
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.
Hydrogen-based power generation from bioethanol steam reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.45Da - Standard for mercury (Hg).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupowicz, J.J.; Scott, D.B.; Fink, G.C.
Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.
Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...
Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.
Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi
2018-03-21
Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.
Design with constructal theory: Steam generators, turbines and heat exchangers
NASA Astrophysics Data System (ADS)
Kim, Yong Sung
This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.
Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing
2018-01-10
The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.
Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael
2002-07-01
A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less
NASA Astrophysics Data System (ADS)
Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.
2018-05-01
Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.
NASA Technical Reports Server (NTRS)
1987-01-01
The United States and other countries face the problem of waste disposal in an economical, environmentally safe manner. A widely applied solution adopted by Americans is "waste to energy," incinerating the refuse and using the steam produced by trash burning to drive an electricity producing generator. NASA's computer program PRESTO II, (Performance of Regenerative Superheated Steam Turbine Cycles), provides power engineering companies, including Blount Energy Resources Corporation of Alabama, with the ability to model such features as process steam extraction, induction and feedwater heating by external sources, peaking and high back pressure. Expansion line efficiency, exhaust loss, leakage, mechanical losses and generator losses are used to calculate the cycle heat rate. The generator output program is sufficiently precise that it can be used to verify performance quoted in turbine generator supplier's proposals.
A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.
2014-07-01
Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.
Automation of steam generator services at public service electric & gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruickshank, H.; Wray, J.; Scull, D.
1995-03-01
Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was duemore » to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.« less
The Effects of Alarm Display, Processing, and Availability on Crew Performance
2000-11-01
snow Instrumentation line leakage Small LOCA Steam generator tube rupture Small feedwater leakage inside containment Cycling of main steam...implemented. • Due to primary pressure controller failure, pressure heater banks cycle between on and off. 8.00 CF1 CF2 CF3 CF4 CF5...temperatures after the high-pressure pre- heaters flows into the steam generators number of active emergency feedwater pumps openings of the condensate
Simulation of a main steam line break with steam generator tube rupture using trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, S.; Querol, A.; Verdu, G.
A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less
Performance of equipment used in high-pressure steam floods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, M.E.; Bramley, B.G.
1966-01-01
Recovery of low-gravity, high-viscosity crude oil from relatively shallow reservoirs is becoming feasible through the application of steam flooding. Pan American Petroleum Corp. initiated a pilot steam flood with a 5.36 million btu/hr, 1,500-psi steam generator at the Winkleman Dome Field in West Central Wyoming in March, 1964. After 1 yr of operation, this steamer was replaced with a larger unit capable of 12 million-btu/hr, 2,500-psi steam generators, one at the Salt Creek Shannon Field and another at the Fourbear Field, both in Wyoming. This paper discusses the equipment used in high-pressure steam flooding and reviews some of the problemsmore » that have been encountered in the application of the equipment. Where determined, a suggested solution is presented.« less
Study of advanced radial outflow turbine for solar steam Rankine engines
NASA Technical Reports Server (NTRS)
Martin, C.; Kolenc, T.
1979-01-01
The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuvelliez, Ch.; Roussel, G.
1997-02-01
An EPRI report gives a method for predicting a conservative value of the total primary-to-secondary leak rate which may occur during, a postulated steam generator depressurization accident such as a Main Steam Line Break (MSLB) in a steam generator with axial through-wall ODSCC at the TSP intersections. The Belgian utility defined an alternative method deviating somewhat from the EPRI method. When reviewing this proposed method, the Belgian safety authorities performed some calculations to investigate its conservatism. This led them to recommend some modifications to the EPRI method which should reduce its undue conservatism while maintaining the objective of conservatism inmore » the offsite dose calculations.« less
Method and apparatus for improving the performance of a steam driven power system by steam mixing
Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James
1998-01-01
A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie
2017-01-01
Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes. PMID:29236087
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Production of synthetic fuels using syngas from a steam hydrogasification and reforming process
NASA Astrophysics Data System (ADS)
Raju, Arun Satheesh Kumar
This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio from carbonaceous feedstocks. Experimental work on the Fischer-Tropsch synthesis has also been performed. A life cycle analysis has been performed with the objective of comparing the life cycle energy consumption and emissions of synthetic diesel fuel produced through the CE-CERT process with other fuel/vehicle combinations. The experimental and simulation results presented here demonstrate that the CE-CERT process is versatile and can potentially handle a number of different feedstocks. CE-CERT process appears to be suitable for commercialization in very large scales with a coal feedstock and also in a distributed network of smaller scale reactors utilizing localized renewable feedstocks.
Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.
Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun
2017-05-03
Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.
NASA Technical Reports Server (NTRS)
1981-01-01
Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, K.H.
Tube-to-tube support interaction characterisitics were determined experimentally on a single tube, multi-span geometry, representative of the Westinghouse Model 51 steam generator economizer design. Results, in part, became input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). More importantly, the test data reported here have been used to validate two analytical wear prediction codes; the WECAN code, which was developed by Westinghouse, and the ABAQUS code which has been enhanced for EPRI by Foster Wheeler to enable simulation of gap conditions (including fluid film effects) for various support geometries.
Performance calculations for 200-1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Staiger, P. J.
1981-01-01
The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...
Eddy current NDE performance demonstrations using simulation tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, L.; Costan, V.; Guillot, E.
2013-01-25
To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.
Mushrooms as Efficient Solar Steam-Generation Devices.
Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia
2017-07-01
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, J.C.
This report discusses the comparisons of a RELAP5 posttest calculation of the recovery portion of the Semiscale Mod-2B test S-SG-1 to the test data. The posttest calculation was performed with the RELAP5/MOD2 cycle 36.02 code without updates. The recovery procedure that was calculated mainly consisted of secondary feed and steam using auxiliary feedwater injection and the atmospheric dump valve of the unaffected steam generator (the steam generator without the tube rupture). A second procedure was initiated after the trends of the secondary feed and steam procedure had been established, and this was to stop the safety injection that had beenmore » provided by two trains of both the charging and high pressure injection systems. The Semiscale Mod-2B configuration is a small scale (1/1705), nonnuclear, instrumented, model of a Westinghouse four-loop pressurized water reactor power plant. S-SG-1 was a single-tube, cold-side, steam generator tube rupture experiment. The comparison of the posttest calculation and data included comparing the general trends and the driving mechanisms of the responses, the phenomena, and the individual responses of the main parameters.« less
2007-02-01
gas turbine systems is the Brayton cycle that passes atmospheric air, the working fluid, through the turbine only once. The thermodynamic steps of the... Brayton cycle include compression of atmospheric air, introduction and ignition of fuel, and expansion of the heated combustion gases through the...the two heat recovery steam generators to generate steam. The gas turbine model is built by connecting the individual components of the Brayton
PWR steam generator chemical cleaning, Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, S.
1978-07-01
United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the searchmore » sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.« less
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Coobs, J.H.; Lotts, A.L.
1976-04-01
Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.
Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level
NASA Astrophysics Data System (ADS)
Fakhrazari, Amin; Boroushaki, Mehrdad
2008-06-01
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.
Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam
NASA Astrophysics Data System (ADS)
Armani, Clinton J.
Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.
Steam generator support system
Moldenhauer, J.E.
1987-08-25
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.
Steam generator support system
Moldenhauer, James E.
1987-01-01
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Horizontal steam generator thermal-hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubra, O.; Doubek, M.
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less
Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.
Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying
2017-08-30
The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.
Analysis of steam generator tube rupture transients with single failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trambauer, K.
The Gesellschaft fuer Reaktorsicherheit is engaged in the collection and evaluation of light water reactor operating experience as well as analyses for the risk study of the pressurized water reactor (PWR). Within these activities, thermohydraulic calculations have been performed to show the influence of different boundary conditions and disturbances on the steam generator tube rupture (SGTR) transients. The analyses of these calculations have focused on the measures and systems needed to cope with an SGTR. The reference plant for this analysis is a 1300-MW(e) PWR of Kraftwerk Union design with four loops, each containing a U-tube steam generator (SG) andmore » a reactor cooling pump (RCP). The thermal-hydraulic code DRUFAN-02 was used for the transient calculations.« less
The Development of a Small High Speed Steam Microturbine Generator System
NASA Astrophysics Data System (ADS)
Alford, Adrian; Nichol, Philip; Frisby, Ben
2015-08-01
The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
Nachbar, Henry D.
1992-12-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
Nachbar, Henry D.
1992-01-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.
1997-02-01
Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less
Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant
NASA Astrophysics Data System (ADS)
Sharma, Meeta; Singh, Onkar
2018-01-01
Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-01
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms. PMID:29329225
Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide
2018-01-12
In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.
Steam generator tubing NDE performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, G.; Welty, C.S. Jr.
1997-02-01
Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, andmore » data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.« less
Inspection and repair of steam generator tubing with a robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehm, H.H.; Foerch, H.
1985-11-01
During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube endmore » repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, W.T.; Cope, A.W.; Orsulak, R.M.
The overall objective of Task 1 was to demonstrate an effective method for removing tenacious corrosion products in a pressurized water reactor steam generator and thus significantly reduce radiation exposure during subsequent maintenance activities. Various decontamination methods were evaluated and a multistep, low concentration chemical process originated by Kraftwerk Union A.G. (KWU) of the Federal Republic of Germany was selected. The process was further developed and tested by C-E and KWU in West Germany and at C-E's facilities in Windsor, Connecticut. C-E designed, fabricated and tested a portable system to apply the process at Millstone Point II. The decontamination ofmore » the primary channel heads of the two Millstone steam generators was performed by C-E and NUSCO during the 1983 refueling shutdown of Millstone Point II plant. Results of the decontamination were very satisfactory. NUSCO determined that a net savings of 3660 man-rem of personnel exposure was realized during the decontamination demonstration and the subsequent maintenance work on the steam generators.« less
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, D.E.; Corletti, M.M.
1993-11-16
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, Douglas E.; Corletti, Michael M.
1993-01-01
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... of Technical Specifications Task Force Traveler TSTF-510, Revision 2, ``Revision to Steam Generator..., Revision 2, ``Revision to Steam Generator [(SG)] Program Inspection Frequencies and Tube Sample Selection..., ``Steam Generator (SG) Program,'' Specification 5.6.7, ``Steam Generator Tube Inspection Report,'' and the...
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Method and apparatus for steam mixing a nuclear fueled electricity generation system
Tsiklauri, Georgi V.; Durst, Bruce M.
1996-01-01
A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.
Vessel structural support system
Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.
1992-01-01
Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.
Status of steam generator tubing integrity at Jaslovske Bohunice NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cepcek, S.
1997-02-01
Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.
Effect of steam addition on cycle performance of simple and recuperated gas turbines
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1979-01-01
Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.
[Effectiveness and limits of the cleaners steam in hospitals].
Meunier, O; Meistermann, C; Schwebel, A
2009-05-01
We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P.; Umminger, K.J.; Schoen, B.
1995-09-01
The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where themore » decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).« less
STEAM GENERATOR FOR NUCLEAR REACTOR
Kinyon, B.W.; Whitman, G.D.
1963-07-16
The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)
NASA Technical Reports Server (NTRS)
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, E.L.; Sullivan, E.J.
1997-02-01
In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule asmore » a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with.« less
Electric power generating plant having direct-coupled steam and compressed-air cycles
Drost, M.K.
