Science.gov

Sample records for stearothermophilus 6-phosphogluconate dehydrogenase

  1. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 6-Phosphogluconate dehydrogenase test system. 862.1565 Section 862.1565 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1565...

  2. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    PubMed Central

    Fernández-Fernández, Álvaro D.; Corpas, Francisco J.

    2016-01-01

    NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes. PMID:27034898

  3. 6-Phosphogluconate Dehydrogenase Isoenzymes from the Developing Endosperm of Ricinus communis L.

    PubMed

    Simcox, P D; Dennis, D T

    1978-08-01

    The cytosolic and proplastid isoenzymes of 6-phosphogluconate dehydrogenase were purified from the developing endosperm of the castor bean (Ricinis communis L.). No differences in physical or kinetic properties were found for the purified isoenzymes. Each was composed of two identical 55,000 subunits. They had identical pH optima of 7.8 to 8.0 and similar MgCl(2) stimulation for the oxidative decarboxylation of 6-phosphogluconate. The Km values for 6-phosphogluconate were 12 and 9.6 micromolar and for NADP(+) were 4.1 and 5.4 micromolar for the cytosolic and proplastid isoenzymes, respectively. Therefore, the synthesis of two distinct 6-phosphogluconate dehydrogenase isoenzymes does not appear to have any kinetic significance for the developing seed. However, changes in the proplastid contribution toward carbohydrate metabolism occur in the developing seed and may necessitate independent gene expression to allow for a unique and flexible subcellular distribution of isoenzymes during development.

  4. Specific Deletion Occurring in the Directed Evolution of 6-Phosphogluconate Dehydrogenase in ESCHERICHIA COLI

    PubMed Central

    Miller, Raymond D.; Dykhuizen, Daniel E.; Green, Louis; Hartl, Daniel L.

    1984-01-01

    A novel genetic change leading to increased activity of 6-phosphogluconate dehydrogenase (6PGD) in E. coli has been observed. The mutation is a deletion of approximately 0.4 kilobase pairs occurring between the structural gene of 6PGD (gnd) and one copy of an insertion element (IS5 ) found normally in E. coli K12 a few hundred base pairs upstream (counterclockwise) from gnd at 44 minutes on the conventional genetic map. The deletion is associated with a threefold higher activity of 6PGD and a 57% increase in the maximum growth rate when cells are grown in gluconate. PMID:6392014

  5. Sugar derivatives as new 6-phosphogluconate dehydrogenase inhibitors selective for the parasite Trypanosoma brucei.

    PubMed

    Pasti, Claudia; Rinaldi, Eliana; Cervellati, Carlo; Dallocchio, Franco; Hardré, Renaud; Salmon, Laurent; Hanau, Stefania

    2003-04-01

    Sugar derivatives mimicking compounds which take part in the catalysed reaction have been assayed as alternative substrates and/or competitive inhibitors of 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Phosphonate analogues have been synthesised and the new compound 5-deoxy-5-phosphono-D-arabinonate shows good selectivity towards the parasite enzyme. A number of 4-carbon and 5-carbon aldonates are strong inhibitors of the parasite enzyme with K(i) values below the substrate K(m) and some acyl derivatives are also potent inhibitors. At least five of the compounds showing a significant selectivity for the parasite enzyme represent leads for trypanocidal drugs against this recently validated target.

  6. Inhibition effects of some metal ions on the rat liver 6-phosphogluconate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Adem, Şevki; Kayhan, Naciye

    2016-04-01

    6-phosphogluconate dehydrogenase is an enzyme in the pentose phosphate path. The main functions of the pathway are the manufacture of the reduced coenzyme NADPH and the formation of ribose 5-phosphate for nucleic acid synthesis and nucleotide. Both NADPH and ribose 5-phosphate involve a critical biochemical process. Metals have been recognized as important toxic agents for living for a long time. It has been considered that they lead to in the emergence of many diseases. To evaluate whether metals is effect towards rat liver 6PGD, we apply various concentrations of metals and enzyme inhibition was analyzed using enzyme activity assays. The IC50 values of Pb+2, Cr+3, Co+2, Ni+2, Cd+2, and Va+2, metals on rat liver 6PGD were calculated as 138,138, 169, 214, 280, and 350 µM, respectively.

  7. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction.

    PubMed

    Karsten, W E; Chooback, L; Cook, P F

    1998-11-10

    Site-directed mutagenesis was used to change E190 of sheep liver 6-phosphogluconate dehydrogenase to A, D, H, K, Q, and R to probe its possible role as a general acid catalyst. Each of the mutant proteins was characterized with respect to the pH dependence of kinetic parameters. Mutations that eliminate a titrable group at position 190, result in pH-rate profiles with no observable pK on the basic side of the V/K6PG profile. Mutations that change the pK of the group at position 190 result in the expected pK perturbations in the V/K6PG profile. Kinetic parameters obtained at the pH optimum in the pH-rate profiles are consistent with a rate-limiting tautomerization of the 1,2-enediol of ribulose 5-phosphate consistent with the proposed role of E190. Data are also consistent with some participation of E190 in an isomerization required to form the active Michaelis complex.

  8. Evidence for dimer/tetramer equilibrium in Trypanosoma brucei 6-phosphogluconate dehydrogenase.

    PubMed

    Hanau, S; d'Empaire, L Proietti; Capone, I; Alberighi, S; Montioli, R; Dallocchio, F

    2013-12-01

    6-Phosphogluconate dehydrogenase (6PGDH), the third enzyme of the pentose phosphate pathway (PPP), is essential for biosyntheses and oxidative stress defence. It also has the function of depleting 6PG, whose accumulation induces cell senescence. 6PGDH is a proposed drug target for African trypanosomiasis caused by Trypanosoma brucei and for other microbial infections and cancer. Gel filtration, density gradient sedimentation, cross-linking and dynamic light scattering were used to assay the oligomerization state of T. brucei 6PGDH in the absence and presence of several ligands. The enzyme displays a dimer-tetramer equilibrium and NADPH (but not NADP) reduces the rate of approach to equilibrium, while 6PG is able to antagonize the NADPH effect. The different behaviour of the two forms of coenzyme appears to be related to the differences in ΔCp, with NADP binding ΔCp closer to what is expected of crystallographic structures, while NADPH ΔCp is three times larger. The estimated dimer-tetramer association constant is 1.5·10(6)M(-1), and the specific activity of the tetramer is about 3 fold higher than the specific activity of the dimer. Thus, cellular conditions promoting tetramer formation could allow an efficient clearing of 6PG. Experiments carried out on sheep liver 6PGDH indicate that tetramerization is a specificity of the parasite enzyme.

  9. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  10. Purification of 6-phosphogluconate dehydrogenase from parsley (Petroselinum hortense) leaves and investigation of some kinetic properties.

    PubMed

    Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2003-02-01

    In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.

  11. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-09-01

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP+ to NAD+. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD+, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP+ to NAD+. This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.

  12. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).

    PubMed

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-01-01

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT. PMID:27587230

  13. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+

    PubMed Central

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-01-01

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP+ to NAD+. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD+, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP+ to NAD+. This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT. PMID:27587230

  14. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met

    SciTech Connect

    Chan, Barden; VanderLaan, Paul A.; Sukhatme, Vikas P.

    2013-09-20

    Highlights: •Expression of 6PGD positively correlates with advancing stage of lung carcinoma. •Knockdown of 6PGD by shRNA potently inhibits c-Met tyrosine phosphorylation. •Exogenous HGF fails to restore c-Met phosphorylation in cells with 6PGD knocked down. •6PGD knockdown results in inhibition of cell migration in vitro. •Constitutively active TPR-cMet significantly restores migration of cells without 6PGD. -- Abstract: 6-Phosphogluconate dehydrogenase (6PGD) is the third enzyme in the oxidative pentose phosphate pathway (PPP). Recently, we reported that knockdown of 6PGD inhibited lung tumor growth in vitro and in a xenograft model in mice. In this study, we continued to examine the functional role of 6PGD in cancer. We show that 6PGD expression positively correlates with advancing stage of lung carcinoma. In search of functional signals related to 6PGD, we discovered that knockdown of 6PGD significantly inhibited phosphorylation of c-Met at tyrosine residues known to be critical for activity. This downregulation of c-Met phosphorylation correlated with inhibition of cell migration in vitro. Overexpression of a constitutively active c-Met specifically rescued the migration but not proliferation phenotype of 6PGD knockdown. Therefore, 6PGD appears to be required for efficient c-Met signaling and migration of tumor cells in vitro.

  15. Autosomal Factors with Correlated Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Laurie-Ahlberg, C. C.; Williamson, J. H.; Cochrane, B. J.; Wilton, A. N.; Chasalow, F. I.

    1981-01-01

    Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence. PMID:6804300

  16. Defects in Peroxisomal 6-Phosphogluconate Dehydrogenase Isoform PGD2 Prevent Gametophytic Interaction in Arabidopsis thaliana1[OPEN

    PubMed Central

    Hölscher, Christian; Meyer, Tanja; Fischer, Kerstin

    2016-01-01

    We studied the localization of 6-phosphogluconate dehydrogenase (PGD) isoforms of Arabidopsis (Arabidopsis thaliana). Similar polypeptide lengths of PGD1, PGD2, and PGD3 obscured which isoform may represent the cytosolic and/or plastidic enzyme plus whether PGD2 with a peroxisomal targeting motif also might target plastids. Reporter-fusion analyses in protoplasts revealed that, with a free N terminus, PGD1 and PGD3 accumulate in the cytosol and chloroplasts, whereas PGD2 remains in the cytosol. Mutagenesis of a conserved second ATG enhanced the plastidic localization of PGD1 and PGD3 but not PGD2. Amino-terminal deletions of PGD2 fusions with a free C terminus resulted in peroxisomal import after dimerization, and PGD2 could be immunodetected in purified peroxisomes. Repeated selfing of pgd2 transfer (T-)DNA alleles yielded no homozygous mutants, although siliques and seeds of heterozygous plants developed normally. Detailed analyses of the C-terminally truncated PGD2-1 protein showed that peroxisomal import and catalytic activity are abolished. Reciprocal backcrosses of pgd2-1 suggested that missing PGD activity in peroxisomes primarily affects the male gametophyte. Tetrad analyses in the quartet1-2 background revealed that pgd2-1 pollen is vital and in vitro germination normal, but pollen tube growth inside stylar tissues appeared less directed. Mutual gametophytic sterility was overcome by complementation with a genomic construct but not with a version lacking the first ATG. These analyses showed that peroxisomal PGD2 activity is required for guided growth of the male gametophytes and pollen tube-ovule interaction. Our report finally demonstrates an essential role of oxidative pentose-phosphate pathway reactions in peroxisomes, likely needed to sustain critical levels of nitric oxide and/or jasmonic acid, whose biosynthesis both depend on NADPH provision. PMID:26941195

  17. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia.

    PubMed Central

    Jonas, S. K.; Benedetto, C.; Flatman, A.; Hammond, R. H.; Micheletti, L.; Riley, C.; Riley, P. A.; Spargo, D. J.; Zonca, M.; Slater, T. F.

    1992-01-01

    The activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase have been measured in squamous epithelial cells of the uterine cervix from normal patients and cases of cervical intraepithelial neoplasia (CIN). A biochemical cycling method, which uses only simple equipment and is suited to routine use and to automation, was applied to cells separated by gradient centrifugation. In addition, cells were examined cytochemically, and the intensity of staining in the cytoplasm of single whole cells was measured using computerised microcytospectrophotometry. Twenty per cent of cells in samples from normal patients (n=61) showed staining intensities above an extinction of 0.15 at 540 nm, compared to 71% of cases of CIN 1 (n=14), 91% of cases of CIN 2 (n=11) and 67% of cases of CIN 3 (n=15). The cytochemical data do not allow definitive distinctions to be made between different grades of CIN whereas the biochemical assay applied to cell lysates shows convincing differences between normal samples and cases of CIN. There are no false negatives for CIN 3 (n=14) and CIN 2 (n=10) and 11% false negatives for CIN 1 (n=9) and 14% of false positives for normal cases (n=21). The results of this preliminary study with reference to automation are discussed [corrected]. Images Figure 1 PMID:1637668

  18. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the decrease in the activities began prior to the onset of budding, reaching a low, basal level in early May. The profile of changes in the two dehydrogenase activities appeared to coincide with the increase and decrease of soluble proteins.Normal concentrations of total hexose phosphates in the glycolytic pathway plus 6-phosphogluconate were found to be 288 to 895 mumoles/kilogram dry weight. During the metabolism transition (September and April), a transient and striking increase of 6-phosphogluconate was observed. In September, 6-phosphogluconate reached a level on the order of 10(-4)m and was 4 times that of fructose 6-phosphate. The increase in 6-phosphogluconate coincided with the increase in the glucose 6-phosphate dehydrogenase activity. Coincidentally, with the change of 6-phosphogluconate level, a large deviation of the in vivo ratio of fructose 6-phosphate to glucose 6-phosphate from the known equilibrium constant was observed, showing the relation of pentose phosphate cycle enzyme activity to the control of glycolysis. The ratio of glucose 6-phosphate to glucose 1-phosphate deviated from that predicted. These ratios

  19. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the decrease in the activities began prior to the onset of budding, reaching a low, basal level in early May. The profile of changes in the two dehydrogenase activities appeared to coincide with the increase and decrease of soluble proteins.Normal concentrations of total hexose phosphates in the glycolytic pathway plus 6-phosphogluconate were found to be 288 to 895 mumoles/kilogram dry weight. During the metabolism transition (September and April), a transient and striking increase of 6-phosphogluconate was observed. In September, 6-phosphogluconate reached a level on the order of 10(-4)m and was 4 times that of fructose 6-phosphate. The increase in 6-phosphogluconate coincided with the increase in the glucose 6-phosphate dehydrogenase activity. Coincidentally, with the change of 6-phosphogluconate level, a large deviation of the in vivo ratio of fructose 6-phosphate to glucose 6-phosphate from the known equilibrium constant was observed, showing the relation of pentose phosphate cycle enzyme activity to the control of glycolysis. The ratio of glucose 6-phosphate to glucose 1-phosphate deviated from that predicted. These ratios

  20. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive.

  1. Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of swiss landrace pigs.

    PubMed

    Vögeli, P; Stranzinger, G; Schneebeli, H; Hagger, C; Künzi, N; Gerwig, C

    1984-12-01

    Associations between production traits and the genes for halothane sensitivity (HAL), S, A and H blood group systems and phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) enzyme systems were investigated in two lines of pigs selected for an index. The phenotypic variance-covariance matrix of the index included backfat thickness and daily gain, whereas the genetic variance-covariance matrix included daily gain, feed conversion and percentage of lean meat. The experiment was conducted at the experimental station of the Institute of Animal Production and has been underway since 1973. The same index was applied but in two opposite directions to give a superior and inferior line in relation to the production traits. One hundred twenty-nine animals of the superior line in the seventh generation and 88 animals of the inferior line in the sixth generation were studied. Forty-two percent (54/129) of the animals of the superior line were halothane-positive. No animals in the inferior line were halothane reactors. Of the halothane-positive pigs, 70.4% (38/54) in the superior line had the HaHa and 94.4% (51/54) had the SsSs genotype, whereas only 4% (3/75) of the HaHa and 12% (9/75) of the SsSs pigs were halothane-negative. By practicing selection at the H and S loci, it seems possible to efficiently reduce halothane sensitivity in Swiss Landrace pigs. In pigs of the superior line, there were significant differences in percentage of lean meat, carcass length, pH1 (pH value at 45 min to 1 h postmortem, M. longissimus) and reflectance values among genotypes of the HAL, S and H systems and among some genotypes of the 6-PGD system. Poorest meat quality, highest percentage of lean meat and shortest carcass length were observed in pigs homozygous for the alleles HALn, Ss, Ha, PHIB and 6-PGDA. In the inferior line, these associations were absent. As the HAL locus is associated with the above mentioned production traits, linkage disequilibria may explain the

  2. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  3. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  4. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  5. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  6. Detection of an intermediate late in the unfolding pathway of bacillus stearothermophilus lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Sleigh, Roger N.; Halsall, David J.; Clarke, Anthony R.; Behan-Martin, Moira; Holbrook, J. J.

    1994-08-01

    In vivo proteins fold to form one active structure in minutes or seconds, ruling out the possibility that a polypeptide samples all possible conformational space during folding. We have used site directed mutagenesis to produce 15 single tryptophan containing mutants of Bacillus stearothermophilus lactate dehydrogenase (BS LDH) thus enabling the equilibria of unfolding to be seen from 15 defined positions. These mutant versions of BS LDH have the same X-ray structure as the wild type protein8. Previously Smith et al.11 had detected and assigned structures to 4 folding states. The first intermediate, a monomer with secondary and super secondary structure largely intact, is formed after the dimer dissociates at 0.55 M guanidinium hydrochloride (GuHCl). The second intermediate on the unfolding pathway is stable at 2.2 M GuHCl. It had been assumed previously that the transition from this molten-globule structure to the fully denatured form occurred as a single process. We have now identified a core folding motif. In this, helix (alpha) -1F forms a helix-sheet interaction with (beta) -K and (beta) -K has interactions with both (alpha) -2G and (alpha) -3G. This super secondary interaction forms the most stable folding motif in BS LDH and is lost at 2.8 M GuHCl leaving helix (alpha) -1F, (alpha) -2G, and (alpha) -3G which are stable until 3 M GuHCl.

  7. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    PubMed

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids.

  8. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    PubMed

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids. PMID:26852025

  9. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    PubMed

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production.

  10. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    PubMed

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production. PMID:26329849

  11. Differential effects of acute and chronic fructose administration on pyruvate dehydrogenase activity and lipogenesis

    SciTech Connect

    Wilson, L.

    1988-01-01

    These studies were undertaken to distinguish between the acute and chronic effects of fructose administration. In vivo, liver lipogenesis, as measured by {sup 3}H{sub 2}O incorporation, was greater in rats fed 60% fructose than in their glucose fed controls. Both fructose feeding, and fructose feeding plus intraperitoneal fructose injection increased the activities of 6-phosphogluconate dehydrogenase and malic enzyme. Liver PDH activity was increased by fructose feeding, and was increased even more by fructose feeding and injection of fructose, but this was not associated with any changes in hepatic ATP concentrations.

  12. NADP-dehydrogenases from pepper fruits: effect of maturation.

    PubMed

    Mateos, Rosa M; Bonilla-Valverde, Daniel; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2009-02-01

    NADPH is an important molecule in the redox balance of the cell. Pepper fruits are the second worldwide consumable vegetables and exhibit different phenotypes after maturation. In this paper, two pepper cultivars were studied: Vergasa whose fruits shift from green to red after maturation, and Biela that shifts to yellow. Using fresh fruits from the same plants of the two cultivars at distinct maturation stages, the activity and gene expression of the main NADPH-generating dehydrogenases was studied. The activity analysis of the main NADP-dehydrogenases, glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-isocitrate dehydrogenase (NADP-ICDH) and NADP-malic enzyme (NADP-ME), showed that, except for the G6PDH, all the activities were enhanced (54-100%) in the mature pepper fruits from both cultivars (red or yellow) with respect to green pepper fruits. The content of NADPH and NADP in the mature fruits of both cultivars showed a noteworthy increase with respect to green fruits. For the transcript analysis, a partial cDNA of each NADP-dehydrogenase was obtained, and the NADP-ME was the only NADP-dehydrogenase that showed a significant induction. The increase in the content of NADPH in mature fruits because of the enhanced activity of NADP-dehydrogenases suggests that these NADPH-generating enzymes could be involved in the maturation of pepper fruits.

  13. Biochemical and Structural Studies of Uncharacterized Protein PA0743 from Pseudomonas aeruginosa Revealed NAD+-dependent l-Serine Dehydrogenase*

    PubMed Central

    Tchigvintsev, Anatoli; Singer, Alexander; Brown, Greg; Flick, Robert; Evdokimova, Elena; Tan, Kemin; Gonzalez, Claudio F.; Savchenko, Alexei; Yakunin, Alexander F.

    2012-01-01

    The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases. PMID:22128181

  14. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  15. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.

