21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.280 Feed-grade calcium stearate and sodium stearate... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Feed-grade calcium stearate and sodium stearate...
21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.280 Feed-grade calcium stearate and sodium stearate... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Feed-grade calcium stearate and sodium stearate...
21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.280 Feed-grade calcium stearate and sodium stearate... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Feed-grade calcium stearate and sodium stearate...
21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.280 Feed-grade calcium stearate and sodium stearate... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Feed-grade calcium stearate and sodium stearate...
21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.280 Feed-grade calcium stearate and sodium stearate... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Feed-grade calcium stearate and sodium stearate...
Preparation and Physical Properties of Starch Stearates of Low to High Degree of Substitution
USDA-ARS?s Scientific Manuscript database
Starch stearates of degree of substitution (DS) 0.07-2.40 were prepared by heating dry starch and vinyl stearate in the ionic liquid BMIM dca at 75 Degrees C. Starch stearate of low DS (0.07) was insoluble in water but formed a gel and absorbed over seven times its weight of water. Starch stearate...
21 CFR 182.8994 - Zinc stearate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from...
21 CFR 182.8994 - Zinc stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chickedema factor. (b) Conditions of use. This...
21 CFR 182.8994 - Zinc stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc stearate. 182.8994 Section 182.8994 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chickedema factor. (b) Conditions of use. This...
21 CFR 582.5994 - Zinc stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chick...
21 CFR 582.5994 - Zinc stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chick...
21 CFR 184.1440 - Magnesium stearate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by...
21 CFR 184.1440 - Magnesium stearate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by...
21 CFR 184.1440 - Magnesium stearate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by the addition of an...
21 CFR 184.1229 - Calcium stearate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...
21 CFR 184.1229 - Calcium stearate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... Specific Substances Affirmed as GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as...
21 CFR 184.1229 - Calcium stearate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food... GRAS § 184.1229 Calcium stearate. (a) Calcium stearate (Ca(C17H35COO)2, CAS Reg. No. 1529-23-0) is the calcium salt of stearic acid derived from edible sources. It is prepared as a white precipitate by mixing...
Activating transcription factor 4 regulates stearate-induced vascular calcification.
Masuda, Masashi; Ting, Tabitha C; Levi, Moshe; Saunders, Sommer J; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto
2012-08-01
Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.
Activating transcription factor 4 regulates stearate-induced vascular calcification
Masuda, Masashi; Ting, Tabitha C.; Levi, Moshe; Saunders, Sommer J.; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto
2012-01-01
Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate. PMID:22628618
Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation
NASA Astrophysics Data System (ADS)
Aras, Neny Rasnyanti M.; Arcana, I. Made
2015-09-01
An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate, and followed by thermal treatment at a temperature of 70 °C and the incubation time for 45 days in the activated sludge.
Degradability enhancement of poly(lactic acid) by stearate-Zn(3)Al LDH nanolayers.
Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan
2012-01-01
Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers
Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan
2012-01-01
Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682
Šašiċ, Slobodan; Ojakovo, Peter; Warman, Martin; Sanghvi, Tapan
2013-09-01
Raman chemical mapping was used to determine the distribution of magnesium stearate, a lubricant, on the surface of tablets. The lubrication was carried out via a punch-face lubrication system with different spraying rates applied on placebo and active-containing tablets. Principal component analysis was used for decomposing the matrix of Raman mapping spectra. Some of the loadings associated with minuscule variation in the data significantly overlap with the Raman spectrum of magnesium stearate in placebo tablets and allow for imaging the domains of magnesium stearate via corresponding scores. Despite the negligible variation accounted for by respective principal components, the score images seem reliable as demonstrated through thresholding the one-dimensional representation and the spectra of the hot pixels that show a weak but perceivable magnesium stearate band at 1295 cm(-1). The same approach was applied on the active formulation, but no magnesium stearate was identified, presumably due to overwhelming concentration and spectral contribution of the active pharmaceutical ingredient.
21 CFR 182.8994 - Zinc stearate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a...
21 CFR 182.8994 - Zinc stearate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc stearate. 182.8994 Section 182.8994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a...
2014-01-01
The effects of sucrose stearate at various concentrations (0.1%, 0.2%, and 0.3%, w/v) on the physico-chemical characteristics of ready-to-eat (RTE) Samgyetang were investigated during storage at 25℃ for 12 mon. Over the storage duration, the addition of sucrose stearate had no significant effects on the proximate composition of Samgyetang, including meat, broth, and porridge, or the hardness and spreadability of the porridge, although it resulted in significantly higher CIE L* values for the porridge. The CIE L* values of Samgyetang porridge with added sucrose stearate increased until 9 mon, while the control decreased until 6 mon, and the values for both changed insignificantly thereafter. The breast meat of Samgyetang treated with sucrose stearate showed higher percentages of polyunsaturated fatty acid after 3 mon and lower percentages of monounsaturated fatty acid after 6 mon compared to the control (p<0.05), while no significant differences were observed with the different sucrose stearate concentrations (p>0.05). The overall sensory acceptability scores were higher at sucrose stearate concentrations of 0.2% or 0.3% after 6 mon and at 0.1% after 9 mon compared to those of the control. PMID:26761503
Preparation and Characterization of Polyhydroxybutyrate/Polycaprolactone Nanocomposites
Liau, Cha Ping; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan
2014-01-01
Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks. PMID:24600329
Synthesis and Application of a New Amphiphilic Antioxidant.
Soliman, Hanaa M; Arafat, Shaker M; Basuny, Amany M; Shattory, Y El-
2017-11-01
A new amphiphilic antioxidant (tannyl stearate) derived from reaction of tannic acid with stearic acid was synthesized in order to improve tannic acid solubility in lipid materials. This reaction gives many products having different degree of esterification (tannyl mono, di, tri, tetra, penta, hexa, hepta……stearate) which were separated using silica gel column chromatography and tentative identification was carried out using thin layer chromatography (TLC). The intrinsic viscosities (η) were used to differentiate between the different molecular weight of the produced esters 1) . Tannyl penta stearate is assumed to be the most suitable amphiphilic antioxidant derivative, where those derivatives with less degree of esterification would be less soluble in fat, and those of higher degree of esterification would exhaust more hydroxyl group that cause decreases of antioxidant activity. The structure of tannyl penta stearate was approved depending on its chemical analysis and spectral data (IR, H 1 NMR,). The emulsification power of tannyl penta stearate was then determined according to method described by El-Sukkary et al. 2) , in order to prove its amphiphilic property. Then tannyl penta stearate was tested for its antioxidant and radical scavenging activities in three different manners, those are, lipid oxidation in sunflower oil using Rancimat, (DPPH) free radical scavenging and total antioxidant activity. {Pure tannic acid (T), butylhydroxyanisol (BHA) and butylhydroxytoluene (BHT) were used as reference antioxidant radical saving compounds}. Then tannyl penta stearate was added to sunflower oil, frying process was carried out and all physicochemical parameters of the oil were considered, and compared to other reference antioxidant in order to study the effect of this new antioxidant toward oil stability. Acute oral toxicity of the tannyl penta stearate was carried out using albino mice of 21-25 g body weight to determine its safety according to the method described by Goodman et al. 3) . Also liver and kidney functions of those mice were checked. Thus it could be concluded that the addition of tannyl penta stearate to frying oils offers a good protection against oxidation. The effectiveness of tannyl penta stearate as lipid antioxidant has been attributed mainly to its stability at high temperature. And according to acute lethal toxicity test tannyl penta stearate was found to be a safe compound that can be used as food additive.
Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearatemore » with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate, and followed by thermal treatment at a temperature of 70 °C and the incubation time for 45 days in the activated sludge.« less
USDA-ARS?s Scientific Manuscript database
Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...
21 CFR 582.5994 - Zinc stearate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5994 Zinc stearate. (a) Product....
21 CFR 582.5994 - Zinc stearate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5994 Zinc stearate. (a) Product....
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Ammonium citrate. Ammonium potassium hydrogen phosphate. Calcium glycerophosphate. Calcium phosphate.... Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium stearate. Magnesium...
Muzíková, J; Horácek, J
2003-07-01
Vivapur is microcrystalline cellulose manufactured by the German firm J. Rettenmeier & Söhne GmbH + Co. The types Vivapur 102 and 12 enjoy priority use as dry binders for direct tablet compression. The present paper evaluates tensile strength of tablets made from these substances and the effect of an addition of the lubricant magnesium stearate in connection with its concentration and the conditions of the process of mixing, particularly the period and intensity of mixing. The tested concentrations of stearate were 0.4 and 0.8%, the tested periods of mixing being 2.5, 5, 10, and 20 minutes, intensities of mixing 17 and 34 rot./min. Sensitivity of dry binders to added stearate was evaluated by means of the LSR (lubricant sensitivity ratio) values. The results demonstrated higher sensitivity to an addition of the lubricant in Vivapur 12 than in Vivapur 102. In the first part of the paper focused on the effect of stearate concentration on tensile strength of tablets, Vivapur 102 was also compared with Avicel PH-102. Tablets from Vivapur 102 alone were stronger than those from Avicel PH-102. A concentration of stearate of 0.8% decreased the binding capacity of Vivapur 102 more than that of Avicel PH-102. With a prolonged period of mixing and increased intensity of mixing with stearate, tensile strength of tablets from both Vivapur types was decresed, and a prolonged period of mixing exerted a more marked effect on Vivapur 12 and increased intensity of mixing, on Vivapur 102.
Confocal analysis of hepatocellular long-chain fatty acid uptake.
Elsing, C; Winn-Börner, U; Stremmel, W
1995-12-01
Transmembrane transport and cytosolic accumulation of fatty acids were investigated using confocal laser scanning microscopy (cLSM). A Zeiss LSM 310 system was used to determine the uptake of the fluorescent fatty acid derivative 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino]octadecanoic acid (12-NBD stearate) (C18) in single rat hepatocytes. Uptake was a saturable process with a Michaelis-Menten constant value of 68 nM. Initial uptake velocity was dependent on extracellular presence of albumin and beta-lactoglobulin. Absence of albumin reduced uptake to 32 +/- 16% (P < 0.01) of control values. In the presence of unlabeled stearate, uptake of 12-NBD stearate was lowered to 49 +/- 12% (P < 0.01). Ion substitution experiments showed no sodium dependency of uptake. Increase in membrane potential led to a pronounced accumulation of the fatty acid derivative within the plasma membrane and in the adjacent cytoplasmic compartment, whereas membrane depolarization had no effect on uptake rates. In separate experiments line scans through representative hepatocytes were analyzed to generate "x-t" plots. 12-NBD stearate showed a fluorescence pattern with prominent staining of the area of the plasma membrane and the adjacent cytoplasm, dependent on the presence of extracellular albumin. For the hepatocellular cytosolic accumulation process of 12-NBD stearate a diffusion constant of 22.2 +/- 6.2 x 10(-9) cm2/s was calculated. In contrast to the long-chain fatty acid derivative 12-NBD stearate, short (C5)- and medium (C11)-chain fatty acids revealed no membrane interaction with hepatocytes. Erythrocytes also lacked a membrane interaction process for 12-NBD stearate. In conclusion, it was demonstrated that cLSM is capable of directly evaluating the cellular fatty acid uptake process at a subcellular level.
Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.
Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Millqvist-Fureby, Anna
2015-01-01
Tablets are the most convenient form for drug administration. However, despite the ease of manufacturing problems such as powder adhesion occur during the production process. This study presents surface and structural characterization of tablets formulated with commonly used excipients (microcrystalline cellulose (MCC), lactose, mannitol, magnesium (Mg) stearate) pressed under different compaction conditions. Tablet surface analyses were performed with scanning electron microscopy (SEM), profilometry and atomic force microscopy (AFM). The mechanical properties of the tablets were evaluated with a tablet hardness test. Local adhesion detected by AFM decreased when Mg stearate was present in the formulation. Moreover, the tablet strength of plastically deformable excipients such as MCC was significantly decreased after addition of Mg stearate. Combined these facts indicate that Mg stearate affects the particle-particle bonding and thus elastic recovery. The MCC excipient also displayed the highest hardness which is characteristic for a highly cohesive material. This is discussed in the view of the relatively high adhesion found between MCC and a hydrophilic probe at the nanoscale using AFM. In contrast, the tablet strength of brittle materials like lactose and mannitol is unaffected by Mg stearate. Thus fracture occurs within the excipient particles and not at particle boundaries, creating new surfaces not previously exposed to Mg stearate. Such uncoated surfaces may well promote adhesive interactions with tools during manufacture. Copyright © 2015 Elsevier B.V. All rights reserved.
Triyannanto, Endy
2017-01-01
The objective of this study was to assess the sensory-related characteristics of the broth and porridge of ready-to-eat (RTE) ginseng chicken soup (Samgyetang) with sucrose stearate added at various concentrations (0.1%, 0.2%, and 0.3%) during storage at 25°C for 12 mon. Scores indicating the lightness and size of fat droplets in the broth increased during storage as the sucrose stearate concentration increased, while the clarity scores decreased until 9 mon and the taste scores decreased throughout the storage period (p<0.05). The porridge lightness increased as the concentration of sucrose stearate increased after 6 mon (p<0.05), while scores indicating the softness and vividness were higher for treated samples with sucrose stearate than for the control group after 3 mon, despite a lack of significant differences among treatment groups (p >0.05). The taste scores were lower for treated porridge samples than for the control group (p<0.05), even though no significant differences were observed among the treatment groups (p >0.05). The addition of sucrose stearate to the RTE Samgyetang broth improved the lightness (CIE L*) value of the broth and various sensory palatability parameters, including the color and fat droplet size of the broth and the softness and vividness of the porridge, despite reductions in broth clarity and taste scores for the broth and porridge during storage. PMID:29725207
Triyannanto, Endy; Lee, Keun Taik
2017-01-01
The objective of this study was to assess the sensory-related characteristics of the broth and porridge of ready-to-eat (RTE) ginseng chicken soup ( Samgyetang ) with sucrose stearate added at various concentrations (0.1%, 0.2%, and 0.3%) during storage at 25°C for 12 mon. Scores indicating the lightness and size of fat droplets in the broth increased during storage as the sucrose stearate concentration increased, while the clarity scores decreased until 9 mon and the taste scores decreased throughout the storage period ( p <0.05). The porridge lightness increased as the concentration of sucrose stearate increased after 6 mon ( p <0.05), while scores indicating the softness and vividness were higher for treated samples with sucrose stearate than for the control group after 3 mon, despite a lack of significant differences among treatment groups ( p >0.05). The taste scores were lower for treated porridge samples than for the control group ( p <0.05), even though no significant differences were observed among the treatment groups ( p >0.05). The addition of sucrose stearate to the RTE Samgyetang broth improved the lightness (CIE L *) value of the broth and various sensory palatability parameters, including the color and fat droplet size of the broth and the softness and vividness of the porridge, despite reductions in broth clarity and taste scores for the broth and porridge during storage.
Muzíková, J; Páleník, L
2005-05-01
The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.
Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K
2015-11-01
Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiangsheng; Faculty of Materials Science and Chemical Engineering, Ningbo University, No. 818 Fenghua Road, Ningbo 315211; Jiu, Tonggang, E-mail: jiutonggang@nimte.ac.cn, E-mail: fangjf@nimte.ac.cn
2016-05-02
A thin potassium stearate (KSt) film combined with an optimized ZnO film was introduced to improve the fill factor (FF) of highly efficient inverted polymer solar cells (PSCs). Atomic force microscopy and contact angle measurements were used to show that the introduction of KSt did not change the morphology of interlayer. On the contrary, it is beneficial for the spread of the active layer on the interlayer. The origin of enhanced FF was systematically studied by the ideal current-voltage model for a single heterojunction solar cell and electrochemical impedance spectroscopy. On the basis of the data analysis, the reduced chargemore » recombination loss was responsible for this improved FF. At last, when KSt was replaced by sodium stearate (NaSt), the similar experiment phenomenon was observed. This indicates that inserting a metallic stearate modified layer is a promising strategy to enhance inverted PSCs performance.« less
Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene
NASA Astrophysics Data System (ADS)
Asriza, Ristika O.; Arcana, I. Made
2015-09-01
Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.
Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asriza, Ristika O.; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of themore » absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.« less
Martínez-Acevedo, Lizbeth; Zambrano-Zaragoza, María de la Luz; Vidal-Romero, Gustavo; Mendoza-Elvira, Susana; Quintanar-Guerrero, David
2018-05-02
The aim of this study was to develop solid lipid nanoparticles (SLN) and introduce them into a direct compression process to evaluate their lubricant properties. The study consisted of preparing glyceryl behenate SLN (Compritol® 888 ATO) by hot dispersion, and magnesium stearate SLN by a novel nanoprecipitation/ion exchange method. The ejection force was measured for nanosystems and raw materials in a formulation typically used for direct compression. The smallest particle sizes obtained were 456 nm for Compritol® 888 ATO and 330 nm for magnesium stearate. Results show that the NPs used as lubricants in a direct compression model formulation provided efficient lubrication by maintaining the lubricating properties of the system, thereby decreasing the amount of lubricant used compared to the raw material. The lubricating effect showed an increase of 15-30% for magnesium stearate and Compritol® 888 ATO, compared to the raw material at concentrations above 2%. Copyright © 2018 Elsevier B.V. All rights reserved.
Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin
USDA-ARS?s Scientific Manuscript database
Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...
21 CFR 582.5994 - Zinc stearate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc stearate. 582.5994 Section 582.5994 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...
21 CFR 184.1229 - Calcium stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium stearate. 184.1229 Section 184.1229 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...
21 CFR 184.1229 - Calcium stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium stearate. 184.1229 Section 184.1229 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of...
Uzunović, Alija; Vranić, Edina
2007-01-01
Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response. PMID:17848158
An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
Dawes, Jason; Gamble, John F; Greenwood, Richard; Robbins, Phil; Tobyn, Mike
2012-01-01
A systematic evaluation on the effect of magnesium stearate on the transmission of a placebo formulation from the hopper to the rolls during screw fed roller compaction has been carried out. It is demonstrated that, for a system with two 'knurled' rollers, addition of 0.5% w/w magnesium stearate can lead to a significant increase in ribbon mass throughput, with a consequential increase in roll gap, compared to an unlubricated formulation (manufactured at equivalent process conditions). However, this effect is reduced if one of the rollers is smooth. Roller compaction of a lubricated formulation using two smooth rollers was found to be ineffective due to a reduction in friction at the powder/roll interface, i.e. powder was not drawn through the rollers leading to a blockage in the feeding system. An increase in ribbon mass throughput could also be achieved if the equipment surfaces were pre-lubricated. However this increase was found to be temporary suggesting that the residual magnesium stearate layer was removed from the equipment surfaces. Powder sticking to the equipment surfaces, which is common during pharmaceutical manufacturing, was prevented if magnesium stearate was present either in the blend, or at the roll surface. It is further demonstrated that the influence of the hopper stirrer, which is primarily used to prevent bridge formation in the hopper and help draw powder more evenly into the auger chamber, can lead to further mixing of the formulation, and could therefore affect a change in the lubricity of the carefully blended input material.
Bahnasy, Mahmoud F; Lucy, Charles A
2012-12-07
A sequential surfactant bilayer/diblock copolymer coating was previously developed for the separation of proteins. The coating is formed by flushing the capillary with the cationic surfactant dioctadecyldimethylammonium bromide (DODAB) followed by the neutral polymer poly-oxyethylene (POE) stearate. Herein we show the method development and optimization for capillary isoelectric focusing (cIEF) separations based on the developed sequential coating. Electroosmotic flow can be tuned by varying the POE chain length which allows optimization of resolution and analysis time. DODAB/POE 40 stearate can be used to perform single-step cIEF, while both DODAB/POE 40 and DODAB/POE 100 stearate allow performing two-step cIEF methodologies. A set of peptide markers is used to assess the coating performance. The sequential coating has been applied successfully to cIEF separations using different capillary lengths and inner diameters. A linear pH gradient is established only in two-step CIEF methodology using 3-10 pH 2.5% (v/v) carrier ampholyte. Hemoglobin A(0) and S variants are successfully resolved on DODAB/POE 40 stearate sequentially coated capillaries. Copyright © 2012 Elsevier B.V. All rights reserved.
Stanisz, Beata; Regulska, Katarzyna; Kania, Jagoda; Garbacki, Piotr
2013-01-01
The compatibility studies of moexipril hydrochloride (MOXL), imidapril hydrochloride (IMD), enalapril maleate, (ENA) and lisinopril (LIS) in solid state with magnesium stearate and glyceryl behenate were performed. The aim of this study was to detect any possible drug-excipient interactions in order to optimize technological process conditions by the selection of the most adequate lubricant. Reversed-phase high-performance liquid chromatography was employed for studying drug-excipient binary mixtures in 1:1 ratio and pure drugs under forced ageing test conditions: temperature 318K (45 °C) and relative humidity range of 50.9%-75.4%. The method had been revalidated prior to use. The degradation rate constants for the binary mixtures and pure substances were calculated. The experimental results evidenced that moexipril and enalapril degradation accorded with autocatalytic-second-order kinetics, imidapril degradation followed first-order reaction mechanism, and LIS followed reversible first-order reaction mechanism. A degradation pathway for each substance was proposed to account for the observed decomposition products. It was determined that moexipril stability decreased threefold in the presence of magnesium stearate indicating an incompatibility--(4.15 ± 0.12) 10(-3) compared to (1.43 ± 0.32) 10(-6) for moexipril in pure. No interaction between magnesium stearate and the remaining studied compounds was observed. The stability studies of MOXL-glyceryl behenate binary mixture revealed no interaction. Magnesium stearate and increased relative humidity induce MOXL instability, while glyceryl behenate is an optimal lubricant, and therefore, it is recommended for moexipril-containing solid formulations. However, for the formulations containing moexipril and magnesium stearate, it is suggested to minimize the humidity level during storage.
Mu, Honglei; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Han, Qiang
2017-11-01
Reducing spoilage and prolonging the shelf-life of food materials are both critically important in the food industry. Among the many available preservatives, ethanol has been widely used for the storage of fruits and vegetables. Although a few ethanol emitters are available in the form of antimicrobial packaging, these ethanol emitters demonstrate high volatility, uncontrolled release and other disadvantages, and so the practical applications are limited. A novel ethanol gel with a controlled release rate was prepared by a gelatification reaction between ethanol and sodium stearate to overcome the disadvantage of conventional ethanol emitters. The hardness, adhesiveness and cohesiveness of developed ethanol gels increased, whereas the springiness decreased along with an increase in the sodium stearate concentration. The release rate of ethanol in the gels was controlled by the concentration of sodium stearate, in which a first-order release kinetic was observed. The release rate constant (k) of the gels with 12.5, 37.5, 62.5 g kg -1 of sodium stearate was 0.58 ± 0.029, 0.49 ± 0.035 and 0.41 ± 0.021 h -1 , respectively, at 25 °C. The application of the controlled release ethanol emitter with respect to the storage of Chinese bayberry fruit demonstrated its ability to reduce the decay rate, maintain firmness and inhibit increased malondialdehyde content at 4 °C. In terms of practical applications, an appropriate sodium stearate content can be selected in accordance with the storage period, aiming to achieve precise storage goals. Therefore, the ethanol emitter has potential application prospects as an active packaging for Chinese bayberry fruit, as well as for other perishable products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uranga, Carla C., E-mail: curanga@cicese.edu.mx; Beld, Joris, E-mail: joris.beld@drexelmed.edu; Mrse, Anthony, E-mail: amrse@ucsd.edu
The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungusmore » Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.« less
Muzíková, J; Hájková, P; Vinklarová, S
2004-07-01
The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.
Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V
2013-03-01
The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.
In situ reinforced polymers using low molecular weight compounds
NASA Astrophysics Data System (ADS)
Yordem, Onur Sinan
2011-12-01
The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.
Muzikova, Jitka; Louzenska, Marketa; Pekarek, Tomas
2016-09-01
This paper compares the compressibility and properties of tablets from Prosolv SMCC 90 and a mixture of Avicel PH-102 and colloidal silicon dioxide with a different specific surface. The effect of an addition of the lubricant magnesium stearate on these parameters under varying conditions of mixing and the homogeneity of the lubricant in the mixtures are also examined. Compressibility is evaluated by means of the energy balance of the compression process; the examined properties of tablets are tensile strength and disintegration time. The total energy of compression was increased with compression force, the highest being in Prosolv SMCC 90. Its values did not differ for differing conditions of mixing with the lubricant. Plasticity was slightly decreased with compression force and in the mixture with magnesium stearate it was not influenced by the conditions of mixing. Tablets made from Prosolv SMCC 90 and Avicel PH-102 were stronger than those from the mixtures from Avicel PH-102 and both types of Aerosil. The addition of magnesium stearate markedly decreased the strength of tablets from Avicel PH-102. An increase in the period and frequency of mixing with the lubricant resulted in a further decrease in strength. Disintegration time was longer in tablets from Avicel PH-102 and Prosolv SMCC 90, and it was further prolonged by an addition of magnesium stearate.
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony
2017-10-01
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Controlled-Release Personal Use Arthropod Repellent Formulation. Phase 3
1987-08-26
Polyethylene Glycol (200) Glyceryl Monotallowate (Varonic L1420) 54.2 lbs. Glyceryl Stearate/ Sodium Lauryl Sulfate (Lexemul AS) 129.3 lbs. Propylene... Sulfate 6-0 Xr ________ (Le.ernul AS) - 0.65__ * 13W00 Cetyl Palmitate (W,xenol 816) 2,600 Xg. Ci Zq! 167 2.2___ 10026 Poyproplen Gycol (15) Stenryl...1 Stearate7Sodium lAu 1l Sulfate T- 4fIa- TW _ - ________ Lex emul AS)__________ ____ _______ 2.41 11315 /Prop lene Glycol D1 cap" lateDf~caerate
NASA Astrophysics Data System (ADS)
Qi, Yanli; Chen, Tingting; Zhang, Jun
2018-03-01
Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.
Long Life Elastomeric Aircraft Hydraulic Seals. Part 3
1976-03-01
J.O 1.0 Dibutoxyethyl Sebacate 5.0 - - - Diethylhexyl Azelate 5.0 - - - Varox 3.0 3.0 3.0 3.0 Original Physical Properties: (2-214 0 -rings... Acid 1.0 HiSil EP 30.0 N650 GPF-HS 40.0 Zinc Oxide 5.0 Polydispersion A(ZCNj D85 - Di(Butoxy-Ethoxy- Ethyl) Formal 10.0 Dicup 40C 5.0 Original...Polysar XPRD 435 llycar 4043 Sulfur Aminox Agerite White Stearic Acid Acrawax C N550 FEF N326 HAF-LS Sodium Stearate Potassium Stearate
Lipid-coated mannitol core microparticles for sustained release of protein.
Wang, Bifeng; Friess, Wolfgang
2018-07-01
Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of the aqueous extract of Psidium guajava on erythromycin-induced liver damage in rats.
Sambo, N; Garba, S H; Timothy, H
2009-12-01
The effect of Psidium guajava extract on erythromycin-induced liver damage in albino rats was investigated using 30 normal rats grouped into six. Group I and II served as the normal and treatment controls that were administered with normal saline and 100 mg/kg body weight of erythromycin stearate daily for 14 days respectively. Rats in group III were administered 450 mg/kg body weight of Psidium guajava only for 7 days while rats in groups IV, V and VI were administered Psidium guajava extract for 7 days and 100mg/kg body weight of erythromycin for 14 days. Histopathological investigation of the liver tissues revealed striking oedema and mild periportal mononuclear cell infiltration of hepatic cords in the liver of rats administered 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract. Pretreatment with 150 mg/kg of Psidium guajava extract showed a slight degree of protection against the induced hepatic injury caused by 100 mg/kg of erythromycin stearate. Biochemical analysis of the serum obtained revealed a significant increase in serum levels of hepatic enzymes measured in the groups administered with 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract compared to the control groups and those pretreated with 150 mg/kg of Psidium guajava extract. This study has shown that the aqueous extract of psidium guajava leaf possesses hepatoprotective property at lower dose and a hepatotoxic property at higher dose but further studies with prolonged duration is recommended.
Ageing effects on the magnetic properties of Mn12-based Acetate and Stearate SMMs
NASA Astrophysics Data System (ADS)
Verma, Apoorva; Verma, Shilpi; Singh, Priti; Gupta, Anurag
2017-10-01
A study of ageing effects on the magnetic properties of Single-Molecule-Magnets (SMMs) of the Mn12 based Acetate, ([Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O (1) and Stearate, [Mn12O12(CH3(CH2)16COO)11(CH3COO)5(H2O)4] (2) complexes has been carried out. Detailed magnetization (M) measurements as a function of temperature (T ∼ 1.8-10 K), magnetic field (H ∼ 0 to ±40 kOe) and time (t) have been performed on relatively fresh samples (1A and 2A) and samples aged for ∼4 weeks (1B and 2B) of both Mn12-Acetate and Mn12-Stearate. The blocking temperatures (TB) extracted from the measured M(T) lie between ∼3.0 and 3.4 K for all the four samples. In all cases, below TB, the M-H loops exhibit hysteresis with periodic steps. Interestingly, the ageing process leads to significant changes in the magnetic response of both the complexes. With ageing the Mn12-Acetate exhibits a large increase in the magnetization drop near zero-field, but the estimated anisotropy energy barrier (U) remains unchanged ∼71 K. Whereas, in the case of Mn12-Stearate ageing results in a change of U from ∼52 K (2A) to ∼35 K (2B). The results are discussed in terms of possible ageing induced changes in the structural and chemical environment of the SMMs.
Evolution of zirconyl-stearate Langmuir monolayers and the synthesized ZrO2 thin films with pH
NASA Astrophysics Data System (ADS)
Choudhary, Raveena; Sharma, Rajni; Brar, Loveleen K.
2018-04-01
ZrO2 thin films have a wide range of applications ranging from photonics, antireflection coatings, and resistive oxygen gas sensors, as a gate dielectric and in high temperature fuel cells. We have used the deposition of zirconyl stearate monolayers followed by their oxidation as a method for the synthesis of zirconium oxide thin films. The zirconyl stearate films have been studied and deposited for first time to the best of our knowledge. The Langmuir monolayers are studied using pressure-Area (π-A) isotherms and oscillatory barrier method. The morphology of the films for limited number of layers was studied with FE-SEM to determine the effect of pH on the final ZrO2 film. The 200 layer deposition films show pure monoclinic phase. The films have a band gap ˜6.0eV with a strong PL emission peak is at 490 nm and a weak peak is at 423 nm. So the films formed by this deposition method are suitable for luminescent applications
Hussey, Sophie E.; Liang, Hanyu; Costford, Sheila R.; Klip, Amira; DeFronzo, Ralph A.; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas
2012-01-01
Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action. PMID:23050932
Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R; Klip, Amira; DeFronzo, Ralph A; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas
2012-11-30
Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
Muzíková, J
2006-03-01
The paper examines the strength and disintegration time of compacts from the mixtures of two types of Tablettosas. Tablettosa 70 and Tablettosa 100 with microcrystalline cellulose represented by Vivapur 102. The mixtures of dry binders were prepared in the ratios of 3:1, 1:1, and 1:3. The effect of two concentrations of the lubricant magnesium stearate on the strength and disintegration time of compacts was also examined. Tablet strength increased with higher representation of microcrystalline cellulose in the mixture, and decreased with higher stearate concentration. The compacts from the mixtures with Tablettosa 100 showed higher strength. Disintegration time was highest in the compacts with the largest perccintage of microcrystalline cellulose, and longer in the case of the mixtures with Tablettosa 100. Stearate did not exert a negative effect on disintegration time. In the mixtures of Tablettosas with Vivapur 102 in a ratio of 1:1, the effect of the model active ingredient acetylsalicylic acid on the above-mentioned properties of tablets was tested. acetylsalicylic acid produced a further decrease in the strength of compacts and shortened the disintegration time in more instances in the cased of the mixtures with Tahlettosa 100.
NASA Astrophysics Data System (ADS)
Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant
2017-06-01
Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.
Code of Federal Regulations, 2012 CFR
2012-04-01
... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...
Code of Federal Regulations, 2010 CFR
2010-04-01
... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...
Code of Federal Regulations, 2011 CFR
2011-04-01
... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...
Code of Federal Regulations, 2013 CFR
2013-04-01
... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...
LUBRICATING AND SIZING AGENT FOR GLASS FIBER,
GLASS TEXTILES, SURFACE PROPERTIES), (*LUBRICANTS, GLASS TEXTILES), FIBERS , POLYVINYL ALCOHOL, STEARATES, CHROMIUM COMPOUNDS, ALUMINUM COMPOUNDS, MIXTURES, LACTATES, TITANIUM COMPOUNDS, MECHANICAL PROPERTIES, USSR
Djuris, J; Vasiljevic, D; Jokic, S; Ibric, S
2014-02-01
This study investigates the application of D-optimal mixture experimental design in optimization of O/W cosmetic emulsions. Cetearyl glucoside was used as a natural, biodegradable non-ionic emulsifier in the relatively low concentration (1%), and the mixture of co-emulsifiers (stearic acid, cetyl alcohol, stearyl alcohol and glyceryl stearate) was used to stabilize the formulations. To determine the optimal composition of co-emulsifiers mixture, D-optimal mixture experimental design was used. Prepared emulsions were characterized with rheological measurements, centrifugation test, specific conductivity and pH value measurements. All prepared samples appeared as white and homogenous creams, except for one homogenous and viscous lotion co-stabilized by stearic acid alone. Centrifugation testing revealed some phase separation only in the case of sample co-stabilized using glyceryl stearate alone. The obtained pH values indicated that all samples expressed mild acid value acceptable for cosmetic preparations. Specific conductivity values are attributed to the multiple phases O/W emulsions with high percentages of fixed water. Results of the rheological measurements have shown that the investigated samples exhibited non-Newtonian thixotropic behaviour. To determine the influence of each of the co-emulsifiers on emulsions properties, the obtained results were evaluated by the means of statistical analysis (ANOVA test). On the basis of comparison of statistical parameters for each of the studied responses, mixture reduced quadratic model was selected over the linear model implying that interactions between co-emulsifiers play the significant role in overall influence of co-emulsifiers on emulsions properties. Glyceryl stearate was found to be the dominant co-emulsifier affecting emulsions properties. Interactions between the glyceryl stearate and other co-emulsifiers were also found to significantly influence emulsions properties. These findings are especially important as they can be used for development of the product that meets users' requirements, as represented in the study. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Code of Federal Regulations, 2010 CFR
2010-04-01
...: Acetyl tributyl citrate. Acetyl triethyl citrate. p-tert-Butylphenyl salicylate. Butyl stearate. Butylphthalyl butyl glycolate. Dibutyl sebacate. Di-(2-ethylhexyl) phthalate (for foods of high water content...
Code of Federal Regulations, 2011 CFR
2011-04-01
...: Acetyl tributyl citrate. Acetyl triethyl citrate. p-tert-Butylphenyl salicylate. Butyl stearate. Butylphthalyl butyl glycolate. Dibutyl sebacate. Di-(2-ethylhexyl) phthalate (for foods of high water content...
NASA Astrophysics Data System (ADS)
Roy, Arpita; Dutta, Rupam; Sarkar, Nilmoni
2016-11-01
The present investigation unravels the effect of trehalose on 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl), a cationic surface active ionic liquid (SAIL) micelle and SAIL ([C16mim]Cl)-nonionic surfactant (Sorbitan Stearate, Span 60) based vesicles. The influence of trehalose on size and morphology of the aggregates has been investigated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) measurements. Besides, we have studied the dynamic properties of curcumin inside these aggregates using fluorescence spectroscopic based techniques. The results revealed that trehalose molecules play crucial role in modulation of the photophysical properties of curcumin in these organized assemblies.
Compaction of AWBA fuel pellets without binders (AWBA Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.G.R.
1982-08-01
Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less
21 CFR 176.200 - Defoaming agents used in coatings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... are provided: List of substances Limitations n-Butyl alcohol tert-Butyl alcohol Butyl stearate Castor... Glyceryl monostearate Hexane Hexylene glycol (2-methyl-2,4-pentanediol) Isobutyl alcohol Isopropyl alcohol...
The effect of particle morphology on the physical stability of pharmaceutical powder mixtures
NASA Astrophysics Data System (ADS)
Swaminathan, Vidya
Pharmaceutical powder mixtures are composed of particles that physically interact, precluding the formation of random mixtures. Mixtures based on particle interactions are termed ordered mixtures. The objective of this study was to determine the effect of the morphological characteristics of the components, surface texture and shape, along with size, on the formation of stable mixtures. Morphological parameters were obtained from image analysis measurements. Surface roughness was quantified using the ratio of the perimeter of the particle to that of an ideal shape (circle or square) having the same area; shape was described using the aspect ratio. The stability of mixtures of micronized aspirin with carriers of different surface roughness was determined by measuring the extent of drug adhering to the carrier after subjecting the mixtures to vibration. A lesser extent of segregation of drug from highly textured carriers relative to smoother textured carriers was observed. This was postulated to be due to a larger concentration of surface asperities on the coarser carriers which constitute potentially strong adhesion sites. The electrostatic charge on the powders was measured; differences in the response of the mixtures to the addition of magnesium stearate were attributed to electrostatic charge effects. The effect of varying the aspect ratio of the carrier and drug on segregation in polydisperse mixtures was determined from the coefficient of variation of the drug in the mixture as a function of mixing time. Reducing the size of the carrier resulted in poor homogeneity due to weak carrier-drug interactions. The variation in drug content resulting from a change in the shape of the carriers was smaller than that caused by size differences. The segregation rate constant in mixtures having dissimilarly shaped components was larger than in mixtures having components of similar shape. The effects of magnesium stearate concentration and lubrication time on the content uniformity of polydisperse mixtures were evaluated from a full factorial experiment. The segregation response of ordered and random mixtures to the addition of magnesium stearate was compared. The moisture sorption behavior of commercial magnesium stearate and the resulting morphological changes were evaluated.
Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men.
Aarsland, A; Wolfe, R R
1998-06-01
Fatty acids (FA) that are utilized for triglyceride (TG) synthesis in the liver and principally from two sources: FA synthesized de novo in the liver and preformed FA. We have measured the contribution from the two sources to very low density lipoprotein (VLDL) TG synthesis individually for palmitate, oleate, stearate, and linoleate (approximately 98% of the total FA of VLDL TG (VLDL TGFA)) by isotopomer analysis. Five healthy men were studied in the basal state, and 1 (day 1) and 4 days (day 4) after the start of a hypercaloric carbohydrate-enriched diet (approximately 2.5 times energy expenditure). The secretion of de novo palmitate was increased 15- and 43-fold after 1 and 4 days of hyperalimentation (2.6+/-1.2 (basal state), 40.8+/-20.0 (day 1), and 113.3+/-42.0 micromol/kg per d (day 4)). Even though 4 days of hyperalimentation increased the secretion of de novo stearate 43-fold and de novo oleate 70-fold (stearate; 0.2+/-0.2 (basal), 8.6+/-3.3 micromol/kg per d (day 4), oleate; 0.4+/-0.4 (basal), 28.2+/-12.7 micromol/kg per d (day 4)), palmitate accounted for 75-85% of all the de novo VLDL TGFA. One day of carbohydrate hyperalimentation tended to decrease the secretion while 4 days increased the secretion of all preformed FA in VLDL TG. The rate of secretion of preformed palmitate and oleate were almost identical (palmitate; 80.2+/-22.2 (basal), 45.1+/-23.8 (day 1), and 256.2+/-74.1 micromol/kg per d (day 4), oleate; 95.2+/-22.8 (basal), 46.2+/-24.2 (day 1), and 356.8+/-74.1 micromol/kg per d (day 4)) and collectively these two FA accounted for 80-90% of the secretion from the preformed source. Palmitate is the predominant product of acute and prolonged carbohydrate mediated lipogenesis in the human liver. The pathway of further elongation and subsequent desaturation of de novo synthesized palmitate to generate stearate and oleate is inducible but, quantitatively, of minor significance in hepatic lipogenesis.
21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... polymerization-control agent. Tetrachlorophthalic acid anhydride Do. Zinc stearate For use as lubricant. (c) The... and under the conditions of time and temperature characterizing the conditions of its intended use as...
[Study of mixed dry binders in directly compressible lactoses and microcrystalline cellulose].
Muzíková, J; Vinklarová, S
2004-09-01
The paper evaluated the compressibility of dry binders prepared in the ratios of 3:1, 1:1, and 1:3 from Pharmatosa DCL 15 and DCL 21 and Avicel PH 200, and the sensitivity of the mixtures to an addition of the lubricant magnesium stearate from the standpoint of the effect on the strength of tablets. Mixtures of lactoses with Avicel PH -200 in a ratio of 3:1 proved to be most advantageous. The strengths of tablets made of these mixtures oscillated in the optimal range and they showed the least sensitivity to the added lubricant. An increase in stearate concentration did not result in a marked decrease in the strength of compacts. Pharmatosa DCL 21 in a mixture with Avicel PH 200 yielded stronger compacts at lower compression force than Pharmatosa DCL 15.
Sun, Dan; Wang, Gui-Ling; Hei, Yu; Meng, Shuai; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang
2017-01-01
In vivo evaluation of drug delivery vectors is essential for clinical translation. In BALB/c nude mice bearing human breast cancer tumors, we investigated the biocompatibility, pharmacokinetics, and pharmacodynamics of doxorubicin (DOX)-loaded novel cell-penetrating peptide (CPP)-modified pH-sensitive liposomes (CPPL) (referred to as CPPL(DOX)) with an optimal CPP density of 4%. In CPPL, a polyethylene glycol (PEG) derivative formed by conjugating PEG with stearate via acid-degradable hydrazone bond (PEG2000-Hz-stearate) was inserted into the surface of liposomes, and CPP was directly attached to liposome surfaces via coupling with stearate to simultaneously achieve long circulation time in blood and improve the selectivity and efficacy of CPP for tumor targeting. Compared to PEGylated liposomes, CPPL enhanced DOX accumulation in tumors up to 1.9-fold (p<0.01) and resulted in more cell apoptosis as a result of DNA disruption as well as a relatively lower tumor growth ratio (T/C%). Histological examination did not show any signs of necrosis or inflammation in normal tissues, but large cell dissolving areas were found in tumors following the treatment of animals with CPPL(DOX). Our findings provide important and detailed information regarding the distribution of CPPL(DOX) in vivo and reveal their abilities of tumor penetration and potential for the treatment of breast cancer. PMID:29123382
A study of the properties of tablets made of directly compressible maltose.
Muzíková, J; Balhárková, J
2008-01-01
The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.
Variability of some diterpene esters in coffee beverages as influenced by brewing procedures.
Moeenfard, Marzieh; Erny, Guillaume L; Alves, Arminda
2016-11-01
Several coffee brews, including classical and commercial beverages, were analyzed for their diterpene esters content (cafestol and kahweol linoleate, oleate, palmitate and stearate) by high performance liquid chromatography with diode array detector (HPLC-DAD) combined with spectral deconvolution. Due to the coelution of cafestol and kahweol esters at 225 nm, HPLC-DAD did not give accurate quantification of cafestol esters. Accordingly, spectral deconvolution was used to deconvolve the co-migrating profiles. Total cafestol and kahweol esters content of classical coffee brews ranged from 5-232 to 2-1016 mg/L, respectively. Commercial blends contained 1-54 mg/L of total cafestol esters and 2-403 mg/L of total kahweol esters. Boiled coffee had the highest diterpene esters content, while filtered and instant brews showed the lowest concentrations. However, individual diterpene esters content was not affected by brewing procedure as in terms of kahweol esters, kahweol palmitate was the main compound in all samples, followed by kahweol linoleate, oleate and stearate. Higher amounts of cafestol palmitate and stearate were also observed compared to cafestol linoleate and cafestol oleate. The ratio of diterpene esters esterified with unsaturated fatty acids to total diterpene esters was considered as measure of their unsaturation in analyzed samples which varied from 47 to 52%. Providing new information regarding the diterpene esters content and their distribution in coffee brews will allow a better use of coffee as a functional beverage.
Comparison of properties of tablets and energy profile of compaction of two spray-dried lactoses.
Muzíková, Jitka; Sináglová, Pavla
2013-01-01
The paper compared two spray-dried lactoses Flowlac 100 and SuperTab 14SD from the standpoint of tensile strength and disintegration time of tablets, the effect of an addition of the lubricant magnesium stearate and silicified microcrystalline cellulose on these properties, and also from the standpoint of the energy profile of compression. The comparison of the values was performed at the compression force of 15 kN. The strength of tablets was higher in the case of SuperTab 14SD, an increase in the concentration of magnesium stearate did not decrease tablet strength. Prosolv SMCC 90 increased the strength of tablets and made it equal for both lactoses, but it also increased the sensitivity to the added lubricant. The disintegration time of tablets was shorter in the case of SuperTab 14SD, an increased concentration of magnesium stearate prolonged it, and an addition of Prosolv SMCC 90 shortened it and made it equal for both lactoses. From the energy standpoint, the maximal energy was higher in the case of SuperTab 14SD, an addition of Prosolv SMCC 90 increased it and again made it equal for both lactoses. The differences in the values of the maximal energy were primarily due to the values of the energy for friction and the energy accumulated by the tablet after compression, and there was no marked difference in the values of the energy of decompression. SuperTab 14SD showed a higher plasticity than Flowlac 100.
VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.
He, Haibing; Wang, Puxiu; Cai, Cuifang; Yang, Rui; Tang, Xing
2015-09-30
To improve the oral absorption of insulin, a novel carrier of Vitamin B12 (VB12) gel core solid lipid nanopaticles (Gel-Core-SLN, GCSLN) was designed with a gel core, lipid matrix and VB12-coated surface. VB12-stearate was synthesized and characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Sol-gel conversion following ultrasonic heating and double emulsion technology were combined to implant the insulin-containing gel into solid lipid nanoparticles (SLN). The influence of the mode of administration, food, the amount of VB12-stearate and the particle size on the oral absorption of insulin incorporated in the VB12-GCSLN was investigated. The determined partition coefficient (LogP) of VB12-stearate in a dichloromethane (DCM)-water system was 3.4. This new structure of VB12-GCSLN had higher insulin encapsulation efficiency (EE) of 55.9%, a lower burst release of less than 10% in the first 2h. In vivo studies demonstrated that stronger absorption of insulin with a relative pharmacological availability (PA) of 9.31% compared with the normal insulin-loaded SLN and GCSLN and fairly stable blood glucose levels up to 12h were maintained without any sharp fluctuations. This study suggests that VB12-GCSLN containing insulin appears to be a promising nano carrier for oral delivery of biomacromolecules with relatively high pharmacological availability. Copyright © 2015 Elsevier B.V. All rights reserved.
Viscosity Depressants for Coal Liquefaction
NASA Technical Reports Server (NTRS)
Kalfayan, S. H.
1983-01-01
Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polymerization reaction control agent. Phthalic acid anhydride Do. Zinc stearate For use as lubricant. (c) The... extracted with the solvent or solvents characterizing the type of food and under the conditions of time and...
21 CFR 184.1440 - Magnesium stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by... derived from stearic acid that is obtained from edible sources and that conforms to the requirements of...
21 CFR 184.1440 - Magnesium stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by... derived from stearic acid that is obtained from edible sources and that conforms to the requirements of...
Water-repellent coatings prepared by modification of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Chakradhar, R. P. S.; Dinesh Kumar, V.
Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.
Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E
2015-05-01
The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Xiangmin; Rezonzew, Gabriel; Wang, Dezhi; Siegal, Gene P.; Hardy, Robert W.