1981-01-07
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Electric power generating plant having direct coupled steam and compressed air cycles
Drost, Monte K.
1982-01-01
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Oxygen-hydrogen torch is a small-scale steam generator
NASA Technical Reports Server (NTRS)
Maskell, C. E.
1966-01-01
Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
NASA Astrophysics Data System (ADS)
Gupta, Sunay; Guédez, Rafael; Laumert, Björn
2017-06-01
Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil fields. The model was developed for steam flooding requirements in Issaran oil field using DYESOPT, KTH's in-house tool for techno-economic modelling in CSP.
Steam generator for liquid metal fast breeder reactor
Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.
1985-01-01
Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.
Actual operation and regulatory activities on steam generator replacement in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hitoshi
1997-02-01
This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, Paul W.; Bannister, Ronald L.
1995-01-01
A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
.... NPF-38 for the Waterford Steam Electric Station, Unit 3, located in St. Charles Parish, Louisiana. In view of the originally planned steam generator (SG) replacement during the spring 2011 refueling outage... to TS 6.5.9, ``Steam Generator (SG) Program,'' and TS 6.9.1.5, ``Steam Generator Tube Inspection...
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, H.G.; Reilly, B.P.
1995-03-01
The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less
McDermott, D.J.; Schrader, K.J.; Schulz, T.L.
1994-05-03
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.
1994-01-01
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengaus, J.
1987-01-01
In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less
Hockey-stick steam generator for LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinan, G.J.; Svedlund, P.E.
1981-01-01
This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less
User's manual for PRESTO: A computer code for the performance of regenerative steam turbine cycles
NASA Technical Reports Server (NTRS)
Fuller, L. C.; Stovall, T. K.
1979-01-01
Standard turbine cycles for baseload power plants and cycles with such additional features as process steam extraction and induction and feedwater heating by external heat sources may be modeled. Peaking and high back pressure cycles are also included. The code's methodology is to use the expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses to calculate the heat rate and generator output. A general description of the code is given as well as the instructions for input data preparation. Appended are two complete example cases.
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, P.W.; Bannister, R.L.
1995-07-11
A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.
78 FR 14358 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... violations related to a tire-burning electric generating plant in Ford Heights, Illinois (the ``Facility..., including: (1) The New Source Performance Standards for Industrial Steam Generating Units; (2) the Illinois...
Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun
2018-04-04
Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.
Optimization of steam generators of NPP with WWER in operation with variable load
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.
2017-11-01
The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagoner, C.L.; Wessel, R.A.
1986-01-01
Empiricism has traditionally been used to relate laboratory and pilot-scale measurements of fuel characteristics with the design, performance, and the slagging and fouling behavior of steam generators. Currently, a new engineering approach is being evaluated. The goal is to develop and use calculations and measurements from several engineering disciplines that exceed the demonstrated limitations of present empirical techniques for predicting slagging/fouling behavior. In Part I of this paper, the generic approach to deposits and boiler performance is defined and a matrix of engineering concepts is described. General relationships are presented for assessing the effects of deposits and sootblowing on themore » real-time performance of heat transfer surfaces in pilot- and commercial-scale steam generators.« less
Design Evolution and Verification of the A-3 Chemical Steam Generator
NASA Technical Reports Server (NTRS)
Kirchner, Casey K.
2009-01-01
Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized configuration. Multiple solutions for this issue have been proposed, with the leading concept being a change to the operational definition of "idle mode," with the generator running in a lower heat flux condition.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Method and apparatus for improving the performance of a nuclear power electrical generation system
Tsiklauri, Georgi V.; Durst, Bruce M.
1995-01-01
A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, B.
1973-02-01
While production generally is declining elsewhere in California, the Kern River field continues to post gains. The field last year produced at an all-time high for the second year in a row, putting out at least 1.5 million bbl more than in its previous peak year. There is every reason to believe that gains will continue through this year. Steam is in the factor that underlies Kern River's resurgence, and Getty Oil Co., the field's premier steamer, recently added to its already imposing array of steam-generating equipment a pair of large boilers, each capable of generating 240 million btus permore » hr. Along with expansion of the steaming effort the company also expanded its water-treating facilities, making sure there will be plenty of feed water to fuel the steam generators at work in the field. The new boilers are being used to furnish steam to 136 wells in a steam displacement project. The purpose of going to a larger generator has been to gain higher efficiency. The components that have made Getty Oil the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells, steam generators and--since 1969--a computer. The entire project is described in detail.« less
US PWR steam generator management: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, C.S. Jr.
1997-02-01
This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less
Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing
2017-07-01
Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Start-up performance of parabolic trough concentrating solar power plants
NASA Astrophysics Data System (ADS)
Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim; Laumert, Björn; Haglind, Fredrik
2017-06-01
Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential. In this regard, two of the key components identified are the steam generation system and steam turbine. In general it is desirable to have fast ramp-up rates during the start-up of a power plant. However ramp-up rates are limited by, among other things, thermal stresses, which if high enough can compromise the life of the components. Moreover, from an operability perspective it might not be optimal to have designs for the highest heating rates, as there may be other components limiting the power plant start-up. Therefore, it is important to look at the interaction between the steam turbine and steam generator to determine the optimal ramp rates. This paper presents a methodology to account for thermal stresses limitations during the power plant start up, aiming at identifying which components limit the ramp rates. A detailed dynamic model of a parabolic trough power plant was developed and integrated with a control strategy to account for the start-up limitations of both the turbine and steam generator. The models have been introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results indicated that for each application, an optimal heating rates range can be identified. For the specific case presented in the paper, an optimal range of 7-10 K/min of evaporator heating rate can result in a 1.7-2.1% increase in electricity production compared to a slower component (4 K/min).
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-03-14
A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less
MHD performance calculations with oxygen enrichment
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.
1979-01-01
The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. The Steam Generator Water Level High-High... previously evaluated is not increased. The Steam Generator Water Level High-High function revised values..., Steam Generator Water Level High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. Function 5c...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
Code of Federal Regulations, 2012 CFR
2012-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.
Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei
2015-08-05
Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
...-2011-02; Aging Management Program for Steam Generators AGENCY: Nuclear Regulatory Commission. ACTION... License Renewal Interim Staff Guidance (LR-ISG), LR-ISG-2011-02, ``Aging Management Program for Steam... using Revision 3 of NEI 97-06 to manage steam generator aging. The Draft LR-ISG revises the NRC staff's...
Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang
2015-01-01
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.
NASA Astrophysics Data System (ADS)
Schastlivtsev, A. I.; Borzenko, V. I.
2017-11-01
The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.
Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming
ERIC Educational Resources Information Center
Azad, Abdul-Majeed; Kesavan, Sathees
2006-01-01
An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
75 FR 68294 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are... Advance Emission 10/16/08 03/17/09 Reduction Options for Boilers, Steam Generators and Process Heaters..., steam generators and process heaters with a total rated heat input greater than 5 MMBtu/ hour. EPA's...
A novel direct-fired porous-medium boiler
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, K.; MacNeil, C.; Odar, S.
1997-02-01
This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pittingmore » and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.« less
A New Microstructure Device for Efficient Evaporation of Liquids
NASA Astrophysics Data System (ADS)
Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice
Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself cannot be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 7. A maximum power density of 1400 kW·m-2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapour is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.
Design and Activation of a LOX/GH Chemical Steam Generator
NASA Technical Reports Server (NTRS)
Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.
2009-01-01
The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).
Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1980-09-01
It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.
Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.
1983-09-01
The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less
Highly Flexible and Efficient Solar Steam Generation Device.
Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing
2017-08-01
Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk
2011-09-20
A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less
Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd
2004-09-21
The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
2. Credit BG. Looking west at east facade of Steam ...
2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2012 CFR
2012-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2011 CFR
2011-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2014 CFR
2014-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2013 CFR
2013-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya
2014-02-01
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.
45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING ...
45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING UNIT USED TO PRODUCE ELECTRICITY FOR MANUFACTURING OPERATIONS AND FOR THE TOWN OF RAINELLE. STEAM ENGINE IS A HAMILTON CORLISS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV
NASA Astrophysics Data System (ADS)
Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng
2018-04-01
In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.
Frontier production function estimates for steam electric generation: a comparative analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, R.J.; Smith, V.K.
1980-04-01
The performance of three frontier steam electric generation estimators is compared in terms of the consideration given to new production technologies and their technical efficiency. The Cobb-Douglas, constant elasticity of substitution, and translog production functions are examined, using the Aigner-Chu linear programming, the sophisticated Aigner-Lovell-Schmidt stochastic frontier, and the direct method of adjusted ordinary least squares frontier estimators. The use of Cobb-Douglas specification is judged to have narrowed the perceived difference between competing estimators. The choice of frontier estimator is concluded to have a greater effect on the plant efficiency than functional form. 19 references. (DCK)
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Advanced Coal-Based Power Generations
NASA Technical Reports Server (NTRS)
Robson, F. L.
1982-01-01
Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...
New Source Performance Standards
ERIC Educational Resources Information Center
Jenkins, Richard E.; McCutchen, Gary D.
1972-01-01
This feature article outlines the concept and procedures followed in establishing performance standards for new emission sources and summarizes the standards that have been established to date. Five source catagories are enumerated: fossil fuel-fired steam generators, municipal incinerators, Portland cement plants, nitric acid plants, and sulfuric…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virtanen, E.; Haapalehto, T.; Kouhia, J.
1995-09-01
Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
...- Institutional Steam Generating Units (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Small Industrial- Commercial-Institutional Steam Generating Units (40 CFR Part 60, Subpart Dc.... Respondents/affected entities: Owners or operators of small industrial-commercial-institutional steam...
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
Study on steam pressure characteristics in various types of nozzles
NASA Astrophysics Data System (ADS)
Firman; Anshar, Muhammad
2018-03-01
Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.
Recovery of condensate water quality in power generator's surface condenser
NASA Astrophysics Data System (ADS)
Kurniawan, Lilik Adib
2017-03-01
In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar
2009-06-30
Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode,more » respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.« less
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J.L.; Siebe, D.A.; Boyack, B.E.
This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm{sup 2} break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less
Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, J.L.; Siebe, D.A.; Boyack, B.E.
This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm[sup 2] break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondariesmore » was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.« less
In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong
2017-07-01
The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).
Micro Chemical Oxygen-Iodine Laser (COIL)
2007-10-01
required to form a good o-ring seal. Steam generator design A pumping system based on steam ejectors was designed during the course of the previous HEL-JTO...options for the steam generator design . The first is to catalyze the decomposition of hydrogen peroxide through the use of a standard solid
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Approval; Comment Request; NSPS for Electric Utility Steam Generating (Renewal) AGENCY: Environmental... the electronic docket, go to http://www.regulations.gov . Title: NSPS for Electric Utility Steam.../Affected Entities: Owners or operators of electric utility steam generating units. Estimated Number of...
75 FR 45080 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... revisions concern oxides of nitrogen (NO X ) emissions from boilers, steam generators and process heaters... 1--Submitted Rule Local agency Rule No. Rule title Adopted Submitted SJVUAPCD 4308 Boilers, Steam... regulations that control NO X emissions. Rule 4308 limits NO X and CO emissions from boilers, steam generators...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Method and apparatus for enhanced heat recovery from steam generators and water heaters
Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin
2006-06-27
A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.