    PubMed

    Pickl, Andreas; Schönheit, Peter

    2015-04-28

    The oxidative pentose phosphate pathway (OPPP), catalyzing the oxidation of glucose-6-phosphate to ribulose-5-phosphate is ubiquitous in eukarya and bacteria but has not yet been reported in archaea. In haloarchaea a putative 6-phosphogluconate dehydrogenase (6PGDH) is annotated, whereas a gene coding for glucose-6-phosphate dehydrogenase (Glc6PDH) could not be identified. Here we report the purification and characterization of a novel type of Glc6PDH in Haloferax volcanii that is not related to bacterial and eukaryal Glc6PDHs and the encoding gene is designated as azf (archaeal zwischenferment). Further, recombinant H. volcanii 6PGDH was characterized. Deletion mutant analyses indicate that both, Glc6PDH and 6PGDH, are functionally involved in pentose phosphate formation in vivo. This is the first report on the operation of the OPPP in the domain of archaea.

  16. Growth kinetics of Bacillus stearothermophilus BR219

    SciTech Connect

    Worden, R.M.; Subramanian, R.; Bly, M.J.; Winter, S.; Aronson, C.L.

    1991-12-31

    Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented with 5 mM phenol.

  17. Stabilized enzymatic reagents for measuring glucose, creatine kinase and gamma-glutamyltransferase with thermostable enzymes from a thermophile, Bacillus stearothermophilus.

    PubMed

    Tomita, K; Nomura, K; Kondo, H; Nagata, K; Tsubota, H

    1995-04-01

    Stabilized enzymatic reagents for measuring some components in biological fluids have been successfully developed based on two kinds of thermostable enzymes derived from Bacillus stearothermophilus with separation of the reagent into two complementary solutions. The thermostable glucokinase produced was applied to the measurement of glucose and creatine kinase activity, while the alanine dehydrogenase produced was used for the measurement of gamma-glutamyltransferase activity. The enzymatic reagents were also stabilized by developing two separate reagents with an optimum pH for the main reagent components. The stability of the reagents in liquid form was examined at 10 degrees C. It was clearly shown that the reagents for measuring glucose and creatine kinase activity were stable and retained their full capability for accurate measurement in biological fluids for over one year. The alanine dehydrogenase product was stable for at least 40 days. PMID:9696559

  18. NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity

    PubMed Central

    Leterrier, Marina; Barroso, Juan B.; Valderrama, Raquel; Palma, José M.; Corpas, Francisco J.

    2012-01-01

    NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2  ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity. PMID:22649311

  19. Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus.

    PubMed

    Afzal, Mohammad; Oommen, Sosamma; Al-Awadi, Samira

    2011-01-01

    We performed a series of experiments with Geobacillus stearothermophilus, a thermophile isolated from oil-contaminated soil in the Kuwaiti desert. The organism has a good potential for the transformation of a broad spectrum of organic molecules such as steroids, amino acids, and aromatic hydrocarbons. In the present study, we tested its potential for the transformation of a bile component, chenodeoxycholic acid (CDCA). Five transformed products, namely, cholic acid, methylcholate, methylchenodeoxycholate, 3α-hydroxy-7-oxo-5β-cholanic acid, and 7α-hydroxy-3-oxo-5β-cholanic acid, were the major transformation products catalyzed by G. stearothermophilus. Under aerobic conditions, no evidence of side chain degradation, ring cleavage, or dehydrogenation was found among the metabolites of CDCA. CDCA transformation by a thermophile is reported for the first time. PMID:21838799

  20. Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; Carlin, Frédéric; Remize, Fabienne

    2015-02-01

    Geobacillus stearothermophilus is the main thermophilic spore former involved in flat sour spoilage of canned foods. Three typing methods were tested and applied to differentiate strains at intra-species level: panC sequence analysis, REP-PCR and M13-PCR. panC gene was highly conserved within the studied strains, suggesting a low intra-specific diversity. This was supported by REP-PCR primary assays and M13-PCR results. M13-PCR profile analysis succeeded in differentiating six closely related groups (at 79% threshold similarity) among 127 strains from a range of spoiled canned food products and from different canneries. Phenotypic traits were investigated among 20 selected strains representing groups and origins. Ranges of growth under different temperatures (from 40 °C to 70 °C), pH (from 5.0 to 6.5), NaCl concentrations (from 1 to 5%) and sporulation conditions poorly differed between strains, but wet heat resistance of spores showed a 20-fold variation between strains. Furthermore, in this study, strains that belonged to the same M13-PCR genetic group did not share phenotypic characteristics or common origin. The work emphasizes a low diversity within the G. stearothermophilus species but data from this study may contribute to a better control of G. stearothermophilus spoilage in canned food. PMID:25481066

  1. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  2. Salt-induced changes in the subunit structure of the Bacillus stearothermophilus lipoate acetyltransferase.

    PubMed

    Shigeoka, Yuichi; Fujisawa, Tetsuro; Teshiba, Satoshi; Fukumori, Hisayoshi; Yamamoto, Kohji; Banno, Yutaka; Aso, Yoichi

    2013-01-01

    The Bacillus stearothermophilus lipoate acetyltransferase (E2), composed of sixty identical, subunits is the core component of the pyruvate dehydrogenase complex (PDC). E2 polypeptide is composed of LD, PSBD, and CD domains. Most studies had focused on a truncated E2 that is deficient in LD and PSBD, because CD mainly contributes to maintaining the multimeric structure. We examined salt-induced changes in E2 without truncation and constructed reaction models. We speculate that in the presence of KCl, E2 is dissociated into a monomer and then assembled into an aggregative complex (C(A)) and a quasi-stable complex (C(Q)). C(A) was larger than C(Q), but smaller than intact E2. C(A) and C(Q), were dominant complexes at about neutral pH and at basic pH respectively. PDC, in which PSBD is occupied by other components, and a truncated E2 undergo dissociation only. LD-PSBD region besides CD might then contribute to the partial association of dissociated E2. PMID:23924725

  3. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant

    PubMed Central

    Burgess, Sara A.; Cox, Murray P.; Flint, Steve H.; Lindsay, Denise

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  4. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11-7082, parthenolide and dimethyl fumarate.

    PubMed

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11-7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11-7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11-7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach "Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target" (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  5. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate

    PubMed Central

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11–7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11–7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11–7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach “Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target” (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  6. Canine malignant hyperthermia susceptibility: erythrocytic defects--osmotic fragility, glucose-6-phosphate dehydrogenase deficiency and abnormal Ca2+ homeostasis.

    PubMed Central

    O'Brien, P J; Forsyth, G W; Olexson, D W; Thatte, H S; Addis, P B

    1984-01-01

    Two dogs were diagnosed as malignant hyperthermia susceptible based on increased susceptibility (P less than 0.001) of biopsied muscle to caffeine-induced contracture. Erythrocytes from malignant hyperthermia and normal dogs were then examined for an antioxidant system deficiency. Values for serum muscle enzymes, reticulocytes and corpuscular hemoglobin were mildly elevated. Osmotic fragility was increased: hemolysis occurred at a NaCl concentration 10 mM higher than for normal dogs (P less than 0.001). A 35% glucose-6-phosphate dehydrogenase deficiency (P less than 0.001) with a 40% compensatory increase (P less than 0.01) in 6-phosphogluconate dehydrogenase activity was found. The membrane Ca2+-activated ATPase activity was abnormal: 100% increased with a 40% decreased Arrhenius activation energy (P less than 0.005) and increased thermostability. A 40% increased intracellular accumulation of total Ca2+ occurred in response to in vitro energy depletion in erythrocytes from one malignant hyperthermia dog (P less than 0.01). The multifactorial pattern of inheritance and the broad spectrum of malignant hyperthermia susceptibility are proposed to result from an antioxidant system deficit unmasking or aggravating an intrinsic muscle membrane anomaly. An individual from a family with a history of malignant hyperthermia or unexplained anesthetic death should be considered malignant hyperthermia susceptible if erythrocyte osmotic fragility is abnormal and there is a mild, unexplained elevation in serum creatine kinase. PMID:6150753

  7. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  8. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    PubMed

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients. PMID:26412704

  9. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

    PubMed

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-12-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.

  10. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress.

    PubMed

    Bouthour, Donia; Kalai, Tawba; Chaffei, Haouari C; Gouia, Houda; Corpas, Francisco J

    2015-05-01

    Wheat (Triticum durum Desf.) is a common Mediterranean species of considerable agronomic importance. Salinity is one of the major threats to sustainable agricultural production mainly because it limits plant productivity. After exposing the Karim and Azizi durum wheat cultivars, which are of agronomic significance in Tunisia, to 100mM NaCl salinity, growth parameters (dry weight and length), proline content and chlorophylls were evaluated in their leaves and roots. In addition, we analyzed glutathione content and key enzymatic activities, including phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-ICDH), NADP-malic enzyme (NADP-ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), involved in the carbon metabolism and NADPH-generating system. The sensitivity index indicates that cv Karim was more tolerant to salinity than cv Azizi. This higher tolerance was corroborated at the biochemical level, as cv Karim showed a greater capacity to accumulate proline, especially in leaves, while the enzyme activities studied were differentially regulated in both organs, with NADP-ICDH being the only activity to be unaffected in all organs. In summary, the data indicate that higher levels of proline accumulation and the differential responses of some key enzymes involved in the carbon metabolism and NADPH regeneration contribute to the salinity tolerance mechanism and lead to increased biomass accumulation in cv Karim.

  11. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP(+)-dependent dehydrogenases of the pentose phosphate pathway.

    PubMed

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP(+)-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI50: 1.5 to 20μM) and caused a significant (p<0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg(2+)>MeHg≈EtHg>TM (p<0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system.

  12. Reproduction of Bacillus stearothermophilus as a Function of Temperature and Pressure

    PubMed Central

    Yayanos, A. Aristides; Van Boxtel, R.; Dietz, Allan S.

    1983-01-01

    The colony-forming ability and the rate of reproduction of Bacillus stearothermophilus were determined as a function of temperature and pressure. Colonies were formed between 39 and 70°C at atmospheric pressure and between 54 and 67°C at 45 MPa. Colonies did not form at 55.9 MPa. The rate of reproduction in broth cultures decreased with increasing pressure at all temperatures. The rate of reproduction diminished rapidly with pressure above 10.4 MPa. Therefore, increased hydrostatic pressure was not sufficient to enable B. stearothermophilus to function beyond the temperature limiting growth and reproduction at atmospheric pressure, and B. stearothermophilus should grow in naturally or artificially warmed regions of the deep sea, where the pressure is less than approximately 50 MPa, although growth rates would be low above 10 MPa. PMID:16346444

  13. Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus.

    PubMed

    Watsuji, Tomo-O; Takano, Hideaki; Yamabe, Tomoya; Tamazawa, Satoshi; Ikemura, Hiroka; Ohishi, Takanori; Matsuda, Tohyo; Shiratori-Takano, Hatsumi; Beppu, Teruhiko; Ueda, Kenji

    2014-12-01

    The tryptophanase-positive Symbiobacterium thermophilum is a free-living syntrophic bacterium that grows effectively in a coculture with Geobacillus stearothermophilus. Our studies have shown that S. thermophilum growth depends on the high CO2 and low O2 condition established by the precedent growth of G. stearothermophilus. The use of an anoxic atmosphere containing high CO2 allows S. thermophilum to grow independently of G. stearothermophilus, but the cellular yield is ten times lower than that achieved in the coculture. In this study, we characterized the coculture-dependent expression and activity of tryptophanase in S. thermophilum. S. thermophilum cells accumulated a marked amount of indole in a coculture with G. stearothermophilus, but not in the bacterium's pure culture irrespective of the addition of tryptophan. S. thermophilum cells accumulated indole in its pure culture consisting of conditioned medium (medium supplied with culture supernatant of G. stearothermophilus). Proteomic analysis identified the protein specifically produced in the S. thermophilum cells grown in conditioned medium, which was a tryptophanase encoded by tna2 (STH439). An attempt to isolate the tryptophanase-inducing component from the culture supernatant of G. stearothermophilus was unsuccessful, but we did discover that the indole accumulation occurs when 10 mM bicarbonate is added to the medium. RT-PCR analysis showed that the addition of bicarbonate stimulated transcription of tna2. The transcriptional start site, identified within the tna2 promoter, was preceded by the -24 and -12 consensus sequences specified by an alternative sigma factor, σ(54). The evidence suggests that the transcription of some genes involved in amino acid metabolism is σ(54)-dependent, and that a bacterial enhancer-binding protein containing a PAS domain controls the transcription under the presence of high levels of bicarbonate.

  14. Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus.

    PubMed

    Watsuji, Tomo-O; Takano, Hideaki; Yamabe, Tomoya; Tamazawa, Satoshi; Ikemura, Hiroka; Ohishi, Takanori; Matsuda, Tohyo; Shiratori-Takano, Hatsumi; Beppu, Teruhiko; Ueda, Kenji

    2014-12-01

    The tryptophanase-positive Symbiobacterium thermophilum is a free-living syntrophic bacterium that grows effectively in a coculture with Geobacillus stearothermophilus. Our studies have shown that S. thermophilum growth depends on the high CO2 and low O2 condition established by the precedent growth of G. stearothermophilus. The use of an anoxic atmosphere containing high CO2 allows S. thermophilum to grow independently of G. stearothermophilus, but the cellular yield is ten times lower than that achieved in the coculture. In this study, we characterized the coculture-dependent expression and activity of tryptophanase in S. thermophilum. S. thermophilum cells accumulated a marked amount of indole in a coculture with G. stearothermophilus, but not in the bacterium's pure culture irrespective of the addition of tryptophan. S. thermophilum cells accumulated indole in its pure culture consisting of conditioned medium (medium supplied with culture supernatant of G. stearothermophilus). Proteomic analysis identified the protein specifically produced in the S. thermophilum cells grown in conditioned medium, which was a tryptophanase encoded by tna2 (STH439). An attempt to isolate the tryptophanase-inducing component from the culture supernatant of G. stearothermophilus was unsuccessful, but we did discover that the indole accumulation occurs when 10 mM bicarbonate is added to the medium. RT-PCR analysis showed that the addition of bicarbonate stimulated transcription of tna2. The transcriptional start site, identified within the tna2 promoter, was preceded by the -24 and -12 consensus sequences specified by an alternative sigma factor, σ(54). The evidence suggests that the transcription of some genes involved in amino acid metabolism is σ(54)-dependent, and that a bacterial enhancer-binding protein containing a PAS domain controls the transcription under the presence of high levels of bicarbonate. PMID:25200839

  15. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    SciTech Connect

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.; Kakar, S. N.; Stevens, F. J.; Donnelly, M. I.; Nebraska Wesleyan Univ.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the native enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the mutant

  16. Development and application of Geobacillus stearothermophilus growth model for predicting spoilage of evaporated milk.

    PubMed

    Kakagianni, Myrsini; Gougouli, Maria; Koutsoumanis, Konstantinos P

    2016-08-01

    The presence of Geobacillus stearothermophilus spores in evaporated milk constitutes an important quality problem for the milk industry. This study was undertaken to provide an approach in modelling the effect of temperature on G. stearothermophilus ATCC 7953 growth and in predicting spoilage of evaporated milk. The growth of G. stearothermophilus was monitored in tryptone soy broth at isothermal conditions (35-67 °C). The data derived were used to model the effect of temperature on G. stearothermophilus growth with a cardinal type model. The cardinal values of the model for the maximum specific growth rate were Tmin = 33.76 °C, Tmax = 68.14 °C, Topt = 61.82 °C and μopt = 2.068/h. The growth of G. stearothermophilus was assessed in evaporated milk at Topt in order to adjust the model to milk. The efficiency of the model in predicting G. stearothermophilus growth at non-isothermal conditions was evaluated by comparing predictions with observed growth under dynamic conditions and the results showed a good performance of the model. The model was further used to predict the time-to-spoilage (tts) of evaporated milk. The spoilage of this product caused by acid coagulation when the pH approached a level around 5.2, eight generations after G. stearothermophilus reached the maximum population density (Nmax). Based on the above, the tts was predicted from the growth model as the sum of the time required for the microorganism to multiply from the initial to the maximum level ( [Formula: see text] ), plus the time required after the [Formula: see text] to complete eight generations. The observed tts was very close to the predicted one indicating that the model is able to describe satisfactorily the growth of G. stearothermophilus and to provide realistic predictions for evaporated milk spoilage.

  17. Development and application of Geobacillus stearothermophilus growth model for predicting spoilage of evaporated milk.

    PubMed

    Kakagianni, Myrsini; Gougouli, Maria; Koutsoumanis, Konstantinos P

    2016-08-01

    The presence of Geobacillus stearothermophilus spores in evaporated milk constitutes an important quality problem for the milk industry. This study was undertaken to provide an approach in modelling the effect of temperature on G. stearothermophilus ATCC 7953 growth and in predicting spoilage of evaporated milk. The growth of G. stearothermophilus was monitored in tryptone soy broth at isothermal conditions (35-67 °C). The data derived were used to model the effect of temperature on G. stearothermophilus growth with a cardinal type model. The cardinal values of the model for the maximum specific growth rate were Tmin = 33.76 °C, Tmax = 68.14 °C, Topt = 61.82 °C and μopt = 2.068/h. The growth of G. stearothermophilus was assessed in evaporated milk at Topt in order to adjust the model to milk. The efficiency of the model in predicting G. stearothermophilus growth at non-isothermal conditions was evaluated by comparing predictions with observed growth under dynamic conditions and the results showed a good performance of the model. The model was further used to predict the time-to-spoilage (tts) of evaporated milk. The spoilage of this product caused by acid coagulation when the pH approached a level around 5.2, eight generations after G. stearothermophilus reached the maximum population density (Nmax). Based on the above, the tts was predicted from the growth model as the sum of the time required for the microorganism to multiply from the initial to the maximum level ( [Formula: see text] ), plus the time required after the [Formula: see text] to complete eight generations. The observed tts was very close to the predicted one indicating that the model is able to describe satisfactorily the growth of G. stearothermophilus and to provide realistic predictions for evaporated milk spoilage. PMID:27052699

  18. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  19. Thermal inactivation and injury of Bacillus stearothermophilus spores.

    PubMed Central

    Feeherry, F E; Munsey, D T; Rowley, D B

    1987-01-01

    Aqueous spore suspensions of Bacillus stearothermophilus ATCC 12980 were heated at different temperatures for various time intervals in a resistometer, spread plated on antibiotic assay medium supplemented with 0.1% soluble starch without (AAMS) or with (AAMS-S) 0.9% NaCl, and incubated at 55 degrees C unless otherwise indicated. Uninjured spores formed colonies on AAMS and AAMS-S; injured spores formed colonies only on AAMS. Values of D, the decimal reduction time (time required at a given temperature for destruction of 90% of the cells), when survivors were recovered on AAMS were 62.04, 18.00, 8.00, 3.33, and 1.05 min at 112.8, 115.6, 118.3, 121.1, and 123.9 degrees C, respectively. Recovery on AAMS-S resulted in reduced decimal reduction time. The computed z value (the temperature change which will alter the D value by a factor of 10) for spores recovered on AAMS was 8.3 degrees C; for spores recovered on AAMS-S, it was 7.6 degrees C. The rates of inactivation and injury were similar. Injury (judged by salt sensitivity) was a linear function of the heating temperature. At a heating temperature of less than or equal to 118.3 degrees C, spore injury was indicated by the curvilinear portion of the survival curve (judged by salt sensitivity), showing that injury occurred early in the thermal treatment as well as during logarithmic inactivation (reduced decimal reduction time). Heat-injured spores showed an increased sensitivity not only to 0.9% NaCl but also to other postprocessing environmental factors such as incubation temperatures, a pH of 6.6 for the medium, and anaerobiosis during incubation. PMID:3566270

  20. Effect of Calcium in Assay Medium on D Value of Bacillus stearothermophilus ATCC 7953 Spores

    PubMed Central

    Sasaki, Koichi; Shintani, Hideharu; Itoh, Junpei; Kamogawa, Takuji; Kajihara, Yousei

    2000-01-01

    The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value. PMID:11097939

  1. Inactivation of Geobacillus stearothermophilus in canned food and coconut milk samples by addition of enterocin AS-48.

    PubMed

    Viedma, Pilar Martínez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-05-01

    The cyclic bacteriocin enterocin AS-48 was tested on a cocktail of two Geobacillus stearothermophilus strains in canned food samples (corn and peas), and in coconut milk. AS-48 (7 microg/g) reduced viable cell counts below detection levels in samples from canned corn and peas stored at 45 degrees C for 30 days. In coconut milk, bacterial inactivation by AS-48 (1.75 microg/ml) was even faster. In all canned food and drink samples inoculated with intact G. stearothermophilus endospores, bacteriocin addition (1.75 microg per g or ml of food sample) rapidly reduced viable cell counts below detection levels and avoided regrowth during storage. After a short-time bacteriocin treatment of endospores, trypsin addition markedly increased G. stearothermophilus survival, supporting the effect of residual bacteriocin on the observed loss of viability for endospores. Results from this study support the potential of enterocin AS-48 as a biopreservative against G. stearothermophilus. PMID:19269571

  2. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.