2014-01-01
A significant percentage of breast cancer victims will suffer from metastases indicating that new approaches to preventing breast cancer metastasis are thus needed. Dietary stearate and chemotherapy have been shown to reduce breast cancer metastasis. We tested the complementary use of dietary stearate with a taxol-based chemotherapy which work through separate mechanisms to reduce breast cancer metastasis. We therefore carried out a prevention study in which diets were initiated prior to human MDA-MB-435 cancer cells being injected into the host and a treatment study in which diets were combined with paclitaxel (PTX). Using an orthotopic athymic nude mouse model and three diets (corn oil control diet/CO, low fat /LF or stearate/ST) the prevention study demonstrated that the ST diet decreased the incidence of lung metastasis by 50% compared to both the LF and CO diets. The ST diet also reduced the number and size of metastatic lung nodules compared to the LF diet. Results of the treatment study indicated that both the CO and ST diets decreased the number of mice with lung metastasis compared to the LF diet. Both CO and ST also decreased the number of lung metastases per mouse compared to the LF diet however only the ST diet cohort was significant. Histomorphometric analysis of the lung tumor tissue indicated that the ST diet plus PTX decreased angiogenesis compared to the LF diet plus PTX. In conclusion these results support combining diet with chemotherapy in both treatment and prevention settings. PMID:24832758
21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Tetrachlorophthalic acid anhydride Do. Zinc stearate For use as lubricant. (c) The finished food-contact article, when... temperature characterizing the conditions of its intended use as determined from tables 1 and 2 of § 175.300(d...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cucurbitacin) Gustatory stimulant Butyl stearate Defoamer γ-Butyrolactone Solvent C.I. Pigment Blue #15 (CAS Reg. No. 147-14-8; containing no more than 50 ppm polychlorinated biphenyls (PCBs)) For seed treament...
Conformational studies of lithium phenyl stearate
NASA Astrophysics Data System (ADS)
Barron, Christopher
The structure and conformation of lithium phenyl stearate (and to a lesser extent, for comparative purposes, cadmium stearate) was investigated using Fourier transform infrared spectroscopy, and various modelling techniques. The infrared results for LiPS show that the aliphatic portion of the soap molecule is much more ordered at room temperature than had been expected, having only 0.62 and 0.60 gtg and gg defects per molecule respectively, where an isotropic chain would have 1.35 and 1.21 gtg and gg defects per chain respectively. As the temperature is increased the number of conformational defects increases continuously, until at <130°C the chain reaches an isotropic degree of disorder. At this point the phase transition begins, so the chain reaches liquid like disorder before the phase transition begins.Modelling of the phenyl stearic acid showed that the phenyl group was restricted to certain angle of rotation values, and that the bonds close to the phenyl group were prevented from attaining true rotational isomeric state conformations, gtg defects near the phenyl group were distorted only slightly from their usual angular position, and an additional band in the infrared spectrum of LiPS at 1363 cm-1 has been assigned to this distorted gtg/gtg' defect. The gg defects near the phenyl group have a much greater distortion (and energy) resulting in a much reduced probability of occurrence. The number of gg defects present at the phase transition (<130°C) was only 75% of that expected for an isotropic n-alkane of equivalent chain length, indicating that the four bonds nearest to the phenyl group have a reduced probability of forming a gg defect.The modelling of the ionic core of LiPS gives a reasonable estimate of between 5.6 to 7.1 A for the core radius. When this is used to calculate the hexagonal cylinder diameter, at room temperature, along with the average chain extension, it gives a value for the cylinder diameter of between 33.9 to 36.8A. The hexagonal lattice parameter determined by X-ray diffraction has a value 35.9A. Also after the LiPS sample has gone through the phase transition beginning at >130°C, the hexagonal lattice parameter is 31.4A while the cylinder diameter lies between 30.2 and 33.2A.Crystalline cadmium stearate was found to contain two crystal forms, orthorhombic which has lattice dimensions of a0=5.05A, b0=7.35A and c0=48.6A and the other eithermonoclinic or triclinic. In the reverse hexagonal phase, the cadmium stearate molecule behaves like an isotropic n-alkane of equivalent chain length. The model used to predict the core radius of divalent metal soaps gives rise to some inconsistencies: the cylinder diameter thus determined gives a result between 28.8A to 31.7A, while the lattice parameter determined by X-ray diffraction gives a value of 36.9A. The assumption that the n-carboxylate ions in a divalent metal soap behave like two independent monovalent metal ion soaps appears to be incorrect.
Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids.
Yamagata, Y; Iga, K; Ogawa, Y
2000-02-03
In order to develop a novel delivery system for proteins based on polyglycerol esters of fatty acids (PGEFs), we studied a model system using interferon-alpha (IFN-alpha) as the test protein. A cylindrical matrix was prepared by a heat extrusion technique using a lyophilized powder of the protein and 11 different types of synthetic PGEFs, which varied in degree of glycerol polymerization (di- and tetra-), chain length of fatty acids (myristate, palmitate and stearate) and degree of fatty acid esterification (mono-, di- and tri-). In an in-vitro release study using an enzyme-linked immunosorbent assay (ELISA) as a detection method, the matrices prepared from a monoglyceride (used for comparison) and from diglycerol esters exhibited a biphasic release pattern with a large initial burst followed by slow release. In contrast, the matrices prepared from tetraglycerol esters showed a steady rate of release without a large initial burst. In an in vivo release study, initial bursts of IFN-alpha release were, also, dramatically reduced when the matrices were prepared from the tetraglycerol esters of palmitate and stearate, and the mean residence time (MRT) of IFN-alpha was prolonged, whereas the matrices prepared from monoglyceride and from diglycerol esters showed large initial bursts of IFN-alpha release. Since the release rates from the matrices prepared from the tetraglycerol esters of palmitate and stearate were governed by Jander's equation modified for a cylindrical matrix, the release from those matrices was concluded to be a diffusion-controlled process. The bioavailability of IFN-alpha after implantation of the matrix formulation prepared using all types of PGEFs, except for tetraglycerol triesters, was almost equivalent to that after injection of IFN-alpha solution; consequently, IFN-alpha in these matrices appears to remain stable during the release period.
Optimization of process parameters for foam-mat drying of papaya pulp.
Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D
2014-10-01
Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.
Maghsoodi, M
2014-01-01
A blend of floating and pulsatile principles of a drug delivery system would have the advantage that a drug can be released in the upper gastrointestinal (GI) tract after a lag period, which is anticipated for chronotherapy. In this study, microballoons were prepared by an emulsion solvent diffusion technique using Eudragit S100, and hydrophobic additive (magnesium stearate, stearic acid or talc) for time- and site-specific drug release of piroxicam. The effect of hydrophobic additives on the production yield of floating microparticles, buoyant ability for 8 h, release of drug in simulated GI fluids (simulated gastric fluid [SGF] and simulated intestinal fluid [SIF]), mean particle size, apparent particle density, encapsulation efficiency of drug and physical state of incorporated drug were studied. Both production yield and buoyancy of the microballoons were affected by additives in the following order: magnesium stearate, stearic acid>free-additive>talc. The observed difference in yield and the buoyancy of the microballoons could be attributed to the hydrophobic character of the additives and the shell rigidity of the obtained microballoons. Incorporation of hydrophobic additives in the microballoons was found to impart the desired release properties to the microballoons by providing a 2-phase release pattern with initial slow release (5-6%) through 8 h in SGF followed by rapid pulse release (>92%) in SIF through 15 min. The microballoons co-formulated with magnesium stearate or stearic acid, combining excellent buoyancy and suitable drug release pattern of piroxicam, could be useful in chronopharmacotherapy in arthritis. © Georg Thieme Verlag KG Stuttgart · New York.
Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide
NASA Astrophysics Data System (ADS)
Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.
2017-06-01
The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.
Introduction to Studies in Granular Mixing
ERIC Educational Resources Information Center
Llusa, Marcos; Muzzio, Fernando
2008-01-01
This article describes a hands-on educational activity designed to introduce students (or industrial employees) in the pharmaceutical arena to some of the most common problems in the mixing of solids: Active Pharmaceutical Ingredient (API) and lubricant (i.e. magnesium stearate) homogenization, characterization of segregation tendencies, and…
A case of rhinolithiasis in botswana: a mineralogical, microscopic and chemical study.
Vink, Bernard W; van Hasselt, Piet; Wormald, Richard
2002-12-01
A case of rhinolithiasis in Southeast Botswana was treated and after removal in hospital, the rhinolith was subjected to macroscopic and microscopic examination, X-ray diffraction analysis, electron microscope analysis and partial botanical analysis. The rhinolith consists of a strongly elliptical core of calcium stearate (C36H70CaO4.H2O), surrounded by approximately 30 elongated concentric growth rings, consisting of sodium-containing whitlockite (Ca18Mg2(Na,H)(PO4)14). The different layers have various degrees of porosity and red staining, probably due to traces of amorphous iron oxide. The origin of the rhinolith started with a piece of plant material, lodged in the nose, which was replaced by calcium stearate, leaving some remnants of resistant epidermal plant tissue. During subsequent years, thin layers of whitlockite were deposited periodically around the core with the reddish brown bands representing deposition during the dry season when atmospheric dust rich in amorphous iron oxide is at its highest in Botswana.
A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.
Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui
2017-09-01
Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Degradation of components in drug formulations: a comparison between HPLC and DSC methods.
Ceschel, G C; Badiello, R; Ronchi, C; Maffei, P
2003-08-08
Information about the stability of drug components and drug formulations is needed to predict the shelf-life of the final products. The studies on the interaction between the drug and the excipients may be carried out by means of accelerated stability tests followed by analytical determination of the active principle (HPLC and other methods) and by means of the differential scanning calorimetry (DSC). This research has been focused to the acetyl salicylic acid (ASA) physical-chemical characterisation by using DSC method in order to evaluate its compatibility with some of the most used excipients. It was possible to show, with the DSC method, the incompatibility of magnesium stearate with ASA; the HPLC data confirm the reduction of ASA concentration in the presence of magnesium stearate. With the other excipients the characteristic endotherms of the drug were always present and no or little degradation was observed with the accelerated stability tests. Therefore, the results with the DSC method are comparable and in good agreement with the results obtained with other methods.
21 CFR 178.3690 - Pentaerythritol adipate-stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...
21 CFR 178.3690 - Pentaerythritol adipate-stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...
21 CFR 176.200 - Defoaming agents used in coatings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... alcohol tert-Butyl alcohol Butyl stearate Castor oil, sulfated, ammonium, potassium, or sodium salt Cetyl... palmitate Mineral oil Mustardseed oil, sulfated, ammonium, potassium, or sodium salt Myristyl alcohol... hydrocarbons As defined in § 178.3650 of this chapter. Oleic acid, sulfated, ammonium, potassium, or sodium...
21 CFR 176.200 - Defoaming agents used in coatings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... alcohol tert-Butyl alcohol Butyl stearate Castor oil, sulfated, ammonium, potassium, or sodium salt Cetyl... palmitate Mineral oil Mustardseed oil, sulfated, ammonium, potassium, or sodium salt Myristyl alcohol... hydrocarbons As defined in § 178.3650 of this chapter. Oleic acid, sulfated, ammonium, potassium, or sodium...
21 CFR 178.3505 - Glyceryl tri-(12-acetoxy-stearate).
Code of Federal Regulations, 2010 CFR
2010-04-01
... for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting... surface of calcium carbonate at a level not to exceed 1 weight-percent of the total mixture. (b) The... with nonfatty foods at a level not to exceed 20 weight-percent of the polymer. [50 FR 1503, Jan. 11...
Feasibility of Use of Plastic Foams for Small Vessel Flotation Devices.
1976-01-01
waterproofing agents, namely, Dow Corning Silicone 200 fluid, zinc stearate, sodium silicate, Fisher Bath Wax , Carnauba wax , and paraffin wax . Some of...these materials (e.g., waxes ) did not mix well with the foam solution. None of these materials was effective in preventing water absorption by polystyrene
21 CFR 178.3505 - Glyceryl tri-(12-acetoxy-stearate).
Code of Federal Regulations, 2011 CFR
2011-04-01
... for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting... calcium carbonate/glyceryl tri-(12-acetoxystearate) mixture is used as an adjuvant in polymers in contact with nonfatty foods at a level not to exceed 20 weight-percent of the polymer. [50 FR 1503, Jan. 11...
Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis
USDA-ARS?s Scientific Manuscript database
Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...
21 CFR 178.3450 - Esters of stearic and palmitic acids.
Code of Federal Regulations, 2014 CFR
2014-04-01
... stearate or mixtures thereof may be safely used as adjuvants in food-packaging materials when used in... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation Surfactant α-Alkyl(C6-C15)-ω-hydroxypoly(oxyethylene)sulfate, and its ammonium, calcium, magnesium..., related adjuvants of surfactants Alkyl (C8-C18) sulfate and its ammonium, calcium, isopropylamine... stearate Surfactant Ammonium sulfate Solid diluent, carrier Ammonium thiosulfate Intensifier when used with...
Sun, Jianling; Luo, Liqiang
2018-06-22
Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.
Fathi, Farzaneh; Mohammadzadeh-Aghdash, Hossein; Sohrabi, Yousef; Dehghan, Parvin; Ezzati Nazhad Dolatabadi, Jafar
2018-04-25
Ascorbyl palmitate (AP) and ascorbyl stearate (AS) are examples of food additives, which have extensive use in food industry. In this study, we evaluated the interaction of bovine serum albumin (BSA) with AP and AS using surface plasmon resonance (SPR). In order to immobilize BSA, carboxymethyl dextran hydrogel (CMD) Au chip was used. After activation of carboxylic groups, BSA was immobilized onto the CMD chip through covalent amide binding formation. AP and AS binding to immobilized BSA at different concentrations was assessed. The dose-response sensorgrams of BSA upon increasing concentration of AP and AS have been shown. The low value of equilibrium dissociation constant or affinity unit (K D ) showed high affinity of both AP and AS to BSA. The K D value for binding of AP and AS to BSA were 4.09 × 10 -5 and 1.89 × 10 -5 , at 25 °C. Overall, the attained results showed that AP and AS molecules can bind to BSA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rahmati, Nazanin Fatemeh; Mazaheri Tehrani, Mostafa
2014-09-01
Emulsifiers of different structures and functionalities are important ingredients usually used in baking cakes with satisfactory properties. In this study, three emulsifiers including distilled glycerol mono stearate (DGMS), lecithin and sorbitan mono stearate (SMS) were used to bake seven eggless cakes containing soy milk and optimization was performed by using mixture experimental design to produce an eggless cake sample with optimized properties. Physical properties of cake batters (viscosity, specific gravity and stability), cake quality parameters (moisture loss, density, specific volume, volume index, contour, symmetry, color and texture) and sensory attributes of eggless cakes were analyzed to investigate functional potential of the emulsifiers and results were compared with those of control cake containing egg. Almost in all cases emulsifiers, compared to the control cake, changed properties of eggless cakes significantly. Regarding models of different response variables (except for some properties) and their high R(2) (99.51-100), it could be concluded that models obtained by mixture design were significantly fitted for the studied responses.
NASA Astrophysics Data System (ADS)
Tang, Qiang; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Tian, Wu-bian; Sun, Zheng-ming
2017-10-01
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate (SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0°C for the cement mortar board and 1.6°C for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.
Semicrystalline Ionomer-Metal Carboxylate Composite: Phase Behavior and Mechanical Properties
NASA Astrophysics Data System (ADS)
Wakabayashi, Katsuyuki
2005-03-01
We have shown previously that the thermal and mechanical behavior of ethylene-methacrylic acid (E-MAA) ionomers can be tuned by the addition of certain magnesium carboxylates, such as magnesium stearate (MgSt). The property modifications result from coassembly of the two components, both co-aggregation of the ionic groups and co-crystallization of the methylene sequences, as revealed by X-ray scattering. When MgSt is replaced by sodium stearate (NaSt), a different suite of mechanical properties is obtained. NaSt, with its high melting and clearing (288 ^oC) points, readily crystallizes out of solution in the molten polymer and forms an effective composite upon cooling from a single-phase melt. The NaSt crystals in the composite resemble the rectangular polymorph in pure NaSt, though with some differences in lattice parameters and transition temperatures due to interaction with the acid groups of the copolymer. The different physical properties of the NaSt vs. MgSt modified ionomers are traced to these microstructural differences, elucidated through a combination of X-ray scattering and microscopy.
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-01-25
In this work, Raman hyperspectral images and multivariate curve resolution-alternating least squares (MCR-ALS) are used to study the distribution of actives and excipients within a pharmaceutical drug product. This article is mainly focused on the distribution of a low dose constituent. Different approaches are compared, using initially filtered or non-filtered data, or using a column-wise augmented dataset before starting the MCR-ALS iterative process including appended information on the low dose component. In the studied formulation, magnesium stearate is used as a lubricant to improve powder flowability. With a theoretical concentration of 0.5% (w/w) in the drug product, the spectral variance contained in the data is weak. By using a principal component analysis (PCA) filtered dataset as a first step of the MCR-ALS approach, the lubricant information is lost in the non-explained variance and its associated distribution in the tablet cannot be highlighted. A sufficient number of components to generate the PCA noise-filtered matrix has to be used in order to keep the lubricant variability within the data set analyzed or, otherwise, work with the raw non-filtered data. Different models are built using an increasing number of components to perform the PCA reduction. It is shown that the magnesium stearate information can be extracted from a PCA model using a minimum of 20 components. In the last part, a column-wise augmented matrix, including a reference spectrum of the lubricant, is used before starting MCR-ALS process. PCA reduction is performed on the augmented matrix, so the magnesium stearate contribution is included within the MCR-ALS calculations. By using an appropriate PCA reduction, with a sufficient number of components, or by using an augmented dataset including appended information on the low dose component, the distribution of the two actives, the two main excipients and the low dose lubricant are correctly recovered. Copyright © 2014 Elsevier B.V. All rights reserved.
How Langmuir-Blodgett trilayers act as templates for directed self-assembly of nanoparticles
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay; Biswas, Nupur; Giglia, Angelo; Nannarone, Stefano
2014-04-01
Atomic force microscopy (AFM) shows that Langmuir-Blodgett (LB) deposition of dissimilar metal stearates (MSt, M = Co, Zn, Cd) on templates of Co-stearate (Co-T) and Cd-stearate (Cd-T) results in self-assembly of MSts into nanocrystalline grains having clear and consistent morphological habits. The grains are better formed and well separated on Cd-T than on Co-T. Fourier transform infrared spectroscopy (FTIR) results show that the headgroup coordination of the overlayer is tuned by the coordination of the Cd-T template and remains unaffected by that of the Co-T template. They also indicate co-existence of a different kind of headgroup structure that is close to the undissociated fatty acid headgroup but differing more in the two types of carbon-oxygen bonds, suggesting an inter-headgroup bonding such as hydrogen bond that may exist on a nanocrystal surface. Results of synchrotron x-ray diffraction at C K-edge, of ZnSt on Cd-T (ZnSt/Cd-T) and Co-T (ZnSt/Co-T), point to a non-closed packed structure for ZnSt/Cd-T and a closed-packed structure for ZnSt/Co-T, with significant superlattice order in the former. The presence of crystalline phases of ZnSt in the nanometer scale, on LB templates, in contrast to the the presence of lamellar phase in bulk ZnSt, is attributed to the the presence of unidentate metal-carboxylate coordination in the former and absence of it in the latter, creating different gradients of dipolar forces at template overlayer interface. Relative strength of this long-range force over short-range intermolecular forces in the templates qualitatively explains better crystallinity and higher ordering in ZnSt/Cd-T compared to ZnSt/Co-T. We propose that the role of dipole moment gradient between template and overlayer in tuning of these metal-organic nanoparticles may be somewhat similar to structural and optical tunability of semiconductor nanocrystals by thermal and self-equilibrium strain.
46 CFR 30.25-1 - Cargoes carried in vessels certificated under the rules of this subchapter.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-Amyl methyl ether (Methyl tert-pentyl ether) C Amyl methyl ketone, see Methyl amyl ketone D Animal and... heptyl ketone [C] Butyl methyl ketone, see Methyl butyl ketone n-Butyl propionate C Butyl stearate III... alcohol (all isomers) C Diisobutylene B Diisobutyl ketone D Diisobutyl phthalate B Diisodecyl phthalate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... formulation Surfactant α-Alkyl(C6-C15)-ω-hydroxypoly(oxyethylene)sulfate, and its ammonium, calcium, magnesium... Alkyl (C8-C18) sulfate and its ammonium, calcium, isopropylamine, magnesium, potassium, sodium, and zinc..., 93917-76-1, 5297-93-8, 94266-36-1, 1002-89-7) Surfactant Ammonium stearate Surfactant Ammonium sulfate...
Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao
The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into themore » outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.« less
Wu, J; Ho, H; Sheu, M
2001-01-01
The individual influence of wet granulation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose (MCC) with beta-cyclodextrin (beta-CD) was examined in this study. Avicel PH 101 and 301 were included for comparison. The codried product, Avicel PH 101 and 301 were granulated with water, and the granules were milled to retain three different size fractions: 37-60 microm, 60-150 microm, and 150-420 microm. The original Avicels and codried product were lubricated with magnesium stearate in three different percentages (0.2, 0.5, and 1.0%). The results showed that the powder flowability and disintegration of codried product and Avicels were significantly improved after wet granulation. However, the compactibility of codried product and Avicels decreased with increasing particle size. Nevertheless, the compactibility of the codried excipient after granulation was still better than the non-granulated Avicel PH 101 and 301. On the other hand, codried product and Avicels were sensitive to lubrication and resulted in decreasing compactibility and increasing disintegration. Because of the rounder shape of particles, the codried excipient was more sensitive to magnesium stearate and produced weaker tablets than did Avicels.
Démuth, B; Galata, D L; Szabó, E; Nagy, B; Farkas, A; Balogh, A; Hirsch, E; Pataki, H; Rapi, Z; Bezúr, L; Vigh, T; Verreck, G; Szalay, Z; Demeter, Á; Marosi, G; Nagy, Z K
2017-11-06
Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.
Stability of zinc stearate under alpha irradiation in the manufacturing process of SFR nuclear fuels
NASA Astrophysics Data System (ADS)
Gracia, J.; Vermeulen, J.; Baux, D.; Sauvage, T.; Venault, L.; Audubert, F.; Colin, X.
2018-03-01
The manufacture of new fuels for sodium-cooled fast reactors (SFRs) will involve powders derived from recycling existing fuels in order to keep on producing electricity while saving natural resources and reducing the amount of waste produced by spent MOX fuels. Using recycled plutonium in this way will significantly increase the amount of 238Pu, a high energy alpha emitter, in the powders. The process of shaping powders by pressing requires the use of a solid lubricant, zinc stearate, to produce pellets with no defects compliant with the standards. The purpose of this study is to determine the impact of alpha radiolysis on this additive and its lubrication properties. Experiments were conducted on samples in contact with PuO2, as well as under external helium ion beam irradiation, in order to define the kinetics of radiolytic gas generation. The yield results relating to the formation of these gases (G0) show that the alpha radiation of plutonium can be simulated using external helium ion beam irradiation. The isotopic composition of plutonium has little impact on the yield. However, an increased yield was globally observed with increasing the mean linear energy transfer (LET). A radiolytic degradation process is proposed.
Lumor, Stephen E; Jones, Kerby C; Ashby, Rick; Strahan, Gary D; Kim, Byung Hee; Lee, Guan-Chiun; Shaw, Jei-Fu; Kays, Sandra E; Chang, Shu-Wei; Foglia, Thomas A; Akoh, Casimir C
2007-12-26
Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.
Lipasek, Rebecca A; Taylor, Lynne S; Mauer, Lisa J
2011-09-01
Vitamin C is an essential nutrient that is widely used by the food industry in the powder form for both its nutritional and functional properties. However, vitamin C is deliquescent, and deliquescence has been linked to physical and chemical instabilities. Anticaking agents are often added to powder systems to delay or prevent caking, but little is known about their effect on the chemical stability of powders. In this study, various anticaking agents (calcium phosphate, calcium silicate, calcium stearate, corn starch, and silicon dioxide) were combined with sodium ascorbate at 2% and 50% w/w ratios and stored at various relative humidities (23%, 43%, 64%, 75%, 85%, and 98% RHs). Chemical and physical stability and moisture sorption were monitored over time. Additionally, saturated solution samples were stored at various pHs to determine the effect of surface pH and dissolution on the vitamin degradation rate. Storage RH, time, and anticaking agent type and ratio all significantly affected (P < 0.05) moisture sorption and vitamin C stability. Silicon dioxide and calcium silicate (50% w/w) and calcium stearate (at both ratios) were the only anticaking agents to improve the physical stability of powdered sodium ascorbate while none of the anticaking agents improved its chemical stability. However, corn starch and calcium stearate had the least adverse effect on chemical stability. Dissolution rate and pH were also important factors affecting the chemical and physical stability of the powders. Therefore, monitoring storage environmental conditions and anticaking agent usage are important for understanding the stability of vitamin C. Anticaking agent type and ratio significantly affected the physical and chemical stability of vitamin C over time and over a range of RHs. No anticaking agent improved the chemical stability of the vitamin, and most caused an increase in chemical degradation even if physical stability was improved. It is possible that anticaking agents would greatly affect other chemically labile deliquescent ingredients, and therefore, anticaking agent usage and storage conditions should be monitored in blended powder systems. © 2011 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gron, L.U.
1987-01-01
A background of cyclopentadienyl ring-slippage reactions is presented along with a brief discussion of the transformations of the related indenyl and fluorenyl ligands. Subsequently a review of oxygen-bonded transition metal enolate complexes is given. Synthesis, structure, and photochemistry of fac-(CO)/sub 3/(P(CH/sub 3/)/sub 3/)/sub 2/Re(OC(CH/sub 3/)C/sub 5/H/sub 4/), 5, is presented. The Re(I) enolate complex was prepared from the reaction of (eta/sup 5/-C/sub 5/H/sub 4/C(O)CH/sub 3/)Re(CO)/sub 3/, 4, with P(CH/sub 3/)/sub 3/. Compound 5 was characterized structurally in the solid state by x-ray crystallography and in solution by ir, and /sup 1/H, /sup 13/C, and /sup 31/P NMR spectroscopy. Photolysis ofmore » 5 at 337 nm in CH/sub 2/Cl/sub 2/ solution cleaves the Re-O bond: smooth conversion to fac-(CO)/sub 3/(P(CH/sub 3/)/sub 3/)/sub 2/ReCl, 6, is observed with a quantum yield of 0.04. The photochemistry of 5 in benzene solution and the synthesis and photochemistry of fac-(CO)/sub 3/(P(CH/sub 3/)/sub 2/-Re(OC(CH/sub 3/)C/sub 5/H/sub 3/CH/sub 3/), 14, is also presented. The Langmuir-Blodgett method of monolayer film formation, characteristics of good film formation and structure of the supported film are reviewed. The basics of second harmonic generation are also presented along with useful applications of the Langmuir-Blodgett films to these studies. Synthesis, structure, and photochemistry of Langmuir-Blodgett stearate films incorporated the emissive Eu/sup 3 +/ and UO/sub 2//sup 2 +/ cations are described. A mixed film containing UO/sub 2/2/sup +//stearate and Eu/sup 3 +//stearate in alternating layers exhibited energy transfer from the UO/sub 2//sup 2 +/ ions to the Eu/sup 3 +/ ions.« less
A Survey and Evaluation of Chemical Warfare Agent-Decontaminants and Decontamination
1984-10-15
0.21 citric acid monohydrate, 0.05% detergent, and 98.251 water) all contain calcium hypochlorite and have been used for decontaminating agents from...water repellent chemicals consist of an aluminum salt of a saturated carboxylic acid (such as format, acetate, palmitate, or stearate) mixed with...been conducted. Sawdust, soil, silicone, coal dust, amine or sulfonic acid -containing polymers, organic and inorganic ion-exchange materials, and metal
Development and Application of Low Energy X-Ray and Electron Physics.
1984-03-14
the other with a specially designed streak camera. D. X-Ray Optics 1. Analyzers and Monochromators Along with our theoretical model calculations for...stearate and lead behenate (2d-spacings of 80, 100 and 120 A, respectively) that have reached the theoretically predicted values for peak, integrated...energy secondary electron energy photoemission, considerably more theoretical and ex- region. The secondary electron spectrum peaks at about perimental
Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree
2016-01-01
The research envisaged focuses on vital impacts of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose (EC) tablets using prednisone as a model drug. Several lubricants and glidants such as magnesium stearate, colloidal SiO2, sodium stearyl fumarate, talc, stearic acid, polyethylene glycol (6000) and glyceryl behenate were investigated to understand their effects on lag time by changing their concentrations in outer coat. Further, the effects of hydrophilic additives on lag time were examined for hydroxypropylmethylcellulose (E5), hydroxypropylcellulose (EF and SSL), povidone (K30), copovidone, polyethylene glycol (4000), lactose and mannitol. In vitro drug release testing revealed that each selected lubricant/glidant, if present even at concentration of 0.25% w/w, significantly reduced the lag time of press coated tablets. Specifically, colloidal SiO2 and/or magnesium stearate were detrimental while other lubricants/glidants were relatively less injurious. Among hydrophilic additives, freely water soluble fillers had utmost influence in lag time, whereas, comparatively less impact was observed with polymeric binders. Concisely, glidant and lubricant should be chosen to have minimal impact on lag time and further judicious selection of hydrophilic additives should be exercised for modulating lag time of pulsatile release formulations.
Morse, D R; Furst, M L; Belott, R M; Lefkowitz, R D; Spritzer, I B; Sideman, B H
1987-07-01
Without peritreatment antibiotics, infectious flare-ups (about 15% incidence) and serious sequelae follow endodontic treatment of asymptomatic teeth with necrotic pulps and associated periapical lesions. Antibiotics administered after endodontic treatment (4-day regimen) reduce the flare-up incidence to about 2%, but hypersensitivity responses, sensitization, resistant microbes, and drug-taking compliance are potential problems. To ascertain whether a specific prophylactic antibiotic (high-dose, 1-day regimen) would preferentially maintain this low flare-up incidence while overcoming antibiotic-related problems, 315 patients with quiescent pulpal necrosis and an associated periapical lesion were randomly given either penicillin V or erythromycin (base or stearate). Evaluations of flare-up after endodontic treatment were done at 1 day, 1 week, and 2 months. A 2.2% flare-up incidence was found, with no statistically significant differences for penicillin (0.0%), base (2.9%), and stearate (3.8%). No hypersensitivity responses occurred. Gastrointestinal side effects were found primarily with the erythromycins (12.4%). A comparative analysis of the data from our first study (no peritreatment antibiotics) and the pooled data from our last two investigations (including the current trial) showed that peritreatment antibiotic coverage significantly reduced flare-ups and serious sequelae after endodontic treatment (p less than 0.001).
Crissey, S; Ange, K; Slifka, K; Bowen, P; Stacewicz-Sapuntzakis, M; Langman, C; Sadler, W; Ward, A
2001-01-01
Nutritional status for six captive canid species (n=34) and four captive ursid species (n=18) were analyzed. The species analyzed included: African wild dog (Lycaon pictus), arctic fox (Alopex lagopus), gray wolf (Canis lupus), maned wolf (Chrysocyon brachyurus), Mexican wolf (Canis lupus baleiyi), red wolf (Canis rufus), brown bear (Ursus arctos), polar bear (Ursus maritimus), spectacled bear (Tremarctos ornatus), and sun bear (Ursus malayanus). Diet information was collected for these animals from each participating zoo (Brookfield Zoo, Fort Worth Zoo, Lincoln Park Zoological Gardens, and North Carolina Zoological Park). The nutritional composition of the diet for each species at each institution met probable dietary requirements. Blood samples were collected from each animal and analyzed for vitamin D metabolites 25(OH)D and 1,25(OH)(2)D, vitamin A (retinol, retinyl stearate, retinyl palmitate), vitamin E (alpha-tocopherol and gamma-tocopherol) and selected carotenoids. Family differences were found for 25(OH)D, retinol, retinyl stearate, retinyl palmitate and gamma-tocopherol. Species differences were found for all detectable measurements. Carotenoids were not detected in any species. The large number of animals contributing to these data, provides a substantial base for comparing the nutritional status of healthy animals and the differences among them.
Ito, Manabu; Aoki, Shigeru; Uchiyama, Jumpei; Yamato, Keisuke
2018-04-20
Sticking is a common observation in the scale-up stage on the punch tip using a commercial tableting machine. The difference in the total compression time between a laboratory and a commercial tableting machine is considered one of the main root causes of scale up issues in the tableting processes. The proposed Size Adjusted for Scale-up (SAS) punch can be used to adjust the consolidation and dwell times for commercial tableting machine. As a result, the sticking phenomenon is able to be replicated at the pilot scale stage. As reported in this paper, the quantification of sticking was measured using a 3D laser scanning microscope to check the tablet surface. It was shown that the sticking area decreased with the addition of magnesium stearate in the formulation, but the sticking depth was not affected by the additional amount of magnesium stearate. It is proposed that use of a 3D laser scanning microscope can be applied to evaluate sticking as a process analytical technology (PAT) tool and so sticking can be monitored continuously without stopping the machine. Copyright © 2018. Published by Elsevier Inc.
Challenges in detecting magnesium stearate distribution in tablets.
Lakio, Satu; Vajna, Balázs; Farkas, István; Salokangas, Henri; Marosi, György; Yliruusi, Jouko
2013-03-01
Magnesium stearate (MS) is the most commonly used lubricant in pharmaceutical industry. During blending, MS particles form a thin layer on the surfaces of the excipient and drug particles prohibiting the bonding from forming between the particles. This hydrophobic layer decreases the tensile strength of tablets and prevents water from penetrating into the tablet restraining the disintegration and dissolution of the tablets. Although overlubrication of the powder mass during MS blending is a well-known problem, the lubricant distribution in tablets has traditionally been challenging to measure. There is currently no adequate analytical method to investigate this phenomenon. In this study, the distribution of MS in microcrystalline cellulose (MCC) tablets was investigated using three different blending scales. The crushing strength of the tablets was used as a secondary response, as its decrease is known to result from the overlubrication. In addition, coating of the MCC particles by MS in intact tablets was detected using Raman microscopic mapping. MS blending was more efficient in larger scales. Raman imaging was successfully applied to characterize MS distribution in MCC tablets despite low concentration of MS. The Raman method can provide highly valuable visual information about the proceeding of the MS blending process. However, the measuring set-up has to be carefully planned to establish reliable and reproducible results.
Démuth, Balázs; Farkas, Attila; Balogh, Attila; Bartosiewicz, Karolina; Kállai-Szabó, Barnabás; Bertels, Johny; Vigh, Tamás; Mensch, Jurgen; Verreck, Geert; Van Assche, Ivo; Marosi, György; Nagy, Zsombor K
2016-09-01
Investigation of downstream processing of nanofibrous amorphous solid dispersions to generate tablet formulation is in a quite early phase. Development of high speed electrospinning opened up the possibility to study tableting of electrospun solid dispersions (containing polyvinylpyrrolidone-vinyl acetate and itraconazole [ITR] in this case). This work was conducted to investigate the influence of excipients on dissolution properties and the feasibility of scaled-up rotary press tableting. The dissolution rates from tablets proved to be mainly composition dependent. Magnesium stearate acted as a nucleation promoting agent (providing an active hydrophobic environment for crystallization of ITR) hindering the total dissolution of ITR. This crystallization process proved to be temperature dependent as well. However, the extent of dissolution of more than 95% was realizable when a less hydrophobic lubricant, sodium stearyl fumarate (soluble in the medium), was applied. Magnesium stearate induced crystallization even if it was put in the dissolution medium next to proper tablets. After optimization of the composition, scaled-up tableting on a rotary press was carried out. Appropriate dissolution of ITR from tablets was maintained for 3 months at 25°C/60% relative humidity. HPLC measurements confirmed that ITR was chemically stable both in the course of downstream processing and storage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate.
Frungillo, Lucas; Martins, Dorival; Teixeira, Sérgio; Anazetti, Maristela Conti; Melo, Patrícia da Silva; Durán, Nelson
2009-12-01
Tumoral cells are known to have a higher ascorbic acid uptake than normal cells. Therefore, the aim of this study was to obtain polymeric nanoparticles containing the antitumoral compound trans-dehydrocrotonin (DHC) functionalized with L-ascorbic acid 6-stearate (AAS) to specifically target this system tumoral cells. Nanoparticle suspensions (NP-AAS-DHC) were prepared by the nanoprecipitation method. The systems were characterized for AAS presence by thin-layer chromatography and for drug loading (81-88%) by UV-Vis spectroscopy. To further characterize these systems, in vitro release kinetics, size distribution (100-140 nm) and Zeta potential by photon-correlation spectroscopic method were used. In vitro toxicity against HL60 cells was evaluated by tetrazolium reduction and Trypan blue exclusion assays. Cell death by apoptosis was quantified and characterized by flow cytometry and caspase activity. Zeta potential analyses showed that the system has a negatively charged outer surface and also indicate that AAS is incorporated on the external surface of the nanoparticles. In vitro release kinetics assay showed that DHC loaded in nanoparticles had sustained release behavior. In vitro toxicity assays showed that NP-AAS-DHC suspension was more effective as an antitumoral than free DHC or NP-DHC and increased apoptosis induction by receptor-mediated pathway. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V
2015-10-12
This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. Copyright © 2015 Elsevier B.V. All rights reserved.
2002-04-01
stearic acid, palmitic acid, octadecanol, zinc stearate, silicone grease, silicone oil, organosilicon resin , asphalt, and estane, as single or...small amount of urea was present. The product crystallized directly from the reaction mixture. The following reaction conditions were changed in the...triazacycloheptane (3) includes Mannich condensation of ethylenedinitramine with formaldehyde and monoethanolamine to give 3- ethanol- 1,5-dinitro-l1,3,5
Controlled-Release Personal Use Arthropod Repellent Formulation
1985-09-25
proteins such as the skin. The optimal partition coefficient for dermal v penetration, 1.0, is representative of substances such P DEET which are...BASE #2968-19A CTFA/UPS/NF Designation Vendor Name % w/w Part A Cholesterol NF Croda 0.5 Cetyl Alcohol NF Sherex Adol 52 NF 0.5 Glyceryl Stearate CTFA...consisting of Polysorbate 80, Cetyl Acetate and Acetylated Lanolin Alcohol. - Crodamol PTC is Croda , Inc., name for Pentaerythritol Tetra Caprate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaut, Anaïs; Le Guillou, Dounia; Moreau, Caroline
Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations ofmore » insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2E1) activity. • APAP cytotoxicity was stronger in steatotic HepaRG cells with higher CYP2E1 activity.« less
Extinguishing agent for combustible metal fires
Riley, John F.; Stauffer, Edgar Eugene
1976-10-12
A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.
Improving the hardness of dry granulated tablets containing sodium lauryl sulfate.
Moore, Francis; Okelo, Geoffrey; Colón, Ivelisse; Kushner, Joseph
2010-11-15
The impact of the addition of a wetting agent, the surfactant sodium lauryl sulfate (SLS), on the tablet hardness of a dry granulated, solid oral dosage form was investigated. In three batches, SLS was added concurrently with: (1) a poorly soluble, highly hydrophobic active pharmaceutical ingredient (API) and the other excipients prior to the initial blending step, (2) magnesium stearate prior to roller compaction, or (3) magnesium stearate prior to tableting. A fourth batch, which did not contain SLS, served as a control. The maximum hardness of 100 mg, 1/4″-SRC tablets for the four batches--SLS added initially, prior to roller compaction, prior to tableting, and no SLS--were 61±3, 71±3, 89±5, and 86±3N, respectively, suggesting reduced processing of SLS improves tablet hardness by ∼50%. Dissolution of the tablets in 900 ml of simulated gastric fluid with paddles at 75 rpm showed that: (1) there was no impact on the insertion point of SLS into the process on API dissolution, and (2) that the presence of SLS improved dissolution by 5% compared to the control tablets. Adding SLS just prior to tableting can improve tablet hardness and yield similar dissolution performance relative to SLS addition prior to the initial blending step. Copyright © 2010 Elsevier B.V. All rights reserved.
Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg
2013-01-01
This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath’s piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers’ diameter regularity (core and sheath). The materials’ viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core’s specific resistance. PMID:28811400
Tong, Mengliang; Chen, Hongyan; Yang, Zhanhong; Wen, Runjuan
2011-01-01
A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt2) and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt2 and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt2 and 0.25 g β-diketone in 5 g PVC. PMID:21673921
Wang, Bifeng; Friess, Wolfgang
2017-11-01
The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.
Crissey, Susan D; Ange, Kimberly D; Jacobsen, Krista L; Slifka, Kerri A; Bowen, Phyllis E; Stacewicz-Sapuntzakis, Maria; Langman, Craig B; Sadler, William; Kahn, Stephen; Ward, Ann
2003-01-01
Serum concentrations of several nutrients were measured in 12 captive wild felid species including caracal (Felis caracal), cheetah (Acinonyx jubatus), cougar (Felis concolor), fishing cat (Felis viverrinus), leopard (Panthera pardus), lion (Panthera leo), ocelot (Felis pardalis), pallas cat (Felis manul), sand cat (Felis margarita), serval (Felis serval), snow leopard (Panthera uncia) and tiger (Panthera tigris). Diet information was collected for these animals from each participating zoo (Brookfield Zoo, Fort Worth Zoo, Lincoln Park Zoological Gardens and North Carolina Zoological Park). The nutritional composition of the diets at each institution met the probable dietary requirements for each species except for the pallas cat. Blood samples were collected from each animal (n = 69) and analyzed for lipids (total cholesterol, triacylglycerides, HDL cholesterol and LDL cholesterol), vitamin D metabolites [25-hydroxycholecalciferol (25(OH)D) and 1,25-dihydroxycholecalciferol (1,25(OH)(2)D)], vitamin A (retinol, retinyl stearate and retinyl palmitate), vitamin E (alpha- and gamma-tocopherol) and selected carotenoids. Species differences were found for all except triacylglycerides and 1,25(OH)(2)D. Genus differences were found for retinol, retinyl palmitate, retinyl stearate, gamma-tocopherol and beta-carotene. Circulating nutrient concentrations for many of the species in this study have not been reported previously and most have not been compared with the animals' dietary intakes. The large number of animals analyzed provides a substantial base for comparing the serum nutrient concentrations of healthy animals, for both wild and captive exotic species.
Development of matrix-based theophylline sustained-release microtablets.
Rey, H; Wagner, K G; Wehrlé, P; Schmidt, P C
2000-01-01
Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50 degrees C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37 degrees C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50 degrees C for 2 months showed no significant influence on the theophylline release.
Assessing the biodegradability of microparticles disposed down the drain.
McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason
2017-05-01
Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO 2 in 5 d and 90.5 ± 3.1% evolved CO 2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO 2 evolution in 28 d and >82% CO 2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8 ± 4.8, 84.9 ± 2.2, 82.7 ± 4.7, and 86.4 ± 3.2% CO 2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3 ± 6.9 and 5.1 ± 2.8% CO 2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cella, Claudia; Gerges, Irini; Milani, Paolo; Lenardi, Cristina; Argentiere, Simona
2017-02-13
Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are among the most studied systems for drug and gene targeting. So far, the synthesis of stable and uniform PLGA NPs has involved the use of a large excess of polyvinyl surfactants such as poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP), whose removal requires multistep purification procedures of high ecological and economic impact. Hence the development of environment-friendly and cost-effective synthetic procedures for the synthesis of PLGA NPs would effectively boost their use in clinics. This work aims to address this issue by investigating more efficacious alternatives to the so far employed polyvinyl surfactants. More specifically, we developed an innovative synthetic process to achieve stable and uniformly distributed PLGA NPs that involves the use of calcium stearate (CSt), gaining benefits of its high biocompatibility and efficacy at low concentrations and avoiding consequently expensive purification steps. With the help of minimum quantities of polysorbate 60 and sorbitane monostearate, CSt-stabilized PLGA NPs with different sizes and structures were synthesized. The influence of CSt on the encapsulation efficiency of bioactive molecules has been also investigated. The effective encapsulation of both hydrophobic (curcumin) and hydrophilic (fibrinogen labeled with Alexa647) biomolecules into NPs was demonstrated by confocal microscopy, and their release quantified by spectrofluorimetric analyses. Finally, degradation and cytotoxicity studies showed that CSt stabilized NPs were stable under physiological conditions and with good biocompatibility, thus looking promising for further investigation as controlled release devices.
Cold pearl surfactant-based blends.
Crombie, R L
1997-10-01
Pearlizing agents have been used for many years in cosmetic formulations to add a pearlescent effect. Cold pearl surfactant-based blends are mixtures of glycol stearates and surfactants which can be blended in the cold into a wide range of personal-care formulations to create a pearlescent lustre effect. Under controlled manufacturing conditions constant viscosities and crystalline characteristics can be obtained. The development of these blends has been driven by efforts to improve the economics of adding solid pearlizing agents directly into a hot mix formulation. This paper summarizes the history of pearlizers, describes their advantages and physical chemistry of the manufacturing process. Finally some suggestions for applications are given. Les agents nacrants sont utilises depuis de nombreuses annees dans les formulations cosmetiques pour ajouter un effet nacre. Les melanges a froid a base de tensioactif nacre sont des melanges de stearates de glycol et de tensioactifs qui peuvent etre melanges a froid dans une large gamme de formulations d'hygiene personnelle pour creer un effet de lustre nacre. On peut obtenir des viscosites et des proprietes cristallines constantes avec des conditions de fabrication maitrisees. Le developpement de ces melanges a ete porte par les efforts pour ameliorer les couts de l'ajout d'agents nacrants solides directement dans une formulation melangee de l'ajout d'agents nacrants solides directement dans une formulation melangee a chaud. Cet article resume l'histoire des agents nacrants, decrit leurs avantages et al physico-chimie du procede de fabrication. On emet a la fin cetaines suggestions d'applications.
Lapham, Darren P; Lapham, Julie L
2017-09-15
Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of S BET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. S BET of a mono-hydrate sample is 5.6m 2 g -1 and 3.2m 2 g -1 at 40°C and 100°C degassing respectively but 23.9m 2 g 1 and 5.9m 2 g -1 for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show S BET >15m 2 g 1 , BET C-values <7 and BET correlation coefficients <0.98 before dehydration. Possible mechanisms for atypical isotherms are critically discussed together with the suitability of applying BET theory to nitrogen adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique
2014-11-25
Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.
Di Martino, Piera; Joiris, Etienne; Martelli, Sante
2004-09-01
The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The mix of either nitrofurantoine large crystals or fine crystals with cellulose microcrystalline showed a negative interaction in all proportions, whatever particle sizes. The lubricant addition induced a positive interaction with Vivapur of greater particle size distribution (200, 102 and 101) favouring higher particle adhesivity, while it maintained unaltered that of Vivapurs of lower particle size (105 and 99). Definitely, when cohesive forces are predominant (Vivapur 105 and 99), the establishment of adhesive bonds between nitrofurantoine and Vivapur remain unnoticed; on the contrary, when cohesion bonds between microcrystalline cellulose particles are weakened by the presence of magnesium stearate, the existence of adhesion bonds between particles of different nature is in evidence, leading to a positive interaction.