Retrofitting Steam Turbines with Expired Service Life
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.; Babiev, A. N.; Kremer, V. L.
2018-06-01
Many pieces of equipment installed at thermal power stations (TPS) have an expired service life or are close to expiry and are obsolete. In addition, the structure of heat consumption by end users has changed. Among the ways for solving the problem of aging equipment is the retrofitting of turbines that allows for service life recovery and improvement of their performance to the modern level. The service life is recovered through replacement of high-temperature assemblies and parts of a turbine, and the performance is improved by retrofitting and major overhaul of low-temperature assemblies. Implementation of modern engineering solutions and numerical methods in designing upgraded flow paths of steam turbines considerably improves the turbine effectiveness. New flow paths include sabre-like guide vanes, integrally-machined shrouds, and effective honeycomb or axial-radial seals. The flow paths are designed using optimization and hydraulic simulation methods as well as approaches for improving the performance on the turbine blading and internal steam flow paths. Retrofitting of turbines should be performed to meet the customers' needs. The feasibility of implementation of one or another alternative must be determined on a case-by-case basis depending on the turbine conditions, the availability of reserves for generating live steam and supplying circulation water, and the demands and capacities for generation and delivery of power and heat. The main principle of retrofitting is to retain the foundation and the auxiliary and heat-exchange equipment that is fit for further operation. With the example of PT-60-130 and T-100-130, the experience is presented of a comprehensive approach to retrofitting considering the customer's current needs and the actual equipment conditions. Due to the use of modern engineering solutions and procedures, retrofitting yields updating and upgrading of the turbine at a relatively low cost.
MSG test report: removal of residual sodium. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
1974-03-08
This report presents the results of cleaning activities performed to remove residual sodium from the AI Modular Steam Generator. A description of the cleaning loop, cleaning procedure, results, and visual inspection are included.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Susceptibility of steam generator tubes in secondary conditions: Effects of lead and sulphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez Briceno, D.; Garcia, M.S.; Castano, M.L.
1997-02-01
IGA/SCC on the secondary side of steam generators is increasing every year, and represents the cause of some steam generator replacements. Until recently, caustic and acidic environments have been accepted as causes of IGA/SCC, particulary in certain environments: in sludge pile on the tube sheet; at support crevices; in free span. Lead and sulfur have been identified as significant impurities. Present thoughts are that some IGA/SCC at support crevices may have occurred in nearly neutral or mildly alkaline environments. Here the authors present experimental work aimed at studying the influence of lead and sulfur on the behaviour of steam generatormore » tube alloys in different water environments typical of steam generators. Most test results ran for at least 2000 hours, and involved visual and detailed surface analysis during and following the test procedures.« less
Isopropyl alcohol tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
2009-08-13
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
2009-09-18
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Isopropyl alcohol tank installed at A-3 Test Stand
2009-09-18
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Alternative method for steam generation for thermal oxidation of silicon
NASA Astrophysics Data System (ADS)
Spiegelman, Jeffrey J.
2010-02-01
Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Fossil Fuel Fired Steam... www.regulations.gov . Title: NSPS for Fossil Fuel Fired Steam Generating Units(Renewal). ICR Numbers.... Respondents/Affected Entities: Owners or operators of fossil fuel fired steam generating units. Estimated...
Car companies look to generate power from waste heat
NASA Astrophysics Data System (ADS)
Schirber, Michael
2008-04-01
You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.
PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less
NASA Astrophysics Data System (ADS)
Marakkos, Costas; Stiliaris, Efstathios; Guillen, Elena; Montenon, Alaric; Papanicolas, Costas
2017-06-01
The steam power output of a helical-col generator is both experimentally and numerically examined using Nusselt number correlations from literature. Validation studies of the correlation models examined herein are performed for a mass flux G of 84 kg.s-1.m-2, power output Q of 15.5 kW, supply pressure P of 0.81 MPa and internal tube-diameter to coil-diameter ratio Di/Dc of 0.027. Existing two-phase models applied with Newton's Law of cooling, lead to an under-prediction of the coil size, namely, the tube length requirement for a specified power output by about 20%.
Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan
2014-01-01
In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.
Hellinger, Walter C; Hasan, Saiyid A; Bacalis, Laura P; Thornblom, Deborah M; Beckmann, Susan C; Blackmore, Carina; Forster, Terri S; Tirey, Jason F; Ross, Mary J; Nilson, Christian D; Mamalis, Nick; Crook, Julia E; Bendel, Rick E; Shetty, Rajesh; Stewart, Michael W; Bolling, James P; Edelhauser, Henry F
2006-03-01
Toxic anterior segment syndrome (TASS), a complication of cataract surgery, is a sterile inflammation of the anterior chamber of the eye. An outbreak of TASS was recognized at an outpatient surgical center and its affiliated hospital in December 2002. Medical records of patients who underwent cataract surgery during the outbreak were reviewed, and surgical team members who participated in the operations were interviewed. Potential causes of TASS were identified and eliminated. Feedwater from autoclave steam generators and steam condensates were analyzed by use of spectroscopy and ion chromatography. During the outbreak, 8 (38%) of 21 cataract operations were complicated by TASS, compared with 2 (0.07%) of 2,713 operations performed from January 1996 through November 2002. Results of an initial investigation suggested that cataract surgical equipment may have been contaminated by suboptimal equipment reprocessing or as a result of personnel changes. The frequency of TASS decreased (1 of 44 cataract operations) after reassignment of personnel and revision of equipment reprocessing procedures. Further investigation identified the presence of impurities (eg, sulfates, copper, zinc, nickel, and silica) in autoclave steam moisture, which was attributed to improper maintenance of the autoclave steam generator in the outpatient surgical center. When impurities in autoclave steam moisture were eliminated, no cases of TASS were observed after more than 1,000 cataract operations. Suboptimal reprocessing of cataract surgical equipment may evolve over time in busy, multidisciplinary surgical centers. Clinically significant contamination of surgical equipment may result from inappropriate maintenance of steam sterilization systems. Standardization of protocols for reprocessing of cataract surgical equipment may prevent outbreaks of TASS and may be of assistance during outbreak investigations.
Hydrogen manufacture by Lurgi gasification of Oklahoma coal
NASA Technical Reports Server (NTRS)
1975-01-01
Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.
Rapid Generation of Superheated Steam Using a Water-containing Porous Material
NASA Astrophysics Data System (ADS)
Mori, Shoji; Okuyama, Kunito
Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.
Steam Rankine Solar Receiver, phase 2
NASA Technical Reports Server (NTRS)
Deanda, L. E.; Faust, M.
1981-01-01
A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.
Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe
2015-11-01
The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
Geothermal steam condensate reinjection
NASA Technical Reports Server (NTRS)
Chasteen, A. J.
1974-01-01
Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.
Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors
NASA Astrophysics Data System (ADS)
Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti
2010-12-01
Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.
Pretest analysis document for Semiscale Test S-FS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.H.
This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY21 code for Semiscale Test S-FS-1. The test will simulate the double-ended offset shear of the main steam line at the exit of the broken loop steam generator (downstream of the flow restrictor) and the subsequent plant recovery. The recovery portion of the test consists of a plant stabilization phase and a plant cooldown phase. The recovery procedures involve normal charging/letdown operation, pressurizer heater operation, secondary steam and feed of the unaffected steam generator, and pressurizer auxiliary spray. The test will be terminated after the unaffected steam generator and pressurizermore » pressures and liquid levels are stable, and the average priamry fluid temperature is stable at about 480 K (405/sup 0/F) for at least 10 minutes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, B.
1970-09-15
The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less
2. Credit PEM. View of Martinsburg Power Company steam generating ...
2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
N-16 monitors: Almaraz NPP experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrada, J.
1997-02-01
Almaraz Nuclear Power Plant has installed N-16 monitors - one per steam generator - to control the leakage rate through the steam generator tubes after the application of leak before break (LBB) criteria for the top tube sheet (TTS). After several years of operation with the N-16 monitors, Almaraz NPP experience may be summarized as follows: N-16 monitors are very useful to follow the steam generator leak rate trend and to detect an incipient tube rupture; but they do not provide an exact absolute leak rate value, mainly when there are small leaks. The evolution of the measured N-16 leakmore » rates varies along the fuel cycle, with the same trend for the 3 steam generators. This behaviour is associated with the primary water chemistry evolution along the cycle.« less
Oxygen transport membrane reactor based method and system for generating electric power
Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan
2017-02-07
A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.
Thermal gain of CHP steam generator plants and heat supply systems
NASA Astrophysics Data System (ADS)
Ziganshina, S. K.; Kudinov, A. A.
2016-08-01
Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.
Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package
NASA Astrophysics Data System (ADS)
Usov, S. V.; Kudinov, A. A.
2016-04-01
Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.
Endoscopic laser-induced steam generator: a new method of treatment for early gastric cancer
NASA Astrophysics Data System (ADS)
Hayashi, Takuya; Arai, Tsunenori; Tajiri, Hisao; Nogami, Yashiroh; Hino, Kunihiko; Kikuchi, Makoto
1996-05-01
The minimum invasive endoscopic treatment for early gastric cancer has been popular in Japan. The endoscopic mucosal resection and laser coagulation by Nd:YAG laser irradiation has been the popular treatment method in this field. However, the submucosal cancer has not been successfully treated by these methods. To treat the submucosal cancer endoscopically, we developed a new coagulation therapy using hot steam generated by Nd:YAG laser. The steam of which temperature was over 10 deg. in Celsius was generated by the laser power of 30 W with 5 ml/min. of saline. The steam was emitted to canine gastric wall under laparotomy or endoscopy for 50 s respectively. Follow up endoscopy was performed on 3, 7, 14, 28 days after the treatment. Histological examination was studied on 7, 28 days, and just after the emission. In the acute observation, the submucosal layer was totally coagulated. On the 7th day, ulceration with white coat was seen. The mucosal defect, submucosal coagulation, and marked edema without muscle degeneration were found by the histological study. On the 14th day, the ulcer advanced in the scar stage. On the 28th day, it completely healed into white scar with mucosal regeneration and mucosal muscle thickening. We could obtain reproducible coagulation up to deep submucosal layer with large area in a short operation time. Moreover there were no degeneration of proper muscle. This treatment effectiveness could be easily controlled by the steam temperature and emission duration. We think that this method can be applied to early gastric cancer including the submucosal cancer, in particular poor risk case for operation. Further study should be done to apply this method to clinical therapy.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, W.C.; Newby, R.A.; Bannister, R.L.
1999-04-27
A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.
1999-01-01
A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.
Estimating probable flaw distributions in PWR steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, J.A.; Turner, A.P.L.
1997-02-01
This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less
NUCLEAR FLASH TYPE STEAM GENERATOR
Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.
1962-09-01
A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)
Downhole steam generator using low-pressure fuel and air supply
Fox, R.L.
1981-01-07
For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)
Final Test and Evaluation Results from the Solar Two Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO
Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less
Experience with 850-MW fossil-fired units in peaking service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B.G.
1978-01-01
Experience with the peaking operation of two 850-MW gross generation units at the Martins Creek Steam Electric Station in Pennsylvania is described. The design, operation, and performance of these oil-fueled units are discussed. (LCL)
Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putney, J.M.; Preece, R.J.
1993-06-01
An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies willmore » still be present in the successor code RELAP5/MOD3.« less
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, S.S. Jr.; Tyran, Craig K.