    PubMed

    Guo, Jiannan; Luk, Louis Y P; Loveridge, E Joel; Allemann, Rudolf K

    2014-05-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  3. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C. PMID:23024410

  4. Isolation of Glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a

    PubMed Central

    Schäffer, Christina; Beckedorf, Anke I.; Scheberl, Andrea; Zayni, Sonja; Peter-Katalinić, Jasna; Messner, Paul

    2002-01-01

    Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C15:0 and anteiso-C17:0 prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PMID:12426359

  5. [Effect of microwaves on the vegetative and spore forms of Bacillus stearothermophilus].

    PubMed

    Salvatorelli, G; Rosaspina, S; Sartea, A; Anzanel, D

    1993-02-01

    Microwave irradiation provides a rapid and effective method for sterilization of stainless steel scalpel blades or cover glasses contaminated by B. stearothermophilus. A study by SEM of vegetative forms showed that microwave irradiation induce a progressive series of alterations and finally the complete destruction of the microorganism. On the contrary there were no significant morphological variations of the spores after lethal irradiation by microwaves. PMID:8129884

  6. Effect of carrier materials on the resistance of spores of Bacillus stearothermophilus to gaseous hydrogen peroxide.

    PubMed

    Sigwarth, Volker; Stärk, Alexandra

    2003-01-01

    The testing of the H2O2 decontamination process using spores of Bacillus stearothermophilus has gained widespread acceptance. Usually, commercially available Biological Indicators (BIs) with a specified resistance to H2O2 are challenged to qualify the process. The question arises whether the resistance of test spores is dependant on the type of carrier material and whether the resistance is representative for the system under test. The objective of the study is to quantify the effect of different carrier materials on the resistance of spores of Bacillus stearothermophilus to H2O2. Materials from which isolators were built, as well as those used in disposables during daily work were investigated. These materials were inoculated with 106 spores of Bacillus stearothermophilus (ATCC 7953). The spore resistance was tested to a well defined H2O2 decontamination cycle by determining the D-value using the "Fractional Negative" method. This paper reports on the effect of different carrier materials to the resistance of the test organism against H2O2. Various materials have significantly increased resistance of the spores and should be avoided in isolator systems. If commercially available BIs are used for process qualification, the resistance of the BI used, the fluctuation in resistance caused by isolator materials, the required log reduction, and at least the bioload of isolator surfaces need to be known. PMID:12643502

  7. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  8. Effect of divalent metals on fungal and bacterial glucose-6-phosphate dehydrogenases

    SciTech Connect

    Jiang, W.; Niehaus, W.G.

    1986-05-01

    The authors have studied the effect of Zn/sup 2 +/ and Mg/sup 2 +/ on glucose-6-phosphate dehydrogenase purified from the fungi Aspergillus parasiticus, Alternaria alternata, Aphanomyces astaci, Saccharomyces cerevesiae, and Torula utilis, and from the bacteria Escherichia coli, Leuconostoc mesenteroides, and Bacillus stearothermophilus. Zn/sup 2 +/ reversibly inhibited the enzymes from A. parasiticus, S. cerevesiae, and T. utilis. Inhibition was competitive versus glucose-6-phosphate, with Ki = 25 ..mu..M, 75 ..mu..M, 25 ..mu..M, respectively. Zn/sup 2 +/ at 100 or 500 ..mu..M did not affect Vmax or Vmax/Km for the enzymes from A. alternata, A. astaci, L. mesenteroides, or B. stearothermophilus. Zn/sup 2 +/ caused loss of activity of the E. coli enzyme, which was not reversed by EDTA. Mg/sup 2 +/ stimulated both Vmax and Vmax/Km for all enzymes except that from A. astaci, on which it had no effect. Maximum stimulation occurred between 1 and 15 mM Mg/sup 2 +/ and ranged from 2 to 6-fold. For the enzymes from A. parasiticus, S. cerevesiae, and T. utilis, inclusion of 5 mM Mg/sup 2 +/ reversed the inhibition caused by 100 ..mu..M Zn/sup 2 +/.

  9. Cloning and characterization of the arginine-specific carbamoyl-phosphate synthetase from Bacillus stearothermophilus.

    PubMed

    Yang, H; Park, S M; Nolan, W G; Lu, C D; Abdelal, A T

    1997-10-15

    Bacillus stearothermophilus contains two carbamoyl-phosphate synthetases (CPS), one specific for pyrimidine biosynthesis and the other for arginine biosynthesis. The pyrimidine-specific CPS is repressed by exogenous pyrimidines, and its activity is inhibited by UMP and activated by 5-phospho-alpha-D-ribosyl diphosphate. The arginine-specific CPS is similarly repressed by exogenous arginine but its activity is not sensitive to these or other potential effectors. Each of the two enzymes consist of two unequal subunits, as is the case for other microbial CPS; however, the large subunit for the arginine-specific CPS is smaller than that for the pyrimidine-specific enzyme. Comparison of the derived amino acid sequence for the cloned large subunit of the arginine-specific CPS with those for subunits from pyrimidine-sensitive CPS showed significant similarity throughout the polypeptides except at the carboxy terminus, which was identified by other laboratories to contain the binding site for the pyrimidine effector. Unlike the results previously reported for CPS from an enteric mesophile, the kinetic properties of the arginine-specific CPS were not affected by growth of B. stearothermophilus at temperatures near the minimal growth temperature. Furthermore, calorimetric studies showed that the thermal stability of cloned CPS was identical regardless of the growth temperature of B. stearothermophilus between 42 degrees C and 63 degrees C. The thermal stability of cloned CPS was not affected by expression at 37 C in Bacillus subtilis or Escherichia coli. In contrast, the thermal stabilities for CPS and other proteins were higher in extracts of cells grown at higher temperatures. These results indicate that cellular factors, probably chaperonins, are necessary for thermal stability of proteins at and below the optimal temperature for this thermophile. PMID:9370352

  10. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris.

    PubMed

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  11. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    PubMed

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors.

  12. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    PubMed

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  13. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    SciTech Connect

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates

  14. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure.

    PubMed

    Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander

    2014-08-01

    Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility.

  15. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    PubMed Central

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 μM). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria. PMID:16751511

  16. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure.

    PubMed

    Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander

    2014-08-01

    Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility. PMID:24750808

  17. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions. PMID:26919821

  18. The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity.

    PubMed

    Castro, Miguel E; Molina, Roberto; Díaz, Waldo; Pichuantes, Sergio E; Vásquez, Claudio C

    2008-10-10

    Potassium tellurite (K(2)TeO(3)) is extremely toxic for most forms of life and only a limited number of organisms are naturally resistant to the toxic effects of this compound. Crude extracts prepared from the environmental isolate Aeromonas caviae ST catalize the in vitro reduction of TeO32- in a NADH-dependent reaction. Upon fractionation by ionic exchange column chromatography three major polypeptides identified as the E1, E2, and E3 components of the pyruvate dehydrogenase (PDH) complex were identified in fractions exhibiting tellurite-reducing activity. Tellurite reductase and pyruvate dehydrogenase activities co-eluted from a Sephadex gel filtration column. To determine which component(s) of the PDH complex has tellurite reductase activity, the A. caviae ST structural genes encoding for E1 (aceE), E2 (aceF), and E3 (lpdA) were independently cloned and expressed in Escherichia coli and their gene products purified. Results indicated that tellurite reductase activity lies almost exclusively in the E3 component, dihydrolipoamide dehydrogenase. The E3 component of the PDH complex from E. coli, Zymomonas mobilis, Streptococcus pneumoniae, and Geobacillus stearothermophilus also showed NADH-dependent tellurite reductase in vitro suggesting that this enzymatic activity is widely distributed among microorganisms. PMID:18675788

  19. Sporicidal Activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus Spores.

    PubMed

    Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki

    2007-01-01

    In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide. PMID:17237604

  20. Substrate specificities of wild and mutated farnesyl diphosphate synthases from Bacillus stearothermophilus with artificial substrates.

    PubMed

    Nagaki, Masahiko; Nakada, Minori; Musashi, Tohru; Kawakami, Jun; Ohya, Norimasa; Kurihara, Masayo; Maki, Yuji; Nishino, Tokuzo; Koyama, Tanetoshi

    2007-07-01

    To determine the substrate specificities of wild and mutated types of farnesyl diphosphate (FPP) synthases from Bacillus stearothermophilus, we examined the reactivities of 8-hydroxygeranyl diphosphate (HOGPP) and 8-methoxygeranyl diphosphate (CH(3)OGPP) as allylic substrate homologs. The wild-type FPP synthase reaction of HOGPP (and CH(3)OGPP) with isopentenyl diphosphate (IPP) gave hydroxyfarnesyl- (and methoxyfarnesyl-) diphosphates that stopped at the first stage of condensation. On the other hand, with mutated type FPP synthase (Y81S), the former gave hydroxygeranylgeranyl diphosphate as the main double-condensation product together with hydroxyfarnesyl diphosphate as a single-condensation product and a small amount of hydroxygeranylfarnesyl diphosphate as a triple-condensation product. Moreover, the latter gave a double-condensation product, methoxygeranylgeranyl diphosphate, as the main product and only a trace of methoxyfarnesyl diphosphate was obtained. PMID:17617711

  1. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design.

    PubMed

    Ece, Selin; Evran, Serap; Janda, Jan-Oliver; Merkl, Rainer; Sterner, Reinhard

    2015-06-01

    Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal structure of the enzyme. Based on computational predictions, these cavities were filled by residues with bulkier side chains. The five Asp46Glu, Val239Leu, Val404Leu, Ser407Thr and Ala566Leu exchanges resulted in a drastic stabilization of bsNpl against inactivation by heat and detergents. The catalytic activity of the variants was identical to the wild-type enzyme.

  2. Cross-linking with diimidates of glutamine synthetase from Bacillus stearothermophilus.

    PubMed

    Sekiguchi, T; Oshiro, S; Goingo, E M; Nosoh, Y

    1979-08-01

    Glutamine synthetase [EC 6.3.2.1] from Bacillus stearothermophilus was modified with diethyl malonimidate (DEM), dimethyl adipimidate (DMA), and dimethyl suberimidate (DMS). DMA modified most epsilon-amino groups. On modification with DMA, formation of 3 to 4 cross-links/subunit resulted in a large increase in thermostability. The activity, allosteric properties and fluorescence spectrum of the enzyme were not changed on cross-linking. The SDS-polyacrylamide gel electrophoretic profiles of DEM-, DMA-, and DMS-modified enzymes suggested that the interaction berween six subunits in each of the two hexagonal rings of the protein are heterologous and are different from those between the piled subunits on different rings. PMID:39071

  3. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  4. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11.

    PubMed

    Gegeckas, Audrius; Gudiukaitė, Renata; Debski, Janusz; Citavicius, Donaldas

    2015-04-01

    A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products.

  5. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  6. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.

    PubMed

    Fridjonsson, O; Watzlawick, H; Gehweiler, A; Mattes, R

    1999-07-01

    An alpha-galactosidase gene from the thermophilic bacterium Bacillus stearothermophilus NUB3621 was cloned, sequenced, expressed in Escherichia coli and the recombinant protein was purified. The Bacillus enzyme, designated AgaN, is similar to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme was estimated to be a tetramer with a molecular mass of subunits 80.3 kDa. The purified AgaN is thermostable and has a temperature optimum of activity at 75 degrees C and a half-life of inactivation of 19 h at 70 degrees C. AgaN displays high affinity for oligomeric substrates such as melibiose and raffinose and is able to hydrolyze raffinose in the presence of 60% sucrose with high efficiency.

  7. Effect of Soybean Casein Digest Agar Lot on Number of Bacillus stearothermophilus Spores Recovered †

    PubMed Central

    Pflug, I. J.; Smith, Geraldine M.; Christensen, Ronald

    1981-01-01

    In recent years it has become increasingly apparent that Bacillus stearothermophilus spores are affected by various environmental factors that influence the performance of the spores as biological indicators. One environmental factor is the recovery medium. The effect of different lots of commercial soybean casein digest agar on the number of colony-forming units per plate was examined in two series of experiments: (i) several lots of medium from two manufacturers were compared in single experiments, and (ii) paired media experiments with four lots of medium were carried out and yielded three-point survivor curves. The results demonstrate that commercial soybean casein digest agar is variable on a lot-to-lot basis. The variation was lowest when recovering unheated or minimally heated spores and increased greatly with the severity of heating. PMID:16345822

  8. Oscillatory behavior of population density in continuous culture of genetic-engineered Bacillus stearothermophilus.

    PubMed

    Koizumi, J; Aiba, S

    1989-09-01

    An oscillatory behavior in population density was observed when a transformant of Bacillus stearothermophilus carrying a rocombinant plasmid pZAM26 was cultivated continuously in a well-stirred reactor vessel at a fixed dilution rato. Among the transformant cells that were subjected to the continuous culture, the fraction of cells harboring p2AM26 was found to be as high as 0.98-1.00 despite the emergence of the oscillation. Cells whose plasmids underwent rearrangement of DMA in terms of structural change could not be found throughout. With reference to this observation, the dynamics of the genetic-engineered bacterium was analyzed within the category of both the linearized stability principle and the bifurcation theory. It was concluded that Hopf bifurcation was most probable to account for the experimental oscillation.

  9. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11.

    PubMed

    Gegeckas, Audrius; Gudiukaitė, Renata; Debski, Janusz; Citavicius, Donaldas

    2015-04-01

    A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products. PMID:25625783

  10. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design.

    PubMed

    Ece, Selin; Evran, Serap; Janda, Jan-Oliver; Merkl, Rainer; Sterner, Reinhard

    2015-06-01

    Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal structure of the enzyme. Based on computational predictions, these cavities were filled by residues with bulkier side chains. The five Asp46Glu, Val239Leu, Val404Leu, Ser407Thr and Ala566Leu exchanges resulted in a drastic stabilization of bsNpl against inactivation by heat and detergents. The catalytic activity of the variants was identical to the wild-type enzyme. PMID:25680359

  11. Physicochemical characterization of tensio-active produced by Geobacillus stearothermophilus isolated from petroleum-contaminated soil.

    PubMed

    Jara, Alícia M A T; Andrade, Rosileide F S; Campos-Takaki, Galba M

    2013-01-01

    Biosurfactants are surface-active agents of microbial origin, and have a property of lowering the interfacial tension between two liquids. They act on the interface and are amphiphathic molecules; in with both hydrophilic and hydrophobic portions are present in the same molecule. However, the economics of producing biosurfactant has limited its commercial applications, and the costs can be reduced using cheap substrates or industrial waste. The present study showed the biosurfactant production using corn steep liquor and palm oil as carbon and nitrogen sources for reduction the costs of production. The biosurfactant production by Geobacillus stearothermophilus UCP 986 was carried out using optimized culture medium constituted by palm oil (7.5%) and corn steep liquor (4.5%) using Bioflo fermentor, at temperature of 45°C, during 32 h and agitation of 300 rpm. The biosurfactant showed a reduction of the water surface tension of 72-31 mN/m and interfacial tension of 0.3 mN/m. The biosurfactant was obtained from the net metabolic liquid by acetone precipitation corresponding to the yield of 2.3g/L. The isolate biosurfactant showed a CMC of 2.5% and non-ionic profile. The best emulsification index (E(24)) obtained was 87% using motor oil burned. The biosurfactant solution (2.5%) used in oil spreading test increases the viscosity of engine burning oil of 149.2% and 138.2% to vegetable fat post-frying, respectively. The gas chromatography-mass spectrometer indicated at 29.52 min a molecular weight of 207 Da and eight peaks by FT-IR identified the chemical structure of the biosurfactant produced by G. stearothermophilus.

  12. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry.

  13. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS.

    PubMed

    WELKER, N E; CAMPBELL, L L

    1963-10-01

    Welker, N. E. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Effect of carbon sources on formation of alpha-amylase by Bacillus stearothermophilus. J. Bacteriol. 86:681-686. 1963.-A chemically defined medium was devised for use in alpha-amylase induction studies. The addition of 0.1% casein hydrolysate to the chemically defined medium permitted growth on fructose, and with glucose, sucrose, maltose, starch, and glycerol it shortened the lag period and increased both the growth rate and the total enzyme produced. Growth did not occur when gluconate, acetate, or succinate were used as carbon sources. alpha-Amylase was produced during the logarithmic phase of growth; the amount produced was inversely proportional to the rate of growth. The poorer the carbon source for growth (glycerol, k = 0.24; glucose, k = 0.26; sucrose, k = 0.42), the higher was the amount of enzyme produced (glycerol, 109 units/ml; glucose, 103 units/ml; sucrose, 45 units/ml). Cells grown on technical-grade maltose (k = 0.26) or starch (k = 0.42) did not conform to this relationship in that unusually large amounts of alpha-amylase were produced (362 and 225 units/ml, respectively). Cells grown on fructose or sucrose had the same growth rate (k = 0.42), but smaller amounts of alpha-amylase were produced on fructose (fructose, 0 to 4 units/ml; sucrose, 45 units/ml). An intracellular alpha-amylase was not detected in Bacillus stearothermophilus.

  14. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry. PMID:25224381

  15. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  16. Effect of acidification and oil on the thermal resistance of Bacillus stearothermophilus spores heated in food substrate.

    PubMed

    Rodrigo, F; Rodrigo, C; Fernández, P S; Rodrigo, M; Martínez, A

    1999-11-15

    The effect of the addition of vinegar and/or oil to a food homogenate (tomato sauce, tuna and vegetables) on the thermal resistance of Bacillus stearothermophilus spores was studied. The results indicated that the food substrate without the addition of vinegar and oil and a pH value of 5.28 reduced the thermal resistance of B. stearothermophilus spores compared with that obtained in double-distilled water, (D121 = 1.41 and 3.08 min respectively). The addition of vinegar reduced the pH of the substrate (4.81) and consequently the D values were reduced (D121 = 1.28 min). The addition of soya oil and vinegar to substrate until a pH of 4.81, further reduced the thermal resistance of the spores, giving a D121 value of 0.93 min. PMID:10733251

  17. DISSOCIATION OF 70S RIBOSOMES: SOME PROPERTIES OF THE DISSOCIATING FACTOR FROM Bacillus stearothermophilus AND Escherichia coli*

    PubMed Central

    Bade, Ernesto G.; González, Nelida S.; Algranati, Israel D.

    1969-01-01

    A protein factor which produces in vitro dissociation of 70S particles into 30S and 50S subunits has been obtained from Bacillus stearothermophilus and Escherichia coli. The factor could be extracted from ribosomes, polyribosomes, and S100 supernatant. The kinetics and temperature curve of the dissociation process in the B. stearothermophilus system have been studied and compared with the reaction in the E. coli system. No species specificity was observed when hybrid mixtures of ribosomes and dissociating factor from both bacteria were used. The wide variations of dissociating activity in cells at different stages of growth and the capacity of the liberated subunits to carry out polypeptide synthesis suggest that the dissociating factor has a physiological role. PMID:4901704

  18. NADP-dependent dehydrogenases in rat liver parenchyma. III. The description of a liponeogenic area on the basis of histochemically demonstrated enzyme activities and the neutral fat content during fasting and refeeding.