Encyclopedia of Explosives and Related Items. Volume 10
1983-01-01
trinitroethyl stearate 6 E330 Ethyiphosphorodimethylamidycyanadate se Ethyl-substituted acid amides, N-trinitro derivs GA chemical warfare agent 2.C 167; 6...6 GI Galex 6 G8-G9 GA (chemical warfare agent ) 6 G 1 Galil rifle 6 G9 GA see Dimethylaminocyanophosphoric acid Galil rifle 6 G9 5 D1308-D1309 Gabeaud...G45 Gas volumes produced on expln or detonation Gelatina explosiva de guerra 6 G45 of expls 6 G36-G41 Gelatina gomma 6 G45 Gas warfare agents 2 C165
1984-04-01
1 hyl Stearate - 1 1 1 hlorobenzene - - 15 - chloropropane - 1 1 1 )modichloromethane 20 - - - irce: STORET System Ul1...7,412725 MISSISSIPPI AND LOUISIANA ESTUARINE AREAS FRESHWATER 1 /6DIERSION TO LAKE PO..(U) ARMY ENGINEER DISTRICT NEW ORLEANS LR D L CHEW APR 84...UNCLSSIFIED F/G 13/2 UL mhmhmhmmhhhl Ehmhhhhhhhmmhu mhhhmhhhhhhhmu mhhmhhhhmhhl IIIIIIIIIIIIIIu III111112, 12 1 4 w 11111 1 II- llll , I 111 18 Pf 11 t 1
2013-01-01
Background The compatibility study of active substances with excipients finds an important role in the domain of pharmaceutical research, being known the fact that final formulation is the one administered to the patient. In order to evaluate the compatibility between active substance and excipients, different analytical techniques can be used, based on their accuracy, reproducibility and fastness. Results Compatibility study of two well-known active substances, procaine and benzocaine, with four commonly used excipients, was carried out employing thermal analysis (TG/DTG/HF) and Fourier Transform Infrared Spectroscopy (UATR-FT-IR). The selected excipients were microcrystalline cellulose, lactose monohydrate, magnesium stearate and talc. Equal proportion of active substance and excipients (w/w) was utilized in the interaction study. The absolute value of the difference between the melting point peak of active substances and the one corresponding for the active substances in the analysed mixture, as well the absolute value of the difference between the enthalpy of the pure active ingredient melting peak and that of its melting peak in the different analysed mixtures were chosen as indexes of the drug-excipient interaction degree. All the results obtained through thermal analysis were also sustained by FT-IR spectroscopy. Conclusions The corroboration of data obtained by thermal analysis with the ones from FT-IR spectroscopy indicated that no interaction occurs between procaine and benzocaine, with microcrystalline cellulose and talc, as well for the benzocaine-lactose mixture. Interactions were confirmed between procaine and benzocaine respectively and magnesium stearate, and for procaine and lactose. PMID:23962059
Morse, D R; Furst, M L; Lefkowitz, R D; D'Angelo, D; Esposito, J V
1990-05-01
In a previous study by our group with patients having asymptomatic teeth with pulpal necrosis and an associated periapical radiolucent lesion (PN/PL), it was shown that prophylactic administration of penicillin V or erythromycin (high-dose, 1-day regimen) resulted in a low incidence of flare-up (mean = 2.2%) and a low incidence of swelling and pain not associated with flare-up. No hypersensitivity responses occurred, and gastrointestinal side effects were found primarily with the erythromycins. To ascertain whether a single-dose administration of a long-acting 1-gm tablet of the cephalosporin antibiotic cefadroxil would result in a similar outcome, the present study was undertaken with 200 patients having quiescent PN/PL. The patients were randomly given either cefadroxil or erythromycin (base or stearate). Evaluations of flare-up were done 1 day, 1 week, and 2 months after endodontic treatment. A 2.0% flare-up incidence was found, with no statistically significant differences for cefadroxil (1.0%), stearate (2.0%), or base (4.0%). No hypersensitivity responses occurred. Gastrointestinal side effects were found primarily with the erythromycins (19.0%). The results showed that a 1-gm, single-dose regimen of cefadroxil was as effective as erythromycin and penicillin in preventing flare-ups and serious sequelae. A comparative analysis of the data from our first study (no peritreatment antibiotics) and the pooled data from our last three investigations (including the current trial) showed that peritreatment antibiotic coverage significantly reduced flare-ups and serious sequelae after endodontic treatment of asymptomatic PN/PL (p less than 0.001).
NASA Astrophysics Data System (ADS)
Liang, Yong; Yu, Keyi; Zheng, Qinzhong; Xie, Jiuren; Wang, Ting-Jie
2018-04-01
The surface modification of calcium carbonate (CaCO3) particles, which is used as a filler, significantly affects the properties of the composed materials. The effects of thermal treatment on ground calcium carbonate (GCC) particles subjected to hydrophobic modification using sodium stearate (RCOONa) were studied. The contact angle of the modified GCC particles increased from 24.7° to 118.9° when the amount of RCOONa added was increased from 0% to 5% and then decreased to 97.5° when the RCOONa content was further increased to 10%. When a large amount of RCOONa was added, RCOO- reacts with Ca2+ and generates (RCOO)2Ca nuclei, which are adsorbed on the surface of the GCC particles, forming a discontinuous (RCOO)2Ca modified layer. After thermal treatment under sealed conditions, the contact angle of the GCC particles modified using 1.5% RCOONa/GCC increased from 112.8° to 139.6°. The thermal stability of the (RCOO)2Ca modified layer was increased, with the temperature increase of the mass-loss peak from 358.0 to 463.0 °C. It is confirmed that the spreading of melted (RCOO)2Ca nuclei on the surface of the GCC particles during the thermal treatment increased the continuity of the modified layer, converting the physical adsorption of the (RCOO)2Ca nuclei into chemisorption. The grafting density of RCOO- on the GCC particle surface after thermal treatment approximates to 5.00/nm2, which is close to the single-molecular-layer grafting density of RCOO-, indicating that excellent modification was achieved.
Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V
2015-05-01
Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.
Carol, D; Karpagam, S; Kingsley, S J; Vincent, S
2012-07-01
The biodegradation of spent saline bottles, a low density polyethylene product (LDPE) by two selected Arthrobacter sp. under in vitro conditions is reported. Chemical and UV pretreatment play a vital role in enhancing the rate of biodegradation. Treated LDPE film exhibits a higher weight loss and density when compared to untreated films. Arthrobacter oxydans and Arthrobacter globiformis grew better in medium containing pretreated film than in medium containing untreated film. The decrease in density and weight loss of LDPE was also more for pretreated film when compared to untreated film indicating the affect of abiotic treatment on mechanical properties of LDPE. The decrease in the absorbance corresponding to carbonyl groups and double bonds that were generated during pretreatment suggest that some of the double bonds were cut by Arthrobacter species. Since Arthrobacter sp. are capable of degrading urea, splitting of urea group were also seen in FTIR spectrum indicating the evidence of biodegradation after microbial incubation. The results indicated that biodegradation rate could be enhanced by exposing LDPE to calcium stearate (a pro-oxidant) which acts as an initiator for the oxidation of the polymers leading to a decrease of molecular weight and formation of hydrophilic group. Therefore, the initial step for biodegradation of many inert polymers depends on a photo-oxidation of those polymers. The application in sufficient details with improved procedures utilizing recombinant microorganism with polymer degradation capacity can lead to a better plastic waste management in biomedical field. The present plastic disposal trend of waste accumulation can be minimized with this promising eco-friendly technique.
Mortazavi, Seyed Alireza; Jafariazar, Zahra; Ghadjahani, Yasaman; Mahmoodi, Hoda; Mehtarpour, Farzaneh
2014-01-01
The purpose of this study was preparation and evaluation of sustained release matrix type ocular mini-tablets of timolol maleate, as a potential formulation for the treatment of glaucoma. Following the initial studies on timolol maleate powder, it was formulated into ocular mini-tablets. The polymers investigated in this study included cellulose derivatives (HEC, CMC, EC) and Carbopol 971P. Mannitol was used as the solubilizing agent and magnesium stearate as the lubricant. Mini-tablets were prepared by through mixing of the ingredients, followed by direct compression. All the prepared formulations were evaluated in terms of physicochemical tests, including uniformity of weight, thickness, crushing strength, friability and in-vitro drug release. Four groups of formulations were prepared. The presence of different amounts of cellulose derivatives or Carbopol 971P, alone, was studied in group A formulations. In group B formulations, the effect of adding Carbopol 971P alongside different cellulose derivatives was investigated. Group C formulations were made by including mannitol as the solubilizing agent, alongside Carbopol 971P and a cellulose derivative. In group D formulations, mini-tablets were made using Carbopol 971P, alongside two different cellulose derivative. The selected formulation (C1) contained ethyl cellulose, Carbopol 971P, mannitol and magnesium stearate, which showed almost 100% drug release over 5 h. Based on kinetic studies, this formulation was found to best fit the zero-order model of drug release. However, the Higuchi and Hixson -Crowell models also showed a good fit. Hence, overall, formulation C1 was chosen as the best formulation. PMID:24734053
Dougherty, R M; Allman, M A; Iacono, J M
1995-05-01
Ten middle-aged males participated in a crossover study to determine the cholesterolemic effect of high amounts of stearic acid in a natural diet. They consumed a 20-d stabilization diet followed by two 40-d intervention diets containing either 1.5% of energy as stearic (18:0) acid and 7.3% of energy as palmitic (16:0) acid (low stearate: LS) or 2.4% of energy as 16:0 and 7.3% of energy as 18:0 (high stearate: HS). The experimental diets also contained approximately 10% of energy each as saturated and monounsaturated fatty acids and 7.2-8% of energy as polyunsaturated fatty acids. The primary source of 18:0 in the HS diet was sheanut oil (commercially referred to as shea butter) and palm oil and butter in the LS diet. Plasma total, low-density-lipoprotein, and high-density-lipoprotein cholesterol were significantly lower with the HS than with the LS diet. Total fecal fatty acid excretion was higher throughout the HS period. Apparent digestibility of the major dietary fatty acids showed that all of the selected fatty acids, except 18:0, were > or = 95% absorbed. These data demonstrate that feeding diets containing about two times the usual amount of stearic acid consumed in the United States, contributed to an increase in plasma lipoprotein concentrations at 40 d from an earlier decrease at 20 d. The time required to achieve stable cholesterol concentrations appears to vary depending on the kind of saturated fatty acids present in the diet.
Lau, Michael; Young, Paul M; Traini, Daniela
2017-08-01
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
Lau, Michael; Young, Paul M; Traini, Daniela
2017-06-01
Particle micronization for inhalation can impart surface disorder (amorphism) of crystalline structures. This can lead to stability issues upon storage at elevated humidity from recrystallization of the amorphous state, which can subsequently affect the aerosol performance of the dry powder formulation. The aim of this study was to investigate the impact of an additive, magnesium stearate (MGST), on the stability and aerosol performance of co-milled active pharmaceutical ingredient (API) with lactose. Blends of API-lactose with/without MGST were prepared and co-milled by the jet-mill apparatus. Samples were stored at 50% relative humidity (RH) and 75% RH for 1, 5, and 15 d. Analysis of changes in particle size, agglomerate structure/strength, moisture sorption, and aerosol performance were analyzed by laser diffraction, scanning electron microscopy (SEM), dynamic vapor sorption (DVS), and in-vitro aerodynamic size assessment by impaction. Co-milled formulation with MGST (5% w/w) led to a reduction in agglomerate size and strength after storage at elevated humidity compared with co-milled formulation without MGST, as observed from SEM and laser diffraction. Hysteresis in the sorption/desorption isotherm was observed in the co-milled sample without MGST, which was likely due to the recrystallization of the amorphous regions of micronized lactose. Deterioration in aerosol performance after storage at elevated humidity was greater for the co-milled samples without MGST, compared with co-milled with MGST. MGST has been shown to have a significant impact on co-milled dry powder stability after storage at elevated humidity in terms of physico-chemical properties and aerosol performance.
Hattori, Y; Tazuma, S; Yamashita, G; Ochi, H; Sunami, Y; Nishioka, T; Hyogo, H; Yasumiba, S; Kajihara, T; Nakai, K; Tsuboi, K; Asamoto, Y; Sakomoto, M; Kajiyama, G
2000-07-01
Phospholipase A2 plays a role in cholesterol gallstone development by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. Lysolecithin and polyunsaturated free fatty acids are known to stimulate the synthesis and/or secretion of gallbladder mucin via a prostanoid pathway, leading to enhancing cholesterol crystal nucleation and growth, and therefore, the action of phospholipase A2 is associated, in part, with bile phospholipid fatty acid. To clarify this hypothesis, we evaluated the effect on bile lipid metastability in vitro of replacing phospholipids with lysolecithin and various free fatty acids. Supersaturated model biles were created with an identical composition (cholesterol saturation index, 1.8; egg yolk lecithin, 34 mM; taurocholate, 120 mM; cholesterol, 25 mM) except for 5%, 10%, or 20% replacement of egg yolk lecithin with a combination of palmitoyl-lysolecithin and a free fatty acid (palmitate, stearate, oleate, linoleate, or arachidonate), followed by time-sequentially monitoring of vesicles and cholesterol crystals using spectrophotometer and video-enhanced differential contrast microscopy. Replacement with hydrophilic fatty acids (linoleate and arachidonate) reduced vesicle formation and promoted cholesterol crystallization, whereas an enhanced cholesterol-holding capacity was evident after replacement with hydrophobic fatty acids (palmitate and stearate). These results indicate that the effect of phospholipase A2 on bile lithogenecity is modulated by the fatty acid species in bile phospholipids, and therefore, that the role of phospholipase A2 in cholesterol gallstone formation is dependent, in part, on biliary phospholipid species selection at the site of hepatic excretion.
NASA Astrophysics Data System (ADS)
Croitoru, C.; Pascu, A.; Roata, I. C.; Stanciu, E. M.
2017-06-01
In order to obtain high performance calcium carbonate-reinforced HDPE and PP composites, the dispersibility and compatibility of the inorganic phase in the polymer has been achieved through surface treatment of the amorphous calcium carbonate filler with stearic acid. The surface coating of the inorganic phase has been proved by XRD and FTIR spectroscopy, through forming of an intermediate layer of calcium stearate which acts as a surfactant, efficient in providing an optimum compatibility with the dominatingly hydrophobic polymer matrix, as determined from the structural information obtained through samples cross-sections analysing.
Sustaining pattern of phenformin hydrochloride using various polymers and waxes.
Pandey, V P; Kannappan, N; Manavalan, R; Subburaj, T
2002-01-01
The present study was carried out to formulate matrix tablets of phenformin hydrochloride. Granules of phenformin HCl were prepared by using ethyl cellulose, eudragit RS 100, gum acacia, carnauba wax, stearyl alcohol, glyceryl monostearate and triethanol amine. Thus the granules were compressed and fourteen tablets formulations were prepared. All the physical parameters of granules and matrix tablets were studied including compatibility study. One commercial timed disintegration capsule was also included for study and comparison. The results of in vitro studies showed that sustained release matrix tablet might be prepared using carnauba wax, stearyl alcohol, triethanol amine and magnesium stearate.
PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration
NASA Astrophysics Data System (ADS)
Kashanian, Soheila; Rostami, Elham
2014-03-01
In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.
Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide
2017-02-01
Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.
Spigoni, Valentina; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C.; Dei Cas, Alessandra
2017-01-01
Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot (Citrus bergamia), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7-O-neohesperidoside-6″-O-HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7-O-glucuronide, hesperetin-3′-O-glucuronide, naringenin-7-O-glucuronide and naringenin-4′-O-glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4′-O-glucuronide and hesperetin-7-O-glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs. PMID:29211032
Spigoni, Valentina; Mena, Pedro; Fantuzzi, Federica; Tassotti, Michele; Brighenti, Furio; Bonadonna, Riccardo C; Del Rio, Daniele; Dei Cas, Alessandra
2017-12-06
Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot ( Citrus bergamia ), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7- O -neohesperidoside-6″- O -HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7- O -glucuronide, hesperetin-3'- O -glucuronide, naringenin-7- O -glucuronide and naringenin-4'- O -glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4'- O -glucuronide and hesperetin-7- O -glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs.
Okoye, Patrick; Wu, Stephen H; Dave, Rutesh H
2012-12-01
The effects of magnesium stearate (MgSt) polymorphs-anhydrate (MgSt-A), monohydrate (MgSt-M), and dihydrate (MgSt-D)-on rheological properties of powders were evaluated using techniques such as atomic analysis and powder rheometry. Additional evaluation was conducted using thermal analysis, micromeritics, and tableting forces. In this study, binary ratios of neat MgSt polymorphs were employed as lubricants in powder blends containing acetaminophen (APAP), microcrystalline cellulose (MCC), and lactose monohydrate (LAC-M). Powder rheometry was studied using permeability, basic flow energy (BFE), density, and porosity analysis. Thermal conductivity and differential scanning calorimetric analysis of MgSt polymorphs were employed to elucidate MgSt effect on powder blends. The impact of MgSt polymorphs on compaction characteristics were analyzed via tablet compression forces. Finally, the distribution of atomized magnesium (Mg) ions as a function of intensity was evaluated using laser-induced breakdown spectroscopy (LIBS) on tablets. The results from LIBS analysis indicated the dependency of the MgSt polymorphic forms on the atomized Mg ion intensity, with higher Mg ion intensity suggesting higher lubricity index (i.e. greater propensity to over-lubricate). The results from lubricity index suggested the tendency of blends to over-lubricate based on the MgSt polymorphic forms. Finally, tableting forces suggested that MgSt-D and MgSt-A offered processing benefits such as lower ejection and compression forces, and that MgSt-M showed the most stable compression force in single or combined polymorphic ratios. These results suggested that the initial moisture content, crystal arrangement, intra- and inter-molecular packing of the polymorphs defined their effects on the rheology of lubricated powders.
Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.
Tripathi, Bhumika; Platel, Kalpana
2010-01-01
Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.
Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P
2015-01-01
Background: Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). Objective: This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Methods: Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. Results: The STs and the PEs and SEs were poorly hydrolyzed (1.69–4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = −0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Conclusions: Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. PMID:25972524
Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P
2015-07-01
Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. The STs and the PEs and SEs were poorly hydrolyzed (1.69-4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = -0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. © 2015 American Society for Nutrition.
Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D
2015-08-01
Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.
Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion.
Roblegg, Eva; Jäger, Evelyn; Hodzic, Aden; Koscher, Gerold; Mohr, Stefan; Zimmer, Andreas; Khinast, Johannes
2011-11-01
The objective of this study was the development of retarded release pellets using vegetable calcium stearate (CaSt) as a thermoplastic excipient. The matrix carrier was hot melt extruded and pelletized with a hot-strand cutter in a one step continuous process. Vegetable CaSt was extruded at temperatures between 100 and 130°C, since at these temperatures cutable extrudates with a suitable melt viscosity may be obtained. Pellets with a drug loading of 20% paracetamol released 11.54% of the drug after 8h due to the great densification of the pellets. As expected, the drug release was influenced by the pellet size and the drug loading. To increase the release rate, functional additives were necessary. Therefore, two plasticizers including glyceryl monostearate (GMS) and tributyl citrate (TBC) were investigated for plasticization efficiency and impact on the in vitro drug release. GMS increased the release rate due to the formation of pores at the surface (after dissolution) and showed no influence on the process parameters. The addition of TBC increased the drug release to a higher extent. After dissolving, the pellets exhibited pores at the surface and in the inner layer. Small- and Wide-Angle X-ray Scattering (SWAXS) revealed no major change in crystalline peaks. The results demonstrated that (nearly) spherical CaSt pellets could be successfully prepared by hot melt extrusion using a hot-strand cutter as downstreaming system. Paracetamol did not melt during the process indicating a solid suspension. Due to the addition of plasticizers, the in vitro release rate could be tailored as desired. Copyright © 2011 Elsevier B.V. All rights reserved.
Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj
2015-01-05
Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in crystallization within the tablet.
A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.
Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Ostrowski, Andrzej; Malinowska, Karolina; Herbich, Jerzy; Golec, Barbara; Wielgus, Ireneusz; Pron, Adam
2014-05-19
A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.
Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.
Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender
2016-12-01
Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano
2008-01-01
Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.
Recommended Replacements for Tetryl in Australian Production Fuzes and Related Ordnance,
1987-11-01
RDX/AC629 as lead filling confirms comparable or better performance by RDX/AC629 on either of the RDX-based boosters. A -5 leads in Fuze M739 are... S . zinc stearate/graphite 98.0:1.25:0.5:0.25 Comparison: Debrix 18AS 120 1.496 a Extrapolated from data for 98.94:1.06 and 98.69:1.31 formulations...71P 8 1 ~ Aq CENEN on FO A R IAN L/I t A IF. I 4JrgALs RLj A ) R SF L. 6UN~cLASSIFIED -- IM DO AA - 14 F/G 19/1 NL . 1I.. EL6 ’ I lin MRL-R-.lO89 AR
Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots
NASA Astrophysics Data System (ADS)
Thuy, Ung Thi Dieu; Reiss, Peter; Liem, Nguyen Quang
2010-11-01
Chemically synthesized InP/ZnS core/shell quantum dots (QDs) are studied using time-resolved photoluminescence spectroscopy and x-ray diffraction. Zinc stearate, which is added during the synthesis of the InP core, significantly improves the optical characteristics of the QDs. The luminescence quantum yield (QY) reaches 60%-70% and the emission is tunable from 485 to 586 nm by varying the Zn2+:In3+ molar ratio and growth temperature. The observed increased Stokes shift, luminescence decay time, and QY in the presence of Zn are rationalized by the formation of an In(Zn)P alloy structure that causes band-edge fluctuation to enhance the confinement of the excited carriers.
Evaluation of Gum of Moringa oleifera as a Binder and Release Retardant in Tablet Formulation
Panda, D. S.; Choudhury, N. S. K.; Yedukondalu, M.; Si, S.; Gupta, R.
2008-01-01
The present study was undertaken to find out the potential of gum from Moringa oleifera to act as a binder and release retardant in tablet formulations. The effect of calcium sulphate dihydrate (water insoluble) and lactose (water soluble) diluent on the release of propranolol hydrochloride was studied. The DSC thermograms of drug, gum and mixture of gum/drug indicated no chemical interaction. Tablets (F1, F2, F3, and F4) were prepared containing calcium sulphate dihydrate as diluent, propranolol hydrochloride as model drug using 10%, 8%, 6% and 4% w/v of gum solution as binder. Magnesium stearate was used as lubricant. Physical and technological properties of granules and tablets like flow rate, Carr index, Hausner ratio, angle of repose, hardness, friability and disintegration time were determined and found to be satisfactory. Tablets were prepared by wet granulation method containing calcium sulphate dihydrate as excipient, propranolol hydrochloride as model drug using 10%, 20% and 30% of gum as release retardant, magnesium stearate was used as lubricant. Similarly tablets were prepared replacing lactose with calcium sulphate dihydrate. Despite of the widely varying physico-chemical characteristics of the excipients, the drug release profiles were found to be similar. The drug release increased with increasing proportions of the excipient and decreased proportion of the gum irrespective of the solubility characteristics of the excipient. The values of release exponent ‘n’ are between 0.37 and 0.54. This implies that the release mechanism is Fickian. There is no evidence that the dissolution or erosion of the excipient has got any effect on the release of the drug. The t50% values for tablets containing calcium sulphate dihydrate were on an average 10%-15% longer than the tablets containing lactose as excipient. These relatively small differences in t50% values suggest that the nature of excipient used appeared to play a minor role in regulating the release, while the gum content was a major factor. PMID:21394258
Muzíková, J; Zvolánková, J
2007-12-01
The paper evaluates the differences between the properties of tablets from two coprocessed dry binders based on alpha-lactose monohydrate and cellulose, MicroceLac 100 and Cellactose 80. The substances differ in the type of contained cellulose; MicroceLac 100 contains 25% of microcrystalline cellulose, Cellactose 80, 25% of powdered cellulose. The properties under study included the tensile strength and disintegration time in dependence on compression force, addition of two concentrations of the lubricant sodium stearylfumarate (Pruv) and a 50% addition of the active ingredients ascorbic acid and acetylsalicylic acid. Using one of the compression forces, the effect of Pruv and magnesium stearate on the above-mentioned properties were compared. In the compression forces of 6 and 8 kN the strength of the compacts from pure Cellactose 80 was lower than that of those from MicroceLac 100 both without and with the lubricant. The lubricant sensitivity of dry binders depended on compression force. Pruv decreased the strength of compacts less than magnesium stearate. The tablets from Cellactose 80 possessed a longer disintegration time than those from MicroceLac 100, excepting the tableting materials containing 0.4 Pruv with a compression force of 6 kN. Disintegration time was prolonged with the use of sodium stearylfumarate and it was increased with compression force much more markedly in the case of Cellactose 80. In the presence of ascorbic acid, the strength of tablets was decreased in the case of both dry binders, but it was higher with MicroceLac100, disintegration time was very short and independent of the type of the dry binder. In the case of acetylsalicylic acid, the strength of tablets was higher with a lesser influence of the type of the dry binder, and disintegration time was longer and especially in the case of Cellactose 80 increased with increasing concentration of Pruv.
Aling, Joanna; Podczeck, Fridrun
2012-11-20
The aim of this work was to investigate the plug formation and filling properties of powdered herbal leaves using hydrogenated cotton seed oil as an alternative lubricant. In a first step, unlubricated and lubricated herbal powders were studied on a small scale using a plug simulator, and low-force compression physics and parameterization techniques were used to narrow down the range in which the optimum amount of lubricant required would be found. In a second step these results were complemented with investigations into the flow properties of the powders based on packing (tapping) experiments to establish the final optimum lubricant concentration. Finally, capsule filling of the optimum formulations was undertaken using an instrumented tamp filling machine. This work has shown that hydrogenated cotton seed oil can be used advantageously for the lubrication of herbal leaf powders. Stickiness as observed with magnesium stearate did not occur, and the optimum lubricant concentration was found to be less than that required for magnesium stearate. In this work, lubricant concentrations of 1% or less hydrogenated cotton seed oil were required to fill herbal powders into capsules on the instrumented tamp-filling machine. It was found that in principle all powders could be filled successfully, but that for some powders the use of higher compression settings was disadvantageous. Relationships between the particle size distributions of the powders, their flow and consolidation as well as their filling properties could be identified by multivariate statistical analysis. The work has demonstrated that a combination of the identification of plug formation and powder flow properties is helpful in establishing the optimum lubricant concentration required using a small quantity of powder and a powder plug simulator. On an automated tamp-filling machine, these optimum formulations produced satisfactory capsules in terms of coefficient of fill weight variability and capsule weight. Copyright © 2012 Elsevier B.V. All rights reserved.
Pragst, F; Auwaerter, V; Sporkert, F; Spiegel, K
2001-09-15
Fatty acid ethyl esters (FAEE) are products of the nonoxidative ethanol metabolism, which are known to be detectable in blood only about 24h after the last alcohol intake. After deposition in hair they should be suitable long-term markers of chronically elevated alcohol consumption. Therefore, a method for the analysis of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate from hair was developed based on the extraction of the hair sample by a dimethylsulphoxide (DMSO)/n-hexane mixture, separation and evaporation of the n-hexane phase and application of headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography-mass spectrometry (GC-MS) to the extract. For use as internal standards, the corresponding D(5)-ethyl esters were prepared. The HS-SPME/GC-MS measurements were automatically performed using a multi-purpose sampler. The detection limits of the FAEE were between 0.01 and 0.04ng/mg and the reproducibility was between 3.5 and 16%. By application of the method to hair samples of 21 fatalities with known heavy alcohol abuse 0.045-2.4ng/mg ethyl myristate, 0.35-13.5ng/mg ethyl palmitate, 0.25-7.7ng/mg ethyl oleate and 0.05-3.85ng/mg ethyl stearate were measured. For social drinkers (30-60g ethanol per week), the concentrations were about one order of magnitude smaller. For 10 teetotalers negative results or traces of ethyl palmitate were found. It was shown by supplementary investigations in single cases that FAEE are also present in sebum, that there is no strong difference in their concentrations between pubic, chest and scalp hair, and that they are detectable in hair segments after a 2 months period of abstinence. From the results follows that the measurement of FAEE concentrations in hair is a useful way for a retrospective detection of alcohol abuse.
Thermal storage in drywall using organic phase-change material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, M.M.; Feldman, D.; Hawes, D.
1987-01-01
Two mixtures of phase-change material (PCM), 49% butyl stearate with 48% butyl palmitate, and 55% lauric acid with 45% capric acid, diluted 10% with fire retardant, were diffused into 13-mm (0.5-in.) wallboard. No exudation of liquid PCM occurs below 25% by weight. In the wallboard, initial PCM freezing points were 21/sup 0/ and 22/sup 0/C (70/sup 0/ and 72/sup 0/F), respectively, with melting points of 17/sup 0/ and 18/sup 0/C (63/sup 0/ and 64/sup 0/F). For a 4/sup 0/C (7/sup 0/F) temperature swing, thermal storage capacities up to 350 kJ/m/sup 2/ (31 Btu/ft/sup 2/) and 317 kJ/m/sup 2/ (28 Btu/ft/supmore » 2/), respectively, are available. These are equivalent to about 3.8 cm (1.5 in.) of concrete cycled through 7/sup 0/C (13/sup 0/F). Preliminary tests showed little extra flame spread beyond that of unloaded wallboard. The thermal conductivity of the wallboard increased from 0.19 to 0.22 W/m /sup 0/C (0.11 to 0.13 Btu/h ft /sup 0/F) with liquid PCM. During melting, the effective thermal diffusivity falls from 2.1 x 10/sup -7/ m/sup 2//s (2.3 x 10/sup -6/ ft/sup 2//s) for the unloaded wallboard to 1.4 x 10/sup -7/ m/sup 2//s (1.5 x 10/sup -6/ ft/sup 2//s) with 23.4% butyl stearate-palmitate and to 1.6 x 10/sup -7/ m/sup 2//s (1.7 x 10/sup -6/ ft/sup 2//s) with 28% of the lauric-capric mixture. (The mixture fraction is defined as the ratio of PCM mass to gypsum mass.)« less
Eddington, N D; Ashraf, M; Augsburger, L L; Leslie, J L; Fossler, M J; Lesko, L J; Shah, V P; Rekhi, G S
1998-11-01
The purpose of this study was to evaluate the effect of formulation and processing changes on the dissolution and bioavailability of propranolol hydrochloride tablets. Directly compressed blends of 6 kg (20,000 units) were prepared by mixing in a 16-qt V blender and tablets were compressed on an instrumented Manesty D3B tablet press. A half-factorial (2(5-1), Resolution V) design was used to study the following variables: filler ratio (lactose/dicalcium phosphate), sodium starch glycolate level, magnesium stearate level, lubricant blend time, and compression force. The levels and ranges of the excipients and processing changes studied represented level 2 or greater changes as indicated by the Scale-up and Post Approval Changes (SUPAC-IR) Guidance. Changes in filler ratio, disintegrant level, and compression force were significant in affecting percent drug released (Q) in 5 min (Q5) and Q10. However, changes in magnesium stearate level and lubricant blend time did not influence Q5 and Q10. Hardness was found to be affected by changes in all of the variables studied. Some interaction effects between the variables studied were also found to be significant. To examine the impact of formulation and processing variables on in vivo absorption, three batches were selected for a bioavailability study based on their dissolution profiles. Thirteen subjects received four propranolol treatments (slow-, medium-, and fast-dissolving formulations and Inderal 80 mg) separated by 1 week washout according to a randomized crossover design. The formulations were found to be bioequivalent with respect to the log Cmax and log AUC0-infinity. The results of this study suggest that (i) bioavailability/bioequivalency studies may not be necessary for propranolol and perhaps other class 1 drugs after level 2 type changes, and (ii) in vitro dissolution tests may be used to show bioequivalence of propranolol formulations with processing or formulation changes within the specified level 2 ranges examined.
Pande, Garima; Akoh, Casimir C; Shewfelt, Robert L
2012-11-01
Omega-3 fatty acids (n-3 FAs) have been positively associated with prevention and treatment of chronic diseases. Intake of high amounts of trans fatty acids (TFAs) is correlated with increased risk of coronary heart disease, inflammation, and cancer. Structured lipid (SL) was synthesized using stearidonic acid (SDA) soybean oil and high-stearate soybean oil catalyzed by Lipozyme(®) TLIM lipase. The SL was compared to extracted fat (EF) from a commercial brand for FA profile, sn-2 positional FAs, triacylglycerol (TAG) profile, polymorphism, thermal behavior, oxidative stability, and solid fat content (SFC). Both SL and EF had similar saturated FA (about 31 mol%) and unsaturated FA (about 68 mol%), but SL had a much lower n-6/n-3 ratio (1.1) than EF (5.8). SL had 10.5 mol% SDA. After short-path distillation, a loss of 53.9% was observed in the total tocopherol content of SL. The tocopherols were lost as free tocopherols. SL and EF had similar melting profile, β' polymorph, and oxidative stability. Margarine was formulated using SL (SLM) and EF (RCM, reformulated commercial margarine). No sensory difference was observed between the 2 margarines. The SL synthesized in this study contained no TFA and possessed desirable polymorphism, thermal properties, and SFC for formulation of soft margarine. The margarine produced with this SL was trans-free and SDA-enriched. The current research increases the food applications of stearidonic acid (SDA) soybean oil. trans-Free SDA containing SL was synthesized with desirable polymorph, thermal properties, and SFC for formulation of soft margarine. The margarine produced with this SL had no trans fat and had a low n-6/n-3 ratio. This may help in reducing trans fat intake in our diet while increasing n-3 FA intake. © 2012 Institute of Food Technologists®
Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products
NASA Astrophysics Data System (ADS)
Chai, Ming
Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and unsaturated esters, which have been observed in methyl ester's oxidation products. The oxidation of methyl stearate, methyl oleate and methyl linoleate produces 16, 28 and 34 types of carbonyl compounds, respectively. The unsaturated methyl ester forms more carbonyl compounds compared to the saturated methyl ester, which indicates the formation of carbonyl compounds might be more related to the unsaturated carbon bond rather than the methyl ester group. Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Lack of reference materials has impeded progress on method standardization and understanding method biases. As part of this dissertation, uniform carbon distribution for the filter sets is prepared by using a simply aerosol generation and collection method. The relative standard deviations for the mean TC, OC, and EC results reported by the seven laboratories were below 10%, 11% and 12% (respectively). The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by this approach can be used for determining the accuracy of various OC-EC methods and thereby contribute to method standardization.
Al Salloum, H; Saunier, J; Dazzi, A; Vigneron, J; Etcheberry, A; Marlière, C; Aymes-Chodur, C; Herry, J M; Bernard, M; Jubeli, E; Yagoubi, N
2017-06-01
Commercial infusion tubing and blood storage devices (tubing, blood and platelets bags) made of plasticized PVC were analyzed by spectroscopic, chromatographic and microscopic techniques in order to identify and quantify the additives added to the polymer (lubricants, thermal stabilizers, plasticizers) and to put into evidence their blooming onto the surface of the devices. For all the samples, deposits were observed on the surface but with different kinds of morphologies. Ethylene bis amide lubricant and metallic stearate stabilizers were implicated in the formation of these layers. In contact with aqueous media, these insoluble deposits were damaged, suggesting a possible particulate contamination of the infused solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Stern, K I; Malkova, T L
The objective of the present study was the development and validation of sibutramine demethylated derivatives, desmethyl sibutramine and didesmethyl sibutramine. Gas-liquid chromatography with the flame ionization detector was used for the quantitative determination of the above substances in dietary supplements. The conditions for the chromatographic determination of the analytes in the presence of the reference standard, methyl stearate, were proposed allowing to achieve the efficient separation. The method has the necessary sensitivity, specificity, linearity, accuracy, and precision (on the intra-day and inter-day basis) which suggests its good validation characteristics. The proposed method can be employed in the analytical laboratories for the quantitative determination of sibutramine derivatives in biologically active dietary supplements.
The majority of vitamin A is transported as retinyl esters in the blood of most carnivores.
Schweigert, F J; Ryder, O A; Rambeck, W A; Zucker, H
1990-01-01
1. In canines and mustelides total vitamin A was 10-50 times higher compared to other species due to a high amount of retinyl esters (40-99% of total vitamin A) in blood plasma. The dominant vitamin A ester was in most species retinyl stearate. 2. In Ursidae, Procyonidae, Viveridae and Felidae, total vitamin A was much lower. When present, however, retinyl esters also represented 10-65% of total vitamin A in plasma. 3. Only retinol was detected in plasma of the family, Hyaenidae, and the suborder, Pinnipedia. 4. In maned wolf cubs it was found that retinol, retinyl esters and alpha-tocopherol increased with the age of the animals, reaching values comparable to adult animals at the age of 5 months.
Mechanistic Insight into Caffeine-Oxalic Cocrystal Dissociation in Formulations: Role of Excipients.
Duggirala, Naga Kiran; Vyas, Amber; Krzyzaniak, Joseph F; Arora, Kapildev K; Suryanarayanan, Raj
2017-11-06
Caffeine-oxalic acid cocrystal, widely reported to be stable under high humidity, dissociated in the presence of numerous pharmaceutical excipients. In cocrystal-excipient binary systems, the water mediated dissociation reaction occurred under pharmaceutically relevant storage conditions. Powder X-ray diffractometry was used to identify the dissociated products obtained as a consequence of coformer-excipient interaction. The proposed cocrystal dissociation mechanism involved water sorption, dissolution of cocrystal and excipient in the sorbed water, proton transfer from oxalic acid to the excipient, and formation of metal salts and caffeine hydrate. In compressed tablets with magnesium stearate, the cocrystal dissociation was readily discerned from the appearance of peaks attributable to caffeine hydrate and stearic acid. Neutral excipients provide an avenue to circumvent the risk of water mediated cocrystal dissociation.
NASA Astrophysics Data System (ADS)
Panin, S. V.; Alexenko, V. O.; Buslovich, D. G.; Anh, Nguyen Duc; Qitao, Huang
2018-01-01
Mechanical and tribotechnical characteristics of solid-lubricant and polymer-polymeric composites of UHMWPE were studied for the sake of design extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). Tribotechnical properties of UHMWPE blends with the optimized content of solid lubricant fillers (polytetrafluoroethylene, calcium stearate, molybdenum disulphide, colloidal graphite, boron nitride) were studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). Also, in order to increase strength and wear-resistance of UHMWPE composites they were reinforced with wollastonite microfibers and aluminum metahydroxide AlO (OH) microparticles preliminary treated (functionalized) in polyorganosiloxane. The comparison on measured mechanical and tribotechnical properties are given with interpretation of the mechanisms of observed phenomenon.
Synthesis and Characterization of Itaconic Anhydride and Stearyl Methacrylate Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, S.; Huang, S; Weiss, R
The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulusmore » of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.« less
Statistical optimization for lipase production from solid waste of vegetable oil industry.
Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara
2018-04-21
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
Tsuda, K; Kinoshita, Y; Kimura, K; Nishio, I; Masuyama, Y
2001-08-01
Many studies have shown that estrogen may exert cardioprotective effects and reduce the risk of hypertension and coronary events. On the other hand, it has been proposed that cell membrane abnormalities play a role in the pathophysiology of hypertension, although it is not clear whether estrogen would influence membrane function in essential hypertension. The present study was performed to investigate the effects of 17beta-estradiol (E(2)) on membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women. We determined the membrane fluidity of erythrocytes by means of an electron paramagnetic resonance and spin-labeling method. In an in vitro study, E(2) significantly decreased the order parameter for 5-nitroxide stearate and the peak height ratio for 16-nitroxide stearate obtained from electron paramagnetic resonance spectra of erythrocyte membranes in normotensive postmenopausal women. The finding indicates that E(2) might increase the membrane fluidity of erythrocytes. The effect of E(2) was significantly potentiated by the NO donor, S-nitroso-N-acetylpenicillamine, and a cGMP analogue, 8-bromo-cGMP. In contrast, the change in the membrane fluidity evoked by E(2) was attenuated in the presence of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and asymmetric dimethyl-L-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than that in normotensive postmenopausal women. The effect of E(2) on membrane fluidity was significantly more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women. The results of the present study showed that E(2) significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the greater action of E(2) in hypertension might be consistent with the hypothesis that E(2) could have a beneficial effect in regulating rheological behavior of erythrocytes and could have a crucial role in the improvement of the microcirculation in hypertension.
Cryo-TEM of morphology and kinetics of self-assembled nanostructures
NASA Astrophysics Data System (ADS)
Dong, Jingshan
Cryogenic Transmission Electron Microscopy (Cryo-TEM) is applied to study various structures in solutions and suspensions from micron to nanometer scale. By vitrifying the liquid samples at different moments, sequential stages of a dynamic process can be frozen and the structures occurring from about 30 sec to over 10 min can be imaged. Therefore a picture of how the structures evolve with time in the liquid systems can be established. This method has been proven to be a powerful technique in studying the morphology and kinetics of self-assembled nanostructures. Such a pseudo-in-situ technique is used to "watch" the crystallization process of silver stearate (AgSt) from sodium stearate (NaSt) dispersions. AgSt crystal is produced from a reaction of NaSt and silver nitrate. The reaction, as a AgSt crystallization process, starts from AgSt micelles, which aggregate and grow into hexagonal shaped crystals of about 10 microns. If silver bromide (AgBr) grains are present, the micelles do not prefer to aggregate, but rather deposit on the surface of the AgBr crystalline grains. Variation of the carboxylate chain length does not affect the crystallization process very much, although the morphology of both the reactant and the product is changed. Nanostructure transition in sodium lauryl ether sulfate (SLES) solutions is investigated as well. A micellar network structure can form if equal molar calcium chloride is added to 3 wt% SLES solution. The network can be broken into wormlike micelle segments such as spheres and rods by sonication. After about 10 min, these broken pieces can reassemble and reform the network through wormlike micelle growth and connection. Also by using Cryo-TEM, 100-200 nm casein micelles are observed at 1 wt% casein solution, but aggregated submicelles cannot be distinguished. However, individual submicelles of about 30 nm are indeed captured in a 0.03 wt% solution. By adding acid or EDTA, the casein micelles can be disrupted into small particles, the size of which is close to the estimated radius of gyration of single casein molecules.
Mane, Shirish D; Kamatham, Akhilender Naidu
2018-02-01
Ascorbyl stearate (Asc-s) is a derivative of ascorbic acid with better anti-tumour efficacy compared to its parent compound ascorbic acid. In this study, we have examined radio-sensitizing effect of Asc-s in murine T cell lymphoma (EL4) cells at 4 Gy. Asc-s and radiation treatment reduced cell proliferation, induced apoptosis in a dose dependent manner by arresting the cells at S/G2-M phase of cell cycle. It also decreased the frequency of cancer stem cells per se, with significantly higher decrease in combination with radiation treatment./Further, Asc-s and radiation treatment increased the level of reactive oxygen species (ROS), drop in mitochondrial membrane potential (MMP) and increased caspase-3 activity resulting in apoptosis of EL4 cells. Further it also significantly decreased GSH/GSSG ratio due to binding of Asc-s with thiols. The increase in oxidative stress induced by Asc-s and radiation treatment was abrogated by thiol antioxidants in EL4 cells. Interestingly, this redox modulation triggered significant increase in protein glutathionylation in a time dependent manner. Asc-s treatment resulted in glutathionylation of IKK, p50-NF-kB and mutated p53, thereby inhibiting cancer progression during oxidative stress. Asc-s quenches GSH ensuing Asc-s + GSH adduct thereby further modulating GSH/GSSG ratio as evident from HPLC and docking studies. The anti-tumour effect of Asc-s along with radiation was studied by injecting EL4 cells in synegenicC57/BL6 male mice. Intraperitoneal injection of Asc-s followed by radiation exposure at 4 Gy to the tumour bearing mice resulted in radio-sensitization which is evident from significant regression of tumour as evident from tumour burden index. The survival study supports the data that Asc-s pre-treatment enhances radio-sensitization in murine lymphoma. Our data, suggest that Asc-s and ionizing radiation induced cell cycle arrest and apoptosis by perturbing redox balance through irreversible complexes of thiols with Asc-s, disturbed mitochondrial membrane permeability and activation of caspase-3 in EL4 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Khairuzzaman, A; Ahmed, S U; Savva, M; Patel, N K
2006-08-02
A novel hydrocolloidal polymer, methylcellulose glutarate (MC-GA), was prepared by esterifying methylcellulose with glutaric anhydride. The formation of ester was confirmed by FTIR and NMR spectroscopy, DSC and elemental analysis. The physicochemical properties such as, rate of swelling in water, viscosity and hygroscopicity of MC-GA were determined and compared with those of methycellulose A (MC). Aspirin, theophylline and atenolol tablets were compacted on a Carver press using the wet granulation method. Each tablet contained: 200 mg active, 80 mg anhydrous lactose, 8 mg povidone, 4 mg magnesium stearate, 4 mg talc, 50mg MC or MC-GA (drug-to-polymer ratio, 4:1). Contrary to the first-order release profile of all the drugs from the MC matrix tablets, a zero-order release was obtained from the MC-GA matrix tablets in water.
Vucinić-Milanković, Nada; Savić, Snezana; Vuleta, Gordana; Vucinić, Slavica
2007-03-01
Two sugar-based emulsifiers, cetearyl alcohol & cetearyl glycoside and sorbitan stearate & sucrose cocoate, known as potential promoters of lamellar liquid crystals/gel phases, were investigated in order to formulate an optimal vehicle for amphiphilic drug - diclofenac diethylamine (DDA). Physico-chemical characterization and study of vehicle's physical stability were performed. Then, the in vitro DDA liberation profile, dependent on the mode of drug incorporation to the system, and the in vivo, short-term effects of chosen samples on skin parameters were examined. Droplets size distribution and rheological behavior indicated satisfying physical stability of both types of vehicles. Unexpectedly, the manner of DDA incorporation to the system had no significant influence on DDA release. In vivo study pointed to emulsion's favorable potential for skin hydration and barrier improvement, particularly in cetearyl glycoside-based vehicle.
NASA Astrophysics Data System (ADS)
Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin
2017-12-01
This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.
Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming
2015-10-01
To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch < sodium benzoate < polyvinylpyrrolidone < sodium carboxymethylcellulose < sodium alginate < chitosan < hydroxypropyl methyl cellulose
Influence of alkyl chain length compatibility on microemulsion structure and solubilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, V.K.; O'Connell, J.P.; Shah, D.O.
1980-06-01
The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less
Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng
2017-11-01
A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.
Final report on the safety assessment of Triethylene Glycol and PEG-4.
2006-01-01
Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other manicuring preparations" product category. This ingredient, with an oral LD50 in rats of 32.77 g/kg, has low acute toxicity. Rats given up to 50,000 ppm PEG-4 in drinking water for 5 days showed no permanent signs of toxicity. Rats given daily oral doses up to 2 g/kg/day of PEG-4 for 33 days showed no signs of toxicity. Undiluted PEG-4 produced only minimal injury to the rabbit eye. PEG-4 was not mutagenic in Ames-type assays, did not induce chromosome aberration in an in vivo bone marrow assay, and was negative for genotoxicity in a dominant lethal assay using rats. Other PEG compounds, which have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, e.g., PEG-6, are mixtures that likely include Triethylene Glycol and PEG-4, so these data were also considered. PEG-6 and PEG-8 were not dermal irritants in several rabbit studies. PEG-2 Stearate had a potential for slight irritation in rabbits but was not a sensitizer in guinea pigs. PEG-2 Cocamine was a moderate irritant in rabbits, producing severe erythema. In one dermal study, PEG-2 Cocamine was determined to be corrosive to rabbit skin, causing eschar and necrosis. PEG-6 and PEG-8 caused little to no ocular irritation. PEG-8 was not mutagenic or genotoxic in a Chinese hamster ovary assay, a sister-chromatid exchange assay, and in an unscheduled DNA synthesis assay. In clinical studies on normal skin, PEG-6 and PEG-8 caused mild cases of immediate hypersensitivity; PEG-8 was not a sensitizer; PEG-2 Stearate was not an irritant, a sensitizer, or a photosensitizer; and PEG-6 Stearate was not an irritant or sensitizer. In damaged skin, cases of systemic toxicity and contact dermatitis in burn patients were attributed to a PEG-based topical ointment. The CIR Expert Panel acknowledged the lack of dermal sensitization data for Triethylene Glycol and dermal irritation and sensitization data for PEG-4. That PEG-6, PEG-8, and PEG-2 Stearate were not irritants or sensitizers suggested that Triethylene Glycol and PEG-4 also would not be irritants or sensitizers, and the absence of any reported reactions in the case literature and the professional experience of the Expert Panel further supported the absence of any significant sensitization potential. The need for additional data to demonstrate the safety of PEGs Cocamine was related to the Cocamine moiety and is not relevant here. The Panel reminded formulators of cosmetic products that, as with other PEG compounds, Triethylene Glycol and PEG-4 should not be used on damaged skin because of cases of systemic toxicity and contact dermatitis in burn patients have been attributed to a PEG-based topical ointment. Based on its consideration of the available information, the CIR Expert Panel concluded that Triethylene Glycol and PEG-4 are safe as cosmetic ingredients in the present practices and concentrations of use as described in this safety assessment.