1986-01-21
For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
...-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... copy form. The hearing schedules, including lists of speakers, will be posted on EPA's Web Sites http...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolstad, J.W.; Haarman, R.A.
The results of two transients involving the loss of a steam generator in a single-pass, steam generator, pressurized water reactor have been analyzed using a state-of-the-art, thermal-hydraulic computer code. Computed results include the formation of a steam bubble in the core while the pressurizer is solid. Calculations show that continued injection of high pressure water would have stopped the scenario. These are similar to the happenings at Three Mile Island.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
Code of Federal Regulations, 2010 CFR
2010-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hold, A.
An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating...-Institutional, and Small Industrial-Commercial- Institutional Steam Generating Units Correction Proposed rule...
Sources and potential application of waste heat utilization at a gas processing facility
NASA Astrophysics Data System (ADS)
Alshehhi, Alyas Ali
Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarver, J.M.; Doherty, P.E.; Doyle, D.M.
1995-12-31
Thermally treated Alloy 690 is the tubing material of choice for replacement steam generators in the United States. Throughout the world, it is manufactured using different melting and thermomechanical processing methods. The influence of different processing steps on the intergranular stress corrosion cracking (IGSCC) behavior of Alloy 690 has not been thoroughly evaluated. Evaluations were performed on Alloy 690 steam generator tubing produced using several different melting practices and thermomechanical processing procedures. The evaluations included extensive microstructural examinations as well as constant extension rate (CERT) tests. The CERT test results indicated that the thermally treated Alloy 690 tubing which wasmore » subjected to higher annealing temperatures displayed the highest degree of resistance to stress corrosion cracking (SCC). Examination of the microstructures indicated that the microstructural changes which are produced by increased annealing temperatures are subtle. In an attempt to further elucidate and quantify the effect of manufacturing processes on corrosion behavior, grain boundary character distribution (GBCD) measurements were performed on the same materials which were CERT tested. Analysis of GBCDs of the samples used in this study indicate that Alloy 690 exhibits a significantly larger fraction of special boundaries as compared to Alloy 600 and Alloy 800, regardless of the processing history of the tubing. Preliminary results indicate that a correlation may exist between processing method, GBCD`s and degree of IGSCC exhibited by the thermally treated samples examined in this study.« less
Innovation on Energy Power Technology (1)
NASA Astrophysics Data System (ADS)
Nagano, Susumu; Kakishima, Masayoshi
After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.
Evaluation of steam generator WWER 440 tube integrity criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splichal, K.; Otruba, J.; Burda, J.
1997-02-01
The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jie; Minh, Nguyen
This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2011-03-01
The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.
Pressure Reducer for Coal Gasifiers
NASA Technical Reports Server (NTRS)
Kendall, James M., Sr.
1983-01-01
Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.
Microfabricated rankine cycle steam turbine for power generation and methods of making the same
NASA Technical Reports Server (NTRS)
Muller, Norbert (Inventor); Lee, Changgu (Inventor); Frechette, Luc (Inventor)
2009-01-01
In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.
Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes
Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng
2018-01-01
In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed. PMID:29301316
NASA Astrophysics Data System (ADS)
Bergant, Marcos A.; Yawny, Alejandro A.; Perez Ipiña, Juan E.
2017-04-01
The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs.
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.
2015-08-01
Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heatmore » and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.« less
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
NASA Astrophysics Data System (ADS)
Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan
2015-11-01
The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
Defect specific maintenance of SG tubes -- How safe is it?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cizelj, L.; Mavko, B.; Dvorsek, T.
1997-02-01
The efficiency of the defect specific plugging criterion for outside diameter stress corrosion cracking at tube support plates is assessed. The efficiency is defined by three parameters: (1) number of plugged tubes, (2) probability of steam generator tube rupture and (3) predicted accidental leak rate through the defects. A probabilistic model is proposed to quantify the probability of tube rupture, while procedures available in literature were used to define the accidental leak rates. The defect specific plugging criterion was then compared to the performance of traditional (45%) plugging criterion using realistic data from Krsko nuclear power plant. Advantages of themore » defect specific approach over the traditional one are clearly shown. Some hints on the optimization of safe life of steam generator are also given.« less
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
NASA Astrophysics Data System (ADS)
Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.
2017-11-01
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2014 CFR
2014-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2011 CFR
2011-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2013 CFR
2013-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2012 CFR
2012-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
Impact of the climate change on the performance of the steam and gas turbines in Russia
NASA Astrophysics Data System (ADS)
Fedotova (Kasilova, E. V.; Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.
2017-11-01
The power generating industry is known to be vulnerable to the climate change due to the deteriorating efficiency of the power equipment. Effects for Russia are not completely understood yet. But they are already detected and will be more pronounced during the entire current century, as the Russian territory is one of the areas around the world where the climate change is developing most rapidly. An original climate model was applied to simulate the change of the air temperature across Russia for the twenty-first century. The results of the climate simulations were used to conduct impact analysis for the steam and gas turbine performance taking into account seasonal and spatial heterogeneity of the climate change across the Russian territory. Sensitivity of the turbines to the climatic conditions was simulated using both results of fundamental heat transfer research and empirical performance curves for the units being in operation nowadays. The integral effect of the climate change on the power generating industry was estimated. Some possible challenges and opportunities resulted from the climate change were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, B.W.; Begley, J.A.; Brown, S.D.
1995-12-01
The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structuralmore » limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation.« less
Development of Advanced Seals for Industrial Turbine Applications
NASA Astrophysics Data System (ADS)
Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet
2002-10-01
A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.
NASA Astrophysics Data System (ADS)
1981-09-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin
2013-12-01
This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
40 CFR 60.4162 - Notification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...
40 CFR 60.4162 - Notification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...
Lead-induced stress corrosion cracking of Alloy 600 and 690 in high temperature water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, T.; Senjuh, T.; Aoki, K.
1992-12-31
Lead is one of the potential contributing impurities to the degradation of PWR steam generator tubing. Recent laboratory testing has shown that lead is a corrosive material for Alloy 600 steam generator tubing. However, it is still unknown how lead influences the corrosion of steam generator tubing, including the effect of lead concentration, solution pH, stress level and material characteristics. In this study, two kinds of experiments were performed. One was to investigate the thin film characteristic and selectively dissolved base metal elements of Alloy 600MA in high temperature solutions of different lead concentrations and pH. The other investigated themore » dependency of degradation of Alloy 600MA and Alloy 690TT on lead concentration and stress level in mild acidic environment, at 340{degrees}C for 2500 hrs. It was firstly demonstrated that lead-enhanced selective dissolution of nickel from alloy base metal, as a result of electrochemical reaction between lead and nickel, might cause the initiation and propagation of corrosion. Secondly, we showed that Alloy 690TT, generally very corrosion resistant material, also suffered from Pb-induced corrosion. The difference of the lead-induced stress corrosion morphology of Alloy 600MA and Alloy 690TT was also clarified.« less
Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2016-04-01
The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.
Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation
Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2016-01-01
The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335
Method and apparatus for producing thermal vapor stream
Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.
1979-01-01
Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.
Downhole steam generator with improved preheating, combustion and protection features
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.
Energy Conversion Alternatives Study (ECAS)
NASA Technical Reports Server (NTRS)
1977-01-01
ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.
Project DEEP STEAM: Fourth meeting of the technical advisory panel
NASA Astrophysics Data System (ADS)
Fox, R. L.; Donaldson, A. B.; Eisenhawer, S. W.; Hart, C. M.; Johnson, D. R.; Mulac, A. J.; Wayland, J. R.; Weirick, L. J.
1981-07-01
The status of project DEEP STEAM was reviewed. Proceedings, are divided into five main sections: (1) the injection string modification program; (2) the downhole steam generator program; (3) supporting activities; (4) field testing; and (5) recommendations and discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.
The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less
Current forgings and their properties for steam generator of nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio
1997-12-31
Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D; Christopher, Timothy W; Oland, C Barry
The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPImore » program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.« less
Vapor generator steam drum spray head
Fasnacht, Jr., Floyd A.
1978-07-18
A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gent, Stan
The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steammore » loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.« less
Industrial steam systems and the energy-water nexus.
Walker, Michael E; Lv, Zhen; Masanet, Eric
2013-11-19
This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.
40 CFR 60.4161 - EPA recordation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...
40 CFR 60.4161 - EPA recordation.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.
2015-01-01
Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.
NASA Astrophysics Data System (ADS)
Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup
2018-02-01
To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.
On the influence of manufacturing practices on the SCC behavior of Alloy 690 steam generator tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, P.E.; Doyle, D.M.; Sarver, J.M.
1996-12-31
Thermally treated (TT) Alloy 690 is the tubing materials of choice for replacement steam generators (RSGs) throughout the world. It is manufactured using a variety of processing methods with regards to melt practice and thermomechanical forming. Studies assessing the IGSCC resistance of Alloy 690 TT SG tubing have identified a variability in the corrosion performance of nominally identical alloys. While tubing of comparable bulk chemistry may exhibit variations in microchemistry as a result of different melt practice, the correlation between melt practice and SCC resistance is difficult to assess due to other contributing factors. The other contributing factors are identifiedmore » in this investigation as microstructural features whose generation is dependent on features of particular strain-anneal forming methods by which SG tubes are fabricated. In this study the microstructural characteristics which appear to affect inservice corrosion performance of Alloy 690 TT SG tubes were evaluated. The studies included extensive microstructural examinations in addition to CERT tests performed on actual Alloy 690 TT nuclear SG tubing. The CERT test results indicate that Alloy 690 TT tubing processed at higher mill anneal temperatures display the highest degree of stress corrosion cracking (SCC) resistance. This observation is discussed with reference to carbide distributions, textural aspects and grain boundary orientation character.« less
NASA Astrophysics Data System (ADS)
Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard
2017-06-01
At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.
Credit WCT. Photographic copy of photograph, view east southeast across ...
Credit WCT. Photographic copy of photograph, view east southeast across Dd station ejectors showing detail of "Hyprox" steam generator. Note that steam generator is placed above Z-stage ejector; an insulated pipe running between the Dd train rails supplies steam to the Y-Stage ejector. Note emergency eyewash stand at extreme right of view. (JPL negative no. 384-3376, 3 December 1962) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Materials Performance in USC Steam Portland
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.R. Holcomb; J. Tylczak; R. Hu
2011-04-26
Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.
Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they willmore » be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)« less
2007-09-01
steam. The creep and recovery periods ranged from 3 min to 30 h. The laboratory air tests significantly exceeded the life of the monotonic creep ...orders of magnitude improvement in the creep life and rate. The presence of steam greatly reduced the performance of the material. The results in...steam. Mehrman also reported that prior fatigue subsequently improved in air but creep performance but in steam creep performance remained poor
49 CFR 229.109 - Safety valves.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Safety valves. 229.109 Section 229.109..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.109 Safety valves. Every steam generator shall be equipped with at least two safety valves that have a...
An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
2011-09-15
E-2 Test Stand team members at Stennis Space Center conducted their first series of tests on a three-module chemical steam generator unit Sept. 15. All three modules successfully fired during the tests. The chemical steam generator is a critical component for the A-3 Test Stand under construction at Stennis.
49 CFR 229.109 - Safety valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Safety valves. 229.109 Section 229.109..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.109 Safety valves. Every steam generator shall be equipped with at least two safety valves that have a...