    PubMed

    Rieder, H

    1981-01-01

    The activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase(6PGDH), malic enzyme (ME) and isocitrate dehydrogenase (ICDh) were investigated with optimized histochemical methods (Rieder it al 1978), and the activity of 3-hydroxybutyrate dehydrogenase (3HBDH) and neutral fat content with conventional techniques in the liver of male rats under the following experimental dietary conditions: (A) Fasting for 0, 12 and 84h; (B) 84-h fasting followed by refeeding with a low-fat, high-carbohydrate diet for 6 h and for 2, 3, 5, 7, 11 and 14 nights; (C) refeeding with standard diet for 5 nights; (D) low-fat high-carbohydrate diet for 7 an 14 nights. The activities of G6PDH, 6PGDH and ME decreased slightly during fasting primarily in zone 1 and increased dramatically on refeeding with a low-fat, high-carbohydrate diet. This activity increase was confined mainly to zone 3 during the first 3 days and was accompanied by a deposition of neutral fats that began in zone 3 and progressed to zone 1. Neutral for accumulation was maximal after 3 nights, with a uniform accumulation of large droplets in all the hepatocytes; this was followed by a release that started in zone 3 and proceeded in a periportal direction. On the other hand, G6PDH, 6PGDH and ME attained their maximum activities after 5 amd 7 nights of low-fat diet, the activities being nearly homogeneously distributed over the liver acinus in a few cases. Subsequently the activities fill mainly in zone 1, causing the activity patterns and levels to approach those of the animals in group (D). In contrast to this, the activity of ICDH increased during fasting principally in zone 1, so that the otherwise steep activity gradient in favor of zone 3 lessened. Refeeding led at first to a fall of activity below the initial value, but later the normal distribution pattern was restored. The activity of 3HBDH showed a behavior similar to that of ICDH. The findings are discussed with reference to the

  19. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  20. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.

  1. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery. PMID:25791003

  2. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  3. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    SciTech Connect

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D'Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.

  4. [Suitability of Bacillus subtilis and Bacillus stearothermophilus spores as test organism bioindicators for detecting superheating of steam].

    PubMed

    Spicher, G; Peters, J

    1997-02-01

    Biological indicators used to test sterilisation procedures for their efficacy consist of a so-called germ carrier to which the microorganisms used as test organisms adhere. In previous papers we demonstrated that carriers made of filter paper on contact with saturated steam show superheating while carriers made of glass fibre fleece as well as wetted filter paper do not. Using spores of Bacillus subtilis and Bacillus stearothermophilus as test organisms we have now investigated whether and to what extent carrier superheating affects the characteristic values (t50%) of these biological indicators. The indicators were exposed to saturated steam at 100 degrees C (B. subtilis) or 120 degrees C (B. stearothermophilus) under three different exposure conditions: 1. dry (i.e. conditioned to 45% relative humidity before introduction into the sterilising chamber), freely accessible; 2. dry with a substratum and a cover of filter card-board; 3. wet (moistened with twice distilled water before introduction into the sterilising chamber), freely accessible. For previously selected exposure periods, the incidence of indicators with surviving test organisms was determined. The reaction pattern of bioindicators with spores of B. stearothermophilus was different from that of bioindicators with spores of B. subtilis. For B. subtilis, the incidence of bioindicators exhibiting surviving test organisms depended on the nature of the carries as well as on the exposure conditions. On filter paper carriers, t50% increased in the order "wet, freely accessible", "dry, freely accessible", "dry, between filter card-board". On dry and wetted glass fibre fleece, resistance was approximately the same; when the indicators were sandwiched between layers of filter card-board, t50% increased. For B. stearothermophilus, t50% was largely dependent on the carrier material alone. The values obtained for filter paper were invariably much lower than those for glass fibre fleece. As the results show, using

  5. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus.

    PubMed

    Steiner, Kerstin; Hagelueken, Gregor; Messner, Paul; Schäffer, Christina; Naismith, James H

    2010-03-26

    Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by alpha-1,3-, alpha-1,2-, and beta-1,2-linkages. The formation of the beta-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-beta-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-beta-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition. PMID:20097205

  6. Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production.

    PubMed

    Placier, Gaël; Watzlawick, Hildegard; Rabiller, Claude; Mattes, Ralf

    2009-10-01

    A mutagenesis approach was applied to the beta-galactosidase BgaB from Geobacillus stearothermophilus KVE39 in order to improve its enzymatic transglycosylation of lactose into oligosaccharides. A simple screening strategy, which was based on the reduction of the hydrolysis of a potential transglycosylation product (lactosucrose), provided mutant enzymes possessing improved synthetic properties for the autocondensation product from nitrophenyl-galactoside and galacto-oligosaccharides (GOS) from lactose. The effects of the mutations on enzyme activity and kinetics were determined. An change of one arginine to lysine (R109K) increased the oligosaccharide yield compared to that for the wild-type BgaB. Subsequently, saturation mutagenesis at this position demonstrated that valine and tryptophan further increased the transglycosylation performance of BgaB. During the transglycosylation reaction with lactose of the evolved beta-galactosidases, a major trisaccharide was formed. Its structure was characterized as beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->4)-D-glucopyranoside (3'-galactosyl-lactose). At the lactose concentration of 18% (wt/vol), this trisaccharide was obtained in yields of 11.5% (wt/wt) with GP21 (BgaB R109K), 21% with GP637.2 (BgaB R109V), and only 2% with the wild-type BgaB enzyme. GP643.3 (BgaB R109W) was shown to be the most efficient mutant, with a 3'-galactosyl-lactose production of 23%. PMID:19666723

  7. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus.

    PubMed

    Solomon, V; Teplitsky, A; Shulami, S; Zolotnitsky, G; Shoham, Y; Shoham, G

    2007-08-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 A resolution to a final R factor of 15.0% and an R(free) of 19.0%. As expected, the structure forms the classical (alpha/beta)(8) fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes. PMID:17642511

  8. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions. PMID:26597712

  9. Maltosyl-erythritol, a major transglycosylation product of erythritol by Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Yoon, Jong-Won; Jeon, Eun-Joo; Jung, Il-Hun; Min, Mee-Jung; Lee, Hye-Young; Kim, Myo-Jeong; Baek, Jin-Sook; Lee, Hee-Seob; Park, Cheon-Seok; Oh, Sangsuk; Park, Kwan-Hwa; Moon, Tae-Wha

    2003-03-01

    This study was done to modify erythritol to change its physicochemical and sensory properties. Erythritol, a four-carbon sugar alcohol, was transglycosylated by Bacillus stearothermophilus maltogenic amylase with maltotriose as a donor molecule. The presence of various transglycosylation products of erythritol was confirmed by TLC and high performance ion exchange chromatography (HPIC). The major transfer product was purified by gel filtration chromatography on Bio-Gel P-2. Examination by LC-MS, matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS), and 13C NMR showed that the major transfer product was maltosyl-erythritol. Results of 13C NMR of maltosyl-erythritol suggested that linkage was formed between the C1 carbon of glucose unit in maltose and either one of the two carbon atoms of the terminal hydroxyl groups of erythritol, so that a mixture of 1-O- and 4-O-alpha-maltosyl-erythritol was produced. The sweetness of maltosyl-erythritol was about 40% that of sucrose, and its negative sensory properties were less than those of erythritol. PMID:12723599

  10. Electron transfer kinetics of caa3 oxidase from Bacillus stearothermophilus: a hypothesis for thermophilicity.

    PubMed Central

    Giuffrè, A; Watmough, N J; Giannini, S; Brunori, M; Konings, W N; Greenwood, C

    1999-01-01

    The O2 reaction and the reverse electron transfer of the thermophilic caa3 terminal oxidase of Bacillus stearothermophilus have been studied by laser flash-photolysis. The results show that both reactions, although studied at a temperature of 20 degreesC, far from the optimal temperature of > 60 degreesC for caa3, follow a kinetic behavior essentially identical to that observed with the electrostatic complex between mammalian cyt c and cyt c oxidase. In the O2 reaction cyt a and cyt a3 are very quickly oxidized; cyt a is then re-reduced via CuA, whereas cyt c oxidation is apparently rate-limited by the oxidation of CuA. Upon photodissociation of the mixed valence-CO caa3, reverse electron transfer from the binuclear center to cyt a3+ (tau1 = 3 micros) and CuA2+ (tau2 = 64 micros) is observed, while cyt c is not reduced by any detectable level. These results seem to rule out accounting for enzymatic thermophilicity by altered kinetics of intramolecular electron transfer involving the cyt center in the reduced configuration, which is very fast. On the basis of these results and previous data, we propose that thermophilicity involves an increased activation barrier for the reduction of cyt a3-CuB in the configuration typical of the oxidized site. PMID:9876155

  11. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C.

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  12. The effect of introducing small cavities on the allosteric inhibition of phosphofructokinase from Bacillus stearothermophilus.

    PubMed

    Whitaker, Amy M; Reinhart, Gregory D

    2016-10-01

    The allosteric coupling free energy between ligands fructose-6-phosphate (Fru-6-P) and phospho(enol)pyruvate (PEP) for phosphofructokinase-1 (PFK) from the moderate thermophile, Bacillus stearothermophilus (BsPFK), results from compensating enthalpy and entropy components. In BsPFK the positive coupling free energy that defines inhibition is opposite in sign from the negative enthalpy term and is therefore determined by the larger absolute value of the negative entropy term. Variants of BsPFK were made to determine the effect of adding small cavities to the structure on the allosteric function of the enzyme. The BsPFK Ile → Val (cavity containing) mutants have varied values for the coupling free energy between PEP and Fru-6-P, indicating that the modifications altered the effectiveness of PEP as an inhibitor. Notably, the mutation I153V had a substantial positive impact on the magnitude of inhibition by PEP. Van't Hoff analysis determined that this is the result of decreased entropy-enthalpy compensation with a larger change in the enthalpy term compared to the entropy term. PMID:27477958

  13. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.

    PubMed

    Soriano-Maldonado, Pablo; Andújar-Sánchez, Montserrat; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Martínez-Rodríguez, Sergio

    2015-05-01

    N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding.

  14. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6.

    PubMed Central

    Khasin, A; Alchanati, I; Shoham, Y

    1993-01-01

    Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125. Images PMID:8328796

  15. Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2

    PubMed Central

    Wienk, Hans; Tomaselli, Simona; Bernard, Cédric; Spurio, Roberto; Picone, Delia; Gualerzi, Claudio O.; Boelens, Rolf

    2005-01-01

    IF2 is one of three bacterial translation initiation factors that are conserved through all kingdoms of life. It binds the 30S and 50S ribosomal subunits, as well as fMet-tRNAfMet. After these interactions, fMet-tRNAfMet is oriented to the ribosomal P-site where the first amino acid of the nascent polypeptide, formylmethionine, is presented. The C-terminal domain of Bacillus stearothermophilus IF2, which is responsible for recognition and binding of fMet-tRNAfMet, contains two structured modules. Previously, the solution structure of the most C-terminal module, IF2-C2, has been elucidated by NMR spectroscopy and direct interactions between this subdomain and fMet-tRNAfMet were reported. In the present NMR study we have obtained the spectral assignment of the other module of the C-terminal domain (IF2-C1) and determined its solution structure and backbone dynamics. The IF2-C1 core forms a flattened fold consisting of a central four-stranded parallel β-sheet flanked by three α-helices. Although its overall organization resembles that of subdomain III of the archaeal IF2-homolog eIF5B whose crystal structure had previously been reported, some differences of potential functional significance are evident. PMID:16081655

  16. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions.

  17. Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus

    SciTech Connect

    Solomon,V.; Teplitsky, A.; Shulami, S.; Zolotnitsky, G.; Shoham, Y.; Shoham, G.

    2007-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factor of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.

  18. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.

    PubMed

    Soriano-Maldonado, Pablo; Andújar-Sánchez, Montserrat; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Martínez-Rodríguez, Sergio

    2015-05-01

    N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding. PMID:25875730

  19. Structure of a His170Tyr mutant of thermostable pNPPase from Geobacillus stearothermophilus.

    PubMed

    Shen, Tiantian; Guo, Zheng; Ji, Chaoneng

    2014-06-01

    Using directed evolution based on random mutagenesis and heat-treated selection, a thermostable His170Tyr mutant of Geobacillus stearothermophilus thermostable p-nitrophenylphosphatase (TpNPPase) was obtained. The temperature at which the His170Tyr mutant lost 50% of its activity (T1/2) was found to be 4.40 K higher than that of wild-type TpNPPase, and the melting temperature of the His170Tyr mutant increased by 2.39 K. The crystal structure of the His170Tyr mutant was then determined at 2.0 Å resolution in the presence of a sodium ion and a sulfate ion in the active site. The cap domain of chain B shows a half-closed conformation. The hydrophobic side chain of the mutated residue, the hydroxyphenyl group, forms a hydrophobic contact with the methyl group of Ala166. This hydrophobic interaction was found using the Protein Interactions Calculator (PIC) web server with an interaction distance of 4.6 Å, and might be a key factor in the thermostabilization of the His170Tyr mutant. This study potentially offers a molecular basis for both investigation of the catalytic mechanism and thermostable protein engineering.

  20. Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme.

    PubMed

    Polyakova, Oxana V; Roitel, Olivier; Asryants, Regina A; Poliakov, Alexei A; Branlant, Guy; Muronetz, Vladimir I

    2005-04-01

    We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5'-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants K(d) of 0.4 and 0.9 muM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity. PMID:15741339

  1. Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme

    PubMed Central

    Polyakova, Oxana V.; Roitel, Olivier; Asryants, Regina A.; Poliakov, Alexei A.; Branlant, Guy; Muronetz, Vladimir I.

    2005-01-01

    We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5′-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants Kd of 0.4 and 0.9 μM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity. PMID:15741339

  2. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  3. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    PubMed

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus. PMID:24929881

  4. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    PubMed

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus.

  5. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition.

    PubMed

    Rocha-Martin, Javier; Acosta, Andreína; Berenguer, Jose; Guisan, Jose M; Lopez-Gallego, Fernando

    2014-10-01

    Glycerol dehydrogenase (GlyDH) catalyzes the regioselective oxidation of glycerol to yield 1,3-dihydroxyacetone (DHA); an important building block in chemical industry. Three recombinant GlyDHs from Geobacillus stearothermophilus, from Citrobacter braakii and from Cellulomonas sp. were stabilized by covalent immobilization. The highest activity recoveries (40-50%) of the insoluble preparations were obtained by immobilizing these enzymes in presence of polyethylene glycol (PEG). Noteworthy, these immobilized preparations were more stable and less inhibited by DHA than their soluble counterparts. In particular, GlyDH from G.stearothermophilus immobilized on agarose activated with both amine and glyoxyl groups and crosslinked with dextran aldehyde was 3.7-fold less inhibited by DHA than its soluble form and retained 100% of its initial activity after 18h of incubation at 65°C and pH 7. This is one of the few examples where the same immobilization protocol has minimized enzyme product inhibition and maximized thermal stability.

  6. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition.

    PubMed

    Rocha-Martin, Javier; Acosta, Andreína; Berenguer, Jose; Guisan, Jose M; Lopez-Gallego, Fernando

    2014-10-01

    Glycerol dehydrogenase (GlyDH) catalyzes the regioselective oxidation of glycerol to yield 1,3-dihydroxyacetone (DHA); an important building block in chemical industry. Three recombinant GlyDHs from Geobacillus stearothermophilus, from Citrobacter braakii and from Cellulomonas sp. were stabilized by covalent immobilization. The highest activity recoveries (40-50%) of the insoluble preparations were obtained by immobilizing these enzymes in presence of polyethylene glycol (PEG). Noteworthy, these immobilized preparations were more stable and less inhibited by DHA than their soluble counterparts. In particular, GlyDH from G.stearothermophilus immobilized on agarose activated with both amine and glyoxyl groups and crosslinked with dextran aldehyde was 3.7-fold less inhibited by DHA than its soluble form and retained 100% of its initial activity after 18h of incubation at 65°C and pH 7. This is one of the few examples where the same immobilization protocol has minimized enzyme product inhibition and maximized thermal stability. PMID:25164336

  7. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.

    PubMed

    Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam

    2015-04-01

    Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.

  8. Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition of phosphofructokinase from Bacillus stearothermophilus.

    PubMed

    Ortigosa, Allison D; Kimmel, Jennifer L; Reinhart, Gregory D

    2004-01-20

    A strategy for isolating each of the four potentially unique heterotropic pairwise allosteric interactions that exist in the homotetramer phosphofructokinase from Bacillus stearothermophilus is described. The strategy involves the construction of hybrid tetramers containing one wild-type subunit and three mutant subunits that have been modified to block binding of both the substrate, fructose 6-phosphate (Fru-6-P), and the allosteric inhibitor, phospho(enol)pyruvate (PEP). Each type of binding site occurs at a subunit interface, and mutations on either side of the interface have been identified that will greatly diminish binding at the respective site. Consequently, four different types of mutant subunits have been created, each containing a different active site and allosteric site modification. The corresponding 1:3 hybrids isolate a different pair of unmodified substrate and allosteric sites with a unique structural disposition located 22, 30, 32, and 45 A apart, respectively. The allosteric inhibition exhibited by the unmodified sites in each of these four hybrids has been quantitatively evaluated in terms of a coupling free energy. Each of the coupling free energies is unique in magnitude, and their relative magnitudes vary with pH. Importantly, the sum of these coupling free energies at each pH is equal to the total heterotropic coupling free energy associated with the tetrameric enzyme. The latter quantity was assessed from the overall inhibition of a control hybrid that removed the homotropic interactions in PEP binding. The results do not agree with either the concerted or sequential models that are often invoked to explain allosteric behavior in oligomeric enzymes.

  9. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  10. The caa3 terminal oxidase of Bacillus stearothermophilus. Transient spectroscopy of electron transfer and ligand binding.

    PubMed

    Giuffrè, A; D'Itri, E; Giannini, S; Brunori, M; Ubbink-Kok, T; Konings, W N; Antonini, G

    1996-06-14

    The thermophilic bacterium Bacillus stearothermophilus possesses a caa3-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. R., and Konings, W. N. (1989) Eur. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by stopped-flow time-resolved optical spectroscopy combined with singular value decomposition analysis. The results indicate a striking similarity of behavior between this enzyme and the electrostatic complex between mammalian cytochrome c and cytochrome c oxidase. CO binding to fully reduced caa3 occurs with a second order rate constant (k = 7.8 x 10(4)M-1 s-1) and an activation energy (E* = 6.1 kcal mol-1) similar to those reported for beef heart cytochrome c oxidase. Dithionite reduces cytochrome a with bimolecular kinetics, while cytochrome a3 (and CuB) is reduced via intramolecular electron transfer. When the fully reduced enzyme is mixed with O2, cytochrome a3, and cytochrome c are rapidly oxidized, whereas cytochrome a remains largely reduced in the first few milliseconds. When cyanide-bound caa3 is mixed with ascorbate plus TMPD, cytochrome c and cytochrome a are synchronously reduced; the value of the second order rate constant (k = 3 x 10(5) M-1 s-1 at 30 degrees C) suggests that cytochrome c is the electron entry site. Steady-state experiments indicate that cytochrome a has a redox potential higher than cytochrome c. The data from the reaction with O2 reveal a remarkable similarity in the kinetic, equilibrium, and optical properties of caa3 and the electrostatic complex cytochrome c/cytochrome c oxidase. PMID:8662862

  11. The propeptide is not required to produce catalytically active neutral protease from Bacillus stearothermophilus.

    PubMed

    Mansfeld, Johanna; Petermann, Eva; Dürrschmidt, Peter; Ulbrich-Hofmann, Renate

    2005-02-01

    The thermolysin-like neutral protease from Bacillus stearothermophilus (TLP-ste) is usually produced extracellularly in Bacillus subtilis, where it is expressed as preproenzyme and subsequently processed in an autocatalytic, intramolecular process. To create the basis for the production of inactive mutants of TLP-ste, which cannot be processed in B. subtilis, we studied the expression of TLP-ste and its propeptide in cis and in trans in Escherichia coli. In contrast to thermolysin, subtilisin and alpha-lytic protease, which could be obtained only in the presence of the corresponding propeptides, TLP-ste could be produced as an active mature enzyme in E. coli in the absence of its prosequence. Surprisingly, however, a much more effective access to active mature protease was found when TLP-ste (devoid of its prosequence) was expressed as protein with an N-terminal His6 tag which accumulated in the form of inclusion bodies. Completely unexpected, the protein could be renatured from the inclusion bodies after solubilization in guanidine hydrochloride solutions in high yields. Purification to homogeneity was possible by affinity chromatography on Bacitracin silica as well as by immobilized metal ion affinity chromatography. By addition of separately expressed propeptide to the renaturation mixture yields of renaturation could not be increased significantly, confirming that the propeptide is not essential for proper folding of the enzyme or its stabilization during the folding process. Also in vivo, the expression levels of active mature TLP-ste in Escherichia coli did not significantly differ when the mature sequence was expressed alone or coexpressed with the prosequence in cis or in trans.

  12. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    PubMed

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste.

  13. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus.