[XANES study of lead speciation in duckweed].
Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan
2012-07-01
Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.
Effects of Protein, Lipids, and Surfactants on the Antimicrobial Activity of Synthetic Steroids
Smith, Rodney F.; Shay, Donald E.; Doorenbos, Norman J.
1963-01-01
Three 4-azacholestanes and two A-norcholestanes were inactivated by 10 and 20% bovine serum and by 1.0, 2.5, and 5.0% sheep blood. The five compounds exhibited hemolytic properties when tested with 2% sheep blood and 2% human blood. These cholestanes inhibited Streptococcus pyogenes and were completely inactivated by 0.1% lecithin. Tween 80 was comparable to lecithin in causing the inactivation of steroids; 1% polyethylene glycol-4000 was inert; 1% Tween 20 and 1.0% Span 20 caused the inactivation of 3β,4-dimethyl-4-aza-5α-cholestane (ND-307). The sodium salts of four fatty acids, oleate, stearate, deoxycholate, and lauryl sulfate (0.1 to 1.0 mg/ml), effectively interfered with the action of ND-307. The steroids appear to have some properties similar to those of antimicrobial surfactants of the cationic type but have certain distinct features. PMID:14075055
Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein
Kaye, Clive M.
1973-01-01
1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754
The Prevention of the Ice Hazard on Airplanes
NASA Technical Reports Server (NTRS)
Geer, William C; Scott, Merit
1930-01-01
A review of various methods to prevent ice formation and adhesion to aircraft surfaces is given. It was concluded that the adhesion of ice to a surface may be reduced somewhat by the application of certain waxes and varnishes. In the experiments described, the varnishes containing calcium stearate and calcium oleate gave the best results. In wind tunnel tests, the adhesion was further reduced by the application of these waxes and varnishes to a thin, heat insulating layer of rubber. The adhesion of ice is greatly reduced when the surface consists of a vehicle which carries an oil in sufficient quantity so that the surface of the vehicle is self lubricating. Ice may be removed from wings, struts, wires and other parts of an airplane during flight by the inflation of properly constructed pneumatic rubber members, providing that these members have been previously treated with a suitable low adhesion oil.
Mužíková, Jitka; Kubíčková, Alena
2016-09-01
The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.
Tesfaye, Tamrat; Sithole, Bruce; Ramjugernath, Deresh; Ndlela, Luyanda
2018-02-01
Commercially processed, untreated chicken feathers are biologically hazardous due to the presence of blood-borne pathogens. Prior to valorisation, it is crucial that they are decontaminated to remove the microbial contamination. The present study focuses on evaluating the best technologies to decontaminate and pre-treat chicken feathers in order to make them suitable for valorisation. Waste chicken feathers were washed with three surfactants (sodium dodecyl sulphate) dimethyl dioctadecyl ammonium chloride, and polyoxyethylene (40) stearate) using statistically designed experiments. Process conditions were optimised using response surface methodology with a Box-Behnken experimental design. The data were compared with decontamination using an autoclave. Under optimised conditions, the microbial counts of the decontaminated and pre-treated chicken feathers were significantly reduced making them safe for handling and use for valorisation applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Gong G; Zhu, Li Q; Liu, Hui C; Li, Wei P
2011-10-18
Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces. © 2011 American Chemical Society
Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zhao, Qing; Wang, Yeguang; Shi, Peiyang; Jiang, Maofa
2016-01-01
In order to obtain hydrophobic whisker for preparing polymeric composite product, the calcium sulfate whisker (CSW) prepared from flue gas desulfurization (FGD) gypsum by hydrothermal synthesis was modified by various surfactants, and the effects of some modification conditions on the hydrophobic property of CSW were investigated in this study. Sodium stearate was considered to be a suitable surfactant and its reasonable dosage was 2% of ethanol solvent. Both physical and chemical absorptions were found in the surface modification process, and the later one was suggested to preferentially occur on the CSW surface. Moreover, modifying temperature, modifying duration, and agitation speed were experimentally found to have a remarkable influence on the modification behavior. Active ratio reached 0.845 when the modification process was conducted under reasonable conditions obtained in the current work. Finally, polypropylene sheet products were prepared from modified CSW showing an excellence mechanical property.
Rozman Peterka, Tanja; Grahek, Rok; Hren, Jure; Bastarda, Andrej; Bergles, Jure; Urleb, Uroš
2015-06-10
Tacrolimus is macrolide drug that is widely used as a potent immunosuppressant. In the present work compatibility testing was conducted on physical mixtures of tacrolimus with excipients and on compatibility mixtures prepared by the simulation of manufacturing process used for the final drug product preparation. Increase in one major degradation product was detected in the presence of magnesium stearate based upon UHPLC analysis. The degradation product was isolated by preparative HPLC and its structure was elucidated by NMR and MS studies. Mechanism of the formation of this degradation product is proposed based on complementary degradation studies in a solution and structural elucidation data. The structure was proven to be alpha-hydroxy acid which is formed from the parent tacrolimus molecule through a benzilic acid type rearrangement reaction in the presence of divalent metallic cations. Degradation is facilitated at higher pH values. Copyright © 2015 Elsevier B.V. All rights reserved.
Shao, Q; Rowe, R C; York, P
2007-06-01
Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.
Langmuir-Blodgett deposition selects carboxylate headgroup coordination
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay
2011-10-01
Infrared reflection-absorption spectroscopy results on stearic acid Langmuir monolayers containing Mn, Co, and Cd ions show that on the water surface, the ions induce unidentate and bidentate (both chelate and bridged) coordination in the carboxylate headgroup with some trace of undissociated acid. Moreover, with Cd and Mn ions in subphase, the preferred coordination is found to be unidentate, whereas for Co, bidentate chelate is most preferred. After transfer onto amorphous substrate, not all coordinations are found to exist in the same ratio for the deposited metal stearate monolayers. More specifically, after transfer, Mn is found to coordinate with the carboxylate group as bidentate chelate, Cd as unidentate and bidentate bridged (with unidentate as the preferred coordination), and Co as preferably bidentate bridged (although all coordinations are present). Results suggest a specific interaction in each case, as the metal-carboxylate pair at the water surface is transferred to the substrate surface during Langmuir-Blodgett deposition.
Influence of stearic acid on postprandial lipemia and hemostatic function.
Sanders, Thomas A B; Berry, Sarah E E
2005-12-01
It has been suggested that fats rich in stearic acid may result in exaggerated postprandial lipemia and have adverse effects on hemostatic function. The effects of test meals containing different saturated and monounsaturated FA were compared in healthy subjects in a series of studies to investigate this hypothesis. Stearic acid, when present as cocoa butter, resulted in similar postprandial lipemia and factor VII activation compared with a meal containing high-oleic sunflower oil. Stearic acid when presented as shea butter or as randomized stearate-rich TAG resulted in decreased postprandial lipemia and decreased postprandial activation of factor VII. Stearic acid-rich test meals did not result in impaired fibrinolytic activity compared with either a low-fat meal or a meal high in oleate. The difference in responses between the different stearic acid-rich fats appears to be due to varying solid fat contents of the fats at 37 degrees C.
Systematic evaluation of common lubricants for optimal use in tablet formulation.
Paul, Shubhajit; Sun, Changquan Calvin
2018-05-30
As an essential formulation component for large-scale tablet manufacturing, the lubricant preserves tooling by reducing die-wall friction. Unfortunately, lubrication also often results in adverse effects on tablet characteristics, such as prolonged disintegration, slowed dissolution, and reduced mechanical strength. Therefore, the choice of lubricant and its optimal concentration in a tablet formulation is a critical decision in tablet formulation development to attain low die-wall friction while minimizing negative impact on other tablet properties. Three commercially available tablet lubricants, i.e., magnesium stearate, sodium stearyl fumerate, and stearic acid, were systematically investigated in both plastic and brittle matrices to elucidate their effects on reducing die-wall friction, tablet strength, tablet hardness, tablet friability, and tablet disintegration kinetics. Clear understanding of the lubrication efficiency of commonly used lubricants as well as their impact on tablet characteristics would help future tablet formulation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.
Hall, J A; Barstad, L A; Connor, W E
1997-01-01
The purpose of this study was to characterize the lipid classes in hepatic and adipose tissues from cats with idiopathic hepatic lipidosis (IHL). Concentrations of triglyceride, phospholipid phosphorus, and free and total cholesterol were determined in lipid extracts of liver homogenates from 5 cats with IHL and 5 healthy control cats. Total fatty acid composition of liver and adipose tissue was also compared. Triglyceride accounted for 34% of liver by weight in cats with IHL (338 +/- 38 mg/g wet liver) versus 1% in control cats (9.9 +/- 1.0 mg/g wet liver, P < .001). The mass of cholesterol ester was significantly higher in triglyceride-free (TG-free) liver from cats with IHL (741 +/- 340 micrograms/g TG-free wet liver) compared to healthy cats (31 +/- 11 micrograms/g TG-free wet liver, P < .05). Total fatty acid composition of hepatic tissue in the 2 groups differed; palmitate was higher (19.5 +/- 1.1% of total fatty acids in cats with IHL versus 9.2 +/- 2.7% in controls, P < .05), stearate was lower (8.5 +/- 0.8% versus 16.8 +/- 1.1%, P < .05), oleate was higher (41.2 +/- 1.6% versus 31.1 +/- 1.8%, P < .05), and arachidonate was lower (1.2 +/- 0.2% versus 6.0 +/- 0.9%, P < .05). The total fatty acid composition of adipose tissue also differed between the 2 groups; palmitate was higher (26.2 +/- 1.2% in cats with IHL versus 21.3 +/- 0.6% in controls, P < .05), total monounsaturated fatty acids were higher (48.4 +/- 1.0% versus 45.0 +/- 0.8%, P < .05), linolenate was lower (13.3 +/- 1.6% versus 17.5 +/- 0.9%, P < .05), total (n-6) fatty acids were lower (13.8 +/- 1.38% versus 18.4 +/- 0.83%, P < .05), linolenate was lower (0.2 +/- 0.04% versus 0.7 +/- 0.06%, P < .06), and total (n-3) fatty acids were lower (0.3 +/- 0.02% versus 1.3 +/- 0.32%, P < .05). The fatty acid composition of both liver and adipose tissue was similar for stearate, oleate, linoleate, and linolenate in cats with IHL. These results support the hypothesis that the origin of hepatic triglyceride in cats with IHL is the mobilization of fatty acids from adipose tissue.
Novel Lipolytic Enzymes Identified from Metagenomic Library of Deep-Sea Sediment
Jeon, Jeong Ho; Kim, Jun Tae; Lee, Hyun Sook; Kim, Sang-Jin; Kang, Sung Gyun; Choi, Sang Ho; Lee, Jung-Hyun
2011-01-01
Metagenomic library was constructed from a deep-sea sediment sample and screened for lipolytic activity. Open-reading frames of six positive clones showed only 33–58% amino acid identities to the known proteins. One of them was assigned to a new group while others were grouped into Families I and V or EstD Family. By employing a combination of approaches such as removing the signal sequence, coexpression of chaperone genes, and low temperature induction, we obtained five soluble recombinant proteins in Escherichia coli. The purified enzymes had optimum temperatures of 30–35°C and the cold-activity property. Among them, one enzyme showed lipase activity by preferentially hydrolyzing p-nitrophenyl palmitate and p-nitrophenyl stearate and high salt resistance with up to 4 M NaCl. Our research demonstrates the feasibility of developing novel lipolytic enzymes from marine environments by the combination of functional metagenomic approach and protein expression technology. PMID:21845199
Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong
2016-06-15
Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.
Scale-Up of Lubricant Mixing Process by Using V-Type Blender Based on Discrete Element Method.
Horibe, Masashi; Sonoda, Ryoichi; Watano, Satoru
2018-01-01
A method for scale-up of a lubricant mixing process in a V-type blender was proposed. Magnesium stearate was used for the lubricant, and the lubricant mixing experiment was conducted using three scales of V-type blenders (1.45, 21 and 130 L) under the same fill level and Froude (Fr) number. However, the properties of lubricated mixtures and tablets could not correspond with the mixing time or the total revolution number. To find the optimum scale-up factor, discrete element method (DEM) simulations of three scales of V-type blender mixing were conducted, and the total travel distance of particles under the different scales was calculated. The properties of the lubricated mixture and tablets obtained from the scale-up experiment were well correlated with the mixing time determined by the total travel distance. It was found that a scale-up simulation based on the travel distance of particles is valid for the lubricant mixing scale-up processes.
Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications
Kaplan, Jonah; Grinstaff, Mark
2015-01-01
Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018
Feasibility study of palm-based fuels for hybrid rocket motor applications
NASA Astrophysics Data System (ADS)
Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi
2018-02-01
This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
Fülöp, Ibolya; Gyéresi, Árpád; Kiss, Lóránd; Deli, Mária A; Croitoru, Mircea Dumitru; Szabó-Révész, Piroska; Aigner, Zoltán
2015-12-01
Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Interaction of the acid soap of triethanolamine stearate and stearic acid with water.
Zhu, S; Pudney, P D A; Heppenstall-Butler, M; Butler, M F; Ferdinando, D; Kirkland, M
2007-02-08
Stearic acid and triethanolamine (TEA) in a molar ratio of 2:1 were mixed in aqueous solution at 80 degrees C and subsequently cooled to ambient temperature. The structural evolution of the resultant sample during storage was characterized by using light microscopy, Cryo-SEM, differential scanning calorimetery, pH, infrared spectroscopy, elemental analysis, and simultaneous small and wide-angle X-ray diffraction. It was found that a lamellar liquid crystalline phase was formed when stearic acid and TEA solution were mixed at 80 degrees C and multilamellar spheres of a few microns diameter were formed initially after cooling. A hydrolysis reaction (i.e., the reverse reaction of neutralization between stearic acid and TEA) occurred thereafter that caused the breakdown of the lamellar gel phase and the formation of platelet stearic acid crystals. Three polymorphs of stearic acid (defined following previous work as the A, C, and E forms) were formed as the result of hydrolysis reaction, which gave rise to a strong optically pearlescent appearance.
Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua
2010-08-01
A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.
Surface and protective properties of dispersions of film-formers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turishcheva, R.A.; Bakaleinikov, M.B.; Minkina, E.N.
1983-03-01
This article reports on studies of the surface and protective properties of 20% dispersions of film-formers most typically used in film-forming inhibited petroleum-base compositions (FIPC): solid hydrocarbons, fatty acid soaps, asphalt, polymers, natural resins, modified vegetable oils, and an inorganic thickening agent. Investigates the dispersions of Butosil and lithium stearate at respective concentrations of 10% and 8%, in view of the high thickening power of these film-formers. Classifies all of the studied FIPC film-forming components into 2 groups: those wth little thickening effect, a low level of adhesion-cohesion interaction, and a high level of surface and protective properties (the oxidizedmore » solid hydrocarbons and the polymers); and the film-formers that have a large thickening effect, a high level of adhesion-cohesion interaction, and a low level of surface and protective properties (the fatty acid soaps, the solid hydrocarbons, and Butosil). Recommends combining film-formers of both groups in developing new grades of FIPCs.« less
Method to study the effect of blend flowability on the homogeneity of acetaminophen.
Llusá, Marcos; Pingali, Kalyana; Muzzio, Fernando J
2013-02-01
Excipient selection is key to product development because it affects their processability and physical properties, which ultimately affect the quality attributes of the pharmaceutical product. To study how the flowability of lubricated formulations affects acetaminophen (APAP) homogeneity. The formulations studied here contain one of two types of cellulose (Avicel 102 or Ceollus KG-802), one of three grades of Mallinckrodt APAP (fine, semi-fine, or micronized), lactose (Fast-Flo) and magnesium stearate. These components are mixed in a 300-liter bin blender. Blend flowability is assessed with the Gravitational Displacement Rheometer. APAP homogeneity is assessed with off-line NIR. Excluding blends dominated by segregation, there is a trend between APAP homogeneity and blend flow index. Blend flowability is affected by the type of microcrystalline cellulose and by the APAP grade. The preliminary results suggest that the methodology used in this paper is adequate to study of the effect of blend flow index on APAP homogeneity.
In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.
Pignatello, R; Consoli, P; Puglisi, G
2000-01-01
In a previous paper the preparation has been described, by three different techniques, of microparticles made of Eudragit RS 100 and RL 100 containing a NSAI agent, Tolmetin. Freely flowing microparticles failed to affect significantly the in vitro drug release, which displayed a similar dissolution profile after micro-encapsulation to the free drug powder. Microparticles were then converted into tablets and the effect of compression on drug delivery, as well as that of the presence of co-additives, was studied in the present work. Furthermore, microparticles were also prepared by adding MgO to the polymer matrix, to reduce the sensitivity of the drug to pH changes during its dissolution. Similarly, magnesium stearate was also used for microparticle formation as a droplet stabilizer, in order to reduce particle size and hinder rapid drug release. A mathematical evaluation, by using two semi-empirical equations, was applied to evaluate the influence of dissolution and diffusion phenomena upon drug release from microparticle tablets.
Li, Weiyong; Worosila, Gregory D
2005-05-13
This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.
A new pentacyclic phenol and other constituents from the root bark of Bauhinia racemosa Lamk.
Jain, Renuka; Yadav, Namita; Bhagchandani, Teena; Jain, Satish C
2013-10-01
This work reported the isolation of one unknown (1) and 10 known compounds (2-11) from the root bark of Bauhinia racemosa Lamk. (family: Caesalpiniaceae). Racemosolone (1) was characterised as a pentacyclic phenolic compound possessing an unusual skeleton with a cycloheptane ring and a rare furopyran moiety. The structure elucidation was carried out on the basis of UV, infrared (IR), HR-ESI-MS, 1D and 2D NMR spectra and finally confirmed by the single crystal X-ray analysis. The known compounds were characterised as n-tetracosane, β-sitosteryl stearate, eicosanoic acid, stigmasterol, β-sitosterol, racemosol, octacosyl ferulate, de-O-methyl racemosol, lupeol and 1,7,8,12b-tetrahydro-2,2,4-trimethyl-2H-benzo[6,7]cyclohepta [1,2,3-de] [1] benzopyran-5,10,11 triol on the basis of spectroscopic data comparison with the literature value. Compounds with skeleton similar to 1 have never been reported from any natural or other source.
De Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; De Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam
2008-07-21
Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary spectroscopic, electrochemical and spectroelectrochemical investigations of both the functionalized poly(thiophene) and its composite with the nanocrystals, the latter being fabricated using the layer-by-layer (LbL) deposition technique. UV-Vis-NIR and Raman spectroelectrochemical investigations unequivocally show that the onset of the first anodic peak in the cyclic voltammogram of the copolymer can be attributed to the oxidation of the pi-conjugated backbone in the polymer chains. For this reason, it is possible to determine the width and the position of its band gap (corresponding to the pi-pi* transition) by UV-Vis spectroscopy combined with cyclic voltammetry. These studies show that the polymer exhibits a slightly larger band gap with the HOMO level insignificantly lower in energy (by 0.03 eV) as compared to the case of regioregular poly(3-hexylthiophene) of comparable degree of polymerization. Hydrogen bond interactions of the polymer with CdSe(MHT) in the molecular composite result in a hypsochromic shift of the band corresponding to the pi-pi* transition from 504 nm to 488 nm. This can be taken as a spectroscopic manifestation of the conformational changes induced by shortening of the conjugation length. The observed spectral modifications are consistent with electrochemically determined lowering of the polymer HOMO level (from -4.91 eV in the pure polymer to -4.99 eV in the composite). Cyclic voltammetry studies supported by spectroelectrochemistry also show that the redox stability of CdSe(MHT) in the molecular composite with P3HT-co-P3(ODAP)HT is lower than that determined for stearate-capped nanocrystals. Their irreversible oxidation starts at E = +0.7 V vs. Ag/0.1 M Ag(+)i.e. at potentials by ca. 0.3 V lower than the oxidation of stearate stabilized CdSe nanocrystals of the same size. We show that-despite these modifications-the alignment of the HOMO and LUMO levels of the composite components remains appropriate for its use in hybrid solar cells, which is demonstrated by the photovoltaic effect observed for the LbL-processed composite sandwiched between two electrodes.
NASA Astrophysics Data System (ADS)
Setiawan, Arief Ameir Rahman; Sulaswatty, Anny
2017-11-01
The common problem faced by the institution working on research, innovation and technology development is lack of quantitative measures to determine the technology readiness of research. No common communication language between R & D Institutions and industry about the level of preparedness of a research resulting a barrier to technology diffusion interaction. This lack of connection between R & D institutes with industry may lead to "sluggishness" occurs in innovating. For such circumstance, assessing technology readiness of research is very important. One of wide spread methods for the assessment is Technology Readiness Level (TRL, also known as Technometer), which is introduced by NASA (National Aeronautics and Space Administration). TRL is a general guide that provides an overview of maturity level of a technology. This study aims to identify and demonstrate the implementation of TRL to assess a number of surfactant researches in the Research Center for Chemistry, Indonesian Institute of Sciences. According to the assessment, it has been obtained the surfactant recommended for further development towards commercialization of R & D results, i.e. Glycerol Mono Stearate (GMS), which has reached the level of TRL 7.
Pagani, María Ayelén; Baltanás, Miguel A
2010-02-01
Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.
Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui
2017-04-01
Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.
Padgett, E.V. Jr.; Warf, D.H.
1964-04-28
An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)
Exploring the Halal Status of Cardiovascular, Endocrine, and Respiratory Group of Medications
Sarriff, Azmi; Abdul razzaq, Hadeer Akram
2013-01-01
Muslim consumers have special needs in medical treatment that differ from non-Muslim consumers. In particular, there is a growing demand among Muslim consumers for Halal medications. This descriptive exploratory study aims to determine the Halal status of selected cardiovascular, endocrine, and respiratory medications stored in an out-patient pharmacy in a Malaysian governmental hospital. Sources of active ingredients and excipients for each product were assessed for Halal status based on available information obtained from product leaflets, the Medical Information Management System (MIMS) website, or manufacturers. Halal status was based on the products’ sources and categorized into Halal, Mushbooh, or Haram. The proportions of Halal, Mushbooh, and Haram products were at 19.1%, 57.1%, and 23.8%, respectively. The percentage of active ingredients for cardiovascular/endocrine products that were assessed as Haram was 5.3%; for respiratory medications, it was only 1.1%. For excipients, 1.7% and 4.8% fall under the category of Haram for cardiovascular/endocrine products and respiratory products, respectively. Ethanol and magnesium stearate were found to be the common substances that were categorized as Haram and Mushbooh. PMID:23785257
Rahim, Haroon; Khan, Mir Azam; Sadiq, Abdul; Khan, Shahzeb; Chishti, Kamran Ahmad; Rahman, Inayat U
2015-05-01
The current study was undertaken to compare the binding potential of Prunus armeniaca L. and Prunus domestica L. gums in tablets' formulations. Tablet batches (F-1 to F-9) were prepared Diclofenac sodium as model drug using 5%, 7.5% and 10% of each Prunus armeniaca L., Prunus domestica L. gums as binder. PVP K30 was used as a standard binder. Magnesium stearate was used as lubricant. Flow properties of granules (like bulk density, tapped density, Carr's index, Hausner's ratio, angle of repose) as well as the physical parameters of compressed tablets including hardness, friability, thickness and disintegration time were determined. Flow parameters of granules of all the batches were found good. Physical parameters (drug content, weight variation, thickness, hardness, friability, disintegration time) of formulated tablets were found within limit when tested. The dissolution studies showed that tablets formulations containing each Prunus domestica showed better binding capacity compared to Prunus armeniaca gum. The binding potential increased as the concentration of gums increased. The FTIR spectroscopic investigation showed that the formulations containing plant gum are compatible with the drug and other excipients used.
Cebeci Maltaş, Derya; Kwok, Kaho; Wang, Ping; Taylor, Lynne S; Ben-Amotz, Dor
2013-06-01
Identifying pharmaceutical ingredients is a routine procedure required during industrial manufacturing. Here we show that a recently developed Raman compressive detection strategy can be employed to classify various widely used pharmaceutical materials using a hybrid supervised/unsupervised strategy in which only two ingredients are used for training and yet six other ingredients can also be distinguished. More specifically, our liquid crystal spatial light modulator (LC-SLM) based compressive detection instrument is trained using only the active ingredient, tadalafil, and the excipient, lactose, but is tested using these and various other excipients; microcrystalline cellulose, magnesium stearate, titanium (IV) oxide, talc, sodium lauryl sulfate and hydroxypropyl cellulose. Partial least squares discriminant analysis (PLS-DA) is used to generate the compressive detection filters necessary for fast chemical classification. Although the filters used in this study are trained on only lactose and tadalafil, we show that all the pharmaceutical ingredients mentioned above can be differentiated and classified using PLS-DA compressive detection filters with an accumulation time of 10ms per filter. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.
2017-12-01
To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.
Ahmad, Mohammad Zaki; Akhter, Sohail; Dhiman, Ishita; Sharma, Poonam; Verma, Reena
2013-02-01
The mechanical properties and compaction characteristics of different varieties of Assam Bora rice flours (ABRFs) were evaluated and compared with those of official Starch 1500®. The material properties and compression characteristics of Assam Bora rice flours were studied by Heckel and Kawakita analysis. The influences of physical and geometrical properties of ABRFs were evaluated with regard to their compression properties. The mechanical properties, such as toughness and Young's modulus of ABRFs were also compared with that of Starch 1500®. The novel ABRFs reflect better physical characteristics such as higher bulk and tap densities, less porosity, better powder packing ability, large surface area, and improved flowability. ABRFs were the least sensitive material to magnesium stearate, and blending time did not affect its compactibility. Their onset of plastic deformation and strain rate sensitivity as compared to that of Starch 1500® demonstrate its potential use as a directly compressible vehicle for tablet. The experimental ABRFs showed superior properties to official Starch 1500® in many cases and could serve as suitable alternatives for particular purposes.
Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin
2012-11-15
Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.
Spectroscopic and Thermal Behavior of Chromium Soaps
NASA Astrophysics Data System (ADS)
Mehrotra, K. N.; Jain, Mamta
1996-02-01
The physicochemical characteristics of chromium soaps (myristate and stearate) were investigated in the solid state (thermal, X-ray, and IR measurements) and in solutions (spectrophotometric measurements). The thermal measurements showed that the decomposition of chromium soaps is a two-step process. The soap decomposed into chromium oxycarboxylate, ketone, and carbon dioxide in the first step and the intermediate oxycarboxylate underwent further decomposition to chromium trioxide in the second step. The results showed that the second step is kinetically of zero order and the values of energy of activation for the first and second steps lie in the ranges 6-7 and 17-18 kcal mol-1, respectively. The X-ray diffraction results showed that these soaps possess double-layer structure with molecular axes slightly inclined to the basal plane. The infrared results revealed that the fatty acids exist with dimeric structure through hydrogen bonding between two molecules of fatty acids whereas the metal-to-oxygen bonds in chromium soaps are not purely ionic but possess considerable covalent character. The results of spectrophotometric measurements also confirmed the somewhat covalent nature of chromium soaps in solutions in dichloromethane.
Metabolism of trans-3-hexadecenoic acid in broad bean.
Harwood, J L; James, A T
1975-01-02
1. Broad bean (Vicia faba) leaves contain rather high concentrations (about 4% of total fatty acids) of the trans-3-hexadecenoic acid. 2. Amounts of the acid increase with the age of the leaves and are absent from etiolated tissue. 3. Changes in the levels of trans-delta-4-hexadecenoic acid can be produced by subjecting the intact plants to various light/dark periods. 4. Chloroplasts isolated from broad-bean leaves show high rates of fatty acid synthesis from [1-14C]acetate. Synthesis is dependent on coenzyme A and ATP but is insensitive to the addition of exogenous acyl carrier protein. 5. The pattern of acids made includes about 20% palmitic, 5% hexadeconoic, 10% stearic and 60% oleic. trans-3-Hexadecenoic acid synthesis was most active in chloroplasts from plants exposed to the dark for 5 days and light for 3 days. 6. Arsenite addition inhibited stearate formation by isolated chloroplasts but resulted in a two-fold stimulation of overall synthesis. 7. The rate of fatty acid synthesis by isolated chloroplasts paralleled the changes in endogenous trans-3-hexadecenoic acid levels in the leaves from which they were isolated.
Martinello, Tiago; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Taqueda, Maria Elena Santos; Consiglieri, Vladi O
2006-09-28
The poor flowability and bad compressibility characteristics of paracetamol are well known. As a result, the production of paracetamol tablets is almost exclusively by wet granulation, a disadvantageous method when compared to direct compression. The development of a new tablet formulation is still based on a large number of experiments and often relies merely on the experience of the analyst. The purpose of this study was to apply experimental design methodology (DOE) to the development and optimization of tablet formulations containing high amounts of paracetamol (more than 70%) and manufactured by direct compression. Nineteen formulations, screened by DOE methodology, were produced with different proportions of Microcel 102, Kollydon VA 64, Flowlac, Kollydon CL 30, PEG 4000, Aerosil, and magnesium stearate. Tablet properties, except friability, were in accordance with the USP 28th ed. requirements. These results were used to generate plots for optimization, mainly for friability. The physical-chemical data found from the optimized formulation were very close to those from the regression analysis, demonstrating that the mixture project is a great tool for the research and development of new formulations.
A 4-week study of four 3-monochloropropane-1,2-diol diesters on lipid metabolism in C57BL/6J mice.
Lu, Jing; Wang, Zhenning; Ren, Mengrou; Feng, Guangxin; Ye, Beining; Wang, Yi; Fang, Baochen; Deng, Xuming; Guan, Shuang
2015-09-01
3-Monochloropropane-1,2-diol (3-MCPD) esters have been detected in many foods, which have become a new safety issue worldwide. In the study, we investigated the effect of four 3-MCPD diesters (palmitate diester: CDP; stearate diester: CDS; oleate diester: CDO; linoleate diester: CDL) on lipid metabolism in C57BL/6J mice. The results showed that CDP, CDS, CDO and CDL significantly increased the serum TC, LDL-C levels and liver TG, TC levels at dose of 16.5μmol/kg/day. These results indicated that 3-MCPD diesters could potentially cause hyperlipidemia in C57BL/6J mice. Moreover, oil red O staining confirmed fat accumulation in liver induced by 3-MCPD diesters. Our work will provide more information for safety evaluation of 3-MCPD diesters. However, whether free 3-MCPD or free fatty acids or combined action compensates for the hyperlipidemia effects should be elucidated in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Lu; Xu, Zijian; Huang, Jianhua; Meng, Zong; Liu, Yuanfa; Wang, Xingguo
2011-12-14
A kind of low-calorie structured lipid (LCSL) was obtained by interesterification of tributyrin (TB) and methyl stearate (St-ME), catalyzed by a commercially immobilized 1,3-specific lipase, Lipozyme RM IM from Rhizomucor miehei . The condition optimization of the process was conducted by using response surface methodology (RSM). The optimal conditions for highest conversion of St-ME and lowest content LLL-TAG (SSS and SSP; S, stearic acid; P, palmitic acid) were determined to be a reaction time 6.52 h, a substrate molar ratio (St-ME:TB) of 1.77:1, and an enzyme amount of 10.34% at a reaction temperature of 65 °C; under these conditions, the actually measured conversion of St-ME and content of LLL-TAG were 78.47 and 4.89% respectively, in good agreement with predicted values. The target product under optimal conditions after short-range molecular distillation showed solid fat content (SFC) values similar to those of cocoa butter substitutes (CBS), cocoa butter equivalent (CBE), and cocoa butters (CB), indicating its application for inclusion with other fats as cocoa butter substitutes.
Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei
2015-01-01
Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.
Release kinetics of papaverine hydrochloride from tablets with different excipients.
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release.
Release Kinetics of Papaverine Hydrochloride from Tablets with Different Excipients
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
Abstract The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release. PMID:25853076
A Tiered Analytical Approach for Investigating Poor Quality Emergency Contraceptives
Monge, María Eugenia; Dwivedi, Prabha; Zhou, Manshui; Payne, Michael; Harris, Chris; House, Blaine; Juggins, Yvonne; Cizmarik, Peter; Newton, Paul N.; Fernández, Facundo M.; Jenkins, David
2014-01-01
Reproductive health has been deleteriously affected by poor quality medicines. Emergency contraceptive pills (ECPs) are an important birth control method that women can use after unprotected coitus for reducing the risk of pregnancy. In response to the detection of poor quality ECPs commercially available in the Peruvian market we developed a tiered multi-platform analytical strategy. In a survey to assess ECP medicine quality in Peru, 7 out of 25 different batches showed inadequate release of levonorgestrel by dissolution testing or improper amounts of active ingredient. One batch was found to contain a wrong active ingredient, with no detectable levonorgestrel. By combining ultrahigh performance liquid chromatography-ion mobility spectrometry-mass spectrometry (UHPLC-IMS-MS) and direct analysis in real time MS (DART-MS) the unknown compound was identified as the antibiotic sulfamethoxazole. Quantitation by UHPLC-triple quadrupole tandem MS (QqQ-MS/MS) indicated that the wrong ingredient was present in the ECP sample at levels which could have significant physiological effects. Further chemical characterization of the poor quality ECP samples included the identification of the excipients by 2D Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy (DOSY 1H NMR) indicating the presence of lactose and magnesium stearate. PMID:24748219
Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect
NASA Astrophysics Data System (ADS)
Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.
2012-08-01
The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters.
Suaria, Giuseppe; Avio, Carlo G; Mineo, Annabella; Lattin, Gwendolyn L; Magaldi, Marcello G; Belmonte, Genuario; Moore, Charles J; Regoli, Francesco; Aliani, Stefano
2016-11-23
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf
2017-09-15
The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.
Bioavailability and stability of erythromycin delayed release tablets.
Ogwal, S; Xide, T U
2001-12-01
Erythromycin is available as the free base, ethylsuccinate, estolate, stearate, gluceptate, and lactobionate derivatives. When given orally erythromycin and its derivatives except the estolate are inactivated to some extent by the gastric acid and poor absorption may result. To establish whether delayed release erythromycin tablets meet the bioequivalent requirement for the market. Sectrophotometric analysis was used to determine the dissolution percentage of the tablets in vitro. High performance liquid chromatography and IBM/XT microcomputer was used to determine the bioavailability and pharmacokinetic parameters in vivo. Dissolution percentage in thirty minutes reached 28.9% and in sixty minutes erythromycin was completely released. The parameters of the delayed release tablets were Tlag 2.3 hr, Tmax.4.5 hr, and Cmax 2.123 g/ml Ka 0.38048 hr(-1) T (1/2) 1.8 hr, V*C/F 49.721 AUC 12.9155. The relative bioavailability of erythromycin delayed release tablet to erythromycin capsules was 105.31% The content, appearance, and dissolution bioavailability of delayed release erythromycin tablets conforms to the United States pharmacopoeia standards. The tablets should be stored in a cool and dry place in airtight containers and the shelf life is temporarily assigned two years.
Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets.
Zheng, Yi; Zhu, Fan; Lin, Dan; Wu, Jun; Zhou, Yichao; Mark, Bohn
2017-01-01
Objective: To prepare a more comprehensive nutrition, more balanced proportion of natural nutritional supplement tablets with Moringa oleifera leaves and spirulina the two nutrients which have complementary natural food ingredients. Method: On the basis of research M. oleifera leaves with spirulina nutrient composition was determined on M. oleifera leaves and spirulina ratio of raw materials, and the choice of microcrystalline cellulose, sodium salt of caboxy methyl cellulose(CMC),magnesium stearate excipient, through single factor and orthogonal experiment, selecting the best formula tablets prepared by powder direct compression technology, for preparation of M. oleifera and spirulina complex tablets. Results: The best ratio of raw material for the M. oleifera leaves powder: spirulina powder was 7:3, the best raw materials for the tablet formulation was 88.5%, 8.0% microcrystalline cellulose, CMC 2.0%, stearin magnesium 1.5%, the optimum parameters for the raw material crushing 200-300 mesh particle size, moisture content of 7%, tableting pressure 40 kN. Conclusion: Through formulation and process optimization, we can prepare more comprehensive and balanced nutrition M. oleifera and spirulina complex tablets, its sheet-shaped appearance, piece weight variation, hardness, friability, disintegration and other indicators have reached the appropriate quality requirements.
Chao, Fei-Fei; Blanchette-Mackie, E. Joan; Chen, Ya-Jun; Dickens, Benjamin F.; Berlin, Elliott; Amende, Lynn M.; Skarlatos, Sonia I.; Gamble, Wilbert; Resau, James H.; Mergner, Wolfgang T.; Kruth, Howard S.
1990-01-01
The authors' laboratory, using histochemicalmethods, previously identified two types of cholesterol-containing lipid particles in the extracellular spaces of human atherosclerotic lesions, one particle enriched in esterified cholesterol and the other particle enriched in unesterified cholesterol. The authors isolated and characterized these lipid particles. The esterified cholesterol-rich lipid particle was a small lipid droplet and differed from intracellular lipid dropletsfound in foam cells with respect to size and chemical composition. It had an esterified cholesterol core surrounded by aphospholipidunesterified cholesterol monolayer. Some aqueous spaces were seen within the particle core. Unesterified cholesterol-rich lipid particles were multilamellated, solid structures and vesicles comprised of single or multiple lamellas. The esterified cholesterol-rich particle had a density <1.01 g/ml, whereas the unesterified cholesterol-rich particle had a density between 1.03 and 1.05 g/ml. Both particles were similar in size fraction, whereas palmitate, stearate, oleate, and linoleate were predominant in the phospholipid fraction. The origins and the role of these two unusual lipid particles in vessel wall cholesterol metabolism remain to be determined. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:2297045
Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello
2014-11-01
This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. Copyright © 2014 Elsevier B.V. All rights reserved.
Allergenic Ingredients in Facial Wet Wipes.
Aschenbeck, Kelly A; Warshaw, Erin M
Allergic contact dermatitis commonly occurs on the face. Facial cleansing wipes may be an underrecognized source of allergens. The aim of this study was to determine the frequency of potentially allergenic ingredients in facial wet wipes. Ingredient lists from name brand and generic facial wipes from 4 large retailers were analyzed. In the 178 facial wipes examined, a total of 485 ingredients were identified (average, 16.7 ingredients per wipe). Excluding botanicals, the top 15 potentially allergenic ingredients were glycerin (64.0%), fragrance (63.5%), phenoxyethanol (53.9%), citric acid (51.1%), disodium EDTA (44.4%), sorbic acid derivatives (39.3%), tocopherol derivatives (38.8%), polyethylene glycol derivatives (32.6%), glyceryl stearate (31.5%), sodium citrate (29.8%), glucosides (27.5%), cetearyl alcohol (25.8%), propylene glycol (25.3%), sodium benzoate (24.2%), and ceteareth-20 (23.6%)/parabens (23.6%). Of note, methylisothiazolinone (2.2%) and methylchloroisothiazolinone (1.1%) were uncommon. The top potential allergens of botanical origin included Aloe barbadensis (41.0%), chamomile extracts (27.0%), tea extracts (21.3%), Cucumis sativus (20.2%), and Hamamelis virginiana (10.7%). Many potential allergens are present in facial wet wipes, including fragrances, preservatives, botanicals, glucosides, and propylene glycol.
Schrank, Simone; Jedinger, Nicole; Wu, Shengqian; Piller, Michael; Roblegg, Eva
2016-07-25
In this work calcium stearate (CaSt) multi-particulates loaded with codeine phosphate (COP) were developed in an attempt to provide extended release (ER) combined with alcohol dose dumping (ADD) resistance. The pellets were prepared via wet/extrusion spheronization and ER characteristics were obtained after fluid bed drying at 30°C. Pore blockers (i.e., xanthan, guar gum and TiO2) were integrated to control the uptake of ethanolic media, the CaSt swelling and consequently, the COP release. While all three pore blockers are insoluble in ethanol, xanthan dissolves, guar gum swells and TiO2 does not interact with water. The incorporation of 10 and 15% TiO2 still provided ER characteristics and yielded ADD resistance in up to 40v% ethanol. The in-vitro data were subjected to PK simulations, which revealed similar codeine plasma levels when the medication is used concomitantly with alcoholic beverages. Taken together the in-vitro and in-silico results demonstrate that the incorporation of appropriate pore blockers presents a promising strategy to provide ADD resistance of multi-particulate systems. Copyright © 2016 Elsevier B.V. All rights reserved.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters
NASA Astrophysics Data System (ADS)
Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano
2016-11-01
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, B.A.; Easom, R.A.; Hughes, J.H.
Diacylglycerol accumulation has been examined in secretagogue-stimulated pancreatic islets with a newly developed negative ion chemical ionization mass spectrometric method. The muscarinic agonist carbachol induces islet accumulation of diacylglycerol rich in arachidonate and stearate, and a parallel accumulation of {sup 3}H-labeled diacylglycerol occurs in carbachol-stimulated islets that had been prelabeled with ({sup 3}H)glycerol. Islets so labeled do not accumulate {sup 3}H-labeled diacylglycerol in response to D-glucose, but D-glucose does induce islet accumulation of diacylglycerol by mass. This material is rich in palmitate and oleate and contains much smaller amounts of arachidonate. Neither secretagogue influences triacylglycerol labeling, and neither induces releasemore » of ({sup 3}H)choline or ({sup 3}H)phosphocholine from islets prelabeled with ({sup 3}H)choline. These observations indicate that the diacylglycerol that accumulates in islets in response to carbachol arises from hydrolysis of glycerolipids, probably including phosphoinositides. The bulk of the diacylglycerol which accumulates in response to glucose does not arise from glycerolipid hydrolysis and must therefore reflect de novo synthesis. The endogenous diacylglycerol which accumulates in secretagogue-stimulated islets may participate in insulin secretion because exogenous diacylglycerol induces insulin secretion from islets, and an inhibitor of diacylglycerol metabolism to phosphatidic acid augments glucose-induced insulin secretion.« less
Hydrophobization of Concrete Using Granular Nanostructured Aggregate
NASA Astrophysics Data System (ADS)
Ogurtsova, Y. N.; Strokova, V. V.; Labuzova, M. V.
2017-11-01
The possibility of giving hydrophobical properties to the fine-grained concrete matrix by using a granular nanostructured aggregate (GNA) with a hydrophobizing additive is investigated in this work. GNA is obtained by granulating the silica raw material with an alkaline component. The introduction of a hydrophobizing additive into the raw mix of GNA allows to encapsulate it reducing the negative effect on hydration processes, the intensity of migration of moisture and efflorescence in concrete and, consequently, improving the performance characteristics of fine-grained concrete products. The hydrophobizing ability of a solution of sodium polysilicates formed in the core of GNA during concrete heat and moisture treatment is proved. The analysis of IR spectra after the impregnation of cement stone samples with a solution of sodium polysilicates showed an increase in the degree of hydration and the formation of framework water aluminosilicates. Atmospheric processes modelling showed that the use of GNA on the basis of gaize with calcium stearate and on the basis of fly ash with GKZh-11 makes it possible to increase the resistance of fine-grained concrete to the atmospheric effect of the medium, namely, the outwashing of readily soluble compounds.
[Study on sustained release preparations of Epimedium component].
Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin
2015-04-01
The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.
Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.
Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat
2012-01-01
Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.
Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S
L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie
2013-01-01
The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511
Aging Studies of VCE Dismantlement Returns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letant, S; Alviso, C; Pearson, M
2011-10-17
VCE is an ethylene/vinyl acetate/vinyl alcohol terpolymer binder for filled elastomers which is designed to accept high filler loadings. Filled elastomer parts consist of the binder (VCE), a curing agent (Hylene MP, diphenol-4-4{prime}-methylenebis(phenylcarbamate)), a processing aid (LS, lithium stearate), and filler particles (typically 70% fraction by weight). The curing of the filled elastomer parts occurs from the heat-activated reaction between the hydroxyl groups of VCE with the Hylene MP curing agent, resulting in a cross-linked network. The final vinyl acetate content is typically between 34.9 and 37.9%, while the vinyl alcohol content is typically between 1.27 and 1.78%. Surveillance datamore » for this material is both scarce and scattered, complicating the assessment of any aging trends in systems. In addition, most of the initial surveillance efforts focused on mechanical properties such as hardness and tensile strength, and chemical information is therefore lacking. Material characterization and aging studies had been performed on previous formulations of the VCE material but the Ethylene Vinyl Acetate (EVA) starting copolymer is no longer commercially available. New formulations with replacement EVA materials are currently being established and will require characterization as well as updated aging models.« less
A newly developed lubricant, chitosan laurate, in the manufacture of acetaminophen tablets.
Bani-Jaber, Ahmad; Kobayashi, Asuka; Yamada, Kyohei; Haj-Ali, Dana; Uchimoto, Takeaki; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2015-04-10
To study the usefulness of chitosan laurate (CS-LA), a newly developed chitosan salt, as a lubricant, lubrication properties such as the pressure transmission ratio and ejection force were determined at different concentrations of CS-LA in tableting. In addition, tablet properties such as the tensile strength, disintegration time, and dissolution behavior, were also determined. When CS-LA was mixed at concentrations of 0.1%-3.0%, the pressure transmission ratio was increased in a concentration-dependent manner, and the value at a CS-LA concentration of 3% was equal to that of magnesium stearate (Mg-St), a widely used lubricant. Additionally, a reduction in the ejection force was observed at a concentration from 1%, proving that CS-LA has good lubrication performance. A prolonged disintegration time and decreased tensile strength, which are known disadvantages of Mg-St, were not observed with CS-LA. Furthermore, with CS-LA, retardation of dissolution of the drug from the tablets was not observed. Conjugation of CS with LA was found to be quite important for both lubricant and tablet properties. In conclusion, CS-LA should be useful as an alternative lubricant to Mg-St. Copyright © 2015 Elsevier B.V. All rights reserved.
Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater
NASA Astrophysics Data System (ADS)
Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.
2010-12-01
The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the initial 10 days. Activities of enzymes not directly associated with metabolism of oil were also enhanced, however, particularly b-glucosidase, leucine aminopeptidase, and two of the polysaccharide hydrolase activities. These enhanced activities may be a reflection of increased overall microbial metabolism and growth in the oil-bottles, as demonstrated by the 4-fold increase in suspended bacterial cell numbers in oil-bottles over the course of the incubation. Suspended cell numbers in no-oil bottles remained almost unchanged throughout the incubation time. Moreover, aggregates from the oil-bottles were densely colonized by highly active bacteria (5 x 10^9 cells ml-1), one order of magnitude greater than for no-oil aggregates, and two orders of magnitude greater than in the surrounding water. Comparisons of microbial community composition of the oil-bottles and no-oil bottles as well as of the aggregates are currently in progress. Aggregates observed in seawater at the DH spill site likely transport highly active microbial communities to the deeper waters, where they facilitate degradation of deepwater oil.
Tsuda, K; Shimamoto, Y; Kimura, K; Nishio, I; Masuyama, Y
2001-05-01
The present in vitro study was performed to investigate the effects of estriol (E3) on membrane fluidity of erythrocytes by means of an electron paramagnetic resonance (EPR) and spin-labeling method. E3 was shown to significantly decrease the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes. This finding indicated that E3 might increase the membrane fluidity of erythrocytes. The effect of E3 was significantly potentiated by the nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine 3',5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change in the membrane fluidity induced by E3 was antagonized by the NO synthase inhibitor, L-NG-nitroarginine-methyl-ester (L-NAME), and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that E3 significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the data might be consistent with the hypothesis that E3 could have a beneficial effect on the rheological behavior of erythrocytes and may play a crucial role in the regulation of microcirculation.
Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K
2013-01-01
To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters
Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano
2016-01-01
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea. PMID:27876837
Chitinosans as tableting excipients for modified release delivery systems.