49 CFR 229.113 - Warning notice.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Warning notice. 229.113 Section 229.113....113 Warning notice. Whenever any steam generator has been shut down because of defects, a distinctive warning notice giving reasons for the shut-down shall be conspicuously attached near the steam generator...
49 CFR 229.113 - Warning notice.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Warning notice. 229.113 Section 229.113....113 Warning notice. Whenever any steam generator has been shut down because of defects, a distinctive warning notice giving reasons for the shut-down shall be conspicuously attached near the steam generator...
49 CFR 229.113 - Warning notice.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Warning notice. 229.113 Section 229.113....113 Warning notice. Whenever any steam generator has been shut down because of defects, a distinctive warning notice giving reasons for the shut-down shall be conspicuously attached near the steam generator...
49 CFR 229.113 - Warning notice.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Warning notice. 229.113 Section 229.113....113 Warning notice. Whenever any steam generator has been shut down because of defects, a distinctive warning notice giving reasons for the shut-down shall be conspicuously attached near the steam generator...
49 CFR 229.113 - Warning notice.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Warning notice. 229.113 Section 229.113....113 Warning notice. Whenever any steam generator has been shut down because of defects, a distinctive warning notice giving reasons for the shut-down shall be conspicuously attached near the steam generator...
76 FR 74834 - Interim Staff Guidance on Aging Management Program for Steam Generators
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... NRC staff's evaluation of the suitability of using Revision 3 of the Nuclear Energy Institute's (NEI... NUCLEAR REGULATORY COMMISSION [NRC-2011-0228] Interim Staff Guidance on Aging Management Program for Steam Generators AGENCY: Nuclear Regulatory Commission. ACTION: Interim staff guidance; issuance...
NASA Technical Reports Server (NTRS)
Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.
1979-01-01
An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.
Coal-Fired Boilers at Navy Bases, Navy Energy Guidance Study, Phase II and III.
1979-05-01
several sizes were performed. Central plants containing four equal-sized boilers and central flue gas desulfurization facilities were shown to be less...Conceptual design and parametric cost studies of steam and power generation systems using coal-fired stoker boilers and stack gas scrubbers in
Production of hydrogen by direct gasification of coal with steam using nuclear heat
NASA Technical Reports Server (NTRS)
1975-01-01
Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.
1. Credit BG. View looking southeast down onto roof and ...
1. Credit BG. View looking southeast down onto roof and the north and west facades of Steam Generator Plant, Building 4280/E-81. Vents on roof were from gas-fired steam generators. Pipes emerging from north facade are for steam. Elevated narrow tray is for electrical cables. To lower left of image (immediate north of 4280/E-81) is concrete-lined pond originally built to neutralize rocket engine exhaust compounds; it was only used as a cooling pond. To the lower right of this image are concrete pads which held two 7,500 gallon feedwater tanks for the boilers in 4280/E-81; these tanks were transferred to another federal space science organization and removed from the JPL compound in 1994. Beyond 4280/E-81 to the upper left is a reclamation pond. ... - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
Energy alternative for industry: the high-temperature gas-cooled reactor steamer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMain, A.T. Jr.; Blok, F.J.
1978-04-01
Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size (800 to 1200 MW(thermal)) and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative tomore » Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 x 10/sup 6/ lb/h) of prime steam at 4.5 MPa/672 K (650 psia/750/sup 0/F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K(1200 psia/912/sup 0/F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.« less
NASA Astrophysics Data System (ADS)
Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.
2016-06-01
This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.
3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch ...
3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch Seymore steam engines and one Taylor steam engine belt driving (from let to right) a sperry 30 light, 220 Volt generator, a Westinghouse 900 light, 2200 Volt generator, a Ball 80 light are generator, and two Edison, 900 light, 220 Volt generators. Note switchboard to left. Photo c. 1896. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paget, J.A.
1959-10-01
BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less
76 FR 19766 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
...; NSPS for Small Industrial-Commercial- Institutional Steam Generating Units; 40 CFR part 60, subparts A... Number 1053.10; NSPS for Electric Utility Steam Generating Units; 40 CFR part 60, subparts A and Da; was... Petroleum Refineries Sector Residual Risk and Technology Review (New Collection); was approved on 03/28/2011...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
7 CFR 1794.23 - Proposals normally requiring an EA.
Code of Federal Regulations, 2011 CFR
2011-01-01
... classification are: (1) Construction of fuel cell, combustion turbine, combined cycle, or diesel generating... be covered in the EA; (2) Construction of fuel cell, combustion turbine, combined cycle, or diesel... boundaries. (12) Installing a heat recovery steam generator and steam turbine with a rating of more than 200...
49 CFR 229.111 - Water-flow indicator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Water-flow indicator. 229.111 Section 229.111....111 Water-flow indicator. (a) Steam generators shall be equipped with an illuminated visual return water-flow indicator. (b) Steam generators shall be equipped with an operable test valve or other means...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... PWR [Pressurized-Water Reactor] Steam Generator Tubes'' (Reference 32) and [Nuclear Energy Institute... maintains the required structural margins of the SG tubes for both normal and accident conditions. Nuclear Energy Institute 97-06, ``Steam Generator Program Guidelines'' (Reference 8), and NRC Regulatory Guide 1...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woerner, W.L.
1994-12-31
The steam production potential of older biomass-fired boilers currently in operation may be significantly increased through the application of a commercially available gasifier. A large percentage of boiler systems in lumber mills and similar applications were initially designed to generate steam through convection heat transfer, and have been horse power rated at approximately 7 to 10 square feet of heating surface to the horse power. This paper deals with the before and after performance characteristics of the first gasifier retrofit installation based on an AED designed unit currently commercially available.
Thermally-enhanced oil recovery method and apparatus
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1987-01-01
A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, S.E.
1995-03-01
This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
Dancing with STEAM: Creative Movement Generates Electricity for Young Learners
ERIC Educational Resources Information Center
Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa
2016-01-01
The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Paul
2016-05-13
The Babcock & Wilcox Company (B&W) performed a Pre-Front End Engineering Design (Pre-FEED) of an A-USC steam superheater for a proposed component test program achieving 760°C (1400°F) steam temperature. This would lead to follow-on work in a Phase 2 and Phase 3 that would involve detail design, manufacturing, construction and operation of the ComTest. Phase 1 results have provided the engineering data necessary for proceeding to the next phase of ComTest. The steam generator superheater would subsequently supply the steam to an A-USC prototype intermediate pressure steam turbine. The ComTest program is important in that it will place functioning A-USCmore » components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide the first background experience with hands-on training. The project will provide a means to exercise the complete supply chain events required in order to practice and perfect the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants will then be able to transfer knowledge and recommendations to the industry. ComTest is conceived in the manner of using a separate standalone plant facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the United States. Components at suitable scale in ComTest provide more assurance before putting them into practice in the full size A-USC demonstration plant.« less
NASA Astrophysics Data System (ADS)
Damle, Ashok S.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and experimental results indicating that the underlying assumption of the simple model of conversion of hydrocarbons to CO and H 2 followed by equilibrium reconstitution to methane appears to be reasonable one.
Interactive chemistry management system (ICMS); Field demonstration results at United Illuminating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noto, F.A.; Farrell, D.M.; Lombard, E.V.
1988-01-01
The authors report on a field demonstration of the interactive chemistry management system (ICMS) performed in the late summer of 1987 at the New Haven Harbor Station of United Illuminating Co. This demonstration was the first installation of the ICMS at an actual plant site. The ICMS is a computer-based system designed to monitor, diagnose, and provide optional automatic control of water and steam chemistry throughout the steam generator cycle. It is one of the diagnostic modules that comprises CE-TOPS (combustion engineering total on-line performance system), which continuously monitors operating conditions and suggests priority actions to increase operation efficiency, extendmore » the performance life of boiler components and reduce maintenance costs. By reducing the number of forced outages through early identification of potentially detrimental conditions, diagnosis of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result.« less
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
Method and apparatus for fuel gas moisturization and heating
Ranasinghe, Jatila; Smith, Raub Warfield
2002-01-01
Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.
Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators
Fisher, Edward M.; Williams, Jessica L.; Shaffer, Ronald E.
2011-01-01
Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens. PMID:21525995
Effective ways to modernize outdated coal heat power plants
NASA Astrophysics Data System (ADS)
Suchkov, S. I.; Kotler, V. R.; Batorshin, V. A.
2016-12-01
An analysis of the state of equipment of 72 outdated coal HPP (heat power plants) of a total capacity 14.3 GW with steam parameters before the turbines p before ≤ 9 MPa, t before = 420-540°C was performed. The equipment is characterized by a considerably low efficiency factor, even if it were converted to burning the natural gas, and by increased release of harmful substances. However, on the most part of the considered HPP, the steam turbines, unlike the boilers, have thus far retained the operation applicability and satisfactory reliability of performance. The analysis has shown that it makes sense to effectively modernize the outdated coal HPP by transformation of their equipment into combined-cycle plant (CCP) with coal gasification, which has high economic and ecological indicators due to thermodynamic advantage of the combined cycle and simpler purification of the generator gas in the process under pressure. As the most rational way of this transformation, the one was recognized wherein—instead of the existing boiler (boilers) or parallel to it—a gasification and gas turbine system is installed with a boiler-utilizer (BU), from which steam is fed to the HPP main steam pipe. In doing this, the basic part of the power station equipment persists. In the world, this kind of reconstruction of steam power equipment is applied widely and successfully, but it is by use of natural gas for the most part. It is reasonable to use the technology developed at Heat Engineering Research Institute (HERI) of hearth-steam gasification of coal and high-temperature purification of the generator gas. The basic scheme and measures on implementation of this method for modernization of outdated coal HPP is creation of CCP with blast-furnace of coal on the basis of accessible and preserved HPP equipment. CCP power is 120 MW, input-output ratio (roughly) 44%, emissions of hazardous substances are 5 mg/MJ dust, 20-60 mg/MJ SO2, and 50-100 mg/MJ NO x . A considerable decrease of specific CCP cost is expected: down to approximately half compared to that of CCP with coal gasification created elsewhere abroad. Verification and debugging of accepted solutions can be carried out at a small-scale pilot plant.
40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
Steam generation and pollution control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.H.
1979-02-13
The heat and flu gases which are ordinarily expelled through an emission stack of a conventional furnace are instead channeled through a heat exchanger to produce steam for power generation and are subsequently directed through a gas scrubber apparatus to remove all contaminates from the flu gas prior to expelling the gases into atmosphere.
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... Traveler TSTF-510, Revision 2, ``Revision to Steam Generator Program Inspection Frequencies and Tube Sample...-510, Revision 2, ``Revision to Steam Generator Program Inspection Frequencies and Tube Sample Selection.'' TSTF-510, Revision 2, is available in the Agencywide Documents Access and Management System...
Downhole steam generator with improved preheating, combustion, and protection features
Fox, R.L.
1981-01-07
For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)
40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...
40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...
40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...
40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...
NASA Astrophysics Data System (ADS)
Roche, M.
A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.
Thermodynamic analyses of a biomass-coal co-gasification power generation system.
Yan, Linbo; Yue, Guangxi; He, Boshu
2016-04-01
A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kervinen, T.; Riikonen, V.; Ritonummi, T.
A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.