    PubMed

    Chen, W; Chen, H; Xia, Y; Zhao, J; Tian, F; Zhang, H

    2008-05-01

    Beta-galactosidase, commonly named lactase, is one of the most important enzymes used in dairy processing; it catalyzes the hydrolysis of lactose to its constituent monosaccharides glucose and galactose. Here, a thermostable beta-galactosidase gene bgaB from Bacillus stearothermophilus was cloned and expressed in B. subtilis WB600. The recombinant enzyme was purified by a combination of heat treatment, ammonium sulfate fractionation, ion exchange, and gel filtration chromatography techniques. The purified beta-galactosidase appeared as a single protein band in sodium dodecyl sulfate-PAGE gel with a molecular mass of approximately 70 kDa. Its isoelectric point, determined by polyacryl-amide gel isoelectric focusing, was close to 5.1. The optimum temperature and pH for this beta-galactosidase activity were 70 degrees C and pH 7.0, respectively. Kinetics of thermal inactivation and half-life times for this thermostable enzyme at 65 and 70 degrees C were 50 and 9 h, respectively, and the K(m) and V(max) values were 2.96 mM and 6.62 micromol/min per mg. Metal cations and EDTA could not activate this thermostable enzyme, and some divalent metal ions, namely, Fe(2+), Zn(2+), Cu(2+), Pb(2+), and Sn(2+), inhibited its activity. Thiol reagents had no effect on the enzyme activity, and sulfhydryl group blocking reagents inactivated the enzyme. This enzyme possessed a high level of transgalactosylation activity in hydrolysis of lactose in milk. The results suggest that this recombinant thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galactooligosaccharides in milk processing.

  14. Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6.

    PubMed Central

    Gilead, S; Shoham, Y

    1995-01-01

    Bacillus stearothermophilus T-6 produced an alpha-L-arabinofuranosidase when grown in the presence of L-arabinose, sugar beet arabinan, or oat spelt xylan. At the end of a fermentation, about 40% of the activity was extracellular, and enzyme activity in the cell-free supernatant could reach 25 U/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 20000, and the enzyme was purified eightfold by anion-exchange and hydrophobic interaction chromatographies. The molecular weight of T-6 alpha-L-arabinofuranosidase was 256,000, and it consisted of four identical subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The native enzyme had a pI of 6.5 and was most active at 70 degrees C and at pH 5.5 to 6.0. Its thermostability at pH 7.0 was characterized by half-lives of 53, 15, and 1 h at 60, 65, and 70 degrees C, respectively. Kinetic experiments at 60 degrees C with p-nitrophenyl alpha-L-arabinofuranoside as a substrate gave a Vmax, a Km, and an activation energy of 749 U/mg, 0.42 mM, and 16.6 kcal/mol, (ca. 69.5 kJ/mol), respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by 1 mM Hg2+. T-6 alpha-L-arabinofuranosidase released L-arabinose from arabinan and had low activity on oat spelt xylan. The enzyme acted cooperatively with T-6 xylanase in hydrolyzing oat spelt xylan, and L-arabinose, xylose, and xylobiose were detected as the end reaction products.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7887599

  15. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity. PMID:26026940

  16. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.

    PubMed

    Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam

    2015-04-01

    Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations. PMID:26118130

  17. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase.

    PubMed

    Shulami, Smadar; Shenker, Ofer; Langut, Yael; Lavid, Noa; Gat, Orit; Zaide, Galia; Zehavi, Arie; Sonenshein, Abraham L; Shoham, Yuval

    2014-09-12

    Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities. PMID:25070894

  18. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    PubMed

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. PMID:26150372

  19. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  20. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    PubMed

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-01

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process.

  1. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    PubMed

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-01

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process. PMID:24334097

  2. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  3. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus.

    PubMed Central

    Breitwieser, A; Gruber, K; Sleytr, U B

    1992-01-01

    Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate

  4. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus.

    PubMed

    Ewis, Hosam E; Abdelal, Ahmed T; Lu, Chung-Dar

    2004-03-31

    Screening of the genomic libraries of Geobacillus stearothermophilus ATCC12980 and ATCC7954 for esterase/lipase activity led to the isolation of two positive clones. The results of subclonings and sequence analyses identified two genes, est30 and est55, encoding two different carboxylesterases, and genetic rearrangement in the est55 locus was revealed from genomic comparison. The est30 gene encodes a polypeptide of 248 amino acids with a calculated molecular mass of 28338 Da, and the est55 gene encodes a polypeptide of 499 amino acids with a calculated molecular mass of 54867 Da. Both enzymes were purified to near homogeneity from recombinant strains of Escherichia coli. The results of enzyme characterization showed that while both enzymes possess optimal activities with short chain acyl derivatives, Est55 has a broader pH tolerance (pH 8-9) and optimal temperature range (30-60 degrees C) than Est30. The activation energy of Est55 (35.7 kJ/mol) was found to be significantly lower than that of Est30 (101.9 kJ/mol). Both enzymes were stable at 60 degrees C for more than 2 h; at 70 degrees C, the half-life for thermal inactivation was 40 and 180 min for Est55 and Est30, respectively. With p-nitrophenyl caproate as the substrate and assayed at 60 degrees C, Est55 had K(m) and k(cat) values of 0.5 microM and 39758 s(-1) while Est30 exhibited values of 2.16 microM and 38 s(-1). Inhibition studies indicated that both Est30 and Est55 were strongly inhibited by phenylmethanesulfonyl fluoride, p-hydroxymercuribenzoate, and tosyl-l-phenylalanine, consistent with the proposed presence of Ser-His-Glu catalytic triad of the alpha/beta hydrolase family. The enzymatic properties of Est30 and Est55 reported here warrant the potential applications of these enzymes in biotechnological industries. PMID:15033540

  5. The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6

    PubMed Central

    Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval

    1999-01-01

    A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143

  6. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis.

    PubMed

    Brown, A T; Wittenberger, C L

    1971-05-01

    Glucose-adapted Streptococcus faecalis produced little if any (14)CO(2) from glucose-1-(14)C, although high levels of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) were detected in cell-free extracts. Metabolism of glucose through the oxidative portion of the hexose-monophosphate pathway was shown to be regulated in this organism by the specific inhibitory interaction of the Embden-Meyerhof intermediate, fructose-1, 6-diphosphate (FDP), with 6-phosphogluconate dehydrogenase. Glucose-6-phosphate dehydrogenase activity was unaffected by FDP. The S. faecalis 6-phosphogluconate dehydrogenase was partially purified from crude extracts by standard fractionation procedures and certain kinetic parameters of the FDP-mediated inhibition were investigated. The negative effector was shown to cause a decrease in V(max) and an increase in the apparent K(m) for both 6-phosphogluconate and nicotinamide adenine dinucleotide phosphate (NADP). These effects were apparently a consequence of the ligand interacting with the enzyme at a site distinct from either the substrate or the coenzyme sites. Among the evidence supporting this was the fact that beta-mercaptoethanol blocked completely FDP inhibition, but had no effect on catalytic activity. The possibility that the regulation of 6-phosphogluconate dehydrogenase activity by FDP might be of some general significance was suggested by the observation that this enzyme from several other sources was also sensitive to FDP.

  7. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase

    PubMed Central

    Wu, Gang; Fiser, András; ter Kuile, Benno; Šali, Andrej; Müller, Miklós

    1999-01-01

    Lactate dehydrogenase (LDH) is present in the amitochondriate parasitic protist Trichomonas vaginalis and some but not all other trichomonad species. The derived amino acid sequence of T. vaginalis LDH (TvLDH) was found to be more closely related to the cytosolic malate dehydrogenase (MDH) of the same species than to any other LDH. A key difference between the two T. vaginalis sequences was that Arg91 of MDH, known to be important in coordinating the C-4 carboxyl of oxalacetate/malate, was replaced by Leu91 in LDH. The change Leu91Arg by site-directed mutagenesis converted TvLDH into an MDH. The reverse single amino acid change Arg91Leu in TvMDH, however, gave a product with no measurable LDH activity. Phylogenetic reconstructions indicate that TvLDH arose from an MDH relatively recently. PMID:10339579

  8. [Study of the mechanism of erythropoietin effect on energy metabolism in the bone marrow].

    PubMed

    Zinov'ev, Iu V

    1976-01-01

    In extracts of rabbit bone marrow cells was studied effect of erythropoietine on the activity of some enzymes (hexokinase, phosphoglucomutase, phosphohexoisomerase, lactate dehydrogenase, glucoso-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP-reductase). The NADP-reductase activity was increased under the effect of erythropoietine; the activities of other enzymes studied was not altered.

  9. Sorbitol dehydrogenase is a zinc enzyme.

    PubMed Central

    Jeffery, J; Chesters, J; Mills, C; Sadler, P J; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and polyol dehydrogenases, and for establishing correlations of structure and function with other important zinc-containing proteins. PMID:6370679

  10. Crystallization and preliminary crystallographic studies of the recombinant l-N-carbamoylase from Geobacillus stearothermophilus CECT43

    PubMed Central

    Martínez-Rodríguez, Sergio; García-Pino, Abel; Las Heras-Vázquez, Francisco Javier; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Loris, Remy; García-Ruiz, Juan Ma.; Gavira, Jose Antonio

    2008-01-01

    N-Carbamoyl-l-amino-acid amidohydrolases (l-N-carbamoylases; EC 3.5.1.87) hydrolyze the carbon–nitrogen bond of the ureido group in N-carbamoyl-l-α-amino acids. These enzymes are commonly used in the production of optically pure natural and non-natural l-amino acids using the ‘hydantoinase process’. Recombinant l-N-carbamoylase from Geobacillus stearothermophilus CECT43 has been expressed, purified and crystallized by hanging-drop vapour diffusion. X-­ray data were collected to a resolution of 2.75 Å. The crystals belonged to space group P21212, with unit-cell parameters a = 103.2, b = 211.7, c = 43.1 Å and two subunits in the asymmetric unit. PMID:19052368

  11. Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles.

    PubMed

    Straksys, Antanas; Kochane, Tatjana; Budriene, Saulute

    2016-11-15

    The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10°C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology. PMID:27283635

  12. Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles.

    PubMed

    Straksys, Antanas; Kochane, Tatjana; Budriene, Saulute

    2016-11-15

    The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10°C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology.

  13. Plasma sterilization of Geobacillus Stearothermophilus by O{mathsf2}:N{mathsf2} RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Sasaki, T.; Rossi, F.

    2006-05-01

    The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.

  14. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus

    PubMed Central

    Solomon, Hodaya V.; Tabachnikov, Orly; Feinberg, Hadar; Govada, Lata; Chayen, Naomi E.; Shoham, Yuval; Shoham, Gil

    2013-01-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure–function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P212121, with average crystallographic unit-cell parameters of a = 71.84, b = 181.35, c = 196.57 Å. Full diffraction data sets to 2.45 and 2.50 Å resolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB. PMID:24100561

  15. Crystallization and preliminary crystallographic analysis of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6

    SciTech Connect

    Brüx, Christian; Niefind, Karsten; Ben-David, Alon; Leon, Maya; Shoham, Gil; Shoham, Yuval; Schomburg, Dietmar

    2005-12-01

    The crystallization and preliminary X-ray analysis of a β-d-xylosidase from G. stearothermophilus T-6, a family 43 glycoside hydrolase, is described. Native and catalytic inactive mutants of the enzymes were crystallized in two different space groups, orthorhombic P2{sub 1}2{sub 1}2 and tetragonal P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2), using a sensitive cryoprotocol. The latter crystal form diffracted X-rays to a resolution of 2.2 Å. β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6 (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2{sub 1}2{sub 1}2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å.

  16. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism.

  17. Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes.

    PubMed

    Nakai, Tadashi; Kuramitsu, Seiki; Kamiya, Nobuo

    2008-06-01

    Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes. PMID:18316329

  18. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.

    PubMed

    Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil

    2015-12-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active

  19. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.

    PubMed

    Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil

    2015-12-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active

  20. Nucleotide sequence and cloning in Bacillus subtilis of the Bacillus stearothermophilus pleiotropic regulatory gene degT.

    PubMed Central

    Takagi, M; Takada, H; Imanaka, T

    1990-01-01

    The regulatory gene (degT) from Bacillus stearothermophilus NCA1503 which enhanced production of extracellular alkaline protease (Apr) was cloned in Bacillus subtilis with pTB53 as a vector. When B. subtilis MT-2 (Npr- [deficiency of neutral protease] Apr+) was transformed with the recombinant plasmid, pDT145, the plasmid carrier produced about three times more alkaline protease than did the wild-type strain. In contrast, when B. subtilis DB104 (Npr- Apr-) was used as a host, the transformant with pDT145 could not exhibit any protease activity. After construction of the deletion plasmids, DNA sequencing was done. A large open reading frame was found, and nucleotide sequence analysis showed that the degT gene was composed of 1,116 bases (372 amino acid residues, molecular weight of 41,244). A Shine-Dalgarno sequence was found nine bases upstream from the open reading frame. A B. subtilis strain carrying degT showed the following pleiotropic phenomena: (i) enhancement of production of extracellular enzymes such as alkaline protease and levansucrase, (ii) repression of autolysin activity, (iii) decrease of transformation efficiency for B. subtilis (competent cell procedure), (iv) altered control of sporulation, (v) loss of flagella, and (vi) abnormal cell division. When B. stearothermophilus SIC1 was transformed with the recombinant plasmid carrying degT, the transformants exhibited abnormal cell division. These phenomena are similar to those of the phenotypes of degSU(Hy) (hyperproduction), degQ(Hy), and degR mutants of B. subtilis. However, the amino acid sequence of the degT product (DegT) is different from those of the reported gene products. Furthermore, DegT includes a hydrophobic core region in the N-terminal portion (amino acid numbers 50 to 160), a consensus sequence for a DNA binding region (amino acid numbers 160 to 179), and a region homologous to transcription activator proteins (amino acid numbers 351 to 366). We discuss the possibility that the membrane

  1. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions.

    PubMed

    Machado, A; Nuñez de Castro, I; Mayor, F

    1975-02-28

    The activities of isocitrate dehydrogenase (NAD), isocitrate dehydrogenase (NADP) and oxoglutarate dehydrogenase have been investigated in Saccharomyces cerevisiae grown in a variety of aerobic and hypoxic conditions, the latter including oxygen deprivation, high glucose concentration, addition of inhibitors of mitochondrial protein synthesis, respiratory inhibition by azide, and impaired respiration mutants. All hypoxic conditions led to a marked decrease of oxoglutarate dehydrogenase and significant decreases of the two isocitrate dehydrogenases. According to its kinetic properties, the NAD-isocitrate dehydrogenase will not be operative in hypoxia "in vivo". From these and other related facts it is concluded that hypoxic conditions in yeast generally lead to a splitting of the tricarboxylic acid cycle and that glutamate synthesis in these conditions takes place through the coupling of the NADP-linked isocitrate and glutamate dehydrogenases.

  2. [The PQQ-dehydrogenases. A novel example of bacterial quinoproteins].

    PubMed

    Flores-Encarnación, Marcos; Sánchez-Cuevas, Mariano; Ortiz-Gutiérrez, Felipe

    2004-01-01

    The word "quinoprotein" describes four groups of different enzymes which have cofactors containing o-quinones. Pyrrolo-quinoline quinone (PQQ) is not covalently attached. PQQ is the cofactor of several quinoprotein bacterial dehydrogenases including glucose dehydrogenase (G-DH), alcohol dehydrogenase (A-DH) and aldehyde dehydrogenase (AL-DH). These dehydrogenases are located in the periplasm of Gram-negative bacteria. This report summarises the structural properties of quinoprotein dehydrogenases, such as the biological functions and biotechnological aspects more important.

  3. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  4. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  5. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  6. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  7. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  8. Formate dehydrogenase from Pseudomonas oxalaticus.

    PubMed

    Müller, U; Willnow, P; Ruschig, U; Höpner, T

    1978-02-01

    Formate dehydrogenase (EC 1.2.1.2) from Pseudomonas oxalaticus has been isolated and characterized. The enzyme (molecular weight 315000) is a complex flavoprotein containing 2 FMN, 18--25 non-heme iron atoms and 15--20 acid-labile sulphides. In the last step of the purification, a sucrose gradient centrifugation, a second catalytically active species has been found apparently originating from a dissociation of the enzyme into two equal subunits. The enzyme is specific toward its natural substrate formate. It transfers electrons to NAD+, oxygen, ferricyanide, and a lot of nonphysiological acceptors (dyes). In addition electrons are transferred from NADH to these acceptors. The (reversible) removal of FMN requires a reduction step. Reincorporation has been followed by the reappearance of the reactivity against formate and by fluorescence titration. The deflavo enzyme also binds FAD and riboflavin. The resulting enzyme species show characteristic catalytic abilities. Activity against formate is peculiar to the FMN species. PMID:631130

  9. Opine dehydrogenases in marine invertebrates.

    PubMed

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  10. How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus Stearothermophilus KinB with the Inhibitor Sda

    SciTech Connect

    Bick, M.; Lamour, V; Rajashankar, K; Gordiyenko, Y; Robinson, C; Darst, S

    2009-01-01

    Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.

  11. Hazard Inherent in Microbial Tracers: Reduction of Risk by the Use of Bacillus stearothermophilus Spores in Aerobiology

    PubMed Central

    Sattar, Syed A.; Synek, E. J.; Westwood, J. C. N.; Neals, Pierrette

    1972-01-01

    The use of a „biological tracer” forms an essential part of many aerobiological experiments. Where release of such tracers is likely to result in deliberate or inadvertent human exposure, safety becomes a primary consideration in the selection of the tracer organism. Of the three most commonly used organisms, namely Bacillus subtilis, Escherichia coli, and Serratia marcescens, only the first comes near to satisfying the need for nonpathogenicity and even it has been incriminated as a cause of human infection, sometimes with a fatal outcome. The relevant characteristics of B. stearothermophilus were, therefore, investigated. Because it can grow only at elevated temperatures (minimum 41 C; optimum 56 C), it should not pose a threat to human health and this view is supported by experimental evidence to be presented. It is extremely easy to grow and maintain in the laboratory, and spore suspensions are easily prepared and stored. It withstands the stresses of aerosolization and sampling and its stability in the aerosol state compares favorably with that of B. subtilis var. niger. PMID:4557557

  12. [The suitability of commercial bioindicators with spores of B. stearothermophilus for the testing of formaldehyde gas sterilizers].

    PubMed

    Mecke, P; Christiansen, B; Pirk, A

    1991-09-01

    Commercially available biological indicators with spores of B. stearothermophilus were investigated by the Hygiene-Institutes of Kiel and Lubeck. The objective was to find out if those indicators to which sheep blood was added subsequently correspond to the formaldehyde resistance required by. DIN 58948, part 14 (DIN 58948, part 13). Both working groups determined unanimously that the indicators of one producer showed a resistance too low compared to the remaining biological indicators showing a much higher resistance than required. Even biological indicators manufactured strictly in accordance to the testing standard were more resistant than demanded. This also corresponded to the commercially available untreated spores. On the other hand, practice showed that the biological indicators investigated within this study can be easily killed by formaldehyde sterilizers if they respond to the technical standard. In order to realize the testing of these sterilizers with indicators of a generally accepted resistance we propose either to demand for an equivalently higher formaldehyde resistance or to set up a killing period for the spore resistance from 150 to 240 min until experimentally important data are available. Concerning the blood containing indicators the results of both working groups differed considerably within the limits of formaldehyde efficiency whereas this was not the case with untested commercially available spores. As the addition of thinned blood did not cause an increase in resistance we recommend, in the interest of standardized investigative conditions, not to use it. PMID:1953931

  13. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus.

    PubMed

    Li, Zhu; Duan, Xuguo; Wu, Jing

    2016-03-20

    The thermostability of the maltohexaose-forming α-amylase from Bacillus stearothermophilus (AmyMH) without added Ca(2+) was improved through structure-based rational design in this study. Through comparison of a homologous model structure of AmyMH with the crystal structure of the thermostable α-amylase from Bacillus licheniformis, Ser242, which located at the beginning of fourth α-helix of the central (β/α)8 barrel was selected for mutation to improve thermostability. In addition, an amide-containing side chain (Asn193) and a loop in domain B (ΔIG mutation), which have been proven to be important for thermostability in corresponding position of other α-amylases, were also investigated. Five mutants carrying the mutations ΔIG, N193F, S242A, ΔIG/N193F, and ΔIG/N193F/S242A were generated and their proteins characterized. The most thermostable mutant protein, ΔIG/N193F/S242A, exhibited a 26-fold improvement in half-life at 95°C compared to the wild-type enzyme without added Ca(2+). Mutant ΔIG/N193F/S242A also exhibited substantially better activity and stability in the presence of the chelator EDTA, demonstrating enhanced Ca(2+) binding. These results suggest that mutant ΔIG/N193F/S242A has potential for use in the industrial liquefaction of starch. PMID:26869314

  14. Crystallization and preliminary crystallographic analysis of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6

    PubMed Central

    Brüx, Christian; Niefind, Karsten; Ben-David, Alon; Leon, Maya; Shoham, Gil; Shoham, Yuval; Schomburg, Dietmar

    2005-01-01

    β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6 (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P21212 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P41212 (or the enantiomorphic space group P43212; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å. PMID:16511233

  15. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.