Rege, P R; Shukla, D J; Block, L H
1999-04-20
The term 'chitinosans' embraces the spectrum of acetylated poly(N-glucosamines) ranging from chitin to chitosan. Chitinosans (I), at acidic pH, have protonated amines which can interact with oppositely charged drug ions and, thereby, modify drug release from drug delivery systems. Tablets were compressed from a physical mixture containing salicylic acid (II) as the model drug, I, and magnesium stearate. Five commercial I compounds, varying in degree of deacetylation and molecular weight, were selected. Tablets were compressed at 5000, 10 000, and 15 000 psig using a Carver and a single punch tablet press. The differential scanning calorimetry thermograms provided evidence of I-II interaction in the powder blend. Analysis of variance (ANOVA) indicated that the compression pressure did not significantly affect the crushing strength (CS) or the release profile of II from the I-matrix tablets (P?0.05). Furthermore, the ANOVA also indicated that the tablet press used during manufacture did not affect the above properties (P?0.05); however, the chitinosans significantly affected the CS as well as the release profile of II from I-matrix tablets (P<0.05). This study provides further evidence for the use of commercial I compounds as excipients for use in modified release drug delivery systems. Copyright.
Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.
Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D
2002-04-05
High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084
Schmidts, T; Dobler, D; Schlupp, P; Nissing, C; Garn, H; Runkel, F
2010-10-15
Multiple water-in-oil-in-water (W/O/W) emulsions are of major interest as potential skin delivery systems for water-soluble drugs like oligonucleotides due to their distinct encapsulation properties. However, multiple emulsions are highly sensitive in terms of variations of the individual components. The presence of osmotic active ingredients in the inner water phase is crucial for the generation of stable multiple emulsions. In order to stabilize the emulsions the influence of NaCl, MgSO(4), glucose and glycine and two cellulose derivatives was investigated. Briefly, multiple W/O/W emulsions using Span 80 as a lipophilic emulsifier and different hydrophilic emulsifiers (PEG-40/50 stearate, steareth-20 and polysorbate 80) were prepared. Stability of the emulsions was analyzed over a period of time using rheological measurements, droplet size observations and conductivity analysis. In this study we show that additives strongly influence the properties stability of multiple emulsions. By increasing the concentration of the osmotic active ingredients, smaller multiple droplets are formed and the viscosity is significantly increased. The thickening agents resulted in a slightly improved stability. The most promising emulsions were chosen and further evaluated for their suitability and compatibility to incorporate a DNAzyme oligonucleotide as active pharmaceutical ingredient. Copyright 2010 Elsevier B.V. All rights reserved.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets.
Le, Thuy-My; Knulst, André C; Röckmann, Heike
2014-12-01
Spirulina (Arthrospira platensis), blue-green microalgae, has high content in proteins, γ-linoleic acid and vitamins and therefore gained popularity as food supplement. According to the Food and Agriculture Organization of the United Nations Spirulina is also an interesting alternative and sustainable protein source with the growing world population. We present a case of a 17-year-old male, who developed anaphylaxis the first time he ingested a Spirulina tablet. Skin prick test with diluted Spirulina tablet was positive. Further skin prick testing with separated ingredients (Spirulina platensis algae, silicon dioxide, inulin and magnesium stearate) was only positive for Spirulina platensis algae and negative in controls, confirming the allergy was caused by Spirulina and not by one of the additives. This case report shows that diagnosis of Spirulina allergy can safely be made by skin prick test with dilutions of the A. platensis or even more simple by skin prick test with the diluted tablet. Since Spirulina has gained popularity as food and nutritional supplement, it is important to realize the potential risk of this dietary supplement. Before Spirulina is produced and consumed on a wider scale, allergenicity risk assessment should be performed, including investigation of potential crossreactivity with well-known inhalant allergens and foods.
Studies of drag on the nanocomposite superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean
2015-01-01
The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.
NASA Astrophysics Data System (ADS)
Putri, T. W.; Raya, I.; Natsir, H.; Mayasari, E.
2018-03-01
The study aimed to analyze the fatty acid content of Chlorella sp crude extract by using avocado oil solvent and determining the effectiveness of fatty acids Chlorella sp as the anti-aging cream The extraction of fatty acids from Chlorella sp using avocado oil as a solvent with three ratios were 1:10, 1:20 and 1:25 w/V. The highest lipid content was obtained at 1:20 w/V (gram microalgae: mL avocado oil) yielding 52.73%. Crude extracted were analysis by GC-MS and FTIR, and skin condition was determined by skin analyzer. The effectiveness test of Chlorella sp cream was applicated on the face of the panelists aged 20-60 years. From 10 panelists, the applied of Chlorella sp cream was 90% increased on the facial skin yielded moisture and oil content, 70% repair the skin structure. The composition of fatty acids Chlorella sp extract was palmitic acid, linoleic, oleic and stearate. Fatty acids crude extract of Chlorella sp can improve the effectiveness of anti-aging cream. The cream from Chlorella sp was more effective than the cream without containing microalgae. This is very promising because it is alternative to organic solvents i.e. green chemistry.
Phosphatidylglycerol and Chilling Sensitivity in Plants
Roughan, P. Grattan
1985-01-01
The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127
Turner, Nicholas W.; Wright, Bryon E.; Hlady, Vladimir; Britt, David W.
2008-01-01
Protein imprinting leading to enhanced rebinding of ferritin to ternary lipid monolayers is demonstrated using a quartz crystal microbalance. Monolayers consisting of cationic dioctadecyldimethylammonium bromide, non-ionic methyl stearate, and poly(ethylene glycol) bearing phospholipids were imprinted with ferritin at the air/water interface of a Langmuir-Blodgett trough and transferred hydrated to hydrophobic substrates for study. This immobilization was shown by fluorescence correlation spectroscopy to significantly hinder any further diffusion of lipids, while rebinding studies demonstrated up to a six-fold increase in ferritin adsorption to imprinted versus control monolayers. A diminished rebinding of ferritin to its imprint was observed through pH reduction to below the protein isoelectric point, demonstrating the electrostatic nature of the interaction. Rebinding to films where imprint pockets remained occupied by the template protein was also minimal. Studies with a smaller acidic protein revealed the importance of the steric influence of poly(ethylene glycol) in forming the protein binding pockets, as albumin-imprinted monolayers showed low binding of ferritin, while ferritin-imprinted monolayers readily accommodated albumin. The controllable structure-function relationship and limitations of this system are discussed with respect to the application of protein imprinting in sensor development as well as fundamental studies of proteins at dynamic interfaces. PMID:17204279
A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses.
Lupi, Francesca R; Shakeel, Ahmad; Greco, Valeria; Oliviero Rossi, Cesare; Baldino, Noemi; Gabriele, Domenico
2016-12-01
Bigels are biphasic systems formed by water-based hydrogels and oil-based organogels, mainly studied, in the last few years, for pharmaceutical and cosmetic application focused on the controlled delivery of both lipophilic and hydrophilic active agents. The rheological properties of bigels depend on both the amount and the rheological characteristics of single structured phases. Moreover, it can be expected that, at large fractions of one of the starting gels, systems more complex than oil-in-water or water-in-oil can be obtained, yielding bicontinuous or matrix-in-matrix arrangement. Model bigels were investigated from a microstructural (i.e. microscopy and electrical conductivity tests) and rheological point of view. The hydrogel was prepared by using a low-methoxyl pectin whereas the organogel was prepared by using olive oil and, as gelator, a mixture of glyceryl stearate and policosanol. Model bigels were obtained by increasing the amount of organogel mixed with the hydrogel, and microstructural characterisation evidenced an organogel-in-hydrogel behaviour for all investigated samples, even though at the highest organogel content a more complex structure seems to arise. A semi-empirical model, based on theoretical equations developed for suspensions of elastic spheres in elastic media, was proposed to relate bigel rheological properties to single phase properties and fractions. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi
Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structuremore » at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.« less
Dissolution process analysis using model-free Noyes-Whitney integral equation.
Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto
2013-02-01
Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.
Rhee, Yun-Seok; Park, Chun-Woong; Shin, Yoon-Sub; Kam, Sung-Hoon; Lee, Kyu-Hyun; Park, Eun-Seok
2008-02-28
The aims of this study were to fast screen the compatibility of rabeprazole and excipients using a spectrocolorimeter and to examine the relationship between the color change value and drug contents/drug degradation products in solid dosage forms. The color change values of rabeprazole-excipient mixtures were measured using a spectrocolorimeter, with six tablet formulations compressed using a single-punch instrumental tablet press. The rabeprazole and degradation products contents in the tablets were analyzed using an HPLC method, with the color change values of the tablets measured using spectrocolorimetery for 4 weeks. These experiments indicated that the instrumental evaluation of color was a speedy, simple and useful tool in the determination of the interaction between the drug and excipients, as well as in the formulation of solid dosage forms. The relationships of the % reduced drug contents versus the color change value, and those of the % drug degradation products versus the color change value were exponentially increased in formulations containing zinc stearate. On stress testing, the color change value of rabeprazole was inconsistent with previous reports, as the degradation of rabeprazole can be greatly influenced by humidity as well as temperature. Consequently, these results highlight the potential of color formation in the application of pre-formulation and formulation of drugs.
Enhanced dissolution of sildenafil citrate as dry foam tablets.
Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon
2017-01-30
Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.
Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O
2015-12-03
Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.
Schäffer, Michael W.; Roy, Somdutta Sinha; Mukherjee, Shyamali; Ong, David E.; Das, Salil K.
2010-01-01
Systemic therapies with retinoic acid (RA) can result in toxic side effects without yielding biologically effective levels in target tissues such as lung. The authors adapted a PARI LC Star nebulizer to create a tubular system for short-term inhalation treatment of guinea pigs using a water-miscible formulation of all-trans RA (ATRA) or vehicle. Based on the initial average weight, animals received an estimated average ATRA doses of either 0.32 mg·kg−1 (low dose, 1.4 mM), or 0.62 mg·kg−1 (medium dose, 2.8 mM), or 1.26 mg·kg−1 (high dose, 5.6 mM) 20 minutes per day for 6 consecutive days. This system led to a rise of ATRA levels in lung, but not liver or plasma. Cellular lung levels of retinol, retinyl palmitate, and retinyl stearate also appeared to be unaffected (245.6 ± 10.7, 47.4 ± 3.4, and 132.8 ± 7.7 ng·g−1 wet weight, respectively). The application of this aerosolized ATRA also induced a dose-dependent protein expression of the cellular retinol-binding protein 1 (CRBP-1) in lung, without apparent harmful side effects. PMID:21043991
Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto
2015-01-01
Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.
Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif
2017-01-01
Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Hayashi, Yoshihiro; Oishi, Takuya; Shirotori, Kaede; Marumo, Yuki; Kosugi, Atsushi; Kumada, Shungo; Hirai, Daijiro; Takayama, Kozo; Onuki, Yoshinori
2018-07-01
The aim of this study was to explore the potential of boosted tree (BT) to develop a correlation model between active pharmaceutical ingredient (API) characteristics and a tensile strength (TS) of tablets as critical quality attributes. First, we evaluated 81 kinds of API characteristics, such as particle size distribution, bulk density, tapped density, Hausner ratio, moisture content, elastic recovery, molecular weight, and partition coefficient. Next, we prepared tablets containing 50% API, 49% microcrystalline cellulose, and 1% magnesium stearate using direct compression at 6, 8, and 10 kN, and measured TS. Then, we applied BT to our dataset to develop a correlation model. Finally, the constructed BT model was validated using k-fold cross-validation. Results showed that the BT model achieved high-performance statistics, whereas multiple regression analysis resulted in poor estimations. Sensitivity analysis of the BT model revealed that diameter of powder particles at the 10th percentile of the cumulative percentage size distribution was the most crucial factor for TS. In addition, the influences of moisture content, partition coefficients, and modal diameter were appreciably meaningful factors. This study demonstrates that BT model could provide comprehensive understanding of the latent structure underlying APIs and TS of tablets.
NASA Astrophysics Data System (ADS)
Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang
2011-12-01
Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.
Balani, Prashant N; Ng, Wai Kiong; Tan, Reginald B H; Chan, Sui Yung
2010-05-01
The feasibility of using excipients to suppress the amorphization or structural disorder of crystalline salbutamol sulphate (SS) during milling was investigated. SS was subjected to ball-milling in the presence of alpha-lactose monohydrate (LAC), adipic acid (AA), magnesium stearate (MgSt), or polyvinyl pyrrolidone (PVP). X-ray powder diffraction, dynamic vapor sorption (DVS), high sensitivity differential scanning calorimetry (HSDSC) were used to analyze the crystallinity of the milled mixtures. Comilling with crystalline excipients, LAC, AA, and MgSt proved effective in reducing the amorphization of SS. LAC, AA, or MgSt acting as seed crystals to induce recrystallization of amorphous SS formed by milling. During comilling, both SS and LAC turned predominantly amorphous after 45 min but transformed back to a highly crystalline state after 60 min. Amorphous content was below the detection limits of DVS (0.5%) and HSDSC (5%). Comilled and physical mixtures of SS and ALM were stored under normal and elevated humidity conditions. This was found to prevent subsequent changes in crystallinity and morphology of comilled SS:LAC as compared to significant changes in milled SS and physical mixture. These results demonstrate a promising application of comilling with crystalline excipients in mitigating milling induced amorphization of pharmaceutical actives.
Dai, Cunchun; Qu, Shaoqi; Zhang, Ruili; Zhao, Li; Li, Yuwen; Zhu, Jiajia; Wang, Chunmei; Guo, Hui; Hao, Zhihui
2018-02-01
The objective of this study was to prepare a new compound fenbendazole tablet containing 29.7 % fenbendazole, 1.50 % praziquantel and 0.059 % ivermectin for oral administration. The tablets were successfully prepared using mannitol as filler agent, polyvinyl polypyrrolidone as disintegrant, 5 % povidone (PVAK30) as a binder agent and magnesium stearate as lubricant. The appearance, hardness, fragility, time limit of disintegration and fenbendazole dissolution at 45 min all met the technical standards of the Ministry of Agriculture for the People's Republic of China. We used high performance liquid chromatography and electrospray-mass spectrometry for drug detection. Oral administration of 100 mg/kg fenbendazole, 5 mg/kg praziquantel and 0.2 mg/kg ivermectin using a non-compartmental model defined peak plasma concentrations (Cmax) of 495, 826, 73 ng/mL, and 218 ng/mL for the metabolite oxfendazole, respectively. The area under the curve (AUClast) values for these drugs were 4653, 1045, 1971 and 5525 h×ng/mL, respectively. This study enriches the pharmacokinetic data of compound fenbendazole tablets using dogs as a model system. The new tablet formulation was assimilated quickly and systemically and this study will be beneficial for the clinical application of parasite treatments in dogs.
Yasuda, Akihito; Onuki, Yoshinori; Kikuchi, Shingo; Takayama, Kozo
2010-11-01
The quality by design concept in pharmaceutical formulation development requires establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline powders were prepared based on the standard formulation. The angle of repose, compressibility, cohesion, and dispersibility were measured as the response variables. These responses were predicted quantitatively on the basis of a nonlinear TPS. A large amount of data on these powders was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the powders could be classified into several distinctive clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and powder characteristics. For instance, the quantities of microcrystalline cellulose (MCC) and magnesium stearate (Mg-St) were classified distinctly into each cluster, indicating that the quantities of MCC and Mg-St were crucial for determining the powder characteristics. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline powder formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Effects of hexagonal boron nitride on dry compression mixture of Avicel DG and Starch 1500.
Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa
2016-01-01
The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) on a (1:1) binary mixture of Avicel DG and Starch 1500 after using the dry granulation-slugging method and compare it with conventional lubricants, such as magnesium stearate (MGST), glyceryl behenate (COMP) and stearic acid (STAC). MGST is one of the most commonly used lubricants in the pharmaceutical industry. However, it has several adverse effects on tablet properties. In our current study, we employed various methods to eradicate the work hardening phenomenon in dry granulation, and used HBN as a new lubricant to overcome the adverse effects of other lubricants on tablet properties. HBN was found to be as effective as MGST and did not show any significant adverse effects on the crushing strength or work hardening. From the scanning electron microscope (SEM) images, it was concluded that HBN distributed better than MGST. As well as showing better distribution, HBN's effect on disintegration was the least pronounced. Semi-quantitative weight percent distribution of B and N elements in the tablets was obtained using EDS (energy dispersive spectroscopy). Based on atomic force microscope (AFM) surface roughness images, formulations prepared with 1% HBN showed better plastic character than those prepared with MGST.
Halaçoğlu, Mekin Doğa; Uğurlu, Timuçin
2015-01-01
The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant "hexagonal boron nitride (HBN)" on direct compression powders. Lubricants such as magnesium stearate (MGST), glyceryl behenate, stearic acid, talc and polyethylene glycol6000 were studied and tablets were manufactured on a single station instrumented tablet press. This study comprised the continuation of our previous one, so mixture of microcrystalline cellulose and modified starch was used as a master formula to evaluate effects of lubricants on pharmaceutical excipients that undergo complete plastic deformation without any fragmentation under compression pressure. Bulk and tapped densities, and Carr's index parameters were calculated for powders. Tensile strength, cohesion index, lower punch ejection force and lubricant effectiveness values were investigated for tablets. The deformation mechanisms of tablets were studied during compression from the Heckel plots with or without lubricant. MGST was found to be the most effective lubricant and HBN was found very close to it. HBN did not show a significant negative effect on the crushing strength and disintegration time of the tablets when we compared with MGST. Based on the Heckel plots at the level of 1%, formulation prepared with HBN showed the most pronounced plastic character.
Effects of phloretin on lipid organization in the erythrocyte membrane as measured by EPR
NASA Astrophysics Data System (ADS)
Abumrad, Nada A.; Perkins, Ray C.; Dalton, Larry R.; Park, Charles R.; Park, Jane H.
Phloretin is a lipophilic compound which has been widely studied as a broad spectrum effector of metabolite transport in red blood cells (RBC). Phloretin effects on the organization of lipids in the RBC membrane are investigated using the spin-labeled fatty acids, 5 and 16-nitroxyl stearate (5-NS and 16-NS, respectively). Phloretin at different concentrations produced biphasic effects on the lineshape of the EPR response from 16-NS-labeled RBC. The dependence of these changes on the flat cell orientation with respect to the magnetic field suggested that phloretin promoted lipid order at low concentrations (5 to 40 μ M) and disorder at high concentrations (40 to 250 μ M). The biphasic effects of phloretin occurred at concentrations which parallel its dual actions on metabolite transfer. Phloretin generally inhibits transport (protein-mediated) and stimulates diffusion (lipid-mediated) processes. The spectroscopic effects were best characterized through second-harmonic, in-phase detection. The possible contribution of other factors to the spectroscopic changes is discussed. When RBC were spin labeled with 5-NS, higher concentrations of the probe were required for adequate detection and only monophasic effects of phoretin were observed. The results suggest that membrane lipids are important in phloretin effects on transport and diffusion processes.
Brown, Paula N.; Chan, Michael; Paley, Lori; Betz, Joseph M.
2013-01-01
A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method. PMID:22165004
Brown, Paula N; Chan, Michael; Paley, Lori; Betz, Joseph M
2011-01-01
A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method.
Mixing order of glidant and lubricant – Influence on powder and tablet properties
Pingali, Kalyana; Mendez, Rafael; Lewis, Daniel; Michniak-Kohn, Bozena; Cuitino, Alberto; Muzzio, Fernando
2014-01-01
The main objective of the present work was to study the effect of mixing order of Cab-O-Sil (CS) and magnesium stearate (MgSt) and microlayers during mixing on blend and tablet properties. A first set of pharmaceutical blend containing Avicel PH200, Pharmatose and micronized acetaminophen was prepared with three mixing orders (mixing order-1: CS added first; mixing order-2: MgSt added first; mixing order-3: CS and MgSt added together). All the blends were subjected to a shear rate of 80 rpm and strain of 40, 160 and 640 revolutions in a controlled shear environment resulting in nine different blends. A second set of nine blends was prepared by replacing Avicel PH200 with Avicel PH102. A total of eighteen blends thus prepared were tested for powder hydrophobicity, powder flow, tablet weight, tablet hardness and tablet dissolution. Results indicated that powder hydrophobicity increased significantly for mixing order-1. Intermediate hydrophobic behavior was found for mixing order-3. Additionally, mixing order 1 resulted in improved powder flow properties, low weight variability, higher average tablet weight and slow drug release rates. Dissolution profiles obtained were found to be strongly dependent not only on the mixing order of flowing agents, but also on the strain and the resulting hydrophobicity. PMID:21356286
Yuksel, Nilufer; Baykara, Meltem; Shirinzade, Hanif; Suzen, Sibel
2011-02-14
The purpose of this study was to form indomethacin (IND)-loaded poly(methyl methacrylate) (PMMA) microspheres having an extended drug release profile over a period of 24h. Microspheres were prepared by solvent evaporation method using sucrose stearate as a droplet stabilizer. When PMMA was used alone for the preparation of microspheres, only 44% of IND could be released at the end of 8h. Triacetin was added to PMMA, as a minor phase, and the obtained microspheres showed a high yield process with recovery of 89.82% and incorporation efficiency of 102.3%. A desired release profile lasting 24h was achieved. Differential scanning calorimetry (DSC) analysis showed that IND was found to be in an amorphous state in the microspheres. Fourier transform infrared (FT-IR) and nuclear magnetic resonance ((1)H NMR) spectra suggested that there might be a hydrogen bond present between the IND hydroxyl group and PMMA. No interaction between triacetin and IND or PMMA as the formation of secondary bonds was observed. The release enhancement of IND from microspheres was attributed to the physical plasticization effect of triacetin on PMMA and, to some extent, the amorphous state of the drug. Copyright © 2010 Elsevier B.V. All rights reserved.
The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging
NASA Astrophysics Data System (ADS)
Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin
2010-04-01
Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.
Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M
2016-06-30
An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
A study of the properties of compacts from silicified microcrystalline celluloses.
Muzíková, Jitka; Nováková, Petra
2007-07-01
The paper deals with a study of tensile strength and disintegration time of compacts made from silicified microcrystalline celluloses, Prosolv SMCC 90, and Prosolv HD 90, in dependence on compression force, addition of two types of lubricants, and two active ingredients. The lubricants were magnesium stearate and sodium stearyl fumarate in a concentration of 0.5%, the active ingredients being ascorbic acid and acetylsalicylic acid in a concentration of 50%. Prosolv SMCC 90 proved to be better compatible than Prosolv HD 90; the compacts were of higher strength, which was markedly increased with increasing compression force. Prosolv HD 90 was more sensitive to additions of lubricants, and a greater decrease in strength was recorded due to the influence of sodium stearyl fumarate. The effect of lubricants on the strength of compacts in the presence of active ingredients was not identical. The disintegration time of compacts from Prosolv HD 90 without as well as with lubricants was shorter than from Prosolv SMCC 90 and was increasing with increasing compression force. Disintegration time was increased with added lubricants, and it was markedly shortened by addition of active ingredients. Compacts containing ascorbic acid possessed a shorter disintegration time than those containing acetylsalicylic acid, and it was not markedly influenced by the presence of lubricants.
Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa
2014-05-01
The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant "Hexagonal boron nitride (HBN)" on direct compression powders. Lubricants such as magnesium stearate, glyceryl behenate, stearic acid, talc and polyethylene glycol6000 were studied in this article. Tablets were manufactured on an instrumented tablet press with various lubricant concentrations. Bulk and tapped densities, and Carr's index parameters were calculated for powders. Tensile strength, cohesion index, lower punch ejection force and lubricant effectiveness values were investigated for tablets. The deformation mechanisms of tablets were studied during compression from the Heckel plots with or without lubricants. Powders formulated with MGST and HBN showed better flow properties based on Carr's index. MGST was found to be the most effective lubricant based on lubricant effectiveness for tablets. HBN was found very close to MGST with the same concentrations. Other lubricants showed less effectiveness than that of MGST and HBN. It is observed that an increase in the concentration of HBN leads to decreased tensile strength and cohesion index values because of its surface-covering property. Despite covering property, HBN had no significant effect on disintegration time. Based on the Heckel plots at the level of 1%, HBN showed the most pronounced plastic character.
Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.
Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo
2018-04-01
Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
A drop penetration method to measure powder blend wettability.
Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo
2018-03-01
Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.
Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana
2016-01-01
We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.
Dispersibility of lactose fines as compared to API in dry powders for inhalation.
Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik
2016-05-17
This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation. Copyright © 2016 Elsevier B.V. All rights reserved.
Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements
Penugonda, Kavitha; Lindshield, Brian L.
2013-01-01
Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols. PMID:24067389
Fatty acid and phytosterol content of commercial saw palmetto supplements.
Penugonda, Kavitha; Lindshield, Brian L
2013-09-13
Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.
Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging
NASA Astrophysics Data System (ADS)
Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit
2018-02-01
Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.
Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.
Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2014-11-14
Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.
Gabka, Grzegorz; Bujak, Piotr; Ostrowski, Andrzej; Tomaszewski, Waldemar; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2016-07-05
Cu-Fe-S nanocrystals exhibiting a strong localized surface plasmon resonance (LSPR) effect were synthesized for the first time. The elaborated reproducible preparation procedure involved copper(II) oleate, iron(III) stearate, and sulfur powder dissolved in oleylamine (OLA) as precursors. The wavelength of the plasmonic resonance maximum could be tuned by changing the Cu/Fe ratio in the resulting nanocrystals, being the most energetic for the 1:1 ratio (486 nm) and undergoing a bathochromic shift to ca. 1200 nm with an increase to 6:1. LSPR could also be observed in nanocrystals prepared from the same metal precursors and sulfur powder dissolved in 1-octadecene (ODE), provided that the sulfur precursor was taken in excess. Detailed analysis of the reaction mixture by chromatographic techniques, supplemented by mass spectrometry and (1)H NMR spectroscopy enabled the identification of the true chemical nature of the sulfur precursor in S/OLA, namely, (C18H35NH3(+))(C18H35NH-S8(-)), a reactive product of the reduction of elemental sulfur by the amine groups of OLA. In the case of the S/ODE precursor, the true precursors are much less reactive primary or secondary thioethers and dialkyl polysulfides.
Pereira de Souza, Tatiane; Martínez-Pacheco, Ramón; Gómez-Amoza, José Luiz; Petrovick, Pedro Ros
2007-04-27
The aim of this study was to investigate the feasibility of using Eudragit E as a granulating agent for a spray-dried extract from Phyllanthus niruri to obtain tablets containing a high dose of this product. The granules were developed by wet granulation and contained 2.5%, 5.0%, and 10.0% Eudragit E in the final product concentration. The tablets were produced on a single-punch tablet press by direct compression of granules using 0.5% magnesium stearate as a lubricant. The tablets were elaborated following a 2 x 3 factorial design, where Eudragit E concentration and compression force were the independent variables, and tensile strength and the extract release of the tablets were the dependent variables. All granules showed better technological properties than the spray-dried extract, including less moisture sorption. The characteristics of the granules were directly dependent on the proportion of Eudragit E in the formulation. In general, all tablets showed high mechanical resistance with less than 1% friability, less moisture sorption, and a slower extract release profile. The Eudragit E concentration and compression force of the tablets significantly influenced both dependent variables studied. In conclusion, Eudragit E was efficient as a granulating agent for the spray-dried extract, but additional studies are needed to further optimize the formulations in order to achieve less water sorption and improve the release of the extract from the tablets.
Alarfaj, Nawal A; Aly, Fatma A; El-Tohamy, Maha F
2015-02-01
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol-potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001-5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis-CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd.
Barbin, Douglas Fernandes; Valous, Nektarios A; Dias, Adriana Passos; Camisa, Jaqueline; Hirooka, Elisa Yoko; Yamashita, Fabio
2015-11-01
There is an increasing interest in the use of polysaccharides and proteins for the production of biodegradable films. Visible and near-infrared (VIS-NIR) spectroscopy is a reliable analytical tool for objective analyses of biological sample attributes. The objective is to investigate the potential of VIS-NIR spectroscopy as a process analytical technology for compositional characterization of biodegradable materials and correlation to their mechanical properties. Biofilms were produced by single-screw extrusion with different combinations of polybutylene adipate-co-terephthalate, whole oat flour, glycerol, magnesium stearate, and citric acid. Spectral data were recorded in the range of 400-2498nm at 2nm intervals. Partial least square regression was used to investigate the correlation between spectral information and mechanical properties. Results show that spectral information is influenced by the major constituent components, as they are clustered according to polybutylene adipate-co-terephthalate content. Results for regression models using the spectral information as predictor of tensile properties achieved satisfactory results, with coefficients of prediction (R(2)C) of 0.83, 0.88 and 0.92 (calibration models) for elongation, tensile strength, and Young's modulus, respectively. Results corroborate the correlation of NIR spectra with tensile properties, showing that NIR spectroscopy has potential as a rapid analytical technology for non-destructive assessment of the mechanical properties of the films. Copyright © 2015 Elsevier B.V. All rights reserved.
Preparation and Characterization of Silymarin Synchronized and Sustained Release Dropping Pill.
Liu, Zhi-Hong; Li, Xue-Jing; Huang, Ai-Wen; Zhang, Jing; Song, Hong-Tao
2017-01-01
This study aimed to develop a synchronized and sustained-release silymarin dropping pill, and to evaluate its pharmacokinetic characteristics. Polyoxyethylene stearate, glyceryl monostearate, and stearic acid were used to prepare the dropping pills. X-ray powder diffraction, differential scanning calorimetry, and release were used to evaluate its physicochemical properties. The plasma concentration of silybin in beagle dogs after oral administration of silymarin dropping pills and silymarin capsule was determined by RP-HPLC. Synchronized release was achieved with high similarity factor f2 values between every set of two of the five components. Mean plasma concentration-time curves of silymarin after oral administration of dropping pills in beagle dogs were in accordance with first-order absorption and open twocompartment model. The Tmax, Cmax, and AUC0-∞ of dropping pills in beagle dogs were 0.8750±0.13 h, 0.8183±0.07 μg·ml-1, and 2.274±0.90 μg·h·ml-1, respectively. Silymarin dropping pills prolonged in vivo exposure and reduced maximum in vivo concentration, achieving a stable level in the serum. The combination of solid dispersion technique and dropping pill formulation allowed synchronized release of multiple components in herbal medicine, and has potential application in the development of sustained release in herbal medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Huber, Alexandra; Kallerup, Rie S; Korsholm, Karen S; Franzyk, Henrik; Lepenies, Bernd; Christensen, Dennis; Foged, Camilla; Lang, Roland
2016-08-01
The T-cell adjuvanticity of mycobacterial cord factor trehalose 6,6'-dimycolate (TDM) is well established. The identification of the C-type lectin Mincle on innate immune cells as the receptor for TDM and its synthetic analogue trehalose 6,6'-dibehenate (TDB) has raised interest in development of synthetic Mincle ligands as novel adjuvants. Trehalose mono- (TMXs) and diesters (TDXs) with symmetrically shortened acyl chains [denoted by X: arachidate (A), stearate (S), palmitate (P), and myristate (M)] were tested. Upon stimulation of murine macrophages, G-CSF secretion and NO production were strongly augmented by all TDXs tested, in a wide concentration range. In contrast, the TMXs triggered macrophage activation only at high concentrations. Macrophage activation by all TDXs required Mincle, but was independent of MyD88. The superior capacity of TDXs for activating macrophages was paralleled by direct binding of TDXs, but not of TMXs, to a Mincle-Fc fusion protein. Insertion of a short polyethylene glycol between the sugar and acyl chain in TDS reduced Mincle-binding and macrophage activation. Immunization of mice with cationic liposomes containing the analogues demonstrated the superior adjuvant activity of trehalose diesters. Overall, immune activation in vitro and in vivo by trehalose esters of simple fatty acids requires two acyl chains of length and involves Mincle. © The Author(s) 2016.
Low-temperature processed Ga-doped ZnO coatings from colloidal inks.
Della Gaspera, Enrico; Bersani, Marco; Cittadini, Michela; Guglielmi, Massimo; Pagani, Diego; Noriega, Rodrigo; Mehra, Saahil; Salleo, Alberto; Martucci, Alessandro
2013-03-06
We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks.
Development of gastroretentive metronidazole floating raft system for targeting Helicobacter pylori.
Abou Youssef, Nancy Abdel Hamid; Kassem, Abeer Ahmed; El-Massik, Magda Abd Elsamea; Boraie, Nabila Ahmed
2015-01-01
The study demonstrates the feasibility of prolonging gastric residence time and release rate of metronidazole (Mz) by preparing floating raft system (FRS) using ion-sensitive in situ gel forming polymers. FRSs contained 3, 4, 5 and 0.5, 0.75, 1% w/v sodium alginate (Alg) and gellan gum (G), respectively, 0.25% w/v sodium citrate and calcium carbonate (C). Lipids: glyceryl mono stearate (GMS), Precirol(®) and Compritol(®) were incorporated into G-based formulations (G1%C1%). Mz:lipid ratio was 1:1, except for Mz:GMS, ratios of 1:1.5 and 1:2 were also investigated. Buoyancy, gelation capacity and viscosity parameters were evaluated. Drug release and kinetics for selected formulae were examined. The selected lipid containing formula was subjected to an accelerated stability testing. Alg4%C2% FRS exhibited short gelation lag time (3s), long duration (>24h), floating lag time 1m in and duration >24h, and a reliable sustained drug release (MDT 6h). Gellan gum FRSs achieved successful floating gastroretention, but failed to achieve the required gelation capacity. Incorporation of GMS (Mz:GMS 1:1) enhanced the gelation lag time and duration (6s and >24h, respectively), keeping sustained drug release and formulation stability. The improved characteristics of the selected FRS make them excellent candidates for gastric targeting to eradicate Helicobacter pylori. Copyright © 2015 Elsevier B.V. All rights reserved.
Azad, Ibrahim; Ram, Manoj K; Goswami, D Yogi; Stefanakos, Elias
2016-08-23
Metal-insulator-metal tunnel diodes have great potential for use in infrared detection and energy harvesting applications. The quantum based tunneling mechanism of electrons in MIM (metal-insulator-metal) or MIIM (metal-insulator-insulator-metal) diodes can facilitate rectification at THz frequencies. In this study, the required nanometer thin insulating layer (I) in the MIM diode structure was fabricated using the Langmuir-Blodgett technique. The zinc stearate LB film was deposited on Au/Cr coated quartz, FTO, and silicon substrates, and then heat treated by varying the temperature from 100 to 550 °C to obtain nanometer thin ZnO layers. The thin films were characterized by XRD, AFM, FTIR, and cyclic voltammetry methods. The final MIM structure was fabricated by depositing chromium/nickel over the ZnO on Au/Cr film. The current voltage (I-V) characteristics of the diode showed that the conduction mechanism is electron tunneling through the thin insulating layer. The sensitivity of the diodes was as high as 32 V(-1). The diode resistance was ∼80 Ω (at a bias voltage of 0.78 V), and the rectification ratio at that bias point was about 12 (for a voltage swing of ±200 mV). The diode response exhibited significant nonlinearity and high asymmetry at the bias point, very desirable diode performance parameters for IR detection applications.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramirez-Dorronsoro, Juan-Carlos; Jacko, Robert B; Kildsig, Dane O
2006-01-01
The purpose of this study was to develop an instrument (the Purdue instrument) and the corresponding methodologies to measure the electrostatic charge development (chargeability) of dry powders when they are in dynamic contact with stainless steel surfaces. The system used an inductive noncontact sensor located inside an aluminum Faraday cage and was optimized to measure the charging capabilities of a fixed volume of powder (0.5 cc). The chargeability of 5,5-diphenyl-hydantoin, calcium sulfate dihydrate, cimetidine, 3 grades of colloidal silicon dioxide, magnesium stearate, 4 grades of microcrystalline cellulose, salicylic acid, sodium carbonate, sodium salicylate, spray-dried lactose, and sulfinpyrazone were tested at 4 linear velocities, and the particle size distribution effect was assessed for 3 different grades of colloidal silicon dioxide and 4 different grades of microcrystalline cellulose. The chargeability values exhibited a linear relationship for the range of velocities studied, with colloidal silicon dioxide exhibiting the maximum negative chargeability and with spray-dried lactose being the only compound to exhibit positive chargeability. The instrument sensitivity was improved by a factor of 2 over the first generation version, and the electrostatic charge measurements were reproducible with relative standard deviations ranging from nondetectable to 33.7% (minimum of 3 replicates). These results demonstrate the feasibility of using the Purdue instrument to measure the electrostatic charge control capabilities of pharmaceutical dry powders with a reasonable level of precision.
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo
2013-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.
Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2012-01-01
A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.
Elkhodairy, Kadria A.; Elsaghir, Hanna A.; Al-Subayiel, Amal M.
2014-01-01
The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1 : 3, 1 : 1, and 3 : 1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1 : 9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345
Zhang, Si-Wei; Yu, Lian; Huang, Jun; Hussain, Munir A; Derdour, Lotfi; Qian, Feng; de Villiers, Melgardt M
2014-12-01
Amorphous drugs are used to improve the solubility, dissolution, and bioavailability of drugs. However, these metastable forms of drugs can transform into more stable, less soluble, crystalline counterparts. This study reports a method for evaluating the effect of commonly used excipients on the surface crystallization of amorphous drugs and its application to two model amorphous compounds, nifedipine and indomethacin. In this method, amorphous samples of the drugs were covered by excipients and stored in controlled environments. An inverted light microscope was used to measure in real time the rates of surface crystal nucleation and growth. For nifedipine, vacuum-dried microcrystalline cellulose and lactose monohydrate increased the nucleation rate of the β polymorph from two to five times when samples were stored in a desiccator, while D-mannitol and magnesium stearate increased the nucleation rate 50 times. At 50% relative humidity, the nucleation rates were further increased, suggesting that moisture played an important role in the crystallization caused by the excipients. The effect of excipients on the crystal growth rate was not significant, suggesting that contact with excipients influences the physical stability of amorphous nifedipine mainly through the effect on crystal nucleation. This effect seems to be drug specific because for two polymorphs of indomethacin, no significant change in the nucleation rate was observed under the excipients.
NASA Astrophysics Data System (ADS)
Ren, Yanzhi; Asanuma, Morito; Iimura, Ken-ichi; Kato, Teiji
2001-01-01
Temperature-variable grazing incidence reflection absorption (GIR) spectra were recorded for the single monolayer of [CF3(CF2)m(CH2)nCOO)]2Cd [(m,n)=(7,10), (7,16), (7,22), (5,22), and (3,22)], transferred from aqueous Cd2+ subphase to gold- and aluminum-evaporated glass substrates. The spectra reveal that these monolayers have better thermal stability on Al substrates than on Au. An "interaction band" is identified at 1484˜1480 cm-1, due to the νs(COO-) mode of carboxylate headgroups in ionic bonding with the Al surface. It is found that both the van der Waals interaction between the trans zig-zag hydrocarbon chains and the overlapping interaction between the fluorocarbon helixes are responsible for the systematic variation of the monolayer thermal behavior with (m,n). The thermal behavior of a single monolayer of cadmium stearate, serving as a model system, has been investigated to further confirm the spectral interpretation about the partially fluorinated monolayer. In addition, temperature-dependent friction measurements show that the single monolayers of (m,n)=(7,16), (7,22), (5,22), and (3,22) are potential molecular lubricants that can be used in the range of 25˜140 °C.
2016-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives and contaminants and to prepare specifications for identity and purity. The first part of the report contains a brief description of general considerations addressed at the meeting, including updates on matters of interest to the work of the Committee. A summary follows of the Committee's evaluations of technical, toxicological and/or dietary exposure data for seven food additives (benzoates; lipase from Fusarium heterosporum expressed in Ogataea polymorpha; magnesium stearate; maltotetraohydrolase from Pseudomonas stutzeri expressed in Bacillus licheniformis; mixed β-glucanase, cellulase and xylanase from Rasamsonia emersonii; mixed β-glucanase and xylanase from Disporotrichum dimorphosporum; polyvinyl alcohol (PVA)- polyethylene glycol (PEG) graft copolymer) and two groups of contaminants (non-dioxin-like polychlorinated biphenyls and pyrrolizidine alkaloids). Specifications for the following food additives were revised or withdrawn: advantame; annatto extracts (solavnt extracted bixin, ad solvent-extracted norbixin); food additives containing aluminium and/or silicon (aluminium silicate; calcium aluminium silicate; calcium silicate; silicon dioxide, amorphous; sodium aluminium silicate); and glycerol ester of gum rosin. Annexed to the report are tables or text summarizing the toxicological and dietary exposure information and information on specifications as well as the Committees recommendations on the food additives and contaminants considered at this meeting.
Formulation development and comparative in vitro study of metoprolol tartrate (IR) tablets.
Husain, Tazeen; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Maboos, Madiha; Khan, Madeeha; Bashir, Lubna; Naz, Shazia
2016-05-01
The objective of the present work was to develop Immediate Release (IR) tablets of Metoprolol Tartrate (MT) and to compare trial formulations to a reference product. Six formulations (F1-F6) were designed using central composite method and compared to a reference brand (A). Two marketed products (brands B and C) were also evaluated. F1-F6 were prepared with Avicel PH101 (filler), Crospovidone (disintegrant) and Magnesium Stearate (lubricant) by direct compression. Pharmacopoeial and non-pharmacopoeial methods were used to assess their quality. Furthermore, drug profiles were characterized using model dependent and independent (f(2)) approaches. Brands B and C and F5 and F6 did not qualify the tests for content uniformity. Moreover, brand B did not meet weight variation criteria and brand C did not satisfy requirements for single point dissolution test. Of the trial formulations, F2 failed the test for uniformity in thickness while F4 did not disintegrate within time limit. Only F1 and F3 met all quality parameters and were subjected to accelerated stability testing without significant alterations in their physicochemical characteristics. Based on AIC and r(2)(adjusted) values obtained by applying various kinetic models, drug release was determined to most closely follow Hixson-Crowell cube root law. F1 was determined to be the optimized formulation.
Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing
2012-01-01
Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627
Mazurek-Wadołkowska, Edyta; Winnicka, Katarzyna; Czyzewska, Urszula; Miltyk, Wojciech
2016-07-01
High profitability and simplicity of direct compression, encourages pharmaceutical industry to create universal excipients to improve technology process. Prosolv® SMCC - silicified microcrystalline cellulose and Starch 1500® - pregelatinized starch, are the example of multifunctional excipients. The aim of the present study was to evaluate the stability of theophylline (API) in the mixtures with excipients with various physico-chemical properties (Prosolv® SMCC 90, Prosolv® SMCC HD 90, Prosolv* SMCC 50®, Starch 1500® and magnesium stearate). The study presents results of thermal analysis of the mixtures with theophylline before and after 6 months storage of the tablets at various temperatures and relative humidity conditions (25 ± 2°C/40 ± 5% RH, 40 ± 2°C/75 ± 5% RH). It was shown that high concentration of Starch 1500® (49%) affects the stability of the theophylline tablets with Prosolv® SMCC. Prosolv® SMCC had no effect on API stability as confirmed by the differential scanning calorimetry (DSC). Changes in peak placements were observed just after tabletting process, which might indicate that compression accelerated the incompatibilities between theophylline and Starch 1500. TGA analysis showed loss in tablets mass equal to water content in starch. GC-MS study established no chemical decomposition of theophylline. We demonstrated that high content of Starch 1500® (49%) in the tablet mass, affects stability on tablets containing theophylline and Prosolv® SMCC.
García-Silvera, Edgar Edurman; Martínez-Morales, Fernando; Bertrand, Brandt; Morales-Guzmán, Daniel; Rosas-Galván, Nashbly Sarela; León-Rodríguez, Renato; Trejo-Hernández, María R
2018-03-01
In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 2 2 factorial design, the lipase production increased 1.55-fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X-100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6-10) and temperatures (5-55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box-Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Elwell, Caleb
Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or biodiesel, only two of the additives had any significant effect on TME CP. The additive formulated by Meat & Livestock Australia (MLA) outperformed Evonik's Viscoplex 10-530. The MLA additive was investigated further and its effect on CP was characterized in pure TME and in CME/TME blends. When mixed in CME/TME blends, the MLA additive had a synergistic effect and produced lower CPs than the addition of mixing MLA in TME and blending CME with TME. To evalulate the cold temperature properties of TME blended with petroleum diesel, CPs of TME/diesel blends from 0 to 100% were measured. The TME/diesel blends were treated with the MLA additives to determine the effects of the additives under these blend conditions. The MLA additive also had a synergistic effect when mixed in TME/diesel blends. Finally, all three of the TME CP reduction methods were evaluated in an economic model to determine the conditions under which each method would be economically viable. Each of the CP reduction methods were compared using a common metric based on the cost of reducing the CP of 1 gallon of finished biodiesel by 1°C (i.e. $/gal/°C). Since the cost of each method is dependent on varying commodity prices, further development of the economic model (which was developed and tested with 2012 prices) to account for stochastic variation in commodity prices is recommended.
Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design.
Patel, Ketan; Padhye, Sameer; Nagarsenker, Mangal
2012-03-01
Solid lipid nanoparticles (SLNs) of duloxetine hydrochloride (DLX) were prepared to circumvent the problems of DLX, which include acid labile nature, high first-pass metabolism, and high-dosing frequency. The DLX-SLNs were prepared by using two different techniques, viz. solvent diffusion method and ultrasound dispersion method, and evaluated for particle size, zeta potential, entrapment efficiency, physical characteristics, and chemical stability. Best results were obtained when SLNs were prepared by ultrasound dispersion method using glyceryl mono stearate as solid lipid and DLX in ratio of 1:20 and mixture of polysorbate 80 and poloxamer 188 as surfactant in concentration of 3%. The mean particle size of formulation and entrapment efficiency was 91.7 nm and 87%, respectively, and had excellent stability in acidic medium. Differential scanning calorimetry and X-ray diffraction data showed complete amorphization of DLX in lipid. In vitro drug release from SLNs was observed for 48 h and was in accordance with Higuchi kinetics. In vivo antidepressant activity was evaluated in mice by forced swim test. DLX-SLNs showed significant enhancement in antidepressant activity at 24 h when administered orally in comparison to drug solution. These results confirm the potential of SLNs in enhancing chemical stability and improving the efficacy of DLX via oral route. The SLN dispersion was converted into solid granules by adsorbing on colloidal silicon dioxide and characterized for particle size after redispersion, morphology, and flow properties. Results indicated that nanoparticles were successfully adsorbed on the carrier and released SLNs when dispersed in water.
Tsuda, Kazushi
2008-03-01
It has been shown that benidipine, a long-lasting calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate whether orally administered benidipine might influence the membrane function in patients with essential hypertension. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. In the preliminary study using erythrocytes obtained from healthy volunteers, benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS in the EPR spectra in vitro. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. In addition, it was demonstrated that the effect of benidipine on membrane fluidity of erythrocytes was significantly potentiated by the NO-substrate, L-arginine. In the separate series of the study, we observed that orally administered benidipine for 4 weeks significantly increased the membrane fluidity of erythrocytes with a concomitant increase in plasma NO metabolite levels in hypertensive subjects. The results of the present study demonstrated that benidipine might increase the membrane fluidity and improve the microviscosity of erythrocytes both in vitro and in vivo, to some extent, by the NO-dependent mechanism. Furthermore, it is strongly suggested that orally administered benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in hypertensive subjects.
Tsuda, Kazushi; Nishio, Ichiro
2004-12-01
Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.
NASA Astrophysics Data System (ADS)
Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen
2016-06-01
The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.