2017-10-03
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Gandrik
2012-04-01
This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbett, K; Mendler, O J; Gardner, G C
In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faultsmore » and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.« less
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
NASA Astrophysics Data System (ADS)
Arkadyev, B. A.
2015-10-01
Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, R.; Malekian, C.; Meessen, O.
The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports inmore » the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.« less
Steam generator tube inspection in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukui, Shigetaka
1997-02-01
Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbinmore » coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.« less
Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler
NASA Astrophysics Data System (ADS)
Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen
2018-01-01
Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiter, C.
1998-07-01
The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less
Experiences with industrial solar process steam generation in Jordan
NASA Astrophysics Data System (ADS)
Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus
2017-06-01
At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.
Parkison, Adam J.; Nelson, Andrew Thomas
2016-01-11
An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkison, Adam J.; Nelson, Andrew Thomas
An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less
NASA Astrophysics Data System (ADS)
Su, Yun; Li, Jun
2016-12-01
Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn.
NASA Astrophysics Data System (ADS)
Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin
2017-05-01
The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.
Downhole steam generator having a downhole oxidant compressor
Fox, Ronald L.
1983-01-01
Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
NASA Astrophysics Data System (ADS)
Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao
2018-02-01
Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.
Multifuel industrial steam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesko, J.E.
An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... generate electricity by using steam produced by the burning of fossil fuel within the State of Nevada. The... plants which generate electricity by using steam produced by the burning of fossil fuel, which are... burning of fossil fuel, see NRS 445B.500) within the nonattainment portions of Clark County. Table 2...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
1983-06-01
frequency with a vacuum environment. In work concerning nuclear steam generator design ; Brinkman, et al. [Ref. 13], investigated time dependent...Nuclear Steam Generator Design ," Journal of Nuclear Materials, Vol. 62, pp. 181-204, 1976. 14. K. D. Challenger, A. K. Miller, C. R. Brinkman, "An
75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written comments on this Final EIS will be accepted on or before... at: http://www.usda.gov/rus/water/ees/eis.htm . Copies of the Final EIS will also be available for...
STEAM PLANT, TRA609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: ...
STEAM PLANT, TRA-609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: STEAM GENERATOR AND CATWALK, STACK, DEGREASER FEED WATER HEATER IN PENTHOUSE, MEZZANINE, SURGE TANK PIT (BELOW GROUND LEVEL). UTILITY ROOM SHOWS DIESEL ENGINE GENERATORS, AIR TANKS, STARTING AIR COMPRESSORS. OUTSIDE SOUTH END ARE EXHAUST MUFFLER, AIR INTAKE OIL FILTER, RADIATOR COOLING UNIT, AIR SURGE TANK. SECTION B CROSSES WEST TO EAST NEAR SOUTH END OF BUILDING TO SHOW ARRANGEMENT OF DIESEL ENGINE GENERATOR, AIR DRIER, AFTER COOLER, AIR COMPRESSOR, AND BLOWDOWN TANK. BLAW-KNOX 3150-9-2, 6/1950. INL INDEX NO. 431-0609-00-098-100018, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Evaluation of Millstone-2 steam generator chemical decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, D.T.; Blok, J.
The steam generator channel heads at Millstone-2 were decontaminated prior to carrying out extensive maintenance work in 1983. Isotopic gamma ray measurements were made of the inner channel head surfaces before and after the decontamination to evaluate the effectiveness of the process. The Combustion Engineering/Kraftwerk Union chemical decontamination, by itself, provided a decontamination factor ranging from 2.7 to 6.6 for the various steam generator surfaces. The corresponding average dose rate reduction factor, based on gross-gamma radiation surveys, was approximately 1.5 to 2.5. Following the chemical treatment, high pressure water flushing reduced the radiation levels still further, to an average overallmore » dose reduction factor of 5.3 to 7.2.« less
Hydrogen generation utilizing integrated CO2 removal with steam reforming
Duraiswamy, Kandaswamy; Chellappa, Anand S
2013-07-23
A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.
1989 Steam Trap Survey & Maintenance Program, April 1, 1989 to February 15, 1990.
ERIC Educational Resources Information Center
Jarvis, George H.
Western Michigan University has completed a one-year energy conservation project in which a campus-wide steam trap survey and maintenance program was implemented. The university uses purchased steam energy generated from coal to provide heating and other system requirements to approximately 6 million square feet of campus buildings through a…
Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems
NASA Astrophysics Data System (ADS)
Heinzel, A.; Vogel, B.; Hübner, P.
The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.
Comparison of thermal testing of MS9001FA type GTPs at shatura and nizhnevartovsk GRES
NASA Astrophysics Data System (ADS)
Ol'khovskii, G. G.
2016-11-01
Domestic power plants use combined-cycle plants in which a gas-turbine plant (GTP) and a steam turbine rotate a common electric generator. In this instance, it is impossible to measure the power of each of them, so we have to resort to some assumptions. We have succeeded to check the validity of these assumptions and possible errors of their application testing combined-cycle plants (CCP) with the same GTP and a steam turbine but operating each on its own electrical generator. Comparative tests of a MS901FA GTP of the PGU-400 power-generating unit commissioned at Shatura GRES (a thermal power station) and a GTP of the same type installed at Nizhnevartovsk GRES were performed. As a result of these tests, dependences of the electric power of both gas-turbine plants and a turbine outlet temperature on the inlet temperature were obtained. A relation of the GTP efficiency, heat and air rate on the load are determined, and characteristics of compressors and turbines of both GTPs are defined. The performed tests have confirmed the accuracy of the determined characteristics of the two GTPs using both a direct measurement of net power (Nizhnevartovsk GRES) and an indirect measurement (Shatura GRES).
Catalytic glycerol steam reforming for hydrogen production
NASA Astrophysics Data System (ADS)
Dan, Monica; Mihet, Maria; Lazar, Mihaela D.
2015-12-01
Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...
Steam generators regulatory practices and issues in Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, C.; Castelao, C.; Ruiz-Colino, J.
1997-02-01
This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects.
Steam generation by combustion of processed waste fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudel, F.; Lengenfeld, P.
1993-12-31
The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.
Working session 4: Preventative and corrective measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.; Slama, G.
1997-02-01
The Preventive and Corrective Measures working session included 13 members from France, Germany, Japan, Spain, Slovenia, and the United States. Attendee experience included regulators, utilities, three steam generator vendors, consultants and researchers. Discussions centered on four principal topics: (1) alternate materials, (2) mechanical mitigation, (3) maintenance, and (4) water chemistry. New or replacement steam generators and original equipment steam generators were separately addressed. Four papers were presented to the session, to provide information and stimulate various discussion topics. Topics discussed and issues raised during the several meeting sessions are provided below, followed by summary conclusions and recommendations on which themore » group was able to reach a majority consensus. The working session was composed of individuals with diverse experience and varied areas of specialized expertise. The somewhat broad range of topics addressed by the group at times saw discussion participation by only a few individuals. As in any technical meeting where all are allowed the opportunity to speak their mind, straying from an Individual topic was not unusual. Where useful, these stray topics are also presented below within the context In which they occurred. The main categories of discussion were: minimize sludge; new steam generators; maintenance; mechanical mitigation; water chemistry.« less
First non-OEM steam-generator replacement in US a success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendsbee, P.M.; Lees, M.D.; Smith, J.C.
1994-04-01
In selecting replacements for major powerplant components, a fresh approach can be advantageous--even when complex nuclear components are involved. This was the experience at Unit 2 of Millstone nuclear station, which features an 870-MW pressurized-water reactor (PWR) with two nuclear recirculating steam generators. The unit began operation in 1975. In the early 1980s, pitting problems surfaced in the steam generator tubing; by the mid eighties, tube corrosion had reached an unacceptable level. Virtually all of the 17,000 tubes in the two units were deteriorating, with 2500 plugged and 5000 sleeved. Several new problems also were identified, including secondary-side circumferential crackingmore » of the Alloy 600 tubing near the tubesheet face, and deterioration of the carbon steel egg-crate tube supports. Despite improvements to primary and secondary steam-generator water chemistry, including almost complete copper removal from the condensate and feedwater loops, Northeast Utilities (NU) was unable to completely control degradation of the tube bundles. The utility decided in 1987 that full replacement was the most viable alternative. NU made a bold move, selecting a supplier other than the original equipment manufacturer (OEM).« less
MSG test report-steady-state heat transfer. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
This report documents the results of the Steady-State Heat Transfer Tests conducted on the AI Modular Steam Generator (MSG), at the Sodium Component Test Installation (SCTI) of the Liquid Metal Engineering Center. Heat transfer and pressure drop performance data are given along with current predictions of performance. Departure from nucleate boiling characteristics is given. A dispersed flow film boiling model, employing thermal nonequilibrium, was used to analyze data in the film boiling region.
NASA Astrophysics Data System (ADS)
Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu
2017-06-01
Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).
Solar-Power System Produces High-Pressure Steam
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1985-01-01
Combination of three multistaged solar collectors produces highpressure steam for large-scale continuously operating turbines for generating mechanical or electrical energy. Superheated water vapor drives turbines, attaining an overall system efficiency about 22 percent.
ARTIST: An International Project Investigating Aerosol Retention in a Ruptured Steam Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guentay, S.; Dehbi, A.; Suckow, D.
2002-07-01
Steam generator tube ruptures (SGTR) with a concurrent stuck open safety relief valve are counted among the risk dominant accident sequences because of the potential for radioactive products to bypass the containment. Owing to the absence of relevant empirical data and the complexity of the geometry and controlling processes, the aerosol removal in the steam generator (SG) tubes and in the secondary side is not well understood. Therefore, little or no credit is usually taken for aerosol retention due to natural processes in the various components of a SG. To help reduce the uncertainties associated with fission product release followingmore » an SGTR sequence, the Paul Scherrer Institut has initiated an international experimental project to be performed in the ARTIST (AeRosol Trapping In a Steam generaTor) facility in the time period from 2002 to 2007. The ARTIST test section is a scaled model of a real SG, and is comprised of a 264-tube bundle with a maximum height of 3.8 m, as well as one full-size droplet separator and one full-size steam dryer. The ARTIST facility is capable of producing soluble and insoluble aerosols and entrain them at sonic gas flow rates (up to 0.25 kg/s, thus matching comparable values predicted by the codes. In addition, aerosols can be generated at prototypical concentrations (up to 5 g/m{sup 3}) and sizes (0.2-5 mm AMMD). State of the art instrumentation is used (Low-pressure impactors, photometers, on-line particle sizer, online droplet sizer, etc.). The ARTIST project will simulate the flow and retention of aerosol-borne fission products in the SG, and provide a unique database to support safety assessments and analytical models. The project is foreseen in seven phases: 1) Aerosol retention in the tube under dry secondary side conditions, 2) Aerosol retention in the near field close to break under dry conditions, 3) Aerosol retention in the bundle far field under dry conditions, 4) Aerosol retention in the separator and dryer under dry conditions, 5) Aerosol retention in the bundle section under wet conditions, 6) Droplet retention in separator and dryer sections and 7) Integral tests to examine overall retention in the SG unit. The project will investigate phenomena at the separate effect and integral levels, and will also address selected accident management (AM) issues. The kick-off experiments are scheduled for the first half of 2002, and some early results will be summarized at the meeting. (authors)« less
Solar process steam for a pharmaceutical company in Jordan
NASA Astrophysics Data System (ADS)
Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.