    PubMed

    Samant, Shalaka; Gupta, Gunja; Karthikeyan, Subbulakshmi; Haq, Saiful F; Nair, Ayyappan; Sambasivam, Ganesh; Sukumaran, Sunilkumar

    2014-09-01

    Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest. PMID:25038884

  16. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  17. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    PubMed Central

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  18. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

    PubMed Central

    Egelseer, E; Schocher, I; Sára, M; Sleytr, U B

    1995-01-01

    The S-layer lattice from Bacillus stearothermophilus DSM 2358 completely covers the cell surface and exhibits oblique symmetry. During growth of B. stearothermophilus DSM 2358 on starch medium, three amylases with molecular weights of 58,000, 98,000, and 184,000 were secreted into the culture fluid, but only the high-molecular-weight enzyme was found to be cell associated. Studies of interactions between cell wall components and amylases revealed no affinity of the high-molecular-weight amylase to isolated peptidoglycan. On the other hand, this enzyme was always found to be associated with S-layer self-assembly products or S-layer fragments released during preparation of spheroplasts by treatment of whole cells with lysozyme. The molar ratio of S-layer subunits to the bound amylase was approximately 8:1, which corresponded to one enzyme molecule per four morphological subunits. Immunoblotting experiments with polyclonal antisera against the high-molecular-weight amylase revealed a strong immunological signal in response to the enzyme but no cross-reaction with the S-layer protein or the smaller amylases. Immunogold labeling of whole cells with anti-amylase antiserum showed that the high-molecular-weight amylase is located on the outer face of the S-layer lattice. Because extraction of the amylase was possible without disintegration of the S-layer lattice into its constituent subunits, it can be excluded that the enzyme is incorporated into the crystal lattice and participates in the self-assembly process. Affinity experiments strongly suggest the presence of a specific recognition mechanism between the amylase molecules and S-layer protein domains either exposed on the outermost surface or inside the pores. In summary, results obtained in this study confirmed that the S-layer protein from B. stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. PMID:7533757

  19. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

    PubMed

    Egelseer, E; Schocher, I; Sára, M; Sleytr, U B

    1995-03-01

    The S-layer lattice from Bacillus stearothermophilus DSM 2358 completely covers the cell surface and exhibits oblique symmetry. During growth of B. stearothermophilus DSM 2358 on starch medium, three amylases with molecular weights of 58,000, 98,000, and 184,000 were secreted into the culture fluid, but only the high-molecular-weight enzyme was found to be cell associated. Studies of interactions between cell wall components and amylases revealed no affinity of the high-molecular-weight amylase to isolated peptidoglycan. On the other hand, this enzyme was always found to be associated with S-layer self-assembly products or S-layer fragments released during preparation of spheroplasts by treatment of whole cells with lysozyme. The molar ratio of S-layer subunits to the bound amylase was approximately 8:1, which corresponded to one enzyme molecule per four morphological subunits. Immunoblotting experiments with polyclonal antisera against the high-molecular-weight amylase revealed a strong immunological signal in response to the enzyme but no cross-reaction with the S-layer protein or the smaller amylases. Immunogold labeling of whole cells with anti-amylase antiserum showed that the high-molecular-weight amylase is located on the outer face of the S-layer lattice. Because extraction of the amylase was possible without disintegration of the S-layer lattice into its constituent subunits, it can be excluded that the enzyme is incorporated into the crystal lattice and participates in the self-assembly process. Affinity experiments strongly suggest the presence of a specific recognition mechanism between the amylase molecules and S-layer protein domains either exposed on the outermost surface or inside the pores. In summary, results obtained in this study confirmed that the S-layer protein from B. stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

  20. Shikimate dehydrogenase from Pinu sylvestris L. needles

    SciTech Connect

    Osipov, V.I.; Shein, I.V.

    1986-07-10

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP/sup +/, but also with NAD/sup +/. The values of K/sub m/ for shikimate, when NADP/sup +/ and NAD/sup +/ are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed.

  1. The effect of different water-insoluble anorganic salts on the resistance and storage time of Bacillus stearothermophilus spores used for biological indicators.

    PubMed

    Müller, H E

    1994-12-01

    The survival of Bacillus stearothermophilus spores was investigated over 7 years. The spores were precipitated with 18 insoluble inorganic salts. There were hydroxides, carbonates, oxalates, phosphates, and sulfate of aluminium, barium, calcium, iron, magnesium, manganese, and tin. The stability of the spores to dry and moist heat was strongest in precipitates of barium and calcium salts. Most phosphates and the heavy metals caused a rapid inactivation of spores. Finally, the survival of the spores in the 7 years of observation was the best in barium sulfate and calcium oxalate. PMID:7748440

  2. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.

    PubMed

    Sharma, Gyanesh; First, Eric A

    2009-02-13

    Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase can be divided into two steps. In the first step, tyrosine is activated by ATP to form the tyrosyl-adenylate intermediate. In the second step, the tyrosyl moiety is transferred to the 3' end of tRNA. To investigate the roles that enthalpic and entropic contributions play in catalysis by Bacillus stearothermophilus tyrosyl-tRNA synthetase (TyrRS), the temperature dependence for the activation of tyrosine and subsequent transfer to tRNA(Tyr) has been determined using single turnover kinetic methods. A van't Hoff plot for binding of ATP to the TyrRS.Tyr complex reveals three distinct regions. Particularly striking is the change occurring at 25 degrees C, where the values of DeltaH(0) and DeltaS(0) go from -144 kJ/mol and -438 J/mol K below 25 degrees C to +137.9 kJ/mol and +507 J/mol K above 25 degrees C. Nonlinear Eyring and van't Hoff plots are also observed for formation of the TyrRS.[Tyr-ATP](double dagger) and TyrRS.Tyr-AMP complexes. Comparing the van't Hoff plots for the binding of ATP to tyrosyl-tRNA synthetase in the absence and presence of saturating tyrosine concentrations indicates that the temperature-dependent changes in DeltaH(0) and DeltaS(0) for the binding of ATP only occur when tyrosine is bound to the enzyme. Previous investigations revealed a similar synergistic interaction between the tyrosine and ATP substrates when the "KMSKS" signature sequence is deleted or replaced by a nonfunctional sequence. We propose that the temperature-dependent changes in DeltaH(0) and DeltaS(0) are because of the KMSKS signature sequence being conformationally constrained and unable to disrupt this synergistic interaction below 25 degrees C. PMID:19098308

  3. Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).

    PubMed

    Kinloch, Ryan D; Sono, Masanori; Sudhamsu, Jawahar; Crane, Brian R; Dawson, John H

    2010-03-01

    Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C. PMID:20110129

  4. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6.

    PubMed

    Dann, Roie; Lansky, Shifra; Lavid, Noa; Zehavi, Arie; Belakhov, Valery; Baasov, Timor; Dvir, Hay; Manjasetty, Babu; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-12-01

    Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein.

  5. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus.

    PubMed

    Shulami, Smadar; Zaide, Galia; Zolotnitsky, Gennady; Langut, Yael; Feld, Geoff; Sonenshein, Abraham L; Shoham, Yuval

    2007-02-01

    Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system. PMID:17142383

  6. A New Family of Carbohydrate Esterases Is Represented by a GDSL Hydrolase/Acetylxylan Esterase from Geobacillus stearothermophilus*

    PubMed Central

    Alalouf, Onit; Balazs, Yael; Volkinshtein, Margarita; Grimpel, Yael; Shoham, Gil; Shoham, Yuval

    2011-01-01

    Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for kcat and kcat/Km suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family. PMID:21994937

  7. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Dawson, William M; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K

    2014-12-10

    Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of the protein. Our simulations indicate that BsDHFR has greater flexibility than EcDHFR on the ps-ns time scale, which affects the coupling of the environmental motions of the protein to the chemical coordinate and consequently to the recrossing trajectories on the reaction barrier. The intensity of the dynamic coupling in DHFRs is influenced by compensatory temperature-dependent factors, namely the enthalpic barrier needed to achieve an ideal transition-state configuration with minimal nonproductive trajectories and the protein disorder that disrupts the electrostatic preorganization required to stabilize the transition state. Together with our previous studies of other DHFRs, the results presented here provide a general explanation why protein dynamic effects vary between enzymes. Our theoretical treatment demonstrates that these effects can be satisfactorily reproduced by including a transmission coefficient in the rate constant calculation, whose dependence on temperature is affected by the protein flexibility. PMID:25396728

  8. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6.

    PubMed

    Dann, Roie; Lansky, Shifra; Lavid, Noa; Zehavi, Arie; Belakhov, Valery; Baasov, Timor; Dvir, Hay; Manjasetty, Babu; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-12-01

    Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein. PMID:25484225

  9. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  10. The two active sites in human branched-chain alpha-keto acid dehydrogenase operate independently without an obligatory alternating-site mechanism.

    PubMed

    Li, Jun; Machius, Mischa; Chuang, Jacinta L; Wynn, R Max; Chuang, David T

    2007-04-20

    A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction. PMID:17329260

  11. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution.

    PubMed

    Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J

    2015-01-01

    The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.

  12. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization.

    PubMed

    Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo

    2012-12-01

    Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance. PMID:22872104

  13. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism. PMID:7592136

  14. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution.

    PubMed

    Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J

    2015-01-01

    The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments. PMID:25615972

  15. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  16. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  17. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed Central

    Kelly, N; Delaney, M; O'Carra, P

    1978-01-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  18. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  19. Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase.

    PubMed Central

    May, H D; Schauer, N L; Ferry, J G

    1986-01-01

    The molybdopterin cofactor from the formate dehydrogenase of Methanobacterium formicicum was studied. The cofactor was released by guanidine denaturation of homogeneous enzyme, which also released greater than 80% of the molybdenum present in the enzyme. The anoxically isolated cofactor was nonfluorescent, but after exposure to air it fluoresced with spectra similar to those of described molybdopterin cofactors. Aerobic release from acid-denatured formate dehydrogenase in the presence of I2 and potassium iodide produced a mixture of fluorescent products. Alkaline permanganate oxidation of the mixture yielded pterin-6-carboxylic acid as the only detectable fluorescent product. The results showed that the cofactor from formate dehydrogenase contained a pterin nucleus with a 6-alkyl side chain of unknown structure. Covalently bound phosphate was also present. The isolated cofactor was unable to complement the cofactor-deficient nitrate reductase of the Neurospora crassa nit-1 mutant. PMID:3700335

  20. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  1. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  2. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  3. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the activity of the lactic dehydrogenase enzyme in serum. Increased levels of lactic dehydrogenase...

  4. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  5. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  6. The physiological role of liver alcohol dehydrogenase.

    PubMed

    Krebs, H A; Perkins, J R

    1970-07-01

    1. Yeast alcohol dehydrogenase was used to determine ethanol in the portal and hepatic veins and in the contents of the alimentary canal of rats given a diet free from ethanol. Measurable amounts of a substance behaving like ethanol were found. Its rate of interaction with yeast alcohol dehydrogenase and its volatility indicate that the substance measured was in fact ethanol. 2. The mean alcohol concentration in the portal blood of normal rats was 0.045mm. In the hepatic vein, inferior vena cava and aorta it was about 15 times lower. 3. The contents of all sections of the alimentary canal contained measurable amounts of ethanol. The highest values (average 3.7mm) were found in the stomach. 4. Infusion of pyrazole (an inhibitor of alcohol dehydrogenase) raised the alcohol concentration in the portal vein 10-fold and almost removed the difference between portal and hepatic venous blood. 5. Addition of antibiotics to the food diminished the ethanol concentration of the portal blood to less than one-quarter and that of the stomach contents to less than one-fortieth. 6. The concentration of alcohol in the alimentary canal and in the portal blood of germ-free rats was much decreased, to less than one-tenth in the alimentary canal and to one-third in the portal blood, but detectable quantities remained. These are likely to arise from acetaldehyde formed by the normal pathways of degradation of threonine, deoxyribose phosphate and beta-alanine. 7. The results indicate that significant amounts of alcohol are normally formed in the gastro-intestinal tract. The alcohol is absorbed into the circulation and almost quantitatively removed by the liver. Thus the function, or a major function, of liver alcohol dehydrogenase is the detoxication of ethanol normally present. 8. The alcohol concentration in the stomach of alloxan-diabetic rats was increased about 8-fold. 9. The activity of liver alcohol dehydrogenase is generally lower in carnivores than in herbivores and omnivores

  7. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic dehydrogenase immunological test...

  8. Properties of formate dehydrogenase in Methanobacterium formicicum.

    PubMed Central

    Schauer, N L; Ferry, J G

    1982-01-01

    Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm. Images PMID:7061389

  9. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    SciTech Connect

    Girio, F.M.; Amaral-Collaco, M.T.; Pelica, F.

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  10. Linkage Relationships of Six Enzyme Loci in Interspecific Sunfish Hybrids (Genus Lepomis)

    PubMed Central

    Wheat, T. E.; Whitt, G. S.; Childers, W. F.

    1973-01-01

    Backcross hybrids produced from the bluegill, the red-ear sunfish, and their F1 interspecific hybrid have been analyzed for the inheritance of six enzyme phenotypes. Malate dehydrogenase A and B, tetrazolium oxidase, 6-phosphogluconate dehydrogenase, skeletal muscle esterase, and liver α-glycerophosphate dehydrogenase are all inherited in a mendelian manner as codominant alleles at nuclear loci. 6-phosphogluconate dehydrogenase and α-glycerophosphate dehydrogenase are encoded by linked loci, undergoing recombination at a frequency of 15%-22%. No other case of linkage was observed. The absence of linkage between the homologous malate dehydrogenase loci is of particular interest. These interspecific hybrids appear to be very useful for studies of biochemical genetics. PMID:17248621

  11. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus

    SciTech Connect

    Hawwa, Renda; Aikens, John; Turner, Robert J.; Santarsiero, Bernard D.; Mescar, Andrew D.

    2009-08-31

    A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.

  12. Biological indicators for low temperature steam and formaldehyde sterilization: investigation of the effect of change in temperature and formaldehyde concentration on spores of Bacillus stearothermophilus NCIMB 8224.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1996-03-01

    Five strains of Bacillus stearothermophilus have been studied to identify a spore strain to be used as a biological indicator organism for low temperature steam and formaldehyde sterilization. Three strains gave poor reproducibility of batch size and growth index and were discarded. The other two strains gave good reproducibility with a high growth index and gave rise to linear survivor curves when exposed to 5% aqueous formaldehyde. However, only NCIMB 8224 sporulates on a simpler medium and as it was the most resistant to formaldehyde, it was further studied. Tests were carried out in a modified miniclave and factors studied included temperature of the steam and formaldehyde concentration. All studies confirmed the suitability of this strain as a biological indicator organism. PMID:8852673

  13. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Hodaya V; Feinberg, Hadar; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-11-01

    L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer

  14. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Hodaya V; Feinberg, Hadar; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-11-01

    L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer

  15. Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase.

    PubMed

    Ikegaya, Kazuo

    2005-03-01

    The effects of salts on the rate constants of inactivation by heat of yeast alcohol dehydrogenase (YADH) at 60.0 degrees C were measured. Different effects were observed at low and high salt concentrations. At high concentrations, some salts had stabilizing effects, while others were destabilizing. The effects of salts in the high concentration range examined can be described as follows: (decreased thermal stability) NaClO(4) < NaI = (C(2)H(5))(4)NBr < NH(4)Br < NaBr = KBr = CsBr = (no addition) < (CH(3))(4)NBr < KCl < KF < Na(2)SO(4) (increased thermal stability). The decreasing effect of NaClO(4) on YADH controlled the thermal stability of the enzyme absolutely and was not compensated by the addition of Na(2)SO(4), a salt which stabilized the enzyme. However, Na(2)SO(4) compensation did occur in response to the decrease in thermal stability caused by (C(2)H(5))(4)NBr. The rate constants of inactivation by heat (k (in)) of the enzyme were measured at various temperatures. Effective values of the thermodynamic activation parameters of thermal inactivation, activation of free energy (DeltaG (double dagger)), activation enthalpy (DeltaH (double dagger)), and activation entropy (DeltaS (double dagger)), were determined. The thermal stability of YADH in 0.8 M Na(2)SO(4) increased more than that of pyruvate kinase from Bacillus stearothermophilus, a moderate thermophile. The changes in the values of DeltaH (double dagger) and DeltaS (double dagger) were great and showed a general compensatory tendency, with the exception of in the case of NaClO(4). The temperature for the general compensation effect (T (c)) was approximately 123 degrees C. With Na(2)SO(4), the thermal stability of YADH at a temperature below T (c) was greater than that in the absence of salt due to the higher values of DeltaH (double dagger) and DeltaS (double dagger), respectively, and thus was an example of low-temperature enzymatic stabilization. With (C(2)H(5))(4)NBr, the thermal stability of YADH

  16. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility.

  17. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  18. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  19. Prenatal presentation of pyruvate dehydrogenase complex deficiency.

    PubMed

    Natarajan, Niranjana; Tully, Hannah M; Chapman, Teresa

    2016-08-01

    We present the case of a female infant referred for prenatal MR evaluation of ventriculomegaly, which had been attributed by the referring obstetrician to aqueductal stenosis. Fetal MR confirmed ventriculomegaly but also demonstrated cerebral volume loss and white matter abnormalities. After birth, the infant developed persistent lactic acidosis. A diagnosis of pyruvate dehydrogenase complex deficiency was made on the basis of metabolic and molecular genetic studies. Ventriculomegaly is a common referral reason for fetal MR, yet there are few published reports of the radiographic findings that accompany inborn errors of metabolism, one potentially under-recognized cause of enlarged ventricles. This case contributes to this small body of literature on the imaging features of pyruvate dehydrogenase complex deficiency by describing pre- and postnatal MR findings and key clinical details. Our report emphasizes the necessity of considering pyruvate dehydrogenase complex deficiency and other metabolic disorders as potential etiologies for fetal ventriculomegaly since prompt diagnosis may allow for early initiation of treatment and improve outcome. PMID:27026023

  20. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  1. Relationships within the aldehyde dehydrogenase extended family.

    PubMed

    Perozich, J; Nicholas, H; Wang, B C; Lindahl, R; Hempel, J

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

  2. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.

    PubMed Central

    Koenig, K; Andreesen, J R

    1990-01-01

    The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images PMID:2170335

  3. Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: a mechanistic study.

    PubMed

    Sarafzadeh, Pegah; Zeinolabedini Hezave, Ali; Mohammadi, Sahar; Niazi, Ali; Ayatollahi, Shahab

    2014-05-01

    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding experiments, interfacial tension, viscosity, pH and Amott wettability index measurements. At the second stage, comparing functionality of B. stearothermophilus SUCPM#14 (a gram-positive type) with the previously examined strain namely Enterobacter cloacae as a gram-negative type, proposed this hypothesis that the cell structure significantly affects the interfacial behaviors. New designed protocols were utilized to check the individual effects of cells, bioproducts and interaction of these together on the oil/water and also fluids/rock interfaces. The final results showed that the cells of B. stearothermophilus SUCPM#14 adhere more into the oil/water interface compared to E. cloacae and change its rheological properties; e.g. its elastic properties which affect the ultimate microbial oil recovery efficiency. Eventually, contradicting results revealed that biosurfactant produced by E. cloacae was able to considerably reduce the interfacial tension and alter the wettability of the rock (to neutral conditions) while biosurfactant produced by B. stearothermophilus SUCPM#14 was not very effective.

  4. Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: a mechanistic study.