Järvinen, Maiju A; Paaso, Janne; Paavola, Marko; Leiviskä, Kauko; Juuti, Mikko; Muzzio, Fernando; Järvinen, Kristiina
2013-11-01
Continuous processing is becoming popular in the pharmaceutical industry for its cost and quality advantages. This study evaluated the mechanical properties, uniformity of dosage units and drug release from the tablets prepared by continuous direct compression process. The tablet formulations consisted of acetaminophen (3-30% (w/w)) pre-blended with 0.25% (w/w) colloidal silicon dioxide, microcrystalline cellulose (69-96% (w/w)) and magnesium stearate (1% (w/w)). The continuous tableting line consisted of three loss-in-weight feeders and a convective continuous mixer and a rotary tablet press. The process continued for 8 min and steady state was reached within 5 min. The effects of acetaminophen content, impeller rotation rate (39-254 rpm) and total feed rate (15 and 20 kg/h) on tablet properties were examined. All the tablets complied with the friability requirements of European Pharmacopoeia and rapidly released acetaminophen. However, the relative standard deviation of acetaminophen content (10% (w/w)) increased with an increase in impeller rotation rate at a constant total feed rate (20 kg/h). A compression force of 12 kN tended to result in greater tablet hardness and subsequently a slower initial acetaminophen release from tablets when compared with those made with the compression force of about 8 kN. In conclusion, tablets could be successfully prepared by a continuous direct compression process and process conditions affected to some extent tablet properties.
Müller, Marco; Englert, Michael; Earle, Martyn J; Vetter, Walter
2017-03-10
Solvent systems are not readily available for the separation of very nonpolar compounds by countercurrent chromatography (CCC). In this study we therefore evaluated the suitability of room temperature ionic liquids (IL) in organic solvents for the CCC separation of the extremely nonpolar lipid compounds tripalmitin (PPP) and cholesteryl stearate (CS). The four IL tested were [C 10 mim][OTf], [C 2 mim][NTf 2 ], [P66614][NTf 2 ], and [P66614][Cl]. Search for a CCC-suited solvent system started with solubility studies with fourteen organic solvents. Following this, combinations were made with one organic solvent miscible and one organic solvent immiscible with IL (147 combinations). Twenty-four initially monophasic mixtures of two organic solvents became biphasic by adding IL. Several unexpected results could be observed. For instance, n-hexane and n-heptane became biphasic with [P66614][Cl]. Further nine systems became biphasic although the IL was not miscible in any of the two components. These 33 solvent systems were investigated with regard to phase ratio, settling time, share of IL in the upper phase and last not least the K U/L values of PPP and CS, which were 8.1 and 7.7 respectively. The most promising system, n-heptane/chloroform/[C 10 mim][OTf] (3:3:1, v/v/v) allowed a partial separation of PPP and CS by CCC which was not achieved beforehand. Copyright © 2017 Elsevier B.V. All rights reserved.
Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F
2011-08-01
Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Brondi, Ariadne M.; Garcia, Jerusa S.
2017-01-01
A study was carried out to investigate compatibility of amlodipine besylate and olmesartan medoxomil with a variety of pharmaceutical excipients. Both drugs are antihypertensive agents that can be administered alone, in monotherapy, or in pharmaceutical association. The studies were performed using binary and ternary mixtures, and samples were stored for 3 and 6 months at 40°C under 75% relative humidity and dry conditions. For this study, a method based on high-performance liquid chromatography (HPLC) was developed and validated for the simultaneous determination of amlodipine besylate and olmesartan medoxomil in samples from pharmaceutical preformulation studies using diode array detector (DAD) and charged aerosol detector (CAD). The runtime per sample was 10 min with retention time of 7.926 min and 4.408 min for amlodipine and olmesartan, respectively. The validation was performed according to ICH guidelines. The calibration curve presents linear dynamic range from 12 to 250 μg mL−1 for amlodipine and from 25 to 500 μg mL−1 for olmesartan with coefficient of determination (R2 ≥ 0.9908) while repeatability and reproducibility (expressed as relative standard deviation) were lower than 1.0%. The excipients such as corn starch, croscarmellose sodium, magnesium stearate, polyvinyl alcohol, talc, polyvinylpyrrolidone, lactose monohydrate, and polyethylene glycol showed potential incompatibilities after accelerated stability testing. PMID:29391967
Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids.
Miller, K W; Firestone, L L; Alifimoff, J K; Streicher, P
1989-01-01
While many theories of general anesthesia postulate a lipid site of action, there has been no adequate explanation for the lack of anesthetic potency of the highly hydrophobic primary alkanols with more than 12 carbons (the cut-off). Some work suggests that these nonanesthetic alcohols do not dissolve in membranes. Other work contradicts this and suggests that an anesthetic site on a protein provides a better explanation. Here we show that both the anesthetic dodecanol and the nonanesthetic tetradecanol are taken up equally well into the tissues of animals and into isolated postsynaptic membranes. When a group of Rana pipiens tadpoles were treated with dodecanol, half were anesthetized by 4.7 microM (free aqueos concentration), and the corresponding concentration in the tissues was found to be 0.4 mmol per kg wet weight. Prolonged exposure (92 hr) to tetradecanol produced even higher tissue concentrations (0.7 mmol per kg wet weight), yet no anesthetic effects were observed. Furthermore, general anesthetics are thought to act on postsynaptic membranes but both alkanols partitioned into postsynaptic membranes from Torpedo electroplaques. The spin label, 12-doxyl stearate, was incorporated into these membranes. The lipid order parameter it reported was decreased by the anesthetic alcohols (octanol, decanol, and dodecanol), whereas the nonanesthetic alcohols either did not change it significantly (tetradecanol) or actually increased it (hexadecanol and octadecanol). Thus, although lipid solubility is unable to account for the pharmacology of the cut-off in potency of the long-chain alcohols, lipid perturbations provide an accurate description. PMID:2783782
NASA Astrophysics Data System (ADS)
Chowdhury, Pallabita
In our previous work we developed and characterized 0.1% dexamethasone mixed nanomicelles (DMN). DMN were prepared using surfactants polyoxyl 40 stearate (P40S) and polysorbate 80 (P80), which are approved by the FDA for ocular use. The present study builds on the previous work by developing and evaluating nanomicelles laden in situ gel of 0.1% dexamethasone (DMN-ISG) with potential for treating anterior segment eye inflammations. DMN-ISG was prepared by mixing the basic 2X formulation of DMN with appropriate concentrations of gellan gum, mannitol, benzododecinium bromide and tromethamine. DMN-ISG was characterized for gelation, viscosity, transparency, morphology using Transmission Electron Microscopy (TEM), thermoanalysis using Differential Scanning Calorimetry (DSC), in vitro drug release and sterility. DMN prepared with an optimized composition of P40S/P80=7/3 by weight were used in the preparation of DMN-ISG. TEM image of DMN-ISG showed the presence of dexamethasone nanomicelles in the size range between 20-40 nm entrapped in the gel structure. More than 50% of the drug was released from DMN-ISG in the first few hours and the remaining drug was released in a sustained manner for up to 30 h. Aseptically prepared DMN-ISG formulation remained sterile for up to 14 days. The preliminary findings of our investigation suggest that DMN-ISG has the potential for use in treating anterior segment eye inflammations. Further in vivo evaluation is warranted.
Iwao, Yasunori
2015-01-01
With the aim of directly predicting the functionality and mechanism of pharmaceutical excipients, we investigated an analysis method based on available surface area (S(t)), which is the surface area of a drug in direct contact with the external solvent during dissolution. First, to study the effect of lubricant concentration on the dissolution rate of acetaminophen (APAP), the dissolution behaviors as well as the change over time in S(t) of APAP tablets were examined. In the dissolution tests, a retarded dissolution of APAP was not observed with new lubricant triglycerin full behenate (TR-FB), whereas magnesium stearate (Mg-St) retarded the dissolution. The S(t) profiles for APAP with Mg-St at>0.5% showed downward curvature indicating a gradual decrease in surface area over time. Conversely, with TR-FB, even when its concentration was increased, the S(t) profile for APAP had a maximum value. The differences between Mg-St and TR-FB could be explained by the differences in extensibility deriving from their morphology. Next, we evaluated the effect of disintegtant concentration using five disintegrants. When disintegrant was added to ethenzamide tablet formulation, an increase in the dissolution rate and S(t) dependent on disintegrant concentration was observed, according to the type of disintegrant. It was found that the water absorption ability of disintegrants had strong correlations with the parameters of S(t). Taken together, this study demonstrates that analysis of S(t) can directly provide useful information, especially about the functionality of pharmaceutical excipients.
Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming
2018-04-06
To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.
Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria
Kang, Mi-Sun; Kim, Youn-Shin; Lee, Hyun-Chul; Lim, Hoi-Soon
2012-01-01
Daily use of probiotic chewing gum might have a beneficial effect on oral health, and it is important that the viability of the probiotics be maintained in this food product. In this study, we examined the stability of probiotic chewing gum containing Weissella cibaria. We evaluated the effects of various factors, including temperature and additives, on the survival of freeze-dried probiotic W. cibaria powder. No changes in viability were detected during storage at 4℃ for 5 months, whereas the viability of bacteria stored at 20℃ decreased. The stability of probiotic chewing gum decreased steadily during storage at 20℃ for 4 weeks. The viability of the freeze-dried W. cibaria mixed with various additives, such as xylitol, sorbitol, menthol, sugar ester, magnesium stearate, and vitamin C, was determined over a 4-week storage period at 20℃. Most of the freeze-dried bacteria except for those mixed with menthol and vitamin C were generally stable during a 3-week storage period. Overall, our study showed that W. cibaria was more stable at 4℃ than that at 20℃. In addition, menthol and vitamin C had a detrimental effect on the storage stability of W. cibaria. This is the first study to examine the effects of various chewing gum additives on the stability of W. cibaria. Further studies will be needed to improve the stability of probiotic bacteria for developing a novel probiotic W. cibaria gum. PMID:23323221
Bondi, Robert W; Igne, Benoît; Drennen, James K; Anderson, Carl A
2012-12-01
Near-infrared spectroscopy (NIRS) is a valuable tool in the pharmaceutical industry, presenting opportunities for online analyses to achieve real-time assessment of intermediates and finished dosage forms. The purpose of this work was to investigate the effect of experimental designs on prediction performance of quantitative models based on NIRS using a five-component formulation as a model system. The following experimental designs were evaluated: five-level, full factorial (5-L FF); three-level, full factorial (3-L FF); central composite; I-optimal; and D-optimal. The factors for all designs were acetaminophen content and the ratio of microcrystalline cellulose to lactose monohydrate. Other constituents included croscarmellose sodium and magnesium stearate (content remained constant). Partial least squares-based models were generated using data from individual experimental designs that related acetaminophen content to spectral data. The effect of each experimental design was evaluated by determining the statistical significance of the difference in bias and standard error of the prediction for that model's prediction performance. The calibration model derived from the I-optimal design had similar prediction performance as did the model derived from the 5-L FF design, despite containing 16 fewer design points. It also outperformed all other models estimated from designs with similar or fewer numbers of samples. This suggested that experimental-design selection for calibration-model development is critical, and optimum performance can be achieved with efficient experimental designs (i.e., optimal designs).
Chorna, Nataliya E.; Santos-Soto, Iván J.; Carballeira, Nestor M.; Morales, Joan L.; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P.; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña
2013-01-01
Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis. PMID:24223732
Hyslop, P A; Kuhn, C E; Sauerheber, R D
1984-01-01
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells. PMID:6324752
Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi
2017-08-07
A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Polyarginine nanocapsules: a new platform for intracellular drug delivery
NASA Astrophysics Data System (ADS)
Lozano, M. V.; Lollo, G.; Alonso-Nocelo, M.; Brea, J.; Vidal, A.; Torres, D.; Alonso, M. J.
2013-03-01
This report describes the development of a new nanocarrier, named as polyarginine (PArg) nanocapsules, specifically designed for overcoming cellular barriers. These nanocapsules are composed of an oily core and a PArg corona. The attachment of the PArg corona was mediated by its interaction with the oily core, which was conveniently stabilized with phosphatidylcholine. Hybrid PArg/PEG nanocapsules could also be obtained by introducing PEG-stearate in the nanocapsules formation process. The nanocapsules had an average size in the range of 120-160 nm, and a positive surface charge, which varied between +56 and +28 mV for PArg and PArg/PEG nanocapsules, respectively. They could accommodate significant amounts of lipophilic drugs, i.e., docetaxel, in their core, and also polar negatively charged molecules, i.e., plasmid DNA, on their coating. As a preliminary proof-of-principle, we explored the ability of these nanocarriers to enter cancer cells and to inhibit proliferation in the non-small cell lung cancer NCI-H460 cell line, using flow cytometry and confocal microscopy analysis. The results indicated that PArg nanocapsules are rapidly and massively accumulated into the NCI-H460 cells and that the PArg shell plays a critical role in the internalization process. Moreover, the incubation with docetaxel-loaded nanocapsules with NCI-H460 cells led to an enhanced inhibition of their proliferation, as compared to the free drug. Overall, this is the first report of the potential of PArg nanocapsules as intracellular drug delivery vehicles.
Zhang, Jingpu; Mi, Congcong; Wu, Hongyan; Huang, Huaiqing; Mao, Chuanbin; Xu, Shukun
2012-01-01
High-quality NaYF4:Yb/Er/Gd up-conversion nanoparticles (UCNPs) were first synthesized by a solvothermal method using rare earth stearate, sodium fluoride, ethanol, water, and oleic acid as precursors. Doped Gd3+ ions can promote the transition of NaYF4 from cubic to hexagonal phase, shorten the reaction time, and reduce the reaction temperature without reducing the luminescence intensity of NaYF4:Yb/Er UCNPs. X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and luminescence spectroscopy were applied to characterize the UCNPs. The nanoparticles exhibited small size and excellent green up-conversion photoluminescence, making them suitable for biological applications. After the surfaces of NaYF4:Yb/Er/Gd UCNPs were modified with amino groups through the Stöber method, they could be brought close enough to the analytically important protein called R-phycoerythrin (R-PE) bearing multiple carboxyl groups so that energy transfer could occur. A luminescence resonance energy transfer (LRET) system was developed using NaYF4:Yb/Er/Gd UCNPs as an energy donor and R-PE as an energy acceptor. As a result, a detection limit of R-PE of 0.5 μg/ml was achieved by the LRET system with a relative standard deviation of 2.0%. Although this approach was first used successfully to detect R-PE, it can also be extended to the detection of other biological molecules. PMID:22155069
Muselík, Jan; Franc, Aleš; Doležel, Petr; Goněc, Roman; Krondlová, Anna; Lukášová, Ivana
2014-09-01
The article describes the development and production of tablets using direct compression of powder mixtures. The aim was to describe the impact of filler particle size and the time of lubricant addition during mixing on content uniformity according to the Good Manufacturing Practice (GMP) process validation requirements. Processes are regulated by complex directives, forcing the producers to validate, using sophisticated methods, the content uniformity of intermediates as well as final products. Cutting down of production time and material, shortening of analyses, and fast and reliable statistic evaluation of results can reduce the final price without affecting product quality. The manufacturing process of directly compressed tablets containing the low dose active pharmaceutical ingredient (API) warfarin, with content uniformity passing validation criteria, is used as a model example. Statistic methods have proved that the manufacturing process is reproducible. Methods suitable for elucidation of various properties of the final blend, e.g., measurement of electrostatic charge by Faraday pail and evaluation of mutual influences of researched variables by partial least square (PLS) regression, were used. Using these methods, it was proved that the filler with higher particle size increased the content uniformity of both blends and the ensuing tablets. Addition of the lubricant, magnesium stearate, during the blending process improved the content uniformity of blends containing the filler with larger particles. This seems to be caused by reduced sampling error due to the suppression of electrostatic charge.
Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.
NASA Astrophysics Data System (ADS)
Alkhatib, Mayson H.; AlBishi, Hayat M.
2013-03-01
Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.
Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.
Chen, C C; Tu, Y Y; Chang, H M
1999-02-01
Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.
La Nasa, Jacopo; Modugno, Francesca; Aloisi, Matteo; Lluveras-Tenorio, Anna; Bonaduce, Ilaria
2018-02-25
In this paper we present a new analytical GC/MS method for the analysis of mixtures of free fatty acids and metal soaps in paint samples. This approach is based on the use of two different silylating agents: N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS). Our experimentation demonstrated that HMDS does not silylate fatty acid carboxylates, so it can be used for the selective derivatization and GC/MS quantitative analysis of free fatty acids. On the other hand BSTFA is able to silylate both free fatty acids and fatty acids carboxylates. The reaction conditions for the derivatization of carboxylates with BSTFA were thus optimized with a full factorial 3 2 experimental design using lead stearate and lead palmitate as model systems. The analytical method was validated following the ICH guidelines. The method allows the qualitative and quantitative analysis of fatty acid carboxylates of sodium, calcium, magnesium, aluminium, manganese, cobalt, copper, zinc, cadmium, and lead and of lead azelate. In order to exploit the performances of the new analytical method, samples collected from two reference paint layers, from a gilded 16th century marble sculpture, and from a paint tube belonging to the atelier of Edvard Munch, used in the last period of his life (1916-1944), were characterized. Copyright © 2017 Elsevier B.V. All rights reserved.
Significance of Ca-soap formation for calcium absorption in the rat.
Gacs, G; Barltrop, D
1977-01-01
The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405
Transgenic oil palm: production and projection.
Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C
2000-12-01
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
Comparative Solid-State Stability of Perindopril Active Substance vs. Pharmaceutical Formulation
Buda, Valentina; Andor, Minodora; Ledeti, Adriana; Ledeti, Ionut; Vlase, Gabriela; Vlase, Titus; Cristescu, Carmen; Voicu, Mirela; Suciu, Liana; Tomescu, Mirela Cleopatra
2017-01-01
This paper presents the results obtained after studying the thermal stability and decomposition kinetics of perindopril erbumine as a pure active pharmaceutical ingredient as well as a solid pharmaceutical formulation containing the same active pharmaceutical ingredient (API). Since no data were found in the literature regarding the spectroscopic description, thermal behavior, or decomposition kinetics of perindopril, our goal was the evaluation of the compatibility of this antihypertensive agent with the excipients in the tablet under ambient conditions and to study the effect of thermal treatment on the stability of perindopril erbumine. ATR-FTIR (Attenuated Total Reflectance Fourier Transform Infrared) spectroscopy, thermal analysis (thermogravimetric mass curve (TG—thermogravimetry), derivative thermogravimetric mass curve (DTG), and heat flow (HF)) and model-free kinetics were chosen as investigational tools. Since thermal behavior is a simplistic approach in evaluating the thermal stability of pharmaceuticals, in-depth kinetic studies were carried out by classical kinetic methods (Kissinger and ASTM E698) and later with the isoconversional methods of Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa. It was shown that the main thermal degradation step of perindopril erbumine is characterized by activation energy between 59 and 69 kJ/mol (depending on the method used), while for the tablet, the values were around 170 kJ/mol. The used excipients (anhydrous colloidal silica, microcrystalline cellulose, lactose, and magnesium stearate) should be used in newly-developed generic solid pharmaceutical formulations, since they contribute to an increased thermal stability of perindopril erbumine. PMID:28098840
Effects of a sustained-release naloxone pellet on luteinizing hormone secretion in female rats.
Gabriel, S M; Simpkins, J W
1983-11-01
Studies were undertaken to develop a naloxone implant capable of chronically blocking opioid receptors for several weeks in an effort to evaluate the effect of this prolonged narcotic antagonism on luteinizing hormone (LH) secretion in female rats. Antagonism of opiate receptors was achieved with a tablet formulation which contained 75 mg naloxone free base and a high content of the insoluble binding material, Mg stearate. Subcutaneous placement of this implant prevented morphine-induced analgesia for 2 weeks and antagonized the LH suppressory effects of morphine (15 or 30 mg/kg) administration. Thus, this naloxone delivery system is capable of chronically occupying the opioid receptors which mediate morphine's effects on analgesia and LH secretion. Despite this, the naloxone pellet only moderately enhanced the initial rate of increase in LH secretion following ovariectomy (day 1) and was ineffective in further augmenting LH secretion at 3 and 7 days after implantation. In rats which were ovariectomized and implanted immediately with estradiol-containing Silastic capsules, the naloxone pellet was ineffective in altering LH secretion 1, 3 or 7 days later. Thus, while chronic exposure to naloxone persistently antagonizes the pharmacologic actions of morphine, the naloxone pellet only transiently blocked the tonic inhibitory effect of endogenous opioid peptides. The mechanism by which the LH secretory effects of naloxone are lost following chronic exposure to the antagonist are at present unknown, but may involve the activation of compensatory mechanisms which are inhibitory to LH secretion.
Zhang, Yongmin; Kong, Weiwei; An, Pengyun; He, Shuai; Liu, Xuefeng
2016-03-15
Fatty acid soaps such as sodium stearate (NaOSA) represent a class of cheap, environmentally friendly surfactants; however, their poor solubility seriously challenges their application in various fields. Herein, we describe a CO2/pH-controllable viscoelastic nanostructured fluid, which was developed by simple mixing of the commodity soap NaOSA with a bola-type quaternary ammonium salt (Bola2be) in a 2:1 molar ratio without the need for complex organic synthesis. The introduction of Bola2be increased NaOSA solubility and promoted micelle growth by forming a noncovalent pseudo-Gemini structure, 2NaOSA-Bola2be. Long aggregates are formed with increases in concentration, and these become entangled into a three-dimensional network at 10 times that of the critical micelle concentration (0.057 mM), showing strong thickening ability. Micellar branching occurs above 22.38 mM, as deduced by rheology and verified by cryo-transmission electron microscopy. The worm-based fluid formed from the noncovalent pseudo-Gemini surfactant is highly thermosensitive, and features a higher flow activation energy of 399.76 kJ·mol(-1) compared with common worm systems. Because of the pH-sensitivity of NaOSA, the viscoelastic fluid can respond to common pH stimuli or green CO2 gas, and shows a transition between a gel-like wormlike micellar network and a water-like dispersion with precipitate. However, the CO2-responsive behavior is irreversible.
Ramnath, L; Sithole, B; Govinden, R
2017-09-01
This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45-61 U/ml at the optimum temperature and pH of between at 30-35 °C and pH 4-5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C 12 ), myristate (C 14 ), palmitate (C 16 ) and stearate (C 18 ) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C 2 ), butyrate (C 4 ) and valerate (C 5 ). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2-3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
Fu, Xin; Huang, Kelong; Liu, Suqin
2010-02-01
In this paper, a rapid, simple, and sensitive method was described for detection of the total bacterial count using SiO(2)-coated CdSe/ZnS quantum dots (QDs) as a fluorescence marker that covalently coupled with bacteria using glutaraldehyde as the crosslinker. Highly luminescent CdSe/ZnS were prepared by applying cadmium oxide and zinc stearate as precursors instead of pyrophoric organometallic precursors. A reverse-microemulsion technique was used to synthesize CdSe/ZnS/SiO(2) composite nanoparticles with a SiO(2) surface coating. Our results showed that CdSe/ZnS/SiO(2) composite nanoparticles prepared with this method possessed highly luminescent, biologically functional, and monodispersive characteristics, and could successfully be covalently conjugated with the bacteria. As a demonstration, it was found that the method had higher sensitivity and could count bacteria in 3 x 10(2) CFU/mL, lower than the conventional plate counting and organic dye-based method. A linear relationship of the fluorescence peak intensity (Y) and the total bacterial count (X) was established in the range of 3 x 10(2)-10(7) CFU/mL using the equation Y = 374.82X-938.27 (R = 0.99574). The results of the determination for the total count of bacteria in seven real samples were identical with the conventional plate count method, and the standard deviation was satisfactory.
Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth
2012-11-15
The thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed. Analysis of thermodynamic behaviour was performed by differential scanning calorimetry (DSC) and by assessment of their interaction with scCO(2) in a high-pressure variable volume view cell. The key criterion was to demonstrate a strong interaction with scCO(2) and to show liquefaction of the polymeric material at acceptable processing temperatures and pressures. Positive results should then indicate the suitability of these materials for processing by the Particle from Gas Saturated Solutions (PGSS) technique using scCO(2) to create microparticles for pulmonary administration. It was found that the materials tested interacted with scCO(2) and showed a sufficient lowering of their melting temperature (T(m)) to make them suitable for use in the PGSS microparticle production rig. Fatty acids of low T(m) were shown to act as a plasticising agent and to lower the T(m) of PEG further during interaction with scCO(2). Copyright © 2012 Elsevier B.V. All rights reserved.
Linka, Wojciech Andrzej; Wojtaszek, Ilona; Zgoda, Marian Mikołaj; Kołodziejczyk, Michał Krzysztof
2015-01-01
Dry extracts are now frequently used in medicine as an alternative to synthetic drugs. In the case of tablet technology with dry plant extracts, the proper selection of disintegrants (superdisintegrants) is particularly important. Objectives. The aim of this study was to evaluate the usefulness of the polymers constituting superdisintegrants (Vivasol®, Vivastar®, Polyplasdone XL) in uncoated tablet formulation of alcoholic extracted from Asparagus officinalis. Dry the ethanol extract of Asparagus officinalis, Vivasol®, Vivastar®, Vivapur®, Kollidon VA64, Polyplasdone XL, magnesium stearate. Direct compression. Paddle method was carried out to study pharmacopoeial parameters and pharmaceutical availability. The calculation of equivalency factors: similarity [f2] and the difference [f1]. Approximation results. Tablets brownish-green, with a smooth and uniform surface, without stains, chipping and damage. The determined average weight of the tablets compiled with the standards. The test friability and crushing strength revealed that the most mechanically strong tablets contained Vivasol, Vivastar, Polyplasdone XL. These tablets also have a longer disintegration and dissolution time compared with tablets containing only Vivasol. These differences are also confirmed by the calculated f2 and f1. The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol significantly increases the mechanical strength of the tablets (crushing strength, resistance to crushing). The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol paradoxically increases the disintegration time of tablets (11.1 min). Single superdisintegrant breaks up the tablet more effectively than a mixture of superdisintegrants.
Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2015-11-10
To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.
Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.
Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola
2016-11-10
Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.
Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang
2015-01-01
Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future.
Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang
2015-01-01
Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292
Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge
Battersby, Nigel S.; Wilson, Valerie
1989-01-01
The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (≥80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851
Treated and untreated rock dust: Quartz content and physical characterization.
Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin
2016-11-01
Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.
A randomized, double blinded, placebo-controlled clinical trial of silymarin in ulcerative colitis.
Rastegarpanah, Mansoor; Malekzadeh, Reza; Vahedi, Homayoun; Mohammadi, Maryam; Elahi, Elham; Chaharmahali, Meghedi; Safarnavadeh, Tahereh; Abdollahi, Mohammad
2015-12-01
To evaluate the clinical efficacy of silymarin in ulcerative colitis (UC) patients. A randomized double blinded placebo-controlled clinical trial was conducted in 80 UC patients whose disease had been documented and were in remission state between September 2009 and October 2010. Patients were assigned to silymarin group (42 cases) and placebo group (38 cases) using a random number table. Either silymarin (140 mg) or placebo (lactose mono-hydrate, corn starch magnesium stearate) tablets were given once daily for 6 months along with their standard therapy. The efficacies were assessed by disease activity index (DAI), frequency difference of the disease flare-up, and paraclinical data. Ten patients (4 in the silymarin group due to nausea and 6 in the placebo group due to disease flare-up and abdominal pain) discontinued the study. An improvement in hemoglobin level (11.8±1.6 g/dL vs. 13.4±1.2 g/dL,P<0.05) and erythrocyte sedimentation rate (23.7±11.5 mm/h vs.10.8±3.2 mm/h,P<0.05) was observed in the silymarin group but not in the placebo group. DAI significantly decreased in the silymarin group and reached from 11.3±3.5 to 10.7±2.8 (P<0.05). Thirty-five out of 38 patients in the silymarin group were in complete remission with no flare-up after 6 months as compared to 21 out of 32 patients in the placebo group (P=0.5000). Silymarin as a natural supplement may be used in UC patients to maintain remission.
Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming
2016-12-01
To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.
Galvao, Tatiana F; Brown, Bethany H; Hecker, Peter A; O'Connell, Kelly A; O'Shea, Karen M; Sabbah, Hani N; Rastogi, Sharad; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C
2012-01-01
The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy. Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30-35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca(2+)-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet. These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.
Chen, Xiaojuan; Li, Ning; Xu, Song; Wang, Hailong; Cai, Yumin
2018-03-28
Two kinds of CuBi₂O₄/Ag₃PO₄ with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate), and their characteristics were systematically resolved by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM)/ High-resolution Transmission Electron Microscopy (HRTEM), UV-vis Diffuse Reflectance Spectra (DRS) and Photoluminescence (PL). Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS) degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi₂O₄/Ag₃PO₄ exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi₂O₄ or Ag₃PO₄. Moreover, the catalytic activity of CuBi₂O₄/Ag₃PO₄ can be further enhanced by adding H₂O₂. The free radical capture experiments show that in the pure CuBi₂O₄/Ag₃PO₄ photocatalytic system, the OH • and O₂ •- are the main species participating in DS degradation; however, in the CuBi₂O₄/Ag₃PO₄ photocatalytic system with H₂O₂, all OH • , h ⁺, and O₂ •- take part in the DS degradation, and the contribution order is OH • > h ⁺ > O₂ •- . Accordingly, the photocatalytic mechanism of CuBi₂O₄/Ag₃PO₄ could be explained by the Z-Scheme theory, while the catalysis of CuBi₂O₄/Ag₃PO₄ with H₂O₂ follows the heterojunction energy band theory.
Dudhat, Siddhi M; Kettler, Charles N; Dave, Rutesh H
2017-05-01
Air entrapment efficiency of the powders is one of the main factors leading to occurrence of capping or lamination tendency of tablets manufactured from the directly compressible powder blends. The purpose of the current research was to study this underlying cause leading to occurrence of capping or lamination of tablets through evaluation of powder rheological properties. Powder blends were prepared by addition of 0% w/w to 100% w/w of individual active pharmaceutical ingredient (API) [two model API: acetaminophen (APAP) and ibuprofen (IBU)] with microcrystalline cellulose without and with 0.5% w/w Magnesium Stearate as lubricant. Powder rheological properties were analyzed using FT4 Powder Rheometer for dynamic, bulk, and shear properties. Tablet mechanical properties of the respective blends were studied by determining the ability of the material to form tablet of specific strength under applied compaction pressure through tabletability profile. The results showed that powder rheometer distinguished the powder blends based on their ability to relieve entrapped air along with the distinctive flow characteristics. Powder blend prepared with increasing addition of APAP displayed low powder permeability as compared to IBU blends with better powder permeability, compressibility and flow characteristics. Also, lubrication of the APAP blends did not ease their ability to relieve air. Tabletability profiles revealed the potential occurrence of capping or lamination in tablets prepared from the powder blends with high APAP content. This study can help scientist to understand tableting performance at the early-developmental stages and can avoid occurrence capping and lamination of tablets.
Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on Staphylococcus aureus
Oyama, Kentaro; Kawada-Matsuo, Miki; Oogai, Yuichi; Hayashi, Tetsuya; Nakamura, Norifumi; Komatsuzawa, Hitoshi
2016-01-01
Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism. PMID:27820854
Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.
Uehara, Naoto; Hayashi, Yoshihiro; Mochida, Hiroshi; Otoguro, Saori; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2016-01-01
Granule characteristics are some of the important intermediate qualities that determine tablet properties. However, the relationships between granule and tablet characteristics are poorly understood. The aim of this study was to elucidate relationships among formulation factors, granule characteristics, and tablet properties using a non-linear response surface method (RSM) incorporating a thin-plate spline interpolation (RSM-S) and a Bayesian network (BN). Tablets containing lactose (Lac), cornstarch (CS), and microcrystalline cellulose (MCC) were prepared by wet granulation. Ten formulations were prepared by an extreme vertices design. The angle of repose (Y 1 ), compressibility (Y 2 ), cohesion force (Y 3 ), internal friction angle (Y 4 ), and mean particle size (Y 5 ) were measured as granule characteristics. Tensile strength (TS) and disintegration time (DT) were measured as tablet properties. RSM-S results showed that TS increased with increasing amounts of MCC and Lac. DT decreased with increasing amounts of MCC and CS. The optimal BN models were predicted using four evaluation indices -Y 3 was shown to be the most important factor for TS, whereas Y 2 , Y 3 , and Y 4 were relatively important for predicting DT. Moreover, tablets with excellent tablet properties (i.e. high TS and low DT) were produced by relatively high Y 1 , low Y 2 , high Y 3 , high Y 4 , and middle Y 5 values, and resulted from the middle of MCC, middle-to-low CS, low Lac, and middle-to-low magnesium stearate (Mg-St) amounts. The RSM-S and BN techniques are useful for revealing complex relationships among formulation factors, granule characteristics, and tablet properties.
Influence of medium-chain triglycerides on lipid metabolism in the rat.
Leveille, G A; Pardini, R S; Tillotson, J A
1967-07-01
Lipid metabolism was studied in rats fed diets containing corn oil, coconut oil, or medium-chain triglyceride (MCT), a glyceride mixture containing fatty acids of 8 and 10 carbons in length. The ingestion of MCT-supplemented, cholesterolfree diets depressed plasma and liver total lipids and cholesterol as compared with corn oil-supplemented diets. In rats fed cholesterol-containing diets, plasma cholesterol levels were not influenced by dietary MCT, but liver cholesterol levels were significantly lower than in animals fed corn oil. In vitro cholesterol synthesis from acetate-1-(14)C was lower in liver slices of rats that consumed MCT than in similar preparations from corn oil-fed rats. Studies of fatty acid carboxyl labeling from acetate-1-(14)C and the conversion of palmitate-1-(14)C to C(18) acids by liver slices showed that chain-lengthening activity is greater in the liver tissue of rats fed MCT than in the liver of animals fed corn oil. The hepatic fatty acid desaturation mechanisms, evaluated by measuring the conversion of stearate-2-(14)C to oleate, was also enhanced by feeding MCT.Adipose tissue of rats fed MCT converts acetate-1-(14)C to fatty acids at a much faster rate than does tissue from animals fed corn oil. Evidence is presented to show that the enhanced incorporation of acetate into fatty acids by the adipose tissue of rats fed MCT represents de novo synthesis of fatty acids and not chain-lengthening activity. Data are also presented on the fatty acid composition of plasma, liver, and adipose tissue lipids of rats fed the different fats under study.
Belotti, Silvia; Rossi, Alessandra; Colombo, Paolo; Bettini, Ruggero; Rekkas, Dimitrios; Politis, Stavros; Colombo, Gaia; Balducci, Anna Giulia; Buttini, Francesca
2014-08-25
An amikacin product for convenient and compliant inhalation in cystic fibrosis patients was constructed by spray-drying in order to produce powders of pure drug having high respirability and flowability. An experimental design was applied as a statistical tool for the characterization of amikacin spray drying process, through the establishment of mathematical relationships between six Critical Quality Attributes (CQAs) of the finished product and five Critical Process Parameters (CPPs). The surface-active excipient, PEG-32 stearate, studied for particle engineering, in general did not benefit the CQAs of the spray dried powders for inhalation. The spray drying feed solution required the inclusion of 10% (v/v) ethanol in order to reach the desired aerodynamic performance of powders. All desirable function solutions indicated that the favourable concentration of amikacin in the feed solution had to be kept at 1% w/v level. It was found that when the feed rate of the sprayed solution was raised, an increase in the drying temperature to the maximum value (160 °C) was required to maintain good powder respirability. Finally, the increase in drying temperature always led to an evident increase in emitted dose (ED) without affecting the desirable fine particle dose (FPD) values. The application of the experimental design enabled us to obtain amikacin powders with both ED and FPD, well above the regulatory and scientific references. The finished product contained only the active ingredient, which keeps low the mass to inhale for dose requirement. Copyright © 2014 Elsevier B.V. All rights reserved.
Hexagonal boron nitride as a tablet lubricant and a comparison with conventional lubricants.
Uğurlu, Timuçin; Turkoğlu, Murat
2008-04-02
The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) as a new tablet lubricant and compare it with conventional lubricants such as magnesium stearate (MGST), stearic acid (STAC), and glyceryl behenate (COMP). Tablets were manufactured on an instrumented single-station tablet press to monitor lower punch ejection force (LPEF) containing varied lubricants in different ratio (0.5, 1, 2%). Tablet crushing strength, disintegration time and thickness were measured. Tensile strength of compacted tablets were measured by applying a diametrical load across the edge of tablets to determine mechanical strength. The deformation mechanism of tablets was studied during compression from the Heckel plots with or without lubricants. MGST was found to be the most effective lubricant based on LPEF-lubrication concentration profile and LPEF of HBN was found very close to that of MGST. HBN was better than both STAC and COMP. A good lubrication was obtained at 0.5% for MGST and HBN (189 and 195N, respectively). Where COMP and STAC showed 20 and 35% more LPEF compare to that of MGST (239 and 288N, respectively). Even at the concentration of 2% COMP and STAC did not decrease LPEF as much as 0.5% of MGST and HBN. Like all conventional lubricants the higher the concentration of HBN the lower the mechanical properties of tablets because of its hydrophobic character. However, this deterioration was not as pronounced as MGST. HBN had no significant effect on tablet properties. Based on the Heckel plots, it was observed that after the addition of 1% lubricant granules showed less plastic deformation.
Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro
Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo
2010-01-01
Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912
Kendall, Richard; Lenoir, Joke; Gerrard, Stephen; Scheuerle, Rebekah L; Slater, Nigel K H; Tuleu, Catherine
2017-04-01
Neonates are particularly challenging to treat. A novel patented drug delivery device containing a rapidly disintegrating tablet held within a modified nipple shield (NSDS) was designed to deliver medication to infants during breastfeeding. However concerns exist around dermatological nipple tolerability with no pharmaceutical safety assessment guidance to study local tissue tolerance of the nipple and the areola. This is the first Slug Mucosal Irritation (SMI) study to evaluate irritancy potential of GRAS excipients commonly used to manufacture rapidly disintegrating immediate release solid oral dosage form METHODS: Zinc sulphate selected as the antidiarrheal model drug that reduces infant mortality, was blended with functional excipients at traditional levels [microcrystalline cellulose, sodium starch glycolate, croscarmellose sodium, magnesium stearate]. Slugs were exposed to blends slurried in human breast milk to assess their stinging, itching or burning potential, using objective values such as mucus production to categorize irritation potency RESULTS: Presently an in vivo assay, previously validated for prediction of ocular and nasal irritation, was used as an alternative to vertebrate models to anticipate the potential maternal dermatological tolerability issues to NSDS tablet components. The excipients did not elicit irritancy. However, mild irritancy was observed when zinc sulphate was present in blends. These promising good tolerability results support the continued investigation of these excipients within NSDS rapidly disintegrating tablet formulations. Topical local tolerance effects being almost entirely limited to irritation, the slug assay potentially adds to the existing preformulation toolbox, and may sit in between the in vitro and existing in vivo assays.
Taipale-Kovalainen, Krista; Karttunen, Anssi-Pekka; Ketolainen, Jarkko; Korhonen, Ossi
2018-03-30
The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.5, 1.0 and 1.5%). Process variables were total production feed rate (5, 10.5 and 16kg/h), mixer speed rpm (500, 850 and 1200rpm), and mixer inlet port for lubricant (A or B). The continuous direct compression tableting line consisted of loss-in-weight feeders, a continuous mixer and a tablet press. The Quality Target Product Profile (QTPP) was defined for the final product, as the flowability of powder blends (2.5s), tablet strength (147N), dissolution in 2.5min (90%) and ejection force (425N). A design space was identified which fulfilled all the requirements of QTPP. The type and concentration of lubricant exerted the greatest influence on the design space. For example, stearic acid increased the tablet strength. Interestingly, the studied process parameters had only a very minor effect on the quality of the final product and the design space. It is concluded that the continuous direct compression tableting process itself is insensitive and can cope with changes in lubrication, whereas formulation parameters exert a major influence on the end product quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa-Dekker, Aneli M; Dekker, Robert F H
2017-12-18
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)-purified 25.41-fold, recovery of 47.1%-and lipase B (32,000 Da)-purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca 2+ , exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5-10.0 and 20-80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.
Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates
NASA Astrophysics Data System (ADS)
Tolochko, B. P.; Chernyshev, A. P.; Ten, K. A.; Pruuel, E. R.; Zhogin, I. L.; Zubkov, P. I.; Lyakhov, N. Z.; Luk'yanchikov, L. A.; Sheromov, M. A.
2008-02-01
We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30-200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ˜10-3 s, which is greater by a factor of ˜103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a "particle" will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the "building material" is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.
Formulation development and optimization: Encapsulated system of Atenolol and Glyburide.
Maboos, Madiha; Yousuf, Rabia Ismail; Shoaib, Muhammad Harris
2016-03-01
Objective of this study is to develop; tablet-in-a capsule system, to deliver Atenolol 25mg and Glyburide 5mg in the hard gelatin capsule. In order to improve patient compliance and reduce problems associated with complex therapeutic regimen Atenolol (cardio-selective beta-blocker) and Glyburide (anti-diabetic; sulfonylurea) are commonly, prescribed to the diabetic hypertensive patient. Metgod: In present work six different formulations of Atenolol (AF1-AF6) and Glyburide (GF1-GF6) were prepared by direct compression method using Avicel, Lactose DC, Crospovidone and Magnesium Stearate in different proportions and encapsulated in hard gelatin shells. Post compression parameters i.e. weight variation, diameter variation, thickness variation, hardness variation, % friability, disintegration, % drug release were determined at different pH 1.2, 4.5 and 6.8, and subjected to dissolution profile comparison through similarity factor (ƒ2). Stability studies were performed and shelf lives were calculated by R-Gui Stab R console 2.15.2 and determined to be 15 and 27 months for Atenolol and Glyburide respectively. The percentage drug contents of Atenolol and Glyburide were estimated spectrophotometerically at 286 nm and 314.7 nm respectively. Formulations CF1-CF6 (encapsulated) were subjected to weight variation, disintegration and dissolution tests and subjected to model dependant analysis for dissolution studies. The simultaneous quantitation of Atenolol and Glyburide for content assay was done by HPLC method of analysis. formulation CF6 is showing highest coefficient of correlation values for all models applied. So we can conclude that the proposed system can improve patient compliance by increasing the ease of administration of two drugs together.
Gabka, Grzegorz; Bujak, Piotr; Kotwica, Kamil; Ostrowski, Andrzej; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2017-01-04
Ternary Ag-In-S or quaternary Ag-In-Zn-S nanocrystals were prepared from simple precursors (silver nitrate, indium(iii) chloride, zinc stearate in a mixture of DDT and ODE) by injecting a solution of elemental sulfur into OLA. Ternary nanocrystals were modified by depositing either a ZnS or a CdS shell, yielding type I and type II core/shell systems exhibiting photoluminescence QY in the range of 12-16%. Careful optimization of the reaction conditions allowed alloyed quaternary Ag-In-Zn-S nanocrystals exhibiting tunable photoluminescence in the spectral range of 520-720 nm with a QY of 48% and 59% for green and red radiations, respectively, to be obtained. 1 H NMR analysis of the nanocrystal organic shell, after dissolution of its inorganic core, indicated that surfacial sulfur atoms were covalently bonded to aliphatic chains whereas surfacial cations were coordinated by amines and carboxylate anions. No thiol-type ligands were detected. Transfer of the prepared nanocrystals to water could be achieved in one step by exchanging the initial ligands for 11-mercaptoundecanoic ones resulting in a QY value of 31%. A new Ag-In-Zn-S nanocrystal preparation method was elaborated in which indium and zinc salts of fatty acids were used as cation precursors and DDT was replaced by thioacetamide. This original DDT-free method enabled similar tuning of the photoluminescence properties of the nanocrystals as in the previous method; however the measured photoluminescence QYs were three times lower. Hence, further optimization of the new method is required.
Rojas, John; Guisao, Santiago; Ruge, Vanesa
2012-12-01
Spironolactone is a drug derived from sterols that exhibits an incomplete oral absorption due to its low water solubility and slow dissolution rate. In this study, formulations of spironolactone with four disintegrants named as croscarmellose sodium, crospovidone, sodium starch glycolate and microcrystalline cellulose II (MCCII) were conducted. The effect of those disintegrants on the tensile strength, disintegration time and dissolution rate of spironolactone-based compacts was evaluated using a factorial design with three categorical factors (filler, lubricant, and disintegrant). The swelling values, water uptake and water sorption studies of these disintegrants all suggested that MCCII compacts disintegrate by a wicking mechanism similar to that of crospovidone, whereas a swelling mechanism was dominant for sodium starch glycolate and croscarmellose sodium. The disintegration time of MCCII and sodium starch glycolate remained unchanged with magnesium stearate. However, this lubricant delayed the disintegration time of crospovidone and croscarmellose sodium. MCCII presented the fastest disintegration time independent of the medium and lubricant employed. The water sorption ratio and swelling values determined sodium starch glycolate followed by croscarmellose sodium as the largest swelling materials, whereas crospovidone and MCCII where the least swelling disintegrants. The swelling property of sodium starch glycolate and croscarmellose sodium was strongly affected by the medium pH. The disintegration time of spironolactone compacts was faster when starch was used as a filler due to the formation of soft compacts. In this case, the type of filler employed rather than the disintegrant had a major effect on the disintegration and dissolution times of spironolactone.
Ben-Shabat, Shimon; Kazdan, Yolia; Beit-Yannai, Elie; Sintov, Amnon C
2013-05-01
The aim of this work was to investigate new pro-vitamins based on α-tocopherol (α-Toc) and fatty acids, and to compare their properties with those of α-tocopherol acetate (α-TAc). Skin levels of α-Toc-fatty acid ester conjugates, total α-Toc and endogenous α-Toc were measured in skin samples taken from separate groups of treated and untreated rats. Multiple and extensive treatment with α-Toc oleate and α-TAc was also carried out to assess the skin accumulation and safety of these esters. The in-vivo studies revealed that α-Toc-fatty acid conjugates penetrated into the skin quantitatively while being comparable with the permeation of α-TAc. Differences were found between the levels of total α-Toc and endogenous α-Toc after application of α-TAc, α-Toc oleate, α-Toc linoleate, α-Toc-α linolenate and α-Toc palmitate, indicating that α-Toc conjugates of these fatty acids, but not α-Toc γ-linolenate or α-Toc stearate, were hydrolysed to free α-Toc. In long-term and extensive treatment, α-TAc was found to be lethal to rats treated with 1.15 mg/kg of this agent, which had been spread over 16 cm(2) of skin. Similar treatment with α-Toc oleate did not produce any side effects. This study suggests that α-Toc conjugates with unsaturated fatty acids may be a good alternative as stable vitamin E derivatives, rather than the α-TAc ester. © 2013 The Authors. JPP © 2013 Royal Pharmaceutical Society.
Tsuda, Kazushi; Kimura, Keizo; Nishio, Ichiro
2002-09-27
Abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. Recently, there has been an indication that leptin, the product of the human obesity gene, actively participates not only in the metabolic regulations but also in the control of cardiovascular functions. In the present study, to assess the role of leptin in the regulation of membrane properties, the effects of leptin on membrane fluidity of erythrocytes in humans are examined. The membrane fluidity of erythrocytes in healthy volunteers by means of an electron paramagnetic resonance (EPR) and spin-labeling method is determined. In an in vitro study, leptin decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in healthy volunteers. The finding indicated that leptin increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of leptin on the membrane fluidity was significantly potentiated by the nitric oxide (NO) donors, L-arginine and S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by leptin was significantly attenuated in the presence of the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that leptin increased the membrane fluidity and improved the rigidity of cell membranes to some extent via an NO- and cGMP-dependent mechanism. Furthermore, the data also suggest that leptin might have a crucial role in the regulation of rheological behavior of erythrocytes and microcirculation in humans.