2016-05-01
This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
Alloy 690 for steam generator tubing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, R.E.; Harrod, D.L.; Aspden, R.G.
1990-10-01
This report has been prepared to provide background information for Ni-Cr-Fe Alloy 690 which is currently the material of choice for steam generator heat transfer tubing applications. Activities directed toward the qualification of Alloy 690 for these applications are summarized; this includes efforts which focused on optimization of materials procurement specifications. Emphasis is placed on research accomplished primarily in the four year period from June 1985, the time of the first EPRI Workshop on Alloy 690 was held. The topic is treated in a broad sense, and includes review of the physical metallurgy of the alloy, tube manufacturing processes, themore » properties of commercial production tubing, and the corrosion behavior of Alloy 690 in environments appropriate to steam generator service. 12 refs., 7 figs., 8 tabs.« less
CRBRP modular steam generator tube-to-tubesheet and shell-closure welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viri, D.P.
1982-01-01
The original Modular Steam Generator (MSG), whiand inh was designed, built, and tested by the Energy Systems Group (ESG) of Rockwell International, was a departure from conventional boilers or heat exchangers. The design was a hockeystick concept - the upper section of the generator is curved 90/sup 0/. Factors affecting operating parameters were considered and incorporated in the original MSG design. The MSG was fully instrumented and functionally tested at the Energy Technology Engineering Center at Rockwell. The MSG steamed continuously for over 4000 h, and at the conclusion of the 9000-h test cycle, it was systematically dismantled and examinedmore » for wear to critical components. This paper explains the solutions to several manufacturing challenges presented by the unique design of the MSG.« less
Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment
Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; ...
2015-08-06
High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less
Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge.
Finnerty, Casey; Zhang, Lei; Sedlak, David L; Nelson, Kara L; Mi, Baoxia
2017-10-17
Water vapor generation through sunlight harvesting and heat localization by carbon-based porous thin film materials holds great promise for sustainable, energy-efficient desalination and water treatment. However, the applicability of such materials in a high-salinity environment emphasizing zero-liquid-discharge brine disposal has not been studied. This paper reports the characterization and evaporation performance of a nature-inspired synthetic leaf made of graphene oxide (GO) thin film material, which exhibited broadband light absorption and excellent stability in high-salinity water. Under 0.82-sun illumination (825 W/m 2 ), a GO leaf floating on water generated steam at a rate of 1.1 L per m 2 per hour (LMH) with a light-to-vapor energy conversion efficiency of 54%, while a GO leaf lifted above water in a tree-like configuration generated steam at a rate of 2.0 LMH with an energy efficiency of 78%. The evaporation rate increased with increasing light intensity and decreased with increasing salinity. During a long-term evaporation experiment with a 15 wt % NaCl solution, the GO leaf demonstrated stable performance despite gradual and eventually severe accumulation of salt crystals on the leaf surface. Furthermore, the GO leaf can be easily restored to its pristine condition by simply scraping off salt crystals from its surface and rinsing with water. Therefore, the robust high performance and relatively low fabrication cost of the synthetic GO leaf could potentially unlock a new generation of desalination technology that can be entirely solar-powered and achieve zero liquid discharge.
Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia
NASA Astrophysics Data System (ADS)
Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.
2017-10-01
This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu
2005-06-03
The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structuralmore » integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform.Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. The journal manuscript titled, "Structural Integrity Monitoring of Steam generator Tubing Using Transient Acoustic Signal Analysis," was published in IEEE Trasactions on Nuclear Science, Vol. 52, No. 1, February 2005. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.« less
Passive Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden Markov Models
NASA Astrophysics Data System (ADS)
Marklund, A. Riber; Kishore, S.; Prakash, V.; Rajan, K. K.; Michel, F.
2016-06-01
Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970s and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control.
164. Photocopied July 1978. VIEW OF STEAMTURBINE BUILDING AT STAMP ...
164. Photocopied July 1978. VIEW OF STEAM-TURBINE BUILDING AT STAMP MILL. BUILDING CONSTRUCTED IN 1921 TO USE EXHAUST STEAM TO GENERATE ELECTRICITY. C. 1925. - Quincy Mining Company, Hancock, Houghton County, MI
A computational approach to real-time image processing for serial time-encoded amplified microscopy
NASA Astrophysics Data System (ADS)
Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi
2016-03-01
High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.
4. Credit PEM. Interior of Martinsburg Plant; on right showing ...
4. Credit PEM. Interior of Martinsburg Plant; on right showing Taylor 150 hp steam engine belt-connected to a Warren 150 KW, 2200 Volt a.c. generator. On left, a Fisher 400 hp steam engine belt-connected to a Warren 200 KW, 2200 Volt a.c. generator. In center, also belt-connected to Fisher 400 hp engine is a Bail 120 light, arc-light generator. Photo c. 1905. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
Brush Seals for Improved Steam Turbine Performance
NASA Technical Reports Server (NTRS)
Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter
2006-01-01
GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.
NASA Astrophysics Data System (ADS)
Su, Y.; Li, R.; Song, G.; Li, J.
2017-10-01
A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and double-layer fabric system, while the difference between different configurations in steam hazard was greater than that in hot water hazard. The waterproof and breathable fabric as outer layer provided better protection than that as inner layer. Increasing thickness and moisture regain improved the thermal protective performance of fabric system. Additionally, the thermal energy absorbed by skin during the cooling phase was affected by configuration, thickness and moisture regain of fabric. The findings will provide technical data to improve performance of thermal protective clothing in hot water and steam hazards.
Feedwater temperature control methods and systems
Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip
2014-04-22
A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.
Review and future perspective of central receiver design and performance
NASA Astrophysics Data System (ADS)
Zhu, Guangdong; Libby, Cara
2017-06-01
Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middle East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600°C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700°C-800°C—and even above 1000°C—so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can accommodate, beyond which overgeneration, spillage, and instability may occur. Energy storage may well become a necessity in some areas in order to maintain reliability. Next-generation central receiver technologies will have higher operating temperatures and additional features that allow higher-efficiency power generation and deliver other cost-performance advantages. The underlying innovations will come from areas such as multi-physics modeling, high-temperature materials, novel power cycles and heat exchanger designs, and collector field sensing and performance monitoring technologies. Technology innovation is expected to improve the cost and performance of central receiver designs. To deliver value as a generation and storage option, central receiver technology must also be supported by flexible and robust financial models and comprehensive energy and ancillary service markets justifying the capital-intensive investment. Progress in these areas will position CSP central receiver technology for future deployment.
Review and Future Perspective of Central Receiver Design and Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Libby, Cara
Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middlemore » East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600 degrees C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700 degrees C-800 degrees C -- and even above 1000 degrees C -- so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can accommodate, beyond which overgeneration, spillage, and instability may occur. Energy storage may well become a necessity in some areas in order to maintain reliability. Next-generation central receiver technologies will have higher operating temperatures and additional features that allow higher-efficiency power generation and deliver other cost-performance advantages. The underlying innovations will come from areas such as multi-physics modeling, high-temperature materials, novel power cycles and heat exchanger designs, and collector field sensing and performance monitoring technologies. Technology innovation is expected to improve the cost and performance of central receiver designs. To deliver value as a generation and storage option, central receiver technology must also be supported by flexible and robust financial models and comprehensive energy and ancillary service markets justifying the capital-intensive investment. Progress in these areas will position CSP central receiver technology for future deployment.« less
Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.
2001-06-11
In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSGmore » oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. {copyright} 2001 American Institute of Physics.« less
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant
NASA Astrophysics Data System (ADS)
Soares, João; Oliveira, Armando
2017-06-01
The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.
Steam generator feedwater nozzle transition piece replacement experience at Salem Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patten, D.B.; Perrin, J.S.; Roberts, A.T.
Cracking of steam generator feedwater piping adjacent to the feedwater nozzles has been a recurring problem since 1979 at Salem Unit 1 owned and operated by Public Service Electric and Gas Company. In addition to the cracking problem, erosion-corrosion at the leading edge of the feedwater nozzle thermal sleeve was also observed in 1992. To provide a long-term solution for the pipe cracking and thermal sleeve erosion-corrosion problems, a unique transition piece forging was specially designed, fabricated, and installed for each of the four steam generators during the 1995 outage. This paper discusses the design, fabrication, and installation of themore » transition piece forgings at Salem Unit 1, and the experiences gained from this project. It is believed that these experiences may help other utilities when planning similar replacements in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, G.C.; Kwan, Y.; Payne, R.
1984-10-01
The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental studies. Test results are included for full-scale burner performance in an experimental test furnace, and in a field-operating steam generator which was subsequently retrofitted in a Kern County, California, oilfield. (NOTE: NOx control techniques including low-NOx burners, postflame NH/sub 3/ injection, or other postflame treatment methods--e.g., selective catalytic reduction--have been considered in order to comply with regulations. Themore » level of NOx control required to meet both growth and air quality goals has typically been difficult to achieve with available technology while maintaining acceptable CO and particulate emissions as well as practical flame conditions within the steamer.)« less
Structural and leakage integrity of tubes affected by circumferential cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernalsteen, P.
1997-02-01
In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data basesmore » of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.« less
Steam generator tube integrity flaw acceptance criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochet, B.
1997-02-01
The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly doesmore » such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.« less
NASA Astrophysics Data System (ADS)
Doroudi, Shahed
Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.
Plant maintenance and plant life extension issue, 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovationmore » articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods...: atmospheric or pressurized fluidized bed combustion, integrated gasification combined cycle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, J.; Bollini, G.J.
1997-02-01
The operating experience acquired from certain Spanish Nuclear Power Plant steam generators shows that the tubes, which constitute the second barrier to release of fission products, are susceptible to mechanical damage and corrosion as a result of a variety of mechanisms, among them wastage, pitting, intergranular attack (IGA), stress-corrosion cracking (SCC), fatigue-induced cracking, fretting, erosion/corrosion, support plate denting, etc. These problems, which are common in many plants throughout the world, have required numerous investments by the plants (water treatment plants, replacement of secondary side materials such as condensers and heaters, etc.), have meant costs (operation, inspection and maintenance) and havemore » led to the unavailability of the affected units. In identifying and implementing all these preventive and corrective measures, the Spanish utilities have moved through three successive stages: in the initial stage, the main source of information and of proposals for solutions was the Plant Vendor, whose participation in this respect was based on his own Research and Development programs; subsequently, the Spanish utilities participated jointly in the EPRI Steam Generator Owners Group, collaborating in financing; finally, the Spanish utilities set up their own Steam Generator Research and Development program, while maintaining relations with EPRI programs and those of other countries through information interchange.« less
NASA Astrophysics Data System (ADS)
Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim
2016-05-01
Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.
NASA Astrophysics Data System (ADS)
Aeschliman, D. P.; Clay, R. G.; Donaldson, A. B.; Eisenhawer, S. W.; Fox, R. L.; Johnson, D. R.; Mulac, A. J.
1982-01-01
The objective of Project DEEP STEAM is to develop the technology to economically produce heavy oils from deep reservoirs. The tasks included in this project are the development of thermally efficient delivery systems and downhole steam generation systems. During the period January 1-March 31, 1981, effort has continued on a low pressure combustion downhole generator (Rocketdyne), and on two high pressure designs (Foster-Miller Associates, Sandia National Laboratories). The Sandia design was prepared for deployment in the Wilmington Field at Long Beach, California. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. Initial bare string field data are reported on the insulated tubular test at Lloydminster, Saskatchewan, Canada.