    PubMed

    Sarafzadeh, Pegah; Zeinolabedini Hezave, Ali; Mohammadi, Sahar; Niazi, Ali; Ayatollahi, Shahab

    2014-05-01

    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding experiments, interfacial tension, viscosity, pH and Amott wettability index measurements. At the second stage, comparing functionality of B. stearothermophilus SUCPM#14 (a gram-positive type) with the previously examined strain namely Enterobacter cloacae as a gram-negative type, proposed this hypothesis that the cell structure significantly affects the interfacial behaviors. New designed protocols were utilized to check the individual effects of cells, bioproducts and interaction of these together on the oil/water and also fluids/rock interfaces. The final results showed that the cells of B. stearothermophilus SUCPM#14 adhere more into the oil/water interface compared to E. cloacae and change its rheological properties; e.g. its elastic properties which affect the ultimate microbial oil recovery efficiency. Eventually, contradicting results revealed that biosurfactant produced by E. cloacae was able to considerably reduce the interfacial tension and alter the wettability of the rock (to neutral conditions) while biosurfactant produced by B. stearothermophilus SUCPM#14 was not very effective. PMID:24373916

  5. A comparison of potato and vertebrate lactate dehydrogenases.

    PubMed Central

    Poerio, E; Davies, D D

    1980-01-01

    A 2000-fold purification of L(+)-lactate dehydrogenase from potatoes is reported. Five isoenzymes of lactate dehydrogenase can be detected in crude extracts of potato, and three of these are present in the purified preparation. The enzyme (mol.wt. 150 000), which is composed of four subunits (mol.wt. 37 500), is active with the same oxo acids and hydroxy acids that have been reported as substrates with the same oxo acids and hydroxy acids that have been reported as substrates for vertebrate lactate dehydrogenases. These similarities between potato and vertebrate lactate dehydrogenases contrast sharply with some other reports on potato lactate dehydrogenase. These discrepancies are discussed in relation to the proposition that vertebrate and potato lactate dehydrogenases share a common evolutionary origin. PMID:7236200

  6. Partial Similarities Between Yeast and Liver Alcohol Dehydrogenases

    PubMed Central

    Jörnvall, Hans

    1973-01-01

    The primary structure of about half of the protein chain of yeast alcohol dehydrogenase has been determined and compared with the amino-acid sequences of other dehydrogenases. The enzyme is found to be distantly related to horse-liver alcohol dehydrogenase, although these two proteins have different quaternary structures and subunit sizes. Some regions show no significant similarities, but long segments within the N-terminal parts of the molecules are homologous, suggesting a common and important function for these segments. Ancestral connections between some different dehydrogenases can be concluded and the degree of evolutionary changes may be estimated. PMID:4599620

  7. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  8. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  9. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  10. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  11. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  12. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  13. Transcriptional regulation of pyruvate dehydrogenase kinase.

    PubMed

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2012-10-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  14. Use of 'small but smart' libraries to enhance the enantioselectivity of an esterase from Bacillus stearothermophilus towards tetrahydrofuran-3-yl acetate.

    PubMed

    Nobili, Alberto; Gall, Markus G; Pavlidis, Ioannis V; Thompson, Mark L; Schmidt, Marlen; Bornscheuer, Uwe T

    2013-07-01

    Two libraries of simultaneous double mutations in the active site region of an esterase from Bacillus stearothermophilus were constructed to improve the enantioselectivity in the hydrolysis of tetrahydrofuran-3-yl acetate. As screening of large mutant libraries is hampered by the necessity for GC/MS analysis, mutant libraries were designed according to a 'small but smart' concept. The design of focused libraries was based on data derived from a structural alignment of 3317 amino acid sequences of α/β-hydrolase fold enzymes with the bioinformatic tool 3DM. In this way, the number of mutants to be screened was substantially reduced as compared with a standard site-saturation mutagenesis approach. Whereas the wild-type esterase showed only poor enantioselectivity (E = 4.3) in the hydrolysis of (S)-tetrahydrofuran-3-yl acetate, the best variants obtained with this approach showed increased E-values of up to 10.4. Furthermore, some variants with inverted enantiopreference were found. PMID:23331978

  15. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus.

    PubMed

    Kinns, Helen; Badelt-Lichtblau, Helga; Egelseer, Eva Maria; Sleytr, Uwe B; Howorka, Stefan

    2010-01-29

    Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies. PMID:19836402

  16. The importance of an extra loop in the B-domain of an alpha-amylase from B. stearothermophilus US100.

    PubMed

    Khemakhem, Bassem; Ben Ali, Mamdouh; Aghajari, Nushin; Juy, Michel; Haser, Richard; Bejar, Samir

    2009-07-17

    To provide insight into the potential role of a loop in domain B of several bacterial alpha-amylases, molecular and structural investigation of Bacillus stearothermophilus alpha-amylase (Amy US100) was used as a model. Combination deletion mutants of G(213), I(214) and G(215), described as a loop-forming on the surface bacterial amylases, were subjected to biochemical and structural investigation. Thermoactivity, thermostability as well calcium requirement were studied for each mutant. Thus, deletion of one residue differently affects only the thermostability. Shortening the loop by deletion of G(213)-I(214) or I(214)-G(215) improved the thermostability and reduces calcium requirement. However, the deletion of three residues has a negative effect on thermostability and reduces the optimal temperature by 17 degrees C. The structural investigation showed that stabilizing deletions contribute to reinforce the architecture of domain B and the active site conformation. The deletion of three residues reduces the flexibility of this region and abolishes a denser hydrogen bond network. PMID:19422796

  17. Comparative studies of S-layer proteins from Bacillus stearothermophilus strains expressed during growth in continuous culture under oxygen-limited and non-oxygen-limited conditions.

    PubMed Central

    Sára, M; Sleytr, U B

    1994-01-01

    The specific properties of S-layer proteins from three different Bacillus stearothermophilus strains revealing oblique, square, or hexagonal lattice symmetry were preserved during growth in continuous culture on complex medium only under oxygen-limited conditions in which glucose was used as the sole carbon source. When oxygen limitation was relieved, amino acids became metabolized, cell density increased, and different S-layer proteins from wild-type strains became rapidly replaced by a new common type of S-layer protein with an apparent subunit molecular weight of 97,000 which assembled into an identical oblique (p2) lattice type. During switching from wild-type strains to variants, patches of the S-layer lattices characteristics for wild-type strains, granular regions, and areas with oblique lattice symmetry could be observed on the surface of individual cells from all organisms. The granular regions apparently consisted of mixtures of the S-layer proteins from the wild-type strains and the newly synthesized p2 S-layer proteins from the variants. S-layer proteins from wild-type strains possessed identical N-terminal regions but led to quite different cleavage products upon peptide mapping, indicating that they are encoded by different genes. Chemical analysis including N-terminal sequencing and peptide mapping showed that the oblique S-layer lattices synthesized under increased oxygen supply were composed of identical protein species. Images PMID:7961489

  18. Novel biocatalysts based on S-layer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: a nanobiotechnological approach.

    PubMed

    Schäffer, Christina; Novotny, René; Küpcü, Seta; Zayni, Sonja; Scheberl, Andrea; Friedmann, Jacqueline; Sleytr, Uwe B; Messner, Paul

    2007-09-01

    The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE (131-903), rSgsE(331-903)) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100 % compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology. PMID:17786898

  19. Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ.

    PubMed

    Nogueira, Maria Luiza C; Sforça, Mauricio Luis; Chin, Yanni K-Y; Mobli, Mehdi; Handler, Aaron; Gorbatyuk, Vitaliy Y; Robson, Scott A; King, Glenn F; Gueiros-Filho, Frederico J; Zeri, Ana Carolina de Mattos

    2015-10-01

    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA.

  20. A differentially conserved residue (Ile42) of GH42 β-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability.

    PubMed

    Dong, Yi-Ning; Chen, Hai-Qin; Sun, Yan-Hui; Zhang, Hao; Chen, Wei

    2015-04-01

    The glycoside hydrolase family 42 (GH42) of thermophilic microorganisms consists of thermostable β-galactosidases that display significant variations in their temperature optima and stabilities. In this study, we compared the substrate binding modes of 2 GH42 β-galactosidases, BgaB from Geobacillus stearothermophilus and A4-β-Gal from Thermus thermophilus A4. The A4-β-Gal has a catalytic triad (Glu312-Arg32-Glu35) with an extended hydrogen bond network that has not been observed in BgaB. In this study, we performed site-saturation mutagenesis of Ile42 in BgaB (equivalent to Glu312 in A4-β-Gal) to study the effects of different residues on thermostability, catalytic function, and the extended hydrogen bond network. Our experimental results suggest that substitution of Ile42 with polar AA enhanced the thermostability but decreased the catalytic efficiency of BgaB. Polar AA substitution for Ile42 simultaneously affected thermostability, catalytic efficiency, and the hydrogen bond network, suggesting that Ile42 is responsible for functional discrimination between members of the GH42 family. These observations could lead to a novel strategy for investigating the functional evolution of the GH42 β-galactosidases.

  1. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus.

    PubMed

    Kinns, Helen; Badelt-Lichtblau, Helga; Egelseer, Eva Maria; Sleytr, Uwe B; Howorka, Stefan

    2010-01-29

    Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies.

  2. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth. PMID:9830122

  3. A differentially conserved residue (Ile42) of GH42 β-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability.

    PubMed

    Dong, Yi-Ning; Chen, Hai-Qin; Sun, Yan-Hui; Zhang, Hao; Chen, Wei

    2015-04-01

    The glycoside hydrolase family 42 (GH42) of thermophilic microorganisms consists of thermostable β-galactosidases that display significant variations in their temperature optima and stabilities. In this study, we compared the substrate binding modes of 2 GH42 β-galactosidases, BgaB from Geobacillus stearothermophilus and A4-β-Gal from Thermus thermophilus A4. The A4-β-Gal has a catalytic triad (Glu312-Arg32-Glu35) with an extended hydrogen bond network that has not been observed in BgaB. In this study, we performed site-saturation mutagenesis of Ile42 in BgaB (equivalent to Glu312 in A4-β-Gal) to study the effects of different residues on thermostability, catalytic function, and the extended hydrogen bond network. Our experimental results suggest that substitution of Ile42 with polar AA enhanced the thermostability but decreased the catalytic efficiency of BgaB. Polar AA substitution for Ile42 simultaneously affected thermostability, catalytic efficiency, and the hydrogen bond network, suggesting that Ile42 is responsible for functional discrimination between members of the GH42 family. These observations could lead to a novel strategy for investigating the functional evolution of the GH42 β-galactosidases. PMID:25682138

  4. Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ.

    PubMed

    Nogueira, Maria Luiza C; Sforça, Mauricio Luis; Chin, Yanni K-Y; Mobli, Mehdi; Handler, Aaron; Gorbatyuk, Vitaliy Y; Robson, Scott A; King, Glenn F; Gueiros-Filho, Frederico J; Zeri, Ana Carolina de Mattos

    2015-10-01

    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA. PMID:25967379

  5. Phagocytosis and leucocyte enzymes in protein–calorie malnutrition

    PubMed Central

    Selvaraj, Ratnam J.; Bhat, K. Seetharam

    1972-01-01

    1. Enzymes pertinent to bactericidal activities of leucocytes were assayed in children suffering from protein–calorie malnutrition. 2. Leucocytes obtained from malnourished and control children contained similar activities for glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Granule-bound NADPH oxidase activity was low in leucocytes isolated from malnourished patients and failed to show the phagocytic stimulation which is normally seen in control leucocytes. Further, leucocytes obtained from malnourished patients did not release the acid phosphatase from lysosomes during phagocytosis, unlike those from controls. 3. Treatment of the malnourishment with a diet high in calories and protein resulted in significant increase in the activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADPH oxidase and in releasing the acid phosphatase from the lysosomes into the supernatant fraction during phagocytosis. 4. The significance of these enzyme changes are discussed in relation to the increased susceptibility of these patients to infection. PMID:4403728

  6. The effect of dietary bagasse on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver.

    PubMed

    Stanley, J C; Newsholme, E A

    1985-09-01

    The effects of a 100 g/kg diet substitution of bagasse on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of hepatic glucose-6-phosphate dehydrogenase (EC I.I.I.49), 6-phosphogluconate dehydrogenase (EC I.I.I.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC I.I.I.40), ATP-citrate (pro-3S) lyase (EC 4.I.3.8), 6-phosphofructokinase EC 2.7.I.II), pyruvate kinase (EC 2.7.I.40) and fructose-1,6-bisphosphatase (EC 3.I.3.II) were studied. Bagasse had no effect on body-weight gain, food consumption or faecal dry weight. Bagasse decreased the activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and phosphofructokinase expressed on a wet weight basis and on a protein basis. Bagasse decreased the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase expressed on a body-weight basis. These results suggest that bagasse decreases the flux through some pathways of hepatic lipogenesis when mice are given high-sucrose diets.

  7. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sorbitol dehydrogenase test system. 862.1670 Section 862.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1670 Sorbitol dehydrogenase...

  8. Conformations of Diphosphopyridine Coenzymes upon Binding to Dehydrogenases

    PubMed Central

    Lee, Chi-Yu; Eichner, Ronald D.; Kaplan, Nathan O.

    1973-01-01

    The binding of oxidized as well as reduced coenzyme to some dehydrogenases has been studied under different concentration ratios and temperatures by nuclear magnetic resonance spectroscopy. A significant difference in the spectral behavior between DPN+ and DPNH upon binding is interpreted in terms of fast and slow on-off rates relative to the nuclear magnetic resonance time scale in the binding of these two coenzymes. Significant downfield shifts of DPN+ were observed upon binding, comparable in magnitude to those expected upon opening (destacking) of the coenzymes in the case of chicken-muscle and lobster-tail lactate dehydrogenase (EC 1.1.1.27) and yeast alchol dehydrogenase (EC 1.1.1.1.). A preliminary survey of several other dehydrogenases is consistent with these findings. In the case of 3-phosphoglyceraldehyde dehydrogenase, there is a possibility that the coenzyme exists in the folded form. PMID:4351183

  9. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  10. Interactions between heparinoids and alcohol dehydrogenase.

    PubMed

    Paulíková, H; Valusová, E; Antalík, M

    1997-07-01

    The interaction between polysulfated polysaecharides (low-molecular-weight heparin LMWH, dextran sulfate DS and pentosan sulfate PS) and yeast alcohol dehydrogenase (YADH) was investigated. The fluorescence and UV spectra of YADH after adding the tested polysaccharides have confirmed the interaction between the enzyme and these compounds. Kinetic studies have shown that LMWH, DS and PS are inhibitors of YADH (mixed type with respect to NAD). The most potent inhibitor is PS (ID50=37.5 ng/ml, Ki=0.6 muM). The inhibition effect depends on the ionic strength (the inhibition decreased by about 50% in the presence of 100 mM Na2SO4) and pH value (the inhibition decreased at pH>7). The results indicate that the inhibition effect of these polyanions is caused by their electrostatic interactions with the NAD-binding region of YADH.

  11. The Aldehyde Dehydrogenase Gene Superfamily Resource Center

    PubMed Central

    2009-01-01

    The website http://www.aldh.org is a publicly available database for nomenclature and functional and molecular sequence information for members of the aldehyde dehydrogenase (ALDH) gene superfamily for animals, plants, fungi and bacteria. The site has organised gene-specific records. It provides synopses of ALDH gene records, marries trivial terms to correct nomenclature and links global accession identifiers with source data. Server-side alignment software characterises the integrity of each sequence relative to the latest genomic assembly and provides identifier-specific detail reports, including a graphical presentation of the transcript's exon - intron structure, its size, coding sequence, genomic strand and locus. Also included are a summary of substrates, inhibitors and enzyme kinetics. The site provides reference lists and is designed to facilitate data mining by interested investigators. PMID:20038501

  12. Mitochondrial aldehyde dehydrogenase and cardiac diseases

    PubMed Central

    Chen, Che-Hong; Sun, Lihan; Mochly-Rosen, Daria

    2010-01-01

    Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases. PMID:20558439

  13. Untangling the glutamate dehydrogenase allosteric nightmare.

    PubMed

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  14. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  15. NADH electrochemical sensor coupled with dehydrogenase enzymes

    SciTech Connect

    Yamanaka, Hideko; Mascini, Marco )

    1992-06-01

    A graphite electrode assembled in a flow cell has shown to be a good detector for NADH. Current is linearly dependent on concentration in the range 10{sup {minus}7}-10{sup {minus}3} M without any mediator at the potential applied of 300 mV vs Ag/AgCl. Lactate and alcohol dehydrogenases were immobilized near to the electrode surface or in a reactor to obtain an NADH-based biosensor for lactate or ethanol. With lactate the authors succeeded to obtain a response only if the reactor was used and for alcohol a current proportional to the concentration was obtained either if the enzyme was immobilized in a membrane and placed near the electrode surface or when the enzyme was immobilized in a reactor form. By FIA procedures fast responses and recoveries were obtained, but with a short linear range.

  16. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  17. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  18. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  19. Structure-Function Relationships in Lactate Dehydrogenase

    PubMed Central

    Adams, Margaret J.; Buehner, Manfred; Chandrasekhar, K.; Ford, Geoffrey C.; Hackert, Marvin L.; Liljas, Anders; Rossmann, Michael G.; Smiley, Ira E.; Allison, William S.; Everse, Johannes; Kaplan, Nathan O.; Taylor, Susan S.

    1973-01-01

    The binding of coenzyme and substrate are considered in relation to the known primary and tertiary structure of lactate dehydrogenase (EC 1.1.1.27). The adenine binds in a hydrophobic crevice, and the two coenzyme phosphates are oriented by interactions with the protein. The positively charged guanidinium group of arginine 101 then folds over the negatively charged phosphates, collapsing the loop region over the active center and positioning the unreactive B side of the nicotinamide in a hydrophobic protein environment. Collapse of the loop also introduces various charged groups into the vicinity of the substrate binding site. The substrate is situated between histidine 195 and the C4 position on the nicotinamide ring, and is partially oriented by interactions between its carboxyl group and arginine 171. The spatial arrangements of these groups may provide the specificity for the L-isomer of lactate. PMID:4146647

  20. Molybdenum and tungsten-dependent formate dehydrogenases.

    PubMed

    Maia, Luisa B; Moura, José J G; Moura, Isabel

    2015-03-01

    The prokaryotic formate metabolism is considerably diversified. Prokaryotes use formate in the C1 metabolism, but also evolved to exploit the low reduction potential of formate to derive energy, by coupling its oxidation to the reduction of numerous electron acceptors. To fulfil these varied physiological roles, different types of formate dehydrogenase (FDH) enzymes have evolved to catalyse the reversible 2-electron oxidation of formate to carbon dioxide. This review will highlight our present knowledge about the diverse physiological roles of FDH in prokaryotes, their modular structural organisation and active site structures and the mechanistic strategies followed to accomplish the formate oxidation. In addition, the ability of FDH to catalyse the reverse reaction of carbon dioxide reduction, a potentially relevant reaction for carbon dioxide sequestration, will also be addressed.

  1. Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti.

    PubMed

    Inoue, T; Sunagawa, M; Mori, A; Imai, C; Fukuda, M; Takagi, M; Yano, K

    1989-06-01

    A genomic library of Acetobacter aceti DNA was constructed by using a broad-host-range cosmid vector. Complementation of a spontaneous alcohol dehydrogenase-deficient mutant resulted in the isolation of a plasmid designated pAA701. Subcloning and deletion analysis of pAA701 limited the region that complemented the deficiency in alcohol dehydrogenase activity of the mutant. The nucleotide sequence of this region was determined and showed that this region contained the full structural gene for the 72-kilodalton dehydrogenase subunit of the alcohol dehydrogenase enzyme complex. The predicted amino acid sequence of the gene showed homology with sequences of methanol dehydrogenase structural genes of Paracoccus denitrificans and Methylobacterium organophilum.

  2. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  3. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Viel, Catherine; Benali, Marzouk; Aïder, Mohammed

    2015-10-01

    The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ≥6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ≥7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen.

  4. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Viel, Catherine; Benali, Marzouk; Aïder, Mohammed

    2015-10-01

    The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ≥6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ≥7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen. PMID:26103452

  5. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes.

  6. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  7. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids.