Tsuda, K; Kimura, K; Nishio, I; Masuyama, Y
2000-09-07
It has been shown that rheological abnormality might be an etiological factor in hypertension. Recent studies have revealed that human erythrocytes possess a nitric oxide (NO) synthase and that this activation might be involved in the regulation of rheological properties of erythrocytes. The present study was undertaken to investigate the role of NO in the regulation of membrane functions of erythrocytes in patients with essential hypertension by means of an electron paramagnetic resonance (EPR) and spin-labeling method. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(0)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner. The finding indicated that the NO donor increased the membrane fluidity of erythrocytes. In addition, the effect of SNAP was significantly potentiated by 8-bromo-cyclic guanosine monophosphate. By contrast, the change of the fluidity induced by SNAP was reversed in the presence of L-N(G)-nitroarginine methyl ester and asymmetric dimethyl L-arginine. In patients with essential hypertension, the membrane fluidity of erythrocytes was significantly lower than in the normotensive subjects. The effect of SNAP was more pronounced in essential hypertension than in normotensive subjects. These results showed that NO increased the membrane fluidity and decreased the rigidity of cell membranes. Furthermore, the greater effect of NO on the fluidity in essential hypertension suggests that NO might actively participate in the regulation of rheological behavior of erythrocytes and have a crucial role in the improvement of microcirculation in hypertension. Copyright 2000 Academic Press.
Otsuka, Makoto; Tanabe, Hideaki; Osaki, Kazuo; Otsuka, Kuniko; Ozaki, Yukihiro
2007-04-01
The purpose of this study was to use near-infrared spectrometry (NIR) with chemoinformetrics to predict the change of dissolution properties in indomethacin (IMC) tablets during the manufacturing process. A comparative evaluation of the dissolution properties of the tablets was performed by the diffused reflectance (DRNIR) and transmittance (TNIR) NIR spectroscopic methods. Various kinds of IMC tablets (200 mg) were obtained from a powder (20 mg of IMC, 18 mg of microcrystalline cellulose, 160 mg of lactose, and 2 mg of magnesium stearate) under various compression pressures (60-398 MPa). Dissolution tests were performed in phosphate buffer, and the time required for 75% dissolution (T75) and mean dissolution time (MDT) were calculated. DRNIR and TNIR spectra were recorded, and the both NIR spectra used to establish a calibration model for predicting the dissolution properties by principal component regression analysis (PCR). The T75 and MDT increased as the compression pressure increased, since tablet porosity decreased with increasing pressure. Intensity of the DRNIR spectra of the compressed tablets decreased as the compression pressure increased. However, the intensity of TNIR spectra increased along with the pressure. The calibration models used to evaluate the dissolution properties of tablets were established by using PCR based on both DRNIR and TNIR spectra of the tablets. The multiple correlation coefficients of the relationship between the actual and predictive T75 by the DRNIR and TNIR methods were 0.831 and 0.962, respectively. It is possible to predict the dissolution properties of pharmaceutical preparations using both DRNIR and TNIR chemoinformetric methods. The TNIR method was more accurate for predictions of the dissolution behavior of tablets than the DRNIR method. (c) 2007 Wiley-Liss, Inc.
Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.
Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F
2015-06-01
Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique
2016-01-01
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162
Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr
2016-09-01
In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.
Rekhi, G S; Nellore, R V; Hussain, A S; Tillman, L G; Malinowski, H J; Augsburger, L L
1999-06-02
The objective of this study, was to examine the influence of critical formulation and processing variables as described in the AAPS/FDA Workshop II report on scale-up of oral extended-release dosage forms, using a hydrophilic polymer hydroxypropyl methylcellulose (Methocel K100LV). A face-centered central composite design (26 runs+3 center points) was selected and the variables studied were: filler ratio (lactose:dicalcium phosphate (50:50)), polymer level (15/32.5/50%), magnesium stearate level (1/1.5/2%), lubricant blend time (2/6/10 min) and compression force (400/600/800 kg). Granulations (1.5 kg, 3000 units) were manufactured using a fluid-bed process, lubricated and tablets (100 mg metoprolol tartrate) were compressed on an instrumented Manesty D3B rotary tablet press. Dissolution tests were performed using USP apparatus 2, at 50 rpm in 900 ml phosphate buffer (pH 6.8). Responses studied included percent drug released at Q1 (1 h), Q4, Q6, Q12. Analysis of variance indicated that change in polymer level was the most significant factor affecting drug release. Increase in dicalcium phosphate level and compression force were found to affect the percent released at the later dissolution time points. Some interaction effects between the variables studied were also found to be statistically significant. The drug release mechanism was predominantly found to be Fickian diffusion controlled (n=0.46-0.59). Response surface plots and regression models were developed which adequately described the experimental space. Three formulations having slow-, medium- and fast-releasing dissolution profiles were identified for a future bioavailability/bioequivalency study. The results of this study provided the framework for further work involving both in vivo studies and scale-up.
A study on maize proteins as a potential new tablet excipient.
Georget, Dominique M R; Barker, Susan A; Belton, Peter S
2008-06-01
This investigation has examined the use of zein proteins from maize as the major component in oral controlled-release tablets, such formulations often being required to improve patient compliance. Tablets containing ground zein proteins, calcium hydrogen orthophosphate, polyvinyl pyrrolidone, theophylline and magnesium stearate were produced by wet granulation and compression on a single station tablet press and were compared to directly compressed tablets based on zein proteins, calcium hydrogen orthophosphate and theophylline. Non invasive techniques such as Fourier Transform infrared spectroscopy and Fourier Transform Raman spectroscopy were employed to investigate any changes in the secondary structure of zein proteins during tablet production. Random coils, alpha helices and beta sheets predominated and their relative content remained unaffected during grinding, wet granulation and compression, indicating that formulations based on zeins will be robust, i.e. insensitive to minor changes in the production conditions. Drug release from the tablets was studied using a standard pharmacopoeial dissolution test. Dissolution profiles in water, 0.1M HCl (pH=1) and phosphate buffer (pH=6.8) show that only a limited amount of theophylline was released after 4.5h, suggesting that zein proteins could act as a potential vehicle for oral controlled drug release. Analysis of the theophylline release profiles using the Peppas and Sahlin model reveals that diffusion and polymer relaxation occurred in acidic (pH=1) and buffered (pH=6.8) conditions for wet granulated tablets, whereas diffusion was predominant in directly compressed tablets. In conclusion, the present study has shown that zeins can be successfully used as a pharmaceutical excipient, and in particular as a matrix in monolithic controlled release tablets.
Chowdhary, Rajani; Pai, Roopa S; Singh, Gurinder
2013-01-01
Introduction: The present investigation was to develop a polypill of 6-mercaptopurine and metoclopramide. A polypill with delayed release granules of an anticancer and immediate release mucoadhesive tablet of antiemetic may result in the reduction of emesis caused by oral chemotherapy. Materials and Methods: 6-Mercaptopurine granules were prepared by wet granulation process. Chitosan, hydroxypropyl methylcellulose, and ethylcellulose were used as individually as delayed release polymers. Seven granule formulations (F1-F7) were prepared and evaluated for flow properties and drug content. Immediate release mucoadhesive tablets of metoclopramide were prepared by direct compression technique using pectin and PVPK-40 as mucoadhesive polymers. Three formulations of pectin (L1-L3) and three formulations of PVPK40 (M1-M3) were prepared using lactose, magnesium stearate, and mannitol and talc as diluent and glidant, respectively. Tablets were evaluated for weight variation, hardness, friability, drug content, ex vivo mucoadhesion time, and in vitro dissolution studies. Results: Formulation F2, F4, F5, and F7 showed maximum drug content. Formulation F7 exhibited the drug release up to 2 h and was selected as the best delayed release formulation. All formulations of metoclopramide showed good drug content ranging from 97.6 % to 100.6%. Formulation M2 among tablets prepared with PVP exhibited desired mucoadhesion time of 15.33 min which prolongs the duration of drug release in gastric pouch of the male Wistar rats. Both the selected formulations F7 and M2 were filled into body of capsule size 0 and capsule was evaluated for technological properties. Conclusion: It may be concluded that polypill released the metoclopramide immediately prior to 6-mercaptopurine. PMID:24350042
Satheshkumar, Angupillai; Elango, Kuppanagounder P
2014-09-15
The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.
Suñer, Joaquim; Calpena, Ana C; Clares, Beatriz; Cañadas, Cristina; Halbaut, Lyda
2017-02-01
Multiple emulsions have attracted considerable attention in recent years for application as potential delivery systems for different drugs. The aim of the present work is to design a new formulation containing clotrimazole (CLT) loaded into multiple emulsions by two-step emulsification method for transdermal delivery. Different ingredients and quantities like primary and secondary co-emulsifiers and the nature of oily phase were assayed in order to optimize the best system for good. Resulting formulations were characterized in terms of droplet size, conductivity, pH, entrapment efficiency, rheological behavior, and stability under various storage conditions for 180 days. pH values of multiple emulsions containing CLT ranged from 7.04 ± 0.03 to 6.23 ± 0.04. Droplet size increased when increasing concentration of sorbitan stearate. The addition of polysorbate 80 resulted in significant decrease of oil droplet size comparing with those prepared without this. CLT entrapment efficiency ranged between 85.64% and 97.47%. All formulations exhibited non-Newtonian pseudoplastic flow with some apparent thixotropic behavior. Cross and Herschel-Bulkley equations were the models that best fitted experimental data. In general, the addition of 1% polysorbate 80 resulted in a decrease of viscosity values. No signals of optical instability were observed, and physicochemical properties remained almost constant when samples were stored at room temperature after 180 days. On the contrary, samples stored at 40°C exhibited pronounced increase in conductivity values 24 h after elaboration and some of them were unstable after 180 days of storage. JMLP01 was proposed as an innovative and stable system to incorporate CLT as active pharmaceutical ingredient.
Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique
2009-06-15
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.
Leisso, Rachel S; Buchanan, David A; Lee, Jinwook; Mattheis, James P; Sater, Chris; Hanrahan, Ines; Watkins, Christopher B; Gapper, Nigel; Johnston, Jason W; Schaffer, Robert J; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R
2015-02-01
'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder. © 2014 Scandinavian Plant Physiology Society.
Hershberger Assays for Di-2-ethylhexyl Phthalate and Its Substitute Candidates
Kim, Hee-Su; Cheon, Yong-Pil; Lee, Sung-Ho
2018-01-01
ABSTRACT In the present study, we employed Hershberger assay to determine possible androgenic or antiandrogenic activities of three di-2-ethylhexyl phthalate (DEHP) substitute candidates. The assay was carried out using immature castrated Sprague–Dawley male rats. After 7 days of the surgery, testosterone propionate (TP, 0.4 mg/kg/day) and test materials (low dose, 40 mg/kg/day; high dose, 400 mg/kg/day) were administered for 10 consecutive days by subcutaneous (s.c.) injection and oral gavage, respectively. Test materials were DEHP, 2-ethylhexyl oleate (IOO), 2-ethylhexyl stearate (IOS) and triethyl 2-acetylcitrate (ATEC). The rats were necropsied, and then the weights of five androgen-dependent tissues [ventral prostate, seminal vesicle, coagulating glands, levator ani-bulbocavernosus (LABC) muscle, paired Cowper’s glands, and glans penis] and four androgen-insensitive tissues (kidney, adrenal glands, spleen and liver) were measured. All test materials including DEHP did not exhibit any androgenic activity in the assay. On the contrary, antiandrogen-like activities were found in all test groups, and the order of the intensity was ATEC < DEHP < ISO < IOO in the five androgen-sensitive tissues. There was no statistical difference between low dose treatment and high dose treatment of all replacement candidate groups. In DEHP groups, high dose treatment exhibited significant weight gains in LABC and Glan Penis. There was no statistical difference in androgen-insensitive tissue measurements. Since the effects of ATEC treatment on the accessory sex organs were much less or not present at all when compared to those of DEHP, ATEC could be a strong candidate to replace DEHP. IOO treatment brought most severe weight reduction in all of androgen-sensitive tissues, so this material should be excluded for further screening of DEHP substitute selection. PMID:29707681
Jung, Huijeong Ashley; Augsburger, Larry L
2012-07-01
An automatic disintegration tester was developed and used to explore disintegration mechanism and times of rapidly disintegrating tablets. DT50, the time required for a tablet to decrease in its thickness by half, allowed an unbiased determination of disintegration time. Calcium silicate concentration, Explotab® concentration, DiPac®/Xylitab® ratio as fillers, and compression pressure were evaluated using a central composite model design analysis for their DT50, tensile strength, and friability. Tablets that could reasonably be handled (friability <10%) could be produced. The expansion coefficient (n) and the exponential rate constant (k) for disintegrating tablets, originally measured by Caramella et al. using force kinetics, could be determined from axial displacement data measured directly without the need to assume that disintegration force generation was indicative of changes in tablet volume. The n values of tablets containing calcium silicate, Ditab® and/or Xylitab®, magnesium stearate, and Explotab® suggested that the amount of Explotab® was not a significant factor in determining the disintegration mechanism; however, the type of disintegrant used did alter the n value. Primojel® and Explotab®, which are in the same class of disintegrants, exhibited similar DT50, n, and k. Polyplasdone® XL exhibited a much higher n, while yielding faster DT50, suggesting that its performance is more dependent on facilitating the interfacial separation of particles. AcDiSol® showed no apparent moisture sensitivity in regards to disintegration efficiency. The use of the novel apparatus proved to be useful in measuring disintegration efficiency of rapidly disintegrating tablets and in providing valuable information on the disintegration phenomena.
The Systematic Classification of Gallbladder Stones
Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Yang, Liu-qing; Luo, Zhen-liang; Zheng, Pei-ming
2013-01-01
Background To develop a method for systematic classification of gallbladder stones, analyze the clinical characteristics of each type of stone and provide a theoretical basis for the study of the formation mechanism of different types of gallbladder stones. Methodology A total of 807 consecutive patients with gallbladder stones were enrolled and their gallstones were studied. The material composition of gallbladder stones was analyzed using Fourier Transform Infrared spectroscopy and the distribution and microstructure of material components was observed with Scanning Electron Microscopy. The composition and distribution of elements were analyzed by an X-ray energy spectrometer. Gallbladder stones were classified accordingly, and then, gender, age, medical history and BMI of patients with each type of stone were analyzed. Principal Findings Gallbladder stones were classified into 8 types and more than ten subtypes, including cholesterol stones (297), pigment stones (217), calcium carbonate stones (139), phosphate stones (12), calcium stearate stones (9), protein stones (3), cystine stones (1) and mixed stones (129). Mixed stones were those stones with two or more than two kinds of material components and the content of each component was similar. A total of 11 subtypes of mixed stones were found in this study. Patients with cholesterol stones were mainly female between the ages of 30 and 50, with higher BMI and shorter medical history than patients with pigment stones (P<0.05), however, patients with pigment, calcium carbonate, phosphate stones were mainly male between the ages of 40 and 60. Conclusion The systematic classification of gallbladder stones indicates that different types of stones have different characteristics in terms of the microstructure, elemental composition and distribution, providing an important basis for the mechanistic study of gallbladder stones. PMID:24124459
Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L
2015-12-15
We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.
Costa, S M R; Isganaitis, E; Matthews, T J; Hughes, K; Daher, G; Dreyfuss, J M; da Silva, G A P; Patti, M-E
2016-11-01
Maternal obesity increases risk for childhood obesity, but molecular mechanisms are not well understood. We hypothesized that primary umbilical vein endothelial cells (HUVEC) from infants of overweight and obese mothers would harbor transcriptional patterns reflecting offspring obesity risk. In this observational cohort study, we recruited 13 lean (pre-pregnancy body mass index (BMI) <25.0 kg m -2 ) and 24 overweight-obese ('ov-ob', BMI⩾25.0 kg m -2 ) women. We isolated primary HUVEC, and analyzed both gene expression (Primeview, Affymetrix) and cord blood levels of hormones and adipokines. A total of 142 transcripts were differentially expressed in HUVEC from infants of overweight-obese mothers (false discovery rate, FDR<0.05). Pathway analysis revealed that genes involved in mitochondrial and lipid metabolism were negatively correlated with maternal BMI (FDR<0.05). To test whether these transcriptomic patterns were associated with distinct nutrient exposures in the setting of maternal obesity, we analyzed the cord blood lipidome and noted significant increases in the levels of total free fatty acids (lean: 95.5±37.1 μg ml -1 , ov-ob: 124.1±46.0 μg ml -1 , P=0.049), palmitate (lean: 34.5±12.7 μg ml -1 , ov-ob: 46.3±18.4 μg ml -1 , P=0.03) and stearate (lean: 20.8±8.2 μg ml -1 , ov-ob: 29.7±17.2 μg ml -1 , P=0.04), in infants of overweight-obese mothers. Prenatal exposure to maternal obesity alters HUVEC expression of genes involved in mitochondrial and lipid metabolism, potentially reflecting developmentally programmed differences in oxidative and lipid metabolism.
Ramos Costa, Suzana Maria; Isganaitis, Elvira; Matthews, Tucker; Hughes, Katelyn; Daher, Grace; Dreyfuss, Jonathan M.; Pontes da Silva, Giselia Alves; Patti, Mary-Elizabeth
2016-01-01
Background/Objectives Maternal obesity increases risk for childhood obesity, but molecular mechanisms are not well understood. We hypothesized that primary umbilical vein endothelial cells (HUVEC) from infants of overweight and obese mothers would harbor transcriptional patterns reflecting offspring obesity risk. Subjects/Methods In this observational cohort study, we recruited 13 lean (pre-pregnancy BMI <25.0 kg/m2) and 24 overweight-obese (‘ov-ob’, BMI ≥25.0 kg/m2) women. We isolated primary HUVEC, and analyzed both gene expression (Primeview, Affymetrix) and cord blood levels of hormones and adipokines. Results 142 transcripts were differentially expressed in HUVEC from infants of overweight-obese mothers (false discovery rate, FDR <0.05). Pathway analysis revealed that genes involved in mitochondrial and lipid metabolism were negatively correlated with maternal BMI (FDR <0.05). To test whether these transcriptomic patterns were associated with distinct nutrient exposures in the setting of maternal obesity, we analyzed the cord blood lipidome and noted significant increases in levels of total free fatty acids (lean: 95.5 ± 37.1 ug/ml, ov-ob: 124.1 ± 46.0 ug/ml, P=0.049), palmitate (lean: 34.5 ± 12.7 ug/ml, ov-ob: 46.3 ± 18.4 ug/ml, P=0.03) and stearate (lean: 20.8 ± 8.2 ug/ml, ov-ob: 29.7 ± 17.2 ug/ml, P=0.04), in infants of overweight-obese mothers. Conclusion Prenatal exposure to maternal obesity alters HUVEC expression of genes involved in mitochondrial and lipid metabolism, potentially reflecting developmentally-programmed differences in oxidative and lipid metabolism. PMID:27531045
Kartal, Alma; Björkqvist, Mikko; Lehto, Vesa-Pekka; Juppo, Anne Mari; Marvola, Martti; Sivén, Mia
2008-09-01
Using L-cysteine chewing gum to eliminate carcinogenic acetaldehyde in the mouth during smoking has recently been introduced. Besides its efficacy, optimal properties of the gum include stability of the formulation. However, only a limited number of studies exist on the compatibility of chewing gum excipients and stability of gum formulations. In this study we used the solid-state stability method, Fourier transform infrared spectroscopy and isothermal microcalorimetry to investigate the interactions between L-cysteine (as a free base or as a salt) and excipients commonly used in gum. These excipients include xylitol, sorbitol, magnesium stearate, Pharmagum S, Every T Toco and Smily 2 Toco. The influence of temperature and relative humidity during a three-month storage period on gum formulation was also studied. Cysteine alone was stable at 25 degrees C/60% RH and 45 degrees C/75% RH whether stored in open or closed glass ambers. As a component of binary mixtures, cysteine base remained stable at lower temperature and humidity but the salt form was incompatible with all the studied excipients. The results obtained with the different methods corresponded with each other. At high temperature and humidity, excipient incompatibility with both forms of cysteine was obvious. Such sensitivity to heat and humidity during storage was also seen in studies on gum formulations. It was also found that cysteine is sensitive to high pressure and increase in temperature induced by compression. The results suggest that the final product should be well protected from temperature and humidity and, for example, cooling process before compression should be considered.
Yehia, Soad A; Elshafeey, Ahmed H; Elsayed, Ibrahim
2012-06-01
One of the greatest challenges in in situ forming implant (ISFI) systems by polymer precipitation is the large burst release during the first 1-24 hours after implant injection. The aim of this study was to decrease the burst-release effect of a water-soluble model drug, donepezil HCl, with a molecular weight of 415.96 Da, from in situ forming implants using a novel in situ implant containing lipospheres (ISILs). In situ implant suspensions were prepared by dispersing cetyl alcohol and glyceryl stearate lipospheres in a solution of poly-DL-lactide (PDL) or DL-lactide/glycolide copolymer (PDLG). Also, in situ implant solutions were prepared using different concentrations of PDL or PDLG solutions in N-methyl-2-pyrrolidone (NMP). Triacetin and Pluronic L121 were used to modify the release pattern of donepezil from the in situ implant solutions. In vitro release, rheological measurement, and injectability measurement were used to evaluate the prepared in situ implant formulae. It was found that ISIL decreased the burst effect as well as the rate and extent of drug release, compared to lipospheres, PDL, and PDLG in situ implant. The amount of drug released in the first day was 37.75, 34.99, 48.57, 76.3, and 84.82% for ISIL in 20% PDL (IL-1), ISIL in 20% PDLG (IL-2), lipospheres (L), 20% PDL ISFI (I5), and 20% PDLG ISFI (I8), respectively. The prepared systems showed Newtonian flow behavior. ISIL (IL-1 and IL-2) had a flow rate of 1.94 and 1.40 mL/min, respectively. This study shows the potential of using in situ implants containing lipospheres in controlling the burst effect of ISFI.
Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L
2004-06-01
Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.
Kordyukova, Larisa
2017-01-02
Two enveloped virus families, Orthomyxoviridae and Paramyxoviridae, comprise a large number of dangerous pathogens that enter the host cell via fusion of their envelope with a target cell membrane at acidic or neutral pH. The Class I prototypic glycoproteins responsible for this reaction are the Influenza virus haemagglutinin (HA) protein or paramyxovirus fusion (F) protein. X-ray crystallography and cryoelectron microscopy data are available for the HA and F ectodomains in pre- and post-fusion conformations, revealing similar spiky architectures, albeit with clear differences in the details. In contrast, their anchoring segments, which possess a linker region, transmembrane domain and cytoplasmic tail that is specifically modified with long fatty acids (highly conserved in HA and occasional in F), are not resolved. Recent experimental, bioinformatics and molecular modelling data showing the primary, secondary and quaternary organization of the HA and F anchoring segments are summarized in this review. Some amino acid patterns that are crucial for protein thermal stability or lipid membrane order/cholesterol binding are addressed, and new achievements in vaccine practice using HA transmembrane domain chimaeras are discussed. The oligomerization properties of the transmembrane domains are considered in the context of Group-1 and Group-2 antigenic HA subtypes and various genera/subfamilies of paramyxoviruses. A specific focus is the late steps of fusion that are reportedly facilitated by (1) β-sheet-promoting β-branched amino acids (valine and isoleucine) that are enriched in the transmembrane domain of paramyxovirus F or (2) a post-translational modification of C-terminal cysteines with palmitate/stearate (differential S-acylation) that is highly conserved in Influenza virus HA. Copyright © 2016 Elsevier B.V. All rights reserved.
Mai, Knut; Andres, Janin; Bobbert, Thomas; Assmann, Anke; Biedasek, Katrin; Diederich, Sven; Graham, Ian; Larson, Tony R; Pfeiffer, Andreas F H; Spranger, Joachim
2012-01-01
The ratio of unsaturated to saturated long-chain fatty acids (LC-FAs) in skeletal muscle has been associated with insulin resistance. Some animal data suggest a modulatory effect of peroxisome proliferator receptor γ (PPARγ) stimulation on stearoyl-CoA desaturase 1 (SCD1) and LC-FA composition in skeletal muscle, but human data are rare. We here investigate whether treatment with a PPARγ agonist affects myocellular SCD1 expression and modulates the intramyocellular fatty acid profile in individuals with impaired glucose tolerance. Muscle biopsies and hyperinsulinemic-euglycemic clamps were performed in 7 men before and after 8 weeks of rosiglitazone treatment. Intramyocellular saturated, monounsaturated, and polyunsaturated intramuscular fatty acid profiles were measured by gas chromatography. Effects on SCD1 messenger RNA expression were analyzed in C2C12 cells and in human biopsies before and after rosiglitazone treatment. As expected, treatment with the PPARγ activator rosiglitazone improved insulin sensitivity in humans. Myocellular SCD1 messenger RNA expression was increased in human biopsies and C2C12 cells. Although the total content of myocellular LC-FA was unchanged, a relative shift from saturated LC-FAs to unsaturated LC-FAs was observed in human biopsies. Particularly, the amount of stearate was reduced, whereas the amounts of palmitoleate as well as oleate and vaccenate were increased, after rosiglitazone therapy. These changes resulted in an increased fatty acid Δ9-desaturation index (16:1/16:0 and 18:1/18:0) in skeletal muscle and a decreased elongase activity index (18:0/16:0). The PPARγ associated phenotypes may be partially explained by an increased Δ9-desaturation and a decreased elongase activity of skeletal muscle. Copyright © 2012 Elsevier Inc. All rights reserved.
Feng, Hanzhou; Bondi, Robert W; Anderson, Carl A; Drennen, James K; Igne, Benoît
2017-08-01
Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The results demonstrated that transmission Raman spectroscopy is a sensitive tool for polymorphs detection in pharmaceutical tablets.
NASA Astrophysics Data System (ADS)
Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias
2018-04-01
Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.
Chauvet, Sylvain; Barras, Alexandre; Boukherroub, Rabah; Bouron, Alexandre
2015-12-01
Hyperforin is described as a natural antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble surfactant. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-rich medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the surfactant Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this surfactant can influence cellular calcium signaling in the brain, a finding that can have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of medium-chain triglycerides on lipid metabolism in the chick.
Leveille, G A; Pardini, R S; Tillotson, J A
1967-11-01
The effect of corn oil, coconut oil, and medium-chain triglyceride (MCT, a glyceride mixture consisting almost exclusively of fatty acids of 8 and 10 carbons in length) ingestion on lipid metabolism was studied in chicks. In chicks fed cholesterol-free diets, MCT ingestion elevated plasma total lipids and cholesterol and depressed liver total lipids and cholesterol when compared to chicks receiving the corn oil diet. As a consequence of the opposite effects of MCT ingestion on plasma and liver cholesterol and total lipids, the plasma-liver cholesterol pool was not altered. When cholesterol was included in the diets, dietary MCT depressed liver and plasma total lipids and cholesterol as compared with corn oil, consequently also lowered the plasmaliver cholesterol pool.The in vitro cholesterol and fatty acid synthesis from acetate-1-(14)C was higher in liver slices from chicks fed MCT than in those from chicks fed corn oil. The percentage of radioactivity from acetate-1-(14)C incorporated into the carboxyl carbon of fatty acids by liver slices was not altered by MCT feeding, indicating that the increased acetate incorporation represented de novo fatty acid synthesis. The conversion of palmitate-1-(14)C to C(18) acids was increased in liver of chicks fed MCT, implying that fatty acid chain elongating activity was also increased. Studies on the conversion of stearate-2-(14)C to mono- and di-unsaturated C(18) acids showed that hepatic fatty acid desaturation activity was enhanced by MCT feeding. Data are presented on the plasma and liver fatty acid composition of chicks fed MCT-, corn oil-, or coconut oil-supplemented diets.
Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.
2013-01-01
Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541
Role of cellulose ether polymers on ibuprofen release from matrix tablets.
Vueba, M L; Batista de Carvalho, L A E; Veiga, F; Sousa, J J; Pina, Maria Eugénia
2005-08-01
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and beta-cyclodextrin (beta-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE(20 h)), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models-Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.
Limitations of high dose carrier based formulations.
Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M
2018-06-10
This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay
2011-04-01
Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.
Environmentally Compliant Disposal Method for Heavy Metal Containing Propellants
NASA Technical Reports Server (NTRS)
Decker, M. W.; Erickson, E. D.; Byrd, E. R.; Crispin, K. W. R.; Ferguson, B. W.
2000-01-01
ABSTRACT An environmentally friendly, cost effective technology has been developed and demonstrated by a team of Naval Air Warfare Center and Lockheed Martin personnel to dispose of Shillelagh solid rocket motor propellants. The Shillelagh is a surface to surface anti-tank weapon approaching the end of its service life. The current demilitarization process employs open detonation, but the presence of lead stearate in the N5 propellant grain motivated the need for the development of an environmentally friendly disposal method. Contained burning of the propellant followed by propellant exhaust processing was chosen as the disposal methodology. The developmental test bed, completed in February 1998, is inexpensive and transportable. Contained burning of Shillelagh propellants posed two technical hurdles: 1) removal of the sub micron lead and cadmium particulate generated during combustion, and 2) secondary combustion of the significant quantifies of carbon monoxide and hydrogen. A firing chamber with a stepped nozzle, air injection, and active ignition was developed to combust the carbon monoxide and hydrogen in real time. The hot gases and particulates from the combustion process are completely contained within a gas holder. The gases are subsequently cooled and routed through a treatment facility to remove the heavy metal particulate. Results indicate that the lead and cadmium particulates are removed below their respective detection limits (2 micro-g/cu m & 0.2 micro-g/cu m) of the analytical procedures employed and that the carbon monoxide and hydrogen levels have been reduced well below the lower flammability limits. Organic concentrations, principally benzene, are I ppm or less. A semi-automated machine has been developed which can rapidly prepare Shillelagh missiles for the contained burn facility. This machine allows the contained burn technology to be more competitive with current open bum open detonation disposal rates.
Biniek, Krysta; Tfayli, Ali; Vyumvuhore, Raoul; Quatela, Alessia; Galliano, Marie-Florence; Delalleau, Alexandre; Baillet-Guffroy, Arlette; Dauskardt, Reinhold H; Duplan, Helene
2018-06-22
An important aspect of the biomechanical behavior of the stratum corneum (SC) is the drying stresses that develop with water loss. These stresses act as a driving force for damage in the form of chapping and cracking. Betasitosterol is a plant sterol with a structure similar to cholesterol, a key component in the intercellular lipids of the outermost layer of human skin, the SC. Cholesterol plays an important role in stabilizing the SC lipid structure, and altered levels of cholesterol have been linked with SC barrier abnormalities. Betasitosterol is currently applied topically to skin for treatment of wounds and burns. However, it is unknown what effect betasitosterol has on the biomechanical barrier function of skin. Here, by analyzing the drying stress profile of SC generated during a kinetics of dehydration, we show that betasitosterol, in combination with two emollient molecules, isocetyl stearoyl stearate (ISS) and glyceryl tri-2-ethylhexanoate (GTEH), causes a significant modulation of the drying stress behavior of the SC by reducing both the maximal peak stress height and average plateau of the drying stress profile. Raman spectra analyses demonstrate that the combination of betasitosterol with the two emollients, ISS and GTEH, allows a high water retention capacity within the SC, while the lipid conformational order by increasing the amount of trans conformers. Our study highlights the advantage of combining a biomechanical approach together with Raman spectroscopy in engineering a suitable combination of molecules for alleviating dryness and dry skin damage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E
2014-10-01
Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Fouquet, Thierry; Shimada, Haruo; Maeno, Katsuyuki; Ito, Kanako; Ozeki, Yuka; Kitagawa, Shinya; Ohtani, Hajime; Sato, Hiroaki
2017-09-01
Matrix assisted laser desorption ionization (MALDI) high-resolution mass spectrometry (HRMS) and the recently introduced high-resolution Kendrick mass defect (HRKMD) analysis are combined to thoroughly characterize non-ionic surfactants made of a poly(ethylene oxide) (PEO) core capped by esters of fatty acids. A PEO monostearate surfactant is first analyzed as a proof of principle of the HRKMD analysis conducted with a fraction of EO as the base unit (EO/X with X being an integer) in lieu of EO for a regular KMD analysis. Data visualization is greatly enhanced and the distributions detected in the MALDI mass spectrum are assigned to a pristine (H, OH)-PEO as well as mono- and di-esterified PEO chains with palmitate and stearate end-groups in HRKMD plots computed with EO/45. The MALDI-HRMS/HRKMD analysis is then successfully applied to the more complex case of ethoxylated hydrogenated castor oil (EHCO) found to contain a large number of hydrogenated ricinoleate moieties (up to 14) in its HRKMD plot computed with EO/43, departing from the expected triglyceride structure. The exhaustiveness of the MALDI-HRMS/HRKMD strategy is validated by comparing the so-obtained fingerprints with results from alternative techniques (electrospray ionization MS, size exclusion and liquid adsorption chromatography, ion mobility spectrometry). Finally, aged non-ionic surfactants formed upon hydrolytic degradation are analyzed by MALDI-HRMS/HRKMD to easily assign the degradation products and infer the associated degradation routes. In addition to the hydrolysis of the ester groups observed for EHCO, chain scissions and new polar end-groups are observed in the HRKMD plot of PEO monostearate arising from a competitive oxidative ageing.
NASA Astrophysics Data System (ADS)
Satheshkumar, Angupillai; Elango, Kuppanagounder P.
2014-09-01
The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.
Houston, David M. J.; Bugert, Joachim J.; Denyer, Stephen P.
2017-01-01
Background There is a clinical need for new therapeutic products against Herpes simplex virus (HSV). The pomegranate, fruit of the tree Punica granatum L, has since ancient times been linked to activity against infection. This work probed the activity of pomegranate rind extract (PRE) and co-administered zinc (II) ions. Materials and methods PRE was used in conjunction with zinc (II) salts to challenge HSV-1 and aciclovir-resistant HSV in terms of virucidal plaque assay reduction and antiviral activities in epithelial Vero host cells. Cytotoxicity was determined by the MTS assay using a commercial kit. Results Zinc sulphate, zinc citrate, zinc stearate and zinc gluconate demonstrated similar potentiated virucidal activity with PRE against HSV-1 by up to 4-fold. A generally parabolic relationship was observed when HSV-1 was challenged with PRE and varying concentrations of ZnSO4, with a maximum potentiation factor of 5.5. Punicalagin had 8-fold greater virucidal activity than an equivalent mass of PRE. However, antiviral data showed that punicalagin had significantly lower antiviral activity compared to the activity of PRE (EC50 = 0.56 μg mL-1) a value comparable to aciclovir (EC50 = 0.18 μg mL-1); however, PRE also demonstrated potency against aciclovir-resistant HSV (EC50 = 0.02 μg mL-1), whereas aciclovir showed no activity. Antiviral action of PRE was not influenced by ZnSO4. No cytotoxicity was detected with any test solution. Conclusions The potentiated virucidal activity of PRE by coadministered zinc (II) has potential as a multi-action novel topical therapeutic agent against HSV infections, such as coldsores. PMID:28665969
Xie, Lin; Wu, Huiquan; Shen, Meiyu; Augsburger, Larry L; Lyon, Robbe C; Khan, Mansoor A; Hussain, Ajaz S; Hoag, Stephen W
2008-10-01
The objective of this study was to examine the effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powders measured by the ASTM D 6940-04 segregation tester using design of experiments (DOE) approaches. The test blends consisted of 4% aspirin (ASP) and 96% microcrystalline cellulose (MCC) with and without magnesium stearate (MgS). The segregation tendency of a blend was determined by measuring the last/first (L/F) ratio, the ratio of aspirin concentrations between the first and last samples discharged from the tester. A 2(2) factorial design was used to determine the effects of measurement parameters [amount of material loaded (W), number of segregation cycles] with number of replicates 6. ANOVA showed that W was a critical parameter for segregation testing. The L/F value deviated further from 1 (greater segregation tendency) with increasing W. A 2(3) full factorial design was used to assess the effects of formulation variables: grade of ASP (unmilled, milled), grade of MCC, and amount of lubricant, MgS. MLR and ANOVA showed that the grade of ASP was the main effect contributing to segregation tendency. Principal Component Regression Analysis established a correlation between L/F and the physical properties of the blend related to ASP and MCC, the ASP/MCC particle size ratio (PSR) and powder cohesion. The physical properties of the blend related to density and flow were not influenced by the grade of ASP and were not related to the segregation tendency of the blend. The direct relationship between L/F and PSR was determined by univariate analysis. Segregation tendency increased as the ASP to MCC particle size increased. This study highlighted critical test parameters for segregation testing and identified critical physical properties of the blends that influence segregation tendency. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Fehér, Pálma; Ujhelyi, Zoltán; Váradi, Judit; Fenyvesi, Ferenc; Róka, Eszter; Juhász, Béla; Varga, Balázs; Bombicz, Mariann; Priksz, Dániel; Bácskay, Ildikó; Vecsernyés, Miklós
2016-09-22
Plants with high amounts of antioxidants may be a promising therapy for preventing and curing UV-induced oxidative skin damage. The objective of this study was to verify the efficacy of topical formulations containing dissolved and suspended Silybum marianum extract against UVB-induced oxidative stress in guinea pig and HaCaT keratinocytes. Herbal extract was dissolved in Transcutol HP (TC) and sucrose-esters were incorporated as penetration enhancers in creams. Biocompatibility of compositions was tested on HeLa cells and HaCaT keratinocytes as in vitro models. Transepidermal water loss (TEWL) tests were performed to prove the safety of formulations in vivo. Drug release of different compositions was assessed by Franz diffusion methods. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (MDA) activities were evaluated before and after UVB irradiation in a guinea pig model and HaCaT cells. Heme oxygenase-1 (HO-1) enzyme activity was measured in the epidermis of guinea pigs treated by different creams before and after UVB irradiation. Treatment with compositions containing silymarin powder (SM) dissolved in TC and sucrose stearate SP 50 or SP 70 resulted in increased activities of all reactive oxygen species (ROS) eliminating enzymes in the case of pre- and post-treatment as well. Reduction in the levels of lipid peroxidation end products was also detected after treatment with these two compositions. Post-treatment was more effective as the increase of the activity of antioxidants was higher. Lower HO-1 enzyme levels were measured in the case of pre- and post-treatment groups compared to control groups. Therefore, this study demonstrates the effectiveness of topical formulations containing silymarin in inhibiting UVB irradiation induced oxidative stress of the skin.
Long residence time of ultrasound microbubbles targeted to integrin in murine tumor model.
Jun, Hong Young; Park, Seong Hoon; Kim, Hun Soo; Yoon, Kwon-Ha
2010-01-01
The aim of this study was to evaluate the intratumoral residence time of microbubbles (MBs) targeted to alpha(v)beta(3) integrin expressed in the endothelial cells of mice during the process of tumor angiogenesis. For the preparation of MBs, decafluorobutane gas was sonically dispersed in phosphate buffer saline containing L-A-phosphatidylcholine-distearoyl, polyethylene glycol 40 stearate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)2000] in a 77:15:8 molar ratio. Avidin-fluorescein isothiocyanate and biotin-cyclic arginine-glycine-aspartate-D-tyrosine-lysine (cRGD) or biotin-alanine-glycine-aspartate (AGD) conjugates were added to the reaction mixture. Adhesion testing of the targeting MBs was performed for the MS-1 cell line expressing alpha(v)beta(3) integrin in vitro. The in vivo acoustic properties of the MBs were assessed by clinical ultrasound on the HT1080 fibrosarcoma model (n = 8) for 1 hour. Cryosections were stained with hematoxylin and eosin and by immunohistochemical staining to identify expression of alpha(v)beta(3) integrin in the HT1080 tumor. The adherence of the MBs conjugated to cRGD was significantly greater than the adherence of the MBs conjugated to biotin-AGD (P < .01) for the MS-1 endothelial cell line. The acoustic enhancement on ultrasound was observed as a stable imaging window until 1 hour after injection of the MB conjugates in the mice. The MBs targeted via cRGD preferentially adhered to the vascular endothelium of the HT-1080 tumors. The findings of ultrasound imaging were correlated with immunohistochemical findings for the expression of alpha(v)beta(3) integrin on the vascular endothelium of the tumors. The prepared MBs conjugated with cRGD demonstrated a sufficient residence time to attach to the target integrin of tumor tissues. This finding suggests that the MBs are a potential molecular contrast agent that enables characterization of tumor angiogenesis and the monitoring of antitumor and antiangiogenic therapy.
Development of Metronidazole-Loaded Colon-Targeted Microparticulate Drug Delivery System.
Kumar, Manoj; Awasthi, Rajendra
2015-01-01
Crohn’s disease and ulcerative colitis are the main autoimmune inflammatory bowel diseases. Metronidazole is the most commonly used drug for the treatment of Crohn’s disease. However, the pharmacokinetic profile of this drug indicates that the largest amount of the drug is absorbed from the upper part of the intestines and very little concentration of the drugs reaches the colon.Objectives: The aim of this investigation was to formulate metronidazole loaded microspheres for the efficient therapy of inflammatory bowel diseases.Material and Methods: Microspheres were prepared using the emulsification-solvent evaporation method. The effect of Eudragit S100 concentration and the ratio of liquid paraffin (light: heavy) on percentage yield, particle size, morphology, drug encapsulation and in vitro drug release was examined. Drug-polymer interaction was investigated using Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that the particle had good flow properties, encapsulation efficiency (56.11 ・} 1.51–81.02 ・} 2.14%)and cumulative drug release (64.14 ・} 0.83–79.69 ・} 2.45%) in a phosphate buffer (pH 6.8) after 10 h of the dissolution study.An increased particle size was observed with an increasing polymer concentration. It was observed that the Eudragit had a positive effect on the drug encapsulation and negative effect on drug release. Aggregation of drug-polymer droplets was observed at a lower level of magnesium stearate during microsphere preparation. The results of FTIR spectroscopy revealed the absence of any drug-polymer interactions. However, slight peak shifting and suppression in peak height was observed.This might be due to the minor ionic interactions. The microspheres were discrete, spherical and free-flowing. The spherical shape of the microspheres was confirmed from SEM photomicrographs. The developed microspheres showed a controlled drug release and were found to follow Higuchi’s model. The release mechanism of metronidazole from the microspheres was Fickian diffusion without swelling. The results suggest that the developed microspheres could enhance drug entrapment, and inflect the drug release.
Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng
2015-05-01
JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD.
Hancock, A J; Greenwald, S M; Sable, H Z
1975-07-01
A new series of analogs of triglycerides has been synthesized, in which the glycerol moiety is replaced by each of the three isomeric cyclopentanetriols. For each of the isomeric cyclopentane-1,2,3-triols (1,2,3/0; DL-1,2/3; and 1,3/2), the tris-homoacyl derivatives of octanoic, decanoic, lauric, myristic, palmitic, stearic, and dihydrosterculic acids were prepared by treatment of the respective triols with the appropriate acyl chloride in pyridine. The dihydrosterculates were prepared by fusing the triols with a mixture of the acyl anhydride and the corresponding potassium salt. It is proposed that because of restricted rotation of the carbon-carbon bonds the cyclopentanoid compounds are analogs of specific rotamers of triglycerides. Infrared spectra (KBr discs) obtained at room temperature show differences in crystal structure from series to series. A band near 720 cm-minus 1 (CH2 rock) is doubled in the 1,2,3/0 and 1,2/3 series and is single in the 1,3/2 series and the triglycerides. In each spectrum with a doublet at 720 cm-minus 1, a band near 1470 cm-minus 1 (CH2 bend) is doubled also. A strong band at 890 cm-minus 1 present in the triglyceride spectra is weak or missing from the spectra of the analogs. A band at 1418 cm-minus 1 (bending of CH2 adjacent to C equal to 0) present in the triglyceride spectra is demonstrable only in the 1,2,3/0 derivatives in comparison with the other three series. In all series the dihydrosterculates show a decrease in apparent polarity, relative to the stearates, significantly greater than expected from the introduction of an additional carbon atom. The potential utility of the analogs as probes of the effects of conformation on the physical properties and enzymatic susceptibility of glycerides is discussed.
DIETARY FAT AND HYPERCHOLESTEREMIA IN THE CEBUS MONKEY
Portman, Oscar W.; Sinisterra, Leonardo
1957-01-01
A series of studies of cholesterol metabolism in the Cebus monkey were carried out in an attempt to understand the mechanisms responsible for the great differences in serum cholesterol levels when different dietary fats were used. Three groups of monkeys, one fed diets including 45 per cent of calories as corn oil, a second corn oil plus cholesterol (0.1 gm./100 calories), and a third lard plus cholesterol for 5 months (mean serum cholesterol values were 237, 268, and 601 mg. per cent, respectively) were injected with emulsions of cholesterol-4-C14. The mean biological half-lives for the disappearance of serum radiocholesterol were 8.8, 8.4, and 6.6 days respectively. Esterification of radiocholesterol as measured by equilibration of specific activities of serum-free cholesterol and total cholesterol was delayed in the monkeys fed lard plus cholesterol. When cholesterol-4-C-14-stearate was given intravenously to a series of monkeys, an erratic non-exponential biological decay curve resulted. Specific activity for free serum cholesterol was greater than that for total cholesterol within 1 hour after the injection. After 7 months on experimental diets including corn oil with added cholesterol and lard with added cholesterol the levels of lipides in most tissues were not different for the two dietary groups, nor were they appreciably elevated above previous control figures for monkeys not fed cholesterol. Total lipide levels in the adrenals of monkeys fed corn oil were twice those of monkeys fed lard. Monkeys were fasted before and after intragastric administration of cholesterol-4-C14 in small formula meals including various fats and fatty acids. The disappearance of total cholesterol from the serum consisted of a rapid followed by a slow exponential function. The type of fat and fatty acid appeared to influence the rate of disappearance of radiocholesterol. There was a broad range of apparent activity of the different fats and fatty acids in promoting cholesterol absorption. PMID:13475627
Chen, Xiaojuan; Li, Ning; Xu, Song; Cai, Yumin
2018-01-01
Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate), and their characteristics were systematically resolved by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM)/ High-resolution Transmission Electron Microscopy (HRTEM), UV-vis Diffuse Reflectance Spectra (DRS) and Photoluminescence (PL). Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS) degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory. PMID:29597267
History of L-carnitine: implications for renal disease.
Matera, Mario; Bellinghieri, Guido; Costantino, Giuseppe; Santoro, Domenico; Calvani, Menotti; Savica, Vincenzo
2003-01-01
L-carnitine (LC) plays an essential metabolic role that consists in transferring the long chain fatty acids (LCFAs) through the mitochondrial barrier, thus allowing their energy-yielding oxidation. Other functions of LC are protection of membrane structures, stabilizing a physiologic coenzyme-A (CoA)-sulfate hydrate/acetyl-CoA ratio, and reduction of lactate production. On the other hand, numerous observations have stressed the carnitine ability of influencing, in several ways, the control mechanisms of the vital cell cycle. Much evidence suggests that apoptosis activated by palmitate or stearate addition to cultured cells is correlated with de novo ceramide synthesis. Investigations in vitro strongly support that LC is able to inhibit the death planned, most likely by preventing sphingomyelin breakdown and consequent ceramide synthesis; this effect seems to be specific for acidic sphingomyelinase. The reduction of ceramide generation and the increase in the serum levels of insulin-like growth factor (IGF)-1, could represent 2 important mechanisms underlying the observed antiapoptotic effects of acetyl-LC. Primary carnitine deficiency is an uncommon inherited disorder, related to functional anomalies in a specific organic cation/carnitine transporter (hOCTN2). These conditions have been classified as either systemic or myopathic. Secondary forms also are recognized. These are present in patients with renal tubular disorders, in which excretion of carnitine may be excessive, and in patients on hemodialysis. A lack of carnitine in hemodialysis patients is caused by insufficient carnitine synthesis and particularly by the loss through dialytic membranes, leading, in some patients, to carnitine depletion with a relative increase in esterified forms. Many studies have shown that LC supplementation leads to improvements in several complications seen in uremic patients, including cardiac complications, impaired exercise and functional capacities, muscle symptoms, increased symptomatic intradialytic hypotension, and erythropoietin-resistant anemia, normalizing the reduced carnitine palmitoyl transferase activity in red cells. Copyright 2003 by the National Kidney Foundation, Inc.
Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska
2017-12-01
Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Jetzer, M W; Morrical, B D; Schneider, M; Edge, S; Imanidis, G
2018-03-01
The in-vitro aerosol performance of two combination dry powder inhaler (DPI) products, Foster ® NEXThaler ® and Seretide ® Diskus ® were investigated with single particle aerosol mass spectrometry (SPAMS). The in-vitro pharmaceutical performance is markedly different for both inhalers. Foster ® NEXThaler ® generates a higher fine particle fraction (FPF <5 μm) and a much higher relative extra fine particle fraction (eFPF <2 μm). In terms of the composition of the aerodynamic particle size distribution (APSD), it could be verified with SPAMS that overall Foster ® NEXThaler ® emits a significantly higher number of fine and extra fine particles with a median aerodynamic diameter (MAD) of 2.1 μm while Seretide ® Diskus ® had a larger MAD of 3.1 μm. Additionally, the interactions between the two active pharmaceutical ingredients (APIs) in both products are different. While Seretide ® Diskus ® emits a significant (37%) number of co-associated API particles, only a negligible number of co-associated API particles were found in Foster ® NEXThaler ® (<1%). A major difference with Foster ® NEXThaler ® is that it contains magnesium stearate (MgSt) as a second excipient besides lactose in a so-called 'dual excipient' platform. The data generated using SPAMS suggested that nearly all of the beclomethasone dipropionate particles in Foster ® NEXThaler ® also contain MgSt and must therefore be co-associated with this additional excipient. This may help explain why beclomethasone dipropionate in Foster ® NEXThaler ® forms less particle co-associations with the second API, formoterol fumarate, shows a lower cohesive strength in respect to beclomethasone itself and why both APIs exhibit superior detachment from the carrier as evidenced by the increased eFPF and smaller MAD. Copyright © 2018 Elsevier B.V. All rights reserved.
Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Jalali, Mohammad Barzegar
2015-09-21
Repaglinide is an efficient anti-diabetic drug which is prescribed widely as multi-dosage oral daily regimens. Due to the low compliance inherent to each multi-dosage regimen, development of prolonged-release formulations could enhance the overall drug efficacy in patient populations. Repaglinide-loaded solid lipid nanoparticles (SLNs) were developed and characterized in vitro. Various surfactants were used in this study during the nanocarrier preparation procedure and their corresponding effects on some physicochemical properties of SLNs such as size, zeta potential; drug loading parameters and drug release profiles was investigated. Stearic acid and glyceryl mono stearate (GMS) were used as lipid phase and phosphatidylcholin, Tween80, Pluronic F127, poly vinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as surfactant/stabilizer. The results showed some variations between formulations; where the Tween80-based SLNs showed smallest size, the phosphatidylcholin-based SLNs indicated most prolonged drug release time and the highest loading capacity. SEM images of these formulations showed morphological variations and also confirmed the nanoscale size of these particles. The FTIR and DSC results demonstrated no interaction between drug and excipients. The invitro release profiles of different formulations were studied and observed slow release of drug from all formulations. However significant differences were found among them in terms of their initial burst release as well as the whole drug release profile. From fitting these data to various statistical models, the Peppas model was proposed as the best model to describe the statistical indices and, therefore, mechanism of drug release. The results of this study confirmed the effect of surfactant type on SLNs physicochemical properties such as morphological features, loading parameters, particle sizes and drug release kinetic. With respect to the outcome data, the mixture of phosphatidylcholin/Pluronic F127 was selected as the best surfactant/stabilizer to coat the lipid core comprising stearic acid and GMS.
Schmidt, Lars E; Dalhoff, Kim
2002-01-01
Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions. The most important interactions are those associated with a high risk of treatment failure arising from a significantly reduced bioavailability in the fed state. Such interactions are frequently caused by chelation with components in food (as occurs with alendronic acid, clodronic acid, didanosine, etidronic acid, penicillamine and tetracycline) or dairy products (ciprofloxacin and norfloxacin), or by other direct interactions between the drug and certain food components (avitriptan, indinavir, itraconazole solution, levodopa, melphalan, mercaptopurine and perindopril). In addition, the physiological response to food intake, in particular gastric acid secretion, may reduce the bioavailability of certain drugs (ampicillin, azithromycin capsules, didanosine, erythromycin stearate or enteric coated, and isoniazid). For other drugs, concomitant food intake may result in an increase in drug bioavailability either because of a food-induced increase in drug solubility (albendazole, atovaquone, griseofulvin, isotretinoin, lovastatin, mefloquine, saquinavir and tacrolimus) or because of the secretion of gastric acid (itraconazole capsules) or bile (griseofulvin and halofantrine) in response to food intake. For most drugs, such an increase results in a desired increase in drug effect, but in others it may result in serious toxicity (halofantrine).
Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M
1997-04-01
The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.
De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge
2018-03-01
The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Kulaga, Vivian; Caprara, Daniela; Iqbal, Umar; Kapur, Bhushan; Klein, Julia; Reynolds, James; Brien, James; Koren, Gideon
2006-01-01
To compare the incorporation rate (ICR) of fatty acid ethyl esters (FAEE) in hair between guinea pigs and humans, and to assess the relationship between ethanol exposure and FAEE concentrations in hair. Published data from pregnant guinea pigs, including maximum blood ethanol concentration (BEC), dosage regimen, and total hair FAEE concentration, were compared with published data from alcoholic patients, where dose of ethanol consumed and total hair FAEE concentration were reported. Mean values of ethanol Vmax for pregnant guinea pigs and humans were obtained from published data (26.2 and 24 mg/dl/h, respectively). Total and individual FAEE ICRs, defined as the ratio of hair FAEE to the area under the BEC-time curve (total systemic ethanol exposure), were found to be on average an order of magnitude lower in the guinea pig than in the human. The profiles of ester incorporation also differed slightly between species, with ethyl stearate being highly incorporated in guinea pig hair and less so in human hair. The results may reflect in the human greater FAEE production, greater FAEE deposition in hair, slower FAEE catabolism, differential sebum production and composition, or a combination thereof. Also, ethyl oleate was found to correlate with total systemic ethanol exposure for both guinea pigs and humans, correlation coefficients equalling 0.67 (P < 0.05) and 0.49 (P < 0.05), respectively. No other ethyl esters, nor total FAEE, were found to correlate with systemic ethanol exposure. When extrapolating FAEE concentrations in hair from guinea pigs to humans, an order of magnitude difference should be considered, with humans incorporating more FAEE per unit of ethanol exposure. Also, the results suggest caution should be taken when interpreting values of single esters because of their differential incorporation among species. Lastly, our findings suggest ethyl oleate may be of keen interest in FAEE hair analysis, particularly across species.
Bertol, Elisabetta; Del Bravo, Ester; Vaiano, Fabio; Mari, Francesco; Favretto, Donata
2014-09-01
Fatty acid ethyl esters (FAEEs) are minor ethanol metabolites that can accumulate in hair. The performance of hair FAEEs as a biomarker that can discriminate null or moderate drinking from risky, excessive drinking was verified by evaluating the relationship between self-reported daily alcohol intake and FAEE concentration in hair. The study subjects were 160 healthy volunteers (52% female) that included teetotallers, moderate/social drinkers (< 60 g of ethanol per day), and heavy drinkers (≥ 60 g/day).The estimated daily alcohol intake (EDAI) was assessed by a specific written questionnaire aimed at estimating the measure and the frequency of alcohol drinking and at excluding confounding factors. FAEEs (ethyl myristate, ethyl palmitate, ethyl oleate, and ethyl stearate) were extracted from the hair matrix by overnight incubation in n-hexane/dimethylsulphoxide, purified by solid-phase extraction (SPE) and analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring and Electron ionization (EI) mode, using pentadeuterated internal standards. Hair samples exhibited FAEE concentrations (expressed as the sum of the four esters, CFAEE ) ranging from 0.01 to 10.78 ng/mg (average 1.16 and median 0.60 ng/mg). The EDAI was from 0 to 246 g of ethanol per day, average 28 g/day and median 15 g/day. A cut-off of 0.5 ng/mg in 3 cm of a proximal hair segment was adopted to discriminate social drinking from excessive ethanol consumption. False positive samples were identified in subjects using ethanol-containing hair lotions and women on estroprogestin therapy. Specificity of 87% was reached when the identified false positives were excluded from data elaboration. CFAEE in hair at a predetermined cut-off can be used to discriminate between moderate and excessive drinking only when confounding factors are meticulously removed. Copyright © 2014 John Wiley & Sons, Ltd.
Vitamin C in human health and disease is still a mystery ? An overview
Naidu, K Akhilender
2003-01-01
Ascorbic acid is one of the important water soluble vitamins. It is essential for collagen, carnitine and neurotransmitters biosynthesis. Most plants and animals synthesize ascorbic acid for their own requirement. However, apes and humans can not synthesize ascorbic acid due to lack of an enzyme gulonolactone oxidase. Hence, ascorbic acid has to be supplemented mainly through fruits, vegetables and tablets. The current US recommended daily allowance (RDA) for ascorbic acid ranges between 100–120 mg/per day for adults. Many health benefits have been attributed to ascorbic acid such as antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator and prevents cold etc. However, lately the health benefits of ascorbic acid has been the subject of debate and controversies viz., Danger of mega doses of ascorbic acid? Does ascorbic acid act as a antioxidant or pro-oxidant ? Does ascorbic acid cause cancer or may interfere with cancer therapy? However, the Panel on dietary antioxidants and related compounds stated that the in vivo data do not clearly show a relationship between excess ascorbic acid intake and kidney stone formation, pro-oxidant effects, excess iron absorption. A number of clinical and epidemiological studies on anti-carcinogenic effects of ascorbic acid in humans did not show any conclusive beneficial effects on various types of cancer except gastric cancer. Recently, a few derivatives of ascorbic acid were tested on cancer cells, among them ascorbic acid esters showed promising anticancer activity compared to ascorbic acid. Ascorbyl stearate was found to inhibit proliferation of human cancer cells by interfering with cell cycle progression, induced apoptosis by modulation of signal transduction pathways. However, more mechanistic and human in vivo studies are needed to understand and elucidate the molecular mechanism underlying the anti-carcinogenic property of ascorbic acid. Thus, though ascorbic acid was discovered in 17th century, the exact role of this vitamin/nutraceutical in human biology and health is still a mystery in view of many beneficial claims and controversies. PMID:14498993
Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages.
Riolo, Daniela; Piazza, Alessandro; Cottini, Ciro; Serafini, Margherita; Lutero, Emilio; Cuoghi, Erika; Gasparini, Lorena; Botturi, Debora; Marino, Iari Gabriel; Aliatis, Irene; Bersani, Danilo; Lottici, Pier Paolo
2018-02-05
Raman spectroscopy has been positively evaluated as a tool for the in-line and real-time monitoring of powder blending processes and it has been proved to be effective in the determination of the endpoint of the mixing, showing its potential role as process analytical technology (PAT). The aim of this study is to show advantages and disadvantages of Raman spectroscopy with respect to the most traditional HPLC analysis. The spectroscopic results, obtained directly on raw powders, sampled from a two-axis blender in real case conditions, were compared with the chromatographic data obtained on the same samples. The formulation blend used for the experiment consists of active pharmaceutical ingredient (API, concentrations 6.0% and 0.5%), lactose and magnesium stearate (as excipients). The first step of the monitoring process was selecting the appropriate wavenumber region where the Raman signal of API is maximal and interference from the spectral features of excipients is minimal. Blend profiles were created by plotting the area ratios of the Raman peak of API (A API ) at 1598cm -1 and the Raman bands of excipients (A EXC ), in the spectral range between 1560 and 1630cm -1 , as a function of mixing time: the API content can be considered homogeneous when the time-dependent dispersion of the area ratio is minimized. In order to achieve a representative sampling with Raman spectroscopy, each sample was mapped in a motorized XY stage by a defocused laser beam of a micro-Raman apparatus. Good correlation between the two techniques has been found only for the composition at 6.0% (w/w). However, standard deviation analysis, applied to both HPLC and Raman data, showed that Raman results are more substantial than HPLC ones, since Raman spectroscopy enables generating data rich blend profiles. In addition, the relative standard deviation calculated from a single map (30 points) turned out to be representative of the degree of homogeneity for that blend time. Copyright © 2017 Elsevier B.V. All rights reserved.
Patel, Chirag J; Manrai, Arjun K; Corona, Erik; Kohane, Isaac S
2017-02-01
It is hypothesized that environmental exposures and behaviour influence telomere length, an indicator of cellular ageing. We systematically associated 461 indicators of environmental exposures, physiology and self-reported behaviour with telomere length in data from the US National Health and Nutrition Examination Survey (NHANES) in 1999-2002. Further, we tested whether factors identified in the NHANES participants are also correlated with gene expression of telomere length modifying genes. We correlated 461 environmental exposures, behaviours and clinical variables with telomere length, using survey-weighted linear regression, adjusting for sex, age, age squared, race/ethnicity, poverty level, education and born outside the USA, and estimated the false discovery rate to adjust for multiple hypotheses. We conducted a secondary analysis to investigate the correlation between identified environmental variables and gene expression levels of telomere-associated genes in publicly available gene expression samples. After correlating 461 variables with telomere length, we found 22 variables significantly associated with telomere length after adjustment for multiple hypotheses. Of these varaibales, 14 were associated with longer telomeres, including biomarkers of polychlorinated biphenyls([PCBs; 0.1 to 0.2 standard deviation (SD) increase for 1 SD increase in PCB level, P < 0.002] and a form of vitamin A, retinyl stearate. Eight variables associated with shorter telomeres, including biomarkers of cadmium, C-reactive protein and lack of physical activity. We could not conclude that PCBs are correlated with gene expression of telomere-associated genes. Both environmental exposures and chronic disease-related risk factors may play a role in telomere length. Our secondary analysis found no evidence of association between PCBs/smoking and gene expression of telomere-associated genes. All correlations between exposures, behaviours and clinical factors and changes in telomere length will require further investigation regarding biological influence of exposure. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association
Mukai, Kazuo; Yoshimoto, Maya; Ishikura, Masaharu; Nagaoka, Shin-Ichi
2017-08-17
A kinetic study of the reaction between an aroxyl radical (ArO • ) and fatty acid esters (LHs 1-5, ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) has been undertaken. The second-order rate constants (k s ) for the reaction of ArO • with LHs 1-5 in toluene at 25.0 °C have been determined spectrophotometrically. The k s values obtained increased in the order of LH 1 < 2 < 3 < 4 < 5, that is, with increasing the number of double bonds included in LHs 1-5. The k s value for LH 5 was 2.93 × 10 -3 M -1 s -1 . From the result, it has been clarified that the reaction of ArO • with LHs 1-5 was explained by an allylic hydrogen abstraction reaction. A similar kinetic study was performed for the reaction of ArO • with six carotenoids (Car-Hs 1-6, astaxanthin 1, β-carotene 2, lycopene 3, capsanthin 4, zeaxanthin 5, and lutein 6). The k s values obtained increased in the order of Car-H 1 < 2 < 3 < 4 < 5 < 6. The k s value for Car-H 6 was 8.4 × 10 -4 M -1 s -1 . The k s values obtained for Car-Hs 1-6 are in the same order as that of the values for LHs 1-5. The results of detailed analyses of the k s values for the above reaction indicated that the reaction was also explained by an allylic hydrogen abstraction reaction. Furthermore, the structure-activity relationship for the reaction was discussed by taking the result of density functional theory calculation reported by Martinez and Barbosa into account.
Morphological studies of sulfonated polystyrene and sulfonated EPDM ionomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.A.
1992-12-31
Two ionomer systems have been investigated in this research. Sulfonated polystyrene (SPS) is a typical random ionomer and is a good material for studies into the nature of phase separation in ionomers. A series of narrow molecular weight distribution (MWD) zinc neutralized SPS samples of varying sulfonation levels were prepared and analyzed through small angle x-ray scattering (SAXS). Results indicated that the correlation distance varied with both molecular weight and sulfonation level. Increases in the position of the scattering maximum with sulfonation level is the result of a greater number of ionic groups. Increasing molecular weight led to the movementmore » of the scattering maximum to smaller scattering vectors, an indication of larger distances. It was also observed that ionomer peak occurred at smaller scattering vectors for the narrow MWD samples than in corresponding materials of greater dispersity. SAXS was also used to examine the morphology of zinc stearate (ZnSt) filled sulfonated EPDM (S-EPDM) ionomers and the nature of the interaction between the plasticizer and the ionomer. S-EPDM is a material that may find use as a thermoplastic elastomer, although its melt viscosity is too high to allow for convenient processing. The addition of of ZnSt as a plasticizer greatly reduces the melt viscosity of S-EPDM. ZnSt exists in this system as very small crystallites which are associated with ionic groups. As the temperature is increased, the crystallites anneal briefly into larger crystals before melting and diffusing into the S-EPDM matrix. Above the melting temperature of the ZnSt, it solvates the ionic groups of the ionomer, decreasing their self-association and the viscosity of the system. Increasing ZnSt loading is seen in the SAXS as an increase in scattering in the low angle region. However, this increase in intensity is not linear with concentration, showing that ZnSt exists in different environments at higher concentrations.« less
Antibiotics for ureaplasma in the vagina in pregnancy.
Raynes Greenow, Camille H; Roberts, Christine L; Bell, Jane C; Peat, Brian; Gilbert, Gwendolyn L; Parker, Sharon
2011-09-07
Preterm birth is a significant perinatal problem contributing to perinatal morbidity and mortality. Heavy vaginal ureaplasma colonisation is suspected of playing a role in preterm birth and preterm rupture of the membranes. Antibiotics are used to treat infections and have been used to treat pregnant women with preterm prelabour rupture of the membranes, resulting in some short-term improvements. However, the benefit of using antibiotics in early pregnancy to treat heavy vaginal colonisation is unclear. To assess whether antibiotic treatment of pregnant women with heavy vaginal ureaplasma colonisation reduces the incidence of preterm birth and other adverse pregnancy outcomes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2011). Randomised controlled trials comparing any antibiotic regimen with placebo or no treatment in pregnant women with ureaplasma detected in the vagina. Three review authors independently assessed eligibility and trial quality and extracted data. We included one trial, involving 1071 women. Of these, 644 women between 22 weeks and 32 weeks' gestation were randomly assigned to one of three groups of antibiotic treatment (n = 174 erythromycin estolate, n = 224 erythromycin stearate, and n = 246 clindamycin hydrochloride) or a placebo (n = 427). Preterm birth data was not reported in this trial. Incidence of low birthweight less than 2500 grams was only evaluated for erythromycin (combined, n = 398) compared to placebo (n = 427) and there was no statistically significant difference between the two groups (risk ratio (RR) 0.70, 95% confidence interval (CI) 0.46 to 1.07). There were no statistically significant differences in side effects sufficient to stop treatment between either group (RR 1.25, 95% CI 0.85 to 1.85). There is insufficient evidence to assess whether pregnant women who have vaginal colonisation with ureaplasma should be treated with antibiotics to prevent preterm birth.Preterm birth is a significant perinatal problem. Upper genital tract infections, including ureaplasmas, are suspected of playing a role in preterm birth and preterm rupture of the membranes. Antibiotics are used to treat women with preterm prelabour rupture of the membranes; this may result in prolongation of pregnancy and lowers the risks of maternal and neonatal infection. However, antibiotics may be beneficial earlier in pregnancy to eradicate potentially causative agents.
Structure and property relations of macromolecular self-assemblies at interfaces
NASA Astrophysics Data System (ADS)
Yang, Zhihao
Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by surface light scattering, in terms of the dynamic surface tension changes in response to a temperature jump. The characteristic of the surface tension relaxation is found to be highly related to the molecular structure and concentration of the copolymers at the interface.
Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard
2016-06-22
The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.
Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification
NASA Astrophysics Data System (ADS)
Martín-Martínez, J. M.; Romero-Sánchez, M. D.
2006-05-01
The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally, it has been found that cleaning of SBS rubber in an ultrasonic bath prior to plasma torch treatment produced a partial removal of paraffin waxes from the surface, and thus improved adhesion was obtained.
Pragst, Fritz; Yegles, Michel
2008-04-01
The retrospective detection of alcohol consumption during pregnancy is an important part of the diagnosis of the fetal alcohol syndrome. A promising way to solve this problem can be the determination of fatty acid ethyl esters (FAEE) or/and ethyl glucuronide (EtG) in hair of the mothers. In this article, the present state in analytical determination and interpretation of FAEE and EtG concentrations in hair are reviewed. Both FAEE and EtG are minor metabolites of ethanol and as direct alcohol markers very specific for alcohol. They are durably deposited in hair, which enables taking advantage of the long diagnostic time window of this sample material. In the last years, specific and sensitive methods for determination of both alcohol markers in hair were developed. Headspace solid phase microextraction in combination with gas chromatography-mass spectroscopy after hair extraction with an n-heptane/dimethylsulfoxide mixture proved to be a favorable technique for determination of four characteristic FAEE (ethyl myristate, ethyl palmitate, ethyl oleate, and ethyl stearate). EtG is extracted from hair by water and analyzed either by gas chromatography-mass spectroscopy with negative chemical ionization after cleanup with solid phase extraction and derivatization with pentafluoropropionic anhydride or by liquid chromatography-mass spectroscopy-mass spectroscopy. The detection limits of the single FAEE as well as of EtG are in the range of 1 to 10 pg/mg. FAEE as well as EtG were determined in a larger number of hair samples of teetotalers, social drinkers, patients in alcohol withdrawal treatment, and death cases with previous known heavy drinking. From the results, the following criteria were derived: strict abstinence is excluded or improbable at C FAEE >0.2 ng/mg or C EtG >7 pg/mg. Moderate social drinkers should have C FAEE <0.5 ng/mg and C EtG <25 pg/mg; above these values, alcohol abuse is probable. Until now, there has been no evaluation in context of FAS diagnosis; however, a successful application for this purpose can be expected from the good experience in driving ability examination.
Stein, D T; Stevenson, B E; Chester, M W; Basit, M; Daniels, M B; Turley, S D; McGarry, J D
1997-01-01
Lowering of the elevated plasma FFA concentration in 18- 24-h fasted rats with nicotinic acid (NA) caused complete ablation of subsequent glucose-stimulated insulin secretion (GSIS). Although the effect of NA was reversed when the fasting level of total FFA was maintained by coinfusion of soybean oil or lard oil (plus heparin), the more saturated animal fat proved to be far more potent in enhancing GSIS. We therefore examined the influence of individual fatty acids on insulin secretion in the perfused rat pancreas. When present in the perfusion fluid at 0.5 mM (in the context of 1% albumin), the fold stimulation of insulin release from the fasted pancreas in response to 12.5 mM glucose was as follows: octanoate (C8:0), 3.4; linoleate (C18:2 cis/cis), 5.3; oleate (C18:1 cis), 9.4; palmitate (C16:0), 16. 2; and stearate (C18:0), 21.0. The equivalent value for palmitoleate (C16:1 cis) was 3.1. A cis--> trans switch of the double bond in the C16:1 and C18:1 fatty acids had only a modest, if any, impact on their potency. A similar profile emerged with regard to basal insulin secretion (3 mM glucose). When a subset of these fatty acids was tested in pancreases from fed animals, the same rank order of effectiveness at both basal and stimulatory levels of glucose was seen. The findings reaffirm the essentiality of an elevated plasma FFA concentration for GSIS in the fasted rat. They also show, however, that the insulinotropic effect of individual fatty acids spans a remarkably broad range, increasing and decreasing dramatically with chain length and degree of unsaturation, respectively. Thus, for any given level of glucose, insulin secretion will be influenced greatly not only by the combined concentration of all circulating (unbound) FFA, but also by the makeup of this FFA pool. Both factors will likely be important considerations in understanding the complex interplay between the nature of dietary fat and whole body insulin, glucose, and lipid dynamics. PMID:9218517
Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula
2017-09-01
Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.
Gabrieli, Francesca; Rosi, Francesca; Vichi, Alessandra; Cartechini, Laura; Pensabene Buemi, Luciano; Kazarian, Sergei G; Miliani, Costanza
2017-01-17
Protrusions, efflorescence, delamination, and opacity decreasing are severe degradation phenomena affecting oil paints with zinc oxide, one of the most common white pigments of the 20th century. Responsible for these dramatic alterations are the Zn carboxylates (also known as Zn soaps) originated by the interaction of the pigment and the fatty acids resulting from the hydrolysis of glycerides in the oil binding medium. Despite their widespread occurrence in paintings and the growing interest of the scientific community, the process of formation and evolution of Zn soaps is not yet fully understood. In this study micro-attenuated total reflection (ATR)-FT-IR spectroscopic imaging was required for the investigation at the microscale level of the nature and distribution of Zn soaps in the painting Alchemy by J. Pollock (1947, Peggy Guggenheim Collection, Venice) and for comparison with artificially aged model samples. For both actual samples and models, the role of AlSt(OH) 2 , a jellifying agent commonly added in 20th century paint tube formulations, proved decisive for the formation of zinc stearate-like (ZnSt 2 ) soaps. It was observed that ZnSt 2 -like soaps first form around the added AlSt(OH) 2 particles and then eventually grow within the whole painting stratigraphy as irregularly shaped particles. In some of the Alchemy samples, and diversely from the models, a peculiar distribution of ZnSt 2 aggregates arranged as rounded and larger particles was also documented. Notably, in one of these samples, larger agglomerates of ZnSt 2 expanding toward the support of the painting were observed and interpreted as the early stage of the formation of internal protrusions. Micro-ATR-FT-IR spectroscopic imaging, thanks to a very high chemical specificity combined with high spatial resolution, was proved to give valuable information for assessing the conservation state of irreplaceable 20th century oil paintings, revealing the chemical distribution of Zn soaps within the paint stratigraphy before their effect becomes disruptive.
Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji
2017-08-22
Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.
Tye, S J; Miller, A D; Blaha, C D
2013-11-12
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie
2014-01-01
Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright © 2013 Elsevier B.V. All rights reserved.
Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru
Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low affinity for PVPP may be easily affected by airborne water under high temperature and humid conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Dey, Prabuddha; Chakraborty, Monami; Kamdar, Maulik R.; Maiti, Mrinal K.
2014-01-01
Diacylglycerol acyltransferase (DGAT) activity is an essential enzymatic step in the formation of neutral lipid i.e., triacylglycerol in all living cells capable of accumulating storage lipid. Previously, we characterized an oleaginous yeast Candida tropicalis SY005 that yields storage lipid up to 58% under a specific nitrogen-stress condition, when the DGAT-specific transcript is drastically up-regulated. Here we report the identification, differential expression and function of two DGAT2 gene homologues- CtDGAT2a and CtDGAT2b of this C. tropicalis. Two protein isoforms are unique with respect to the presence of five additional stretches of amino acids, besides possessing three highly conserved motifs known in other reported DGAT2 enzymes. Moreover, the CtDGAT2a and CtDGAT2b are characteristically different in amino acid sequences and predicted protein structures. The CtDGAT2b isozyme was found to be catalytically 12.5% more efficient than CtDGAT2a for triacylglycerol production in a heterologous yeast system i.e., Saccharomyces cerevisiae quadruple mutant strain H1246 that is inherently defective in neutral lipid biosynthesis. The CtDGAT2b activity rescued the growth of transformed S. cerevisiae mutant cells, which are usually non-viable in the medium containing free fatty acids by incorporating them into triacylglycerol, and displayed preferential specificity towards saturated acyl species as substrate. Furthermore, we document that the efficiency of triacylglycerol production by CtDGAT2b is differentially affected by deletion, insertion or replacement of amino acids in five regions exclusively present in two CtDGAT2 isozymes. Taken together, our study characterizes two structurally novel DGAT2 isozymes, which are accountable for the enhanced production of storage lipid enriched with saturated fatty acids inherently in C. tropicalis SY005 strain as well as in transformed S. cerevisiae neutral lipid-deficient mutant cells. These two genes certainly will be useful for further investigation on the novel structure-function relationship of DGAT repertoire, and also in metabolic engineering for the enhanced production of lipid feedstock in other organisms. PMID:24732323
Tsuda, Kazushi; Nishio, Ichiro
2005-08-01
Recent studies have shown that tamoxifen, which belongs to a group called selective estrogen receptor modulators (SERM), may exert protective effects against cardiovascular diseases and stroke in postmenopausal women. On the other hand, abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. The present study was performed to investigate the effects of tamoxifen on cell membrane fluidity (a reciprocal value of membrane microviscosity) in normotensive and hypertensive postmenopausal women. We used an electron paramagnetic resonance (EPR) and spin-labeling method. Tamoxifen significantly decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in normotensive postmenopausal women (mean +/- SEM, order parameter value; control 0.719 +/- 0.002, n = 41; tamoxifen 1 x 10(-7) mol/L 0.704 +/- 0.002, n = 41, P < .0001; tamoxifen 1 x 10(-6) mol/L 0.696 +/- 0.002, n = 41, P < .0001; tamoxifen 1 x 10(-5) mol/L 0.692 +/- 0.002, n = 41, P < .0001). The finding indicated that tamoxifen increased the membrane fluidity and improved the membrane microviscosity of erythrocytes. The membrane action of tamoxifen was antagonized by the estrogen receptor antagonist ICI 182,780. The effect of tamoxifen was significantly potentiated by the nitric oxide (NO) donors, l-arginine and S-nitroso-N-acetylpenicillamine, and a cGMP analog 8-bromo-cGMP. In contrast, the change evoked by tamoxifen was counteracted by the NO synthase inhibitors N(G)-nitro-l-arginine-methyl-ester and asymmetric dimethyl-l-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than in normotensive postmenopausal women. The effect of tamoxifen on the membrane fluidity was more pronounced in hypertensive postmenopausal women than in normotensive postmenopausal women. These results showed that tamoxifen increased the membrane fluidity of erythrocytes and improved the rigidity of cell membranes in postmenopausal women, to some extent, through the NO- and cGMP-dependent mechanisms. Furthermore, the greater effect of tamoxifen in hypertensive postmenopausal women suggests that tamoxifen could have a beneficial effect in regulating the blood rheologic behavior and in the improvement of the microcirculation in hypertension.
Badreddine, Asmaa; Zarrouk, Amira; Karym, El Mostafa; Debbabi, Meryam; Nury, Thomas; Meddeb, Wiem; Sghaier, Randa; Bezine, Maryem; Vejux, Anne; Martine, Lucy; Grégoire, Stéphane; Bretillon, Lionel; Prost-Camus, Emmanuelle; Durand, Philippe; Prost, Michel; Moreau, Thibault; Cherkaoui-Malki, Mustapha; Nasser, Boubker; Lizard, Gérard
2017-10-23
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v / v ) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
Piccolo, Brian D; Keim, Nancy L; Fiehn, Oliver; Adams, Sean H; Van Loan, Marta D; Newman, John W
2015-04-01
Total weight loss induced by energy restriction is highly variable even under tightly controlled conditions. Identifying weight-loss discriminants would provide a valuable weight management tool and insights into body weight regulation. This study characterized responsiveness to energy restriction in adults from variables including the plasma metabolome, endocrine and inflammatory markers, clinical indices, body composition, diet, and physical activity. Data were derived from a controlled feeding trial investigating the effect of 3-4 dairy product servings in an energy-restricted diet (2092 kJ/d reduction) over 12 wk. Partial least squares regression was used to identify weight-loss discriminants in 67 overweight and obese adults. Linear mixed models were developed to identify discriminant variable differences in high- vs. low-weight-loss responders. Both pre- and postintervention variables (n = 127) were identified as weight-loss discriminants (root mean squared error of prediction = 1.85 kg; Q(2) = 0.43). Compared with low-responders (LR), high-responders (HR) had greater decreases in body weight (LR: 2.7 ± 1.6 kg; HR: 9.4 ± 1.8 kg, P < 0.01), BMI (in kg/m(2); LR: 1.0 ± 0.6; HR: 3.3 ± 0.5, P < 0.01), and total fat (LR: 2.2 ± 1.1 kg; HR: 8.0 ± 2.1 kg, P < 0.01). Significant group effects unaffected by the intervention were determined for the respiratory exchange ratio (LR: 0.86 ± 0.05; HR: 0.82 ± 0.03, P < 0.01), moderate physical activity (LR: 127 ± 52 min; HR: 167 ± 68 min, P = 0.02), sedentary activity (LR: 1090 ± 99 min; HR: 1017 ± 110 min, P = 0.02), and plasma stearate [LR: 102,000 ± 21,000 quantifier ion peak height (QIPH); HR: 116,000 ± 24,000 QIPH, P = 0.01]. Overweight and obese individuals highly responsive to energy restriction had accelerated reductions in adiposity, likely supported in part by higher lipid mobilization and combustion. A novel observation was that person-to-person differences in habitual physical activity and magnitude of weight loss were accompanied by unique blood metabolite signatures. This trial was registered at clinicaltrials.gov as NCT00858312. © 2015 American Society for Nutrition.
Nanoparticles as strengthening agents in polymer systems
NASA Astrophysics Data System (ADS)
Shahid, Naureen
2005-11-01
Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran (the major component of guar gum) has been investigated by 11B NMR spectroscopy. By comparison with the 11B NMR of boric acid and phenyl boronic acid complexes of 1,2-diols [HOCMe2CMe2OH, cis-C6H 10(OH)2, trans-C6H10(OH) 2, o-C6H4(OH)2], 1,3-diols (neol-H2), monosaccharides (L-fucose, mannose and galactose) and disaccharides (celloboise and sucrose) it is found that the guaran polymer is cross-linked via a borate complex of two 1,2-diols both forming chelate 5-membered ring cycles, this contrasts with previous proposals. (Abstract shortened by UMI.)
Badreddine, Asmaa; Zarrouk, Amira; Karym, El Mostafa; Debbabi, Meryam; Nury, Thomas; Meddeb, Wiem; Sghaier, Randa; Bezine, Maryem; Martine, Lucy; Grégoire, Stéphane; Bretillon, Lionel; Durand, Philippe; Prost, Michel; Moreau, Thibault; Cherkaoui-Malki, Mustapha; Nasser, Boubker
2017-01-01
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25–50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier. PMID:29065513
Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C
2015-01-01
Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system. Copyright © 2014 Elsevier B.V. All rights reserved.
Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus
2017-01-01
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717
Shah, R B; Bryant, A; Collier, J; Habib, M J; Khan, M A
2008-08-06
A simple, sensitive, accurate, and robust stability indicating analytical method is presented for identification, separation, and quantitation of l-thyroxine and eight degradation impurities with an internal standard. The method was used in the presence of commonly used formulation excipients such as butylated hydroxyanisole, povidone, crospovidone, croscarmellose sodium, mannitol, sucrose, acacia, lactose monohydrate, confectionary sugar, microcrystalline cellulose, sodium laurel sulfate, magnesium stearate, talc, and silicon dioxide. The two active thyroid hormones: 3,3',5,5'-tetra-iodo-l-thyronine (l-thyroxine-T4) and 3,3',5-tri-iodo-l-thyronine (T3) and degradation products including di-iodothyronine (T2), thyronine (T0), tyrosine (Tyr), di-iodotyrosine (DIT), mono-iodotyrosine (MIT), 3,3',5,5'-tetra-iodothyroacetic acid (T4AA) and 3,3',5-tri-iodothyroacetic acid (T3AA) were assayed by the current method. The separation of l-thyroxine and eight metabolites along with theophylline (internal standard) was achieved using a C18 column (25 degrees C) with a mobile phase of trifluoroacetic acid (0.1%, v/v, pH 3)-acetonitrile in gradient elution at 0.8 ml/min at 223 nm. The sample diluent was 0.01 M methanolic NaOH. Method was validated according to FDA, USP, and ICH guidelines for inter-day accuracy, precision, and robustness after checking performance with system suitability. Tyr (4.97 min), theophylline (9.09 min), MIT (9.55 min), DIT (11.37 min), T0 (11.63 min), T2 (14.47 min), T3 (16.29 min), T4 (17.60 min), T3AA (22.71 min), and T4AA (24.83 min) separated in a single chromatographic run. Linear relationship (r2>0.99) was observed between the peak area ratio and the concentrations for all of the compounds within the range of 2-20 microg/ml. The total time for analysis, equilibration and recovery was 40 min. The method was shown to separate well from commonly employed formulation excipients. Accuracy ranged from 95 to 105% for T4 and 90 to 110% for all other compounds. Precision was <2% for all the compounds. The method was found to be robust with minor changes in injection volume, flow rate, column temperature, and gradient ratio. Validation results indicated that the method shows satisfactory linearity, precision, accuracy, and ruggedness and also stress degradation studies indicated that the method can be used as stability indicating method for l-thyroxine in the presence of excipients.
Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.
2009-01-01
We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones. PMID:19836025
Cytotoxic effect of Alpinia scabra (Blume) Náves extracts on human breast and ovarian cancer cells
2013-01-01
Background Alpinia scabra, locally known as 'Lengkuas raya’, is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant. Methods The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining. Results The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and SKOV-3 cells after treatment with the cytotoxic extracts and fractions which were indicative of cell apoptosis. Methyl palmitate and methyl stearate were identified in the hexane leaf extract by GC-MS analysis. Conclusions The data obtained from the current study demonstrated that the cell death induced by cytotoxic extracts and fractions of A. scabra may be due to apoptosis induction which was characterized by apoptotic morphological changes and DNA fragmentation. The active ingredients in the leaf sub-fraction VLC9 and rhizome fraction RC5 may lead to valuable compounds that have the ability to kill cancer cells but not normal cells. PMID:24215354
Enzymatic modification of natural and synthetic polymers using lipases and proteases
NASA Astrophysics Data System (ADS)
Chakraborty, Soma
Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and corresponding copolymers. As an alternative to chemical hydrolysis a mild and selective enzymatic method was discovered. Fifteen proteases were evaluated for this transformation. Of these, PROT 7 was the most active. Within 24h PROT 7 gave products with 44% hydrolysis. Further hydrolysis was not observed by extending the reaction time because poly(vinylformamide-co-40%vinylamine) is a poor substrate for further hydrolysis. The sequence distribution of copolymers formed by chemical hydrolysis and enzymatic hydrolysis was compared. Chemical hydrolysis gave random copolymer. In contrast, PROT 7 gave block-like arrangement of VAm units.
Instrumented roll technology for the design space development of roller compaction process.
Nesarikar, Vishwas V; Vatsaraj, Nipa; Patel, Chandrakant; Early, William; Pandey, Preetanshu; Sprockel, Omar; Gao, Zhihui; Jerzewski, Robert; Miller, Ronald; Levin, Michael
2012-04-15
Instrumented roll technology on Alexanderwerk WP120 roller compactor was developed and utilized successfully for the measurement of normal stress on ribbon during the process. The effects of process parameters such as roll speed (4-12 rpm), feed screw speed (19-53 rpm), and hydraulic roll pressure (40-70 bar) on normal stress and ribbon density were studied using placebo and active pre-blends. The placebo blend consisted of 1:1 ratio of microcrystalline cellulose PH102 and anhydrous lactose with sodium croscarmellose, colloidal silicon dioxide, and magnesium stearate. The active pre-blends were prepared using various combinations of one active ingredient (3-17%, w/w) and lubricant (0.1-0.9%, w/w) levels with remaining excipients same as placebo. Three force transducers (load cells) were installed linearly along the width of the roll, equidistant from each other with one transducer located in the center. Normal stress values recorded by side sensors and were lower than normal stress values recorded by middle sensor and showed greater variability than middle sensor. Normal stress was found to be directly proportional to hydraulic pressure and inversely to screw to roll speed ratio. For active pre-blends, normal stress was also a function of compressibility. For placebo pre-blends, ribbon density increased as normal stress increased. For active pre-blends, in addition to normal stress, ribbon density was also a function of gap. Models developed using placebo were found to predict ribbon densities of active blends with good accuracy and the prediction error decreased as the drug concentration of active blend decreased. Effective angle of internal friction and compressibility properties of active pre blend may be used as key indicators for predicting ribbon densities of active blend using placebo ribbon density model. Feasibility of on-line prediction of ribbon density during roller compaction was demonstrated using porosity-pressure data of pre-blend and normal stress measurements. Effect of vacuum to de-aerate pre blend prior to entering the nip zone was studied. Varying levels of vacuum for de-aeration of placebo pre blend did not affect the normal stress values. However, turning off vacuum completely caused an increase in normal stress with subsequent decrease in gap. Use of instrumented roll demonstrated potential to reduce the number of DOE runs by enhancing fundamental understanding of relationship between normal stress on ribbon and process parameters. Copyright © 2012 Elsevier B.V. All rights reserved.
Phase behavior, morphology, and polymorphism of surfactant systems
NASA Astrophysics Data System (ADS)
Liang, Jingmei
Surfactants are amphiphilic molecules. They spontaneously form various microstructures in water to accommodate the hydrophilic-hydrophobic interactions. Soaps are the oldest kind of man-made surfactants that are commonly used as washing and cleaning agents. In spite of the long history of soap research, many aspects of soaps in nonaqueous solvents remain unclear. Unlike the aqueous soap systems, which have been studied extensively, investigations of nonaqueous, polar soap systems are rather limited. Motivated by the applications of nonaqueous, polar solvents in soap products, we investigated sodium stearate (NaSt)/water/propylene glycol (PG) systems. The effects of gradual substitution of PG for H 2O on the phase behavior, morphology and crystalline structure of NaSt systems were studied by a combination of characterization techniques. The techniques include direct visual observation, differential scanning calorimetry, wide-angle and small angle x-ray scattering, light and cryo-electron microscopy, and solid-state nuclear magnetic resonance. Anhydrous NaSt forms layered crystalline structures at 25°C. With increasing temperature, a distorted hexagonal phase and a hexagonal liquid crystalline phase form. Compared with aqueous soap systems, the regions of liquid crystalline phases in the phase diagrams are reduced as PG replaces or gradually substitutes for H2O. Fibrous and plate-like NaSt crystallites were investigated in the NaSt/PG/H 2O system containing 1-5 wt% NaSt. Despite of the morphological difference, NaSt fibers and platelets share the same layered crystalline structure at the molecular level. NaSt fibers consist of stacked thin ribbons of NaSt bilayers. NaSt platelets exhibit large basal planes {001} surrounded by other faster-growing lateral planes. Two lamellar crystalline structures, alpha-NaSt and beta-NaSt, which formed in the NaSt/PG/H2O system with 10 wt% NaSt, were characterized on the atomic, molecular and microscopic levels. In a PG concentration range of 60-95 wt% in mixtures of H2O and PG, beta-NaSt transforms to alpha-NaSt upon aging. Compared with beta-NaSt, the hydrocarbon chains in alpha-NaSt consist of a higher percentage of trans conformation, which is characteristically more orderly packed and more rigid. alpha-NaSt exhibits a larger bilayer thickness, and dissolves at a lower temperature in the PG/H 2O mixture. The fibrous crystallites of alpha-NaSt are more bundled and oriented compared to those of beta-NaSt.
Autoignition Studies of Diesel Alternative Biofuels
NASA Astrophysics Data System (ADS)
Wang, Weijing
The autoignition of biofuel compounds that offer potential as diesel fuel alternatives was studied under high-pressure engine-like conditions using the shock tube technique. Ignition delay times were determined in reflected shock experiments using measured pressure and electronically-excited OH emission. Measurements were made at conditions ranging from 650 to 1350 K, pressures from 6 to 50 atm, and for fuel/air/diluent mixtures at equivalence ratios from 0.5 to 2. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime which is characteristic of fuels containing alkyl functionalities. Compounds studied include biodiesel-related compounds and real biodiesel fuels, dimethyl ether, and 3-methylheptane which is representative of compounds found in synthetic diesel fuels produced using the Fischer-Tropsch and hydrotreatment processes. Biodiesel compounds studied include biodiesel surrogates, methyl decanoate, methyl-5-decenoate, and methyl-9-decenoate; compounds found in large quantities in biodiesels, methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate; and soy-based and animal fat based methyl ester biodiesels. Comparison of biodiesel compounds illustrates the influence of molecular structure (e.g., chain length, double bonds, and ester functionality) on reactivity. For methyl decanoate, the effect of high pressure exhaust gas recirculation (EGR) conditions relevant to internal combustion engines was also determined. Results showed that the first-order influence of EGR by displacing fuel and O2 to decrease radical branching. Measurements were compared to kinetic modeling results from models available in the literature providing varying degrees of model validation. Reaction flux analyses were also carried out to further examine the kinetic differences in different temperature regimes for fuel compounds. For example, reaction flux analyses illustrates the importance of the long alkyl chain in controlling the overall reactivity of methyl ester biodiesel compounds and the subtle role the ester group has on inhibiting low-temperature reactivity as well as the influence of branching on reactivity for lightly branched alkanes. This thesis work provides a rich database of kinetic information for biofuel-related compounds at conditions relevant to real engine operations, offering quantitative kinetic targets for the development and evaluation of future kinetic models for important alternative fuel compounds. The results quantify the reactivity variability of biodiesel alternatives and illustrate that at temperature greater than 900 to 1000 K fuel structure has little influence on reactivity, as fuel fragmentation results in an intermediate pool that is largely the same for the fuels studied. On the other hand at temperature lower than 900 K, where fuel-specific low-temperature chemistry plays a role, different fuel structures can result in vast differences in reactivity, up to factors of three or more in ignition delay.
Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang
2016-01-01
Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of amoxicillin. In vitro release study firstly indicated a three-pulse release profile of the tablet. Later the pulse tablet was found to generate the sustained release of amoxicillin in beagle dogs. Furthermore, the Simcyp® software was used to simulate the in vivo concentration time curve model of the three-pulse release tablet for amoxicillin in both human and beagle dog. The prediction by PBPK model nicely fitted the observation in human and beagle dog. This study has demonstrated the interrelation of factors affecting the pulsatile formulation of amoxicillin using a Box-Behnken design. The three-pulse release tablets of amoxicillin were proven to generate pulsatile release in vitro and sustained release in vivo. This formulation was also found to extend the effective plasma concentration in human compared to the tablet of immediate release based on the simulation data by PBPK modeling. This study provides an example of using PBPK to guide the development of pulsatile dosage forms.
Süsse, Silke; Selavka, Carl M; Mieczkowski, Tom; Pragst, Fritz
2010-03-20
For diagnosis of chronic alcohol abuse, fatty acid ethyl esters (FAEE) were determined in hair samples from 644 individuals, mainly parents from child protection cases. The analysis for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate was performed according to a validated procedure consisting of external degreasing by two times washing with n-heptane, extraction with a mixture of dimethylsulfoxide and n-heptane, separation and evaporation of the n-heptane layer, headspace solid phase microextraction of the residue after addition of phosphate buffer pH 7.6 and gas chromatography-mass spectrometry using deuterated internal standards. For interpretation, the sum of the concentrations of the four esters C(FAEE) was used with the cut-off's 0.5 ng/mg for the proximal scalp hair segment 0-3 cm or less and 1.0 ng/mg for scalp hair samples with a length between 3 and 6 cm and for body hair. C(FAEE) ranged from 0.11 to 31 ng/mg (mean 1.77 ng/mg, median 0.82 ng/mg). The mean concentration ratio between the 4 esters was 8:45:38:9. 298 cases had C(FAEE) above the cut-off's. Self-reported drinking data were obtained in 553 of the cases in the categories abstinent (156 cases), moderate drinking (252 cases) and excessive drinking (145 cases). Median and box-plot data clearly demonstrate differentiation of these ingestor sub-populations by C(FAEE). However, in the abstinent and moderate groups the consumption was frequently underreported (37 and 110 cases positive) whereas in the group self-reported excessive drinking 32 cases were negative. Comparison of C(FAEE) with carbohydrate-deficient transferrin (CDT) in 139 cases and gamma-glutamyltransferase (GGT) in 136 cases showed a good agreement in CDT- and GGT positive cases (27/28 and 32/41) but a large portion of the negative CDT- and GGT-results with positive hair test (44/100 and 48/95) which is explained mainly by the much shorter time window of CDT and GGT. No significant correlation was found between persons weight and C(FAEE) showing that the test is not biased against physical fitness or obesity. Furthermore, there was no statistically significant difference between scalp hair (541 samples) and hair from other body sites (84 samples). In conclusion, FAEE in hair appeared to be suitable markers for the detection of excessive drinking. However, as there is no proportionality between drinking amount and C(FAEE), the additional use of other markers can increase the reliability of the interpretation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.