Assessment of steam-injected gas turbine systems and their potential application
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1982-01-01
Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Cesium vapor cycle for an advanced LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraas, A.P.
1975-01-01
A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250$sup 0$F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesiummore » can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development. (auth)« less
Effect of resin type on properties of steam-press-cured flakeboards
Chung-Yun Hse; Robert L. Geimer; W. Ernest Hsu; R.C. Tang
1995-01-01
Six potentially important wood adhesives for gluing southern pine and white oak flakeboards were evaluated for their performances in steam-injection pressing and conventional platen pressing. Of the six resins tested, polyisocyanate resin performed well in both steam injection and conventional platen pressings. Phenol-fonnaldehyde (PF) and melamine urea-fonnaldehyde (...
Effect of resin type on properties of steam-press-cured flakeboards
Chung-Yun Hse; Robert L. Geimer; W. Earnest Hsu; R.C. Tang
1995-01-01
Six potentially important wood adhesives for gluing southern pine and white oak flakeboards were evaluated for their performances in steam-injection pressing and conventional platen pressing. Of the six resins tested, polyisocyanate resin performed well in both steam injection and conventional platen pressings. Phenol-formaldehyde (PF) and melamine urea-formaldehyde (...
Water withdrawal and consumption reduction analysis for electrical energy generation system
NASA Astrophysics Data System (ADS)
Nouri, Narjes
There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.
High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; K. DeWall
2012-09-01
This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.
Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra
2018-08-01
A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Catalytic glycerol steam reforming for hydrogen production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro
2015-12-23
Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterizedmore » through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.« less
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
Severe Accident Test Station Activity Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pint, Bruce A.; Terrani, Kurt A.
2015-06-01
Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accidentmore » Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.« less
2010-10-27
John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-22
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem
NASA Technical Reports Server (NTRS)
Moore, D. M.
1984-01-01
The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-01-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product. PMID:25670085
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
NASA Astrophysics Data System (ADS)
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-02-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
Montgomery, Wren; Sephton, Mark A; Watson, Jonathan S; Zeng, Huang; Rees, Andrew C
2015-02-11
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
Innovative power conversion system for the French SFR prototype, ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cachon, L.; Biscarrat, C.; Morin, F.
2012-07-01
In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energeticmore » chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)« less
Downhole steam generator having a downhole oxidant compressor
Fox, R.L.
1981-01-07
Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)
NASA Astrophysics Data System (ADS)
Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.
2018-03-01
In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce internal corrosion and deposits containing products of their degradation.
NASA Astrophysics Data System (ADS)
Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian
2014-12-01
A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10
Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada
NASA Astrophysics Data System (ADS)
Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.
2011-12-01
The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between injection and production wells and formation thickness were used as variables and an optimization study was carried out based on these variables. The results showed that the hot water (50 C at surface) needed in Fort McMurray for extraction could be obtained at lower costs than the generation of it using natural gas.
Inconel 690 is alloy of choice for steam-generator tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, S.D.
1996-02-01
The product of two decades of research and plant application, Inconel 690 promises superior long-term resistance to tube cracking in comparison to alloy 600. Ongoing steam-generator management techniques applied at nuclear pressurized-water-reactor (PWR) plants focus on tube monitoring, inspection, and repair, and on water-chemistry control. Of greatest concern to owner/operators of steam generators (SGs) with recirculating (U-bend) rather than straight through tubes is corrosion of several forms, including pitting, thinning, and cracking. As problems persist and operating and maintenance (O and M) costs become prohibitive, managers must consider the remaining option: complete or partial SG replacement. Although replacement costs canmore » range upward of $100-million, this step restores full-power operation, simplifies inspection, shortens subsequent outages, increases unit availability, and reduces radiation exposure of maintenance personnel. Taken together, these can lead to economies over the long term.« less
Steam turbine/generator NDE workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nottingham, L.D.; Sabourin, P.F.
1990-11-01
On September 12--15, 1989, EPRI sponsored a workshop in Charlotte, North Carolina on steam turbine/generator rotating components. The approximate 185 attendees represented a broad spectrum of utilities, equipment manufactures, forging suppliers, service organizations, universities, insurance carriers, and consultants from the United States and abroad. Canada, England, Finland, France, Germany, Japan, Korea, Italy, Spain, and Sweden were represented at the workshop, and 81 of the attendees represented 44 domestic utilities. Nondestructive examination equipment demonstrations by 16 vendors and 2 utilities at the EPRI NDE Center complemented the technical presentation. In addition to 23 formal, technical presentations of prepared papers of specificmore » topics, 8 tutorial presentations, plus various opening and closing remarks and addresses, were given at the workshop. Presentations were organized under the following general topics: bucket blades and/or attachment regions; retaining rings; wheels/disks; steam turbine/generator testing and evaluation; and tutorials. Each individual paper has been cataloged separately.« less
A novel technique to control high temperature materials degradation in fossil plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J.; Martinez-Villafane, A.
1995-11-01
High temperature corrosion of superheater (SH) and, specially, reheater (RH) is strongly dependent on metal temperature. In this work, a way to continuously monitor the metal temperature of SH or RH, elements developed by the Instituto de Investigaciones Electricas (IIE) is described and the effects of operating parameters on metal temperature are evaluated. Also, the effects the steam-generator design and metal temperature on the corrosion rates have been investigated. In some steam generators, corrosion rates were reduced from 0.7 to 0.2 mm/y by changing the tube material and reducing the metal temperature. Also, the effect of metal temperature on themore » residual life of a 347H tube in a 158MW steam generator is evaluated. It is concluded that metal temperature is the most important parameter in controlling the high-temperature materials behavior in boiler environments.« less
Analytical description of the modern steam automobile
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1974-01-01
The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.
13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw ...
13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw 1875). AC Westinghouse generator (1875 KVA, 2400 volts, 450 amps, 3 phase, 60 cycles). - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA
Code of Federal Regulations, 2013 CFR
2013-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
NASA Astrophysics Data System (ADS)
Diawati, Chansyanah; Liliasari, Setiabudi, Agus; Buchari
2017-05-01
This project-based learning combined the chemistry of separation process using steam distillation with engineering design process in an undergraduate chemistry course. Students built upon their knowledge of phase changes, immiscible mixture, and the relationship between vapor pressure and boiling point to complete a project of modifications steam distillation apparatus. The research method is a qualitative case study, which aims to describe how (1) the creative thinking skills of students emerged during six weeks of theproject, (2) students built steam distillation apparatus characteristics as the project product and (3) students response to the project-based learning model. The results showed that the students had successfully constructed a steam distillation apparatus using plastic kettle as steam generator and distillation flask. A Plastic tubewas used to drain water vapor from steam generator to distillation flask and to drain steam containing essential oil to the condenser. A biscuit tin filled with ice was used as a condenser. The time required until resulting distillate was fifteen minutes. The production of essential was conductive qualitatively by a very strong smell typical of essential oil and two phases of distillate. Throughout the project, students formulated the relevant and varied problem, formulated the goals, proposed the ideas of the apparatus and materials, draw apparatus design, constructed apparatus, tested apparatus, evaluated, and reported the project. Student response was generally positive. They were pleased, interested, more understanding the concepts and work apparatus principles, also implemented new ideas. These results indicate that project-based learning can develop students' creative thinking skills. Based on these results, it is necessary to conduct research and implemented project-based learning to other concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahari, S.; Hajela, S.; Rammohan, H. P.
2012-07-01
700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG andmore » PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)« less
Methods of increasing thermal efficiency of steam and gas turbine plants
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Shutenko, M. A.
2017-11-01
Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.
Hydrogen production with coal using a pulverization device
Paulson, Leland E.
1989-01-01
A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Ozhigov, L. S.; Voevodin, V. N.; Mitrofanov, A. S.; Vasilenko, R. L.
2016-10-01
Investigation objects were metal templates, which were cut during the repair of welding junction no. 111 (header to the steam generator shell) on a power-generating unit with VVER-1000 of the South-Ukraine NPP, and substances of mud depositions collected from walls of this junction. Investigations were carried out using metallography, optical microscopy, and scanning electron microscopy with energy dispersion microanalysis by an MMO-1600-AT metallurgical microscope and a JEOL JSM-7001F scanning electron microscope with the Shottky cathode. As a result of investigations in corrosion pits and mud depositions in the area of welding junction no. 111, iron and copper-enriched particles were revealed. It is shown that, when contacting with the steel header surface, these particles can form microgalvanic cells causing reactions of iron dissolution and the pit corrosion of metal. Nearby corrosion pits in metal are microcracks, which can be effect of the stress state of metal under corrosion pits along with revealed effects of twinning. The hypothesis is expressed that pitting corrosion of metal occurred during the first operation period of the power-generating unit in the ammonia water chemistry conditions (WCC). The formation of corrosion pits and nucleating cracks from them was stopped with the further operation under morpholine WCC. The absence of macrocracks in metal of templates verifies that, during operation, welding junction no. 111 operated under load conditions not exceeding the permissible ones by design requirements. The durability of the welding junction of the header to the steam generator shell significantly depends on the technological schedule of chemical cleaning and steam generator shut-down cooling.
Nieva-Echevarría, Bárbara; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D
2017-09-01
This study aims to shed light on the changes provoked by boiling, steaming and sous-vide cooking on the lipids and volatile profile of farmed and wild European sea bass meat. None of the cooking techniques provoked changes due to hydrolytic or oxidation processes detectable by 1 H NMR on sea bass lipids. The lipid profile of main and minor lipidic components was maintained after cooking. However, study by SPME-GC/MS evidenced that steaming and sous-vide cooking modified the volatile profile of sea bass meat, especially in farmed specimens. The compounds generated came from the occurrence, to a very small extent, of lipid and protein degradation. By contrast, boiling scarcely modified the initial characteristics of raw sea bass. Thus, from a sensory point of view and considering the odour-active compounds generated, steaming and sous-vide cooking provoked more noticeable changes than boiling, especially in farmed sea bass meat. Copyright © 2017. Published by Elsevier Ltd.
Integrated hydrocarbon reforming system and controls
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian
2003-11-04
A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.
Reflux cooling experiments on the NCSU scaled PWR facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doster, J.M.; Giavedoni, E.
1993-01-01
Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less
Laser removal of sludge from steam generators
Nachbar, Henry D.
1990-01-01
A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.
Methods to Develop Inhalation Cancer Risk Estimates for ...
This document summarizes the approaches and rationale for the technical and scientific considerations used to derive inhalation cancer risks for emissions of chromium and nickel compounds from electric utility steam generating units. The purpose of this document is to discuss the methods used to develop inhalation cancer risk estimates associated with emissions of chromium and nickel compounds from coal- and oil-fired electric utility steam generating units (EGUs) in support of EPA's recently proposed Air Toxics Rule.
Accumulation and subsequent utilization of waste heat
NASA Astrophysics Data System (ADS)
Koloničný, Jan; Richter, Aleš; Pavloková, Petra
2016-06-01
This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villanueva, J. F.; Carlos, S.; Martorell, S.
The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Burns, R. K.
1982-01-01
The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.
Steam Turbine Materials for Ultrasupercritical Coal Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, R.; Hawk, J.; Schwant, R.
The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that needmore » to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.« less