    PubMed

    Reid, E E; Thompson, P; Lyttle, C R; Dennis, D T

    1977-05-01

    The pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria was purified 23-fold by high speed centrifugation and glycerol gradient fractionation. The complex had a s(20,w) of 47.5S but this is a minimal value since the complex is unstable. The complex is specific for NAD(+) and pyruvate; NADP(+) and other keto acids give no reaction. Mg(2+), thiamine pyrophosphate, and cysteine are also required for maximal activity. The pH optimum for the complex was between 6.5 and 7.5.Continuous sucrose density gradients were used to separate castor bean (Ricinus communis L.) endosperm proplastids from mitochondria. Pyruvate dehydrogenase complex activity was found to be coincident with the proplastid peak on all of the gradients. Some separation of proplastids and mitochondria could be achieved by differential centrifugation and the ratios of the activities of the pyruvate dehydrogenase complex to succinic dehydrogenase and acetyl-CoA carboxylase to succinic dehydrogenase were consistent with both the pyruvate dehydrogenase complex and acetyl-CoA carboxylase being present in the proplastid. The proplastid fraction has to be treated with a detergent, Triton X-100, before maximal activity of the pyruvate dehydrogenase complex activity is expressed, indicating that it is bound in the organelle. The complex had a sharp pH optimum of 7.5. The complex required added Mg(2+), cysteine, and thiamine pyrophosphate for maximal activity but thiamine pyrophosphate was inhibitory at higher concentrations.

  8. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  9. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  10. Biospecific affinity chromatographic purification of octopine dehydrogenase from molluscs.

    PubMed

    Mulcahy, P; Griffin, T; O'Carra, P

    1997-02-01

    The development of a biospecific affinity chromatographic method for the purification of octopine dehydrogenase from molluscs is described. The method utilizes immobilized NAD+ derivatives in conjunction with soluble specific substrates to promote binding. Using this method, octopine dehydrogenase has been purified to electrophoretic homogeneity in a single chromatographic step from three different marine invertebrate sources [the queen scallop, Chlamys opercularis (adductor muscle), the great scallop, Pecten maximus (adductor muscle), and the squid Loligo vulgaris (mantle muscle)]. However, the system is not applicable to the purification of octopine dehydrogenase from some other marine invertebrate sources investigated (the mussel Mytilus edulis and the topshell Monodonta lineata). PMID:9116492

  11. Role of quinate dehydrogenase in quinic acid metabolism in conifers

    SciTech Connect

    Osipov, V.I.; Shein, I.V.

    1986-08-10

    Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.

  12. Antibodies to inactive conformations of glyceraldehyde-3-phosphate dehydrogenase inactivate the apo- and holoforms of the enzyme.

    PubMed

    Arutiunova, E I; Pleten, A P; Nagradova, N K; Muronetz, V I

    2006-06-01

    Polyclonal antibodies produced after the immunization of a rabbit with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus were used to isolate two types of antibodies interacting with different non-native forms of the antigen. Type I antibodies were purified using Sepharose-bound apo-GAPDH that was treated with glutaraldehyde to stabilize the enzyme in the tetrameric form. Type II antibodies were isolated using immobilized denatured monomers of the enzyme. It was shown that the type I antibodies bound to the native holo- and apoforms of the enzyme with the ratio of one antibody molecule per GAPDH tetramer. While interacting with the native holoenzyme, the type I antibodies induce a time-dependent decrease in its activity by 80-90%. In the case of the apoenzyme, the decrease in the activity constitutes only 25%, this indicating that only one subunit of the tetramer is inactivated. Differential scanning calorimetry experiments showed that the formation of the complex between both forms of the enzyme and the type I antibodies resulted in a shift of the maximum of the thermal capacity curves (T(m) value) to lower temperatures. The extremely stable holoenzyme was affected to the greatest extent, the shift of the T(m) value constituting approximately 20 degrees C. We assume that the formation of the complex between the holo- or apo-GAPDH and the type I antibody results in time-dependent conformational changes in the enzyme molecule. Thus, the antibodies induce the structural rearrangements yielding the conformation that is identical to the structure of the antigen used for the selection of the antibodies (i.e., inactive). The interaction of the antibodies with the apo-GAPDH results in the inactivation of the subunit directly bound to the antibody. Virtually complete inactivation of the holoenzyme by the antibodies is likely due to the transmission of the conformational changes through the intersubunit contacts. The type II antibodies, which

  13. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 2. Cooperative binding of ATP is limited to the initial turnover of the enzyme.

    PubMed

    Sheoran, Anita; First, Eric A

    2008-05-01

    The activation of D-tyrosine by tyrosyl-tRNA synthetase has been investigated using single and multiple turnover kinetic methods. In the presence of saturating concentrations of D-tyrosine, the activation reaction displays sigmoidal kinetics with respect to ATP concentration under single turnover conditions. In contrast, when the kinetics for the activation reaction are monitored using a steady-state (multiple turnover) pyrophosphate exchange assay, Michaelis-Menten kinetics are observed. Previous investigations indicated that activation of l-tyrosine by the K233A variant of Bacillus stearothermophilus tyrosyl-tRNA synthetase displays sigmoidal kinetics similar to those observed for activation of d-tyrosine by the wild-type enzyme. Kinetic analyses indicate that the sigmoidal behavior of the d-tyrosine activation reaction is not enhanced when Lys-233 is replaced by alanine. This supports the hypothesis that the mechanistic basis for the sigmoidal behavior is the same for both d-tyrosine activation by wild-type tyrosyl-tRNA synthetase and activation of l-tyrosine by the K233A variant. The observed sigmoidal behavior presents a paradox, as tyrosyl-tRNA synthetase displays an extreme form of negative cooperativity, known as "half-of-the-sites reactivity," with respect to tyrosine binding and tyrosyl-adenylate formation. We propose that the binding of D-tyrosine weakens the affinity with which ATP binds to the functional subunit in tyrosyl-tRNA synthetase. This allows ATP to bind initially to the nonfunctional subunit, inducing a conformational change in the enzyme that enhances the affinity of the functional subunit for ATP. The observation that sigmoidal kinetics are observed only under single turnover conditions suggests that this conformational change is stable over multiple rounds of catalysis. PMID:18319246

  14. Isolation of two physiologically induced variant strains of Bacillus stearothermophilus NRS 2004/3a and characterization of their S-layer lattices.

    PubMed Central

    Sára, M; Pum, D; Küpcü, S; Messner, P; Sleytr, U B

    1994-01-01

    During growth of Bacillus stearothermophilus NRS 2004/3a in continuous culture on complex medium, the chemical properties of the S-layer glycoprotein and the characteristic oblique lattice were maintained only if glucose was used as the sole carbon source. With increased aeration, amino acids were also metabolized, accompanied by liberation of ammonium and by changes in the S-layer protein. Depending on the stage of fermentation at which oxygen limitation was relieved, two different variants, one with a more delicate oblique S-layer lattice (variant 3a/V1) and one with a square S-layer lattice (variant 3a/V2), were isolated. During the switch from the wild-type strain to a variant or from variant 3a/V2 to variant 3a/V1, monolayers of two types of S-layer lattices could be demonstrated on the surfaces of single cells. S-layer proteins from variants had different molecular sizes and a significantly lower carbohydrate content than S-layer proteins from the wild-type strain did. Although the S-layer lattices from the wild-type and variant strains showed quite different protein mass distributions in two- and three-dimensional reconstructions, neither the amino acid composition nor the pore size, as determined by permeability studies, was significantly changed. Peptide mapping and N-terminal sequencing results strongly indicated that the three S-layer proteins are encoded by different genes and are not derived from a universal precursor form. Images PMID:8300538

  15. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed Central

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-01-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  16. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-06-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  17. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in methanol.

    PubMed

    Dror, Adi; Shemesh, Einav; Dayan, Natali; Fishman, Ayelet

    2014-02-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. PMID:24362426

  18. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    SciTech Connect

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatase using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.

  19. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29.

    PubMed

    Bibi, Zainab; Qader, Shah Ali Ul; Aman, Afsheen

    2015-07-01

    Exploration of microbial pool from extremely diversified ecosystem is significantly important for various industrial applications. Bacterial communities from extreme habitats including volcanic vents, hot springs, and industrial sectors are eagerly explored for the isolation of thermophiles. Geobacillus stearothermophilus KIBGE-IB29, isolated from blast furnace site of a steel processing industry, is capable of producing thermostable endo-β-1,4-xylanase. In the current study, this enzyme was immobilized within calcium alginate beads using entrapment technique. Amalgamation of sodium alginate (40.0 gL(-1)) and calcium chloride (0.4 M) was used for the formation of immobilized beads. It was observed that temperature (50 °C) and pH (7.0) optima of immobilized enzyme remained same, but enzyme-substrate reaction time increased from 5.0 to 30.0 min as compared to free enzyme. Diffusion limit of high molecular weight xylan (corncob) caused a decline in V max of immobilized enzyme from 4773 to 203.7 U min(-1), whereas K m value increased from 0.5074 to 0.5722 mg ml(-1) with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability even at high temperatures as compared to free enzyme and retained 18 and 9 % residual activity at 70 and 80 °C, respectively. Immobilized enzyme also exhibited sufficient recycling efficiency up to five reaction cycles which indicated that this enzyme can be a plausible candidate in paper and pulp industry. PMID:26001519

  20. [Isolation and characteristics of somatic cell hybrids of the Chinese hamster and American mink].

    PubMed

    Rubtsov, N B; Radzhabli, S I; Gradov, A A; Serov, O L

    1981-01-01

    The paper deals with obtaining somatic cell hybrids of Chinese hamster and mink by means of inactivated Sendy virus. 39 hybrid clones segregating mink chromosomes were formed by fusing Chinese hamster cells deficient in hypoxanthine phosphoribosyliransferase with normal cells of mink. Enzyme analyses of these hybrid clones revealed that in mink genes coding lactate dehydrogenase-A, lactate dehydrogenase-B, malate dehydrogenase-NAD (soluble), 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase are not syntenic. A possibility of successful utilization of these somatic cell hybrids for mapping mink genes is shown. PMID:6942558

  1. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  2. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    PubMed

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  3. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  4. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  5. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  6. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  7. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  8. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  9. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  10. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... not by hormone test. Clin Endocrinol (Oxf). 2003 Mar;58(3):323-31. Citation on PubMed Pang S, ... dehydrogenase deficiency. Endocrinol Metab Clin North Am. 2001 Mar;30(1):81-99, vi-vii. Review. Citation ...

  11. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  12. Elusive transition state of alcohol dehydrogenase unveiled

    PubMed Central

    Roston, Daniel; Kohen, Amnon

    2010-01-01

    For several decades the hydride transfer catalyzed by alcohol dehydrogenase has been difficult to understand. Here we add to the large corpus of anomalous and paradoxical data collected for this reaction by measuring a normal (> 1) 2° kinetic isotope effect (KIE) for the reduction of benzaldehyde. Because the relevant equilibrium effect is inverse (< 1), this KIE eludes the traditional interpretation of 2° KIEs. It does, however, enable the development of a comprehensive model for the “tunneling ready state” (TRS) of the reaction that fits into the general scheme of Marcus-like models of hydrogen tunneling. The TRS is the ensemble of states along the intricate reorganization coordinate, where H tunneling between the donor and acceptor occurs (the crossing point in Marcus theory). It is comparable to the effective transition state implied by ensemble-averaged variational transition state theory. Properties of the TRS are approximated as an average of the individual properties of the donor and acceptor states. The model is consistent with experimental findings that previously appeared contradictory; specifically, it resolves the long-standing ambiguity regarding the location of the TRS (aldehyde-like vs. alcohol-like). The new picture of the TRS for this reaction identifies the principal components of the collective reaction coordinate and the average structure of the saddle point along that coordinate. PMID:20457944

  13. Optimization of adsorptive immobilization of alcohol dehydrogenases.

    PubMed

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen

    2005-04-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (<45 kPa) is experimentally verified. In the case of ADH from Lactobacillus brevis (LBADH), >300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.

  14. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  15. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  16. Targeting isocitrate dehydrogenase (IDH) in cancer.

    PubMed

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas. PMID:27355333

  17. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  18. Malic dehydrogenase locus of Paramecium tetraurelia.

    PubMed

    Williams, T J; Smith-Sonneborn, J

    1980-04-01

    A search was undertaken for naturally occurring genetic markers for use in clonal aging studies of Paramecium tetraurelia. Clonal age is defined as the number of cell divisions since the last sexual process. Autogamy (self-fertilization) is a sexual process which can occur in aging lines, resulting in homozygosity and initiation of the next generation. Such "illicit" autogamies must be detected and eliminated from the aged clone. With codominant alleles, heterozygous aging lines can be established which will express a phenotype distinguishable from that of either parental type and autogamy can then be monitored by the appearance of either segregant homozygous phenotype. However, very few codominant alleles are available in this species. Electrophoretic mobilities of malic dehydrogenase (MDH) were assayed in 11 stocks of Paramecium tetraurelia by polyacrylamide gel electrophoresis. Nine stocks showed a single-banded "stock 51" type, while stock 174 and stock 29 each exhibited unique mobility. Crosses between stock 51 and the deviant stocks revealed distinct three-banded patterns indicative of heterozygosity of the F1 generation. In the autogamous F2 generation, 1:1 segregation of the parental types were recovered. The pattern of inheritance is consistent with codominant alleles and Mendelian inheritance. These naturally occurring biochemical markers are stable with increasing clonal age and are therefore useful genetic markers for studies of cellular aging. PMID:6934772

  19. Lactic dehydrogenase and cancer: an overview.

    PubMed

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  20. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics

    PubMed Central

    Her, Yeng F.; Maher, L. James

    2015-01-01

    It is counterintuitive that metabolic defects reducing ATP production can cause, rather than protect from, cancer. Yet this is precisely the case for familial paraganglioma, a form of neuroendocrine malignancy caused by loss of succinate dehydrogenase in the tricarboxylic acid cycle. Here we review biochemical, genetic, and epigenetic considerations in succinate dehydrogenase loss and present leading models and mysteries associated with this fascinating and important tumor. PMID:26294907

  1. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens.

    PubMed

    Cozier, G E; Giles, I G; Anthony, C

    1995-06-01

    The 1.94 A structure of methanol dehydrogenase has been used to provide a model structure for part of a membrane quinohaemoprotein alcohol dehydrogenase. The basic superbarrel structure and the active-site region are retained, indicating essentially similar mechanisms of action, but there are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site.

  2. ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase.

    PubMed

    Giffin, Michelle M; Modesti, Lucia; Raab, Ronald W; Wayne, Lawrence G; Sohaskey, Charles D

    2012-03-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.

  3. Yeast Alcohol Dehydrogenase Structure and Catalysis

    PubMed Central

    2015-01-01

    Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of “back-to-back” dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure. PMID:25157460

  4. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  5. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  6. Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases.

    PubMed

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-10-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. alpha-Glucuronidases are family 67 glycosidases that cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of alpha-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the alpha-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial alpha-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in alpha-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35 degrees C, compared to 65 degrees C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9 degrees C, was almost identical to that of the wild-type, 73.4 degrees C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure

  7. Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases

    PubMed Central

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-01-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region

  8. Cloning, purification and preliminary crystallographic analysis of Ara127N, a GH127 β-L-arabinofuranosidase from Geobacillus stearothermophilus T6.

    PubMed

    Lansky, Shifra; Salama, Rachel; Dann, Roie; Shner, Izhak; Manjasetty, Babu A; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-08-01

    The L-arabinan utilization system of Geobacillus stearothermophilus T6 is composed of five transcriptional units that are clustered within a 38 kb DNA segment. One of the transcriptional units contains 11 genes, the last gene of which (araN) encodes a protein, Ara127N, that belongs to the newly established GH127 family. Ara127N shares 44% sequence identity with the recently characterized HypBA1 protein from Bifidobacterium longum and thus is likely to function similarly as a β-L-arabinofuranosidase. β-L-Arabinofuranosidases are enzymes that hydrolyze β-L-arabinofuranoside linkages, the less common form of such linkages, a unique enzymatic activity that has been identified only recently. The interest in the structure and mode of action of Ara127N therefore stems from its special catalytic activity as well as its membership of the new GH127 family, the structure and mechanism of which are only starting to be resolved. Ara127N has recently been cloned, overexpressed, purified and crystallized. Two suitable crystal forms have been obtained: one (CTP form) belongs to the monoclinic space group P21, with unit-cell parameters a = 104.0, b = 131.2, c = 107.6 Å, β = 112.0°, and the other (RB form) belongs to the orthorhombic space group P212121, with unit-cell parameters a = 65.5, b = 118.1, c = 175.0 Å. A complete X-ray diffraction data set has been collected to 2.3 Å resolution from flash-cooled crystals of the wild-type enzyme (RB form) at -173°C using synchrotron radiation. A selenomethionine derivative of Ara127N has also been prepared and crystallized for multi-wavelength anomalous diffraction (MAD) experiments. Crystals of selenomethionine Ara127N appeared to be isomorphous to those of the wild type (CTP form) and enabled the measurement of a three-wavelength MAD diffraction data set at the selenium absorption edge. These data are currently being used for detailed three-dimensional structure determination of the Ara127N protein. PMID:25084377

  9. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3.

    PubMed

    Way, Luke; Faktor, Jakub; Dvorakova, Petra; Nicholson, Judith; Vojtesek, Borek; Graham, Duncan; Ball, Kathryn L; Hupp, Ted

    2016-09-01

    Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53-independent MDM2-drug responsive-binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin-3 responsive MDM2-binding proteins that are perturbed independent of cell density using SWATH-MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin-3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin-3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin-3 treated cells. Mitotracker confirmed that Nutlin-3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin-3 treatment. Proximity ligation identified rearrangements of cellular protein-protein complexes in situ. In response to Nutlin-3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein-protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein-protein complexes in drug-treated cells. PMID:27273042

  10. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein–protein interactions by the MDM2 ligand nutlin‐3

    PubMed Central

    Way, Luke; Faktor, Jakub; Dvorakova, Petra; Nicholson, Judith; Vojtesek, Borek; Graham, Duncan; Ball, Kathryn L.

    2016-01-01

    Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells. PMID:27273042

  11. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  12. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri.

    PubMed Central

    Krzycki, J A; Zeikus, J G

    1984-01-01

    Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 microM KCN and was rapidly inactivated by O2. The enzyme was nearly homogeneous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent Km of 5 mM for CO and a Vmax of 1,300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed. Images PMID:6425262

  13. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    PubMed

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  14. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    SciTech Connect

    Park, Yun-Hee; Patel, Mulchand S.

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  15. Enzymes of the Glycolytic and Pentose Phosphate Pathways in Proplastids from the Developing Endosperm of Ricinus communis L.

    PubMed

    Simcox, P D; Reid, E E; Canvin, D T; Dennis, D T

    1977-06-01

    The metabolism of sucrose to long chain fatty acids in the endosperm of developing castor bean (Ricinus communis L.) seeds requires a combination of cytosolic and proplastid enzymes. The total activity and the subcellular distribution of the intermediate enzymic steps responsible for the conversion of sucrose to pyruvate have been determined. Hexose phosphate synthesis from sucrose occurs in the cytosol along with the first oxidative step in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase. The proplastids contain the necessary complement of glycolytic enzymes to account for the in vivo rates of acetate synthesis from glucose 6-phosphate. These organelles also contain the majority of the cellular 6-phosphogluconate dehydrogenase, transketolase, and transaldolase activities.The consequence of these enzyme distributions is that glucose 6-phosphate or 6-phosphogluconate produced in the cytosol must be transported into the proplastids where conversion to pyruvate occurs. The unique segregation of the two oxidative steps in the pentose phosphate pathway may be required to meet the metabolic needs of these fat-storing seeds. Compartmentation of glucose-6-phosphate dehydrogenase in the cytosol and 6-phosphogluconate dehydrogenase in the proplastids is discussed in light of the NADPH requirements for fatty acid synthesis in these subcellular locations.

  16. Properties of lactate dehydrogenase in a psychrophilic marine bacterium.

    PubMed Central

    Mitchell, P; Yen, H C; Mathemeier, P F

    1985-01-01

    Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30 degrees C. The thermal stability of lactate dehydrogenase was increased by mercaptoethanol, with 50% remaining activity at 42 degrees C. Images PMID:4004236

  17. [Features of glutamate dehydrogenase in fetal and adult rumen tissue].

    PubMed

    Kalachniuk, H I; Fomenko, I S; Kalachniuk, L H; Kavai, Sh; Marounek, M; Savka, O H

    2001-01-01

    Glutamate dehydrogenase (GDH) from rumen mucosa of cow fetus, liver and two forms from mucosa (bacterial and tissue) of the adult animal were partly purified and characterized. The activity of the bacterial glutamate dehydrogenase was shown to depend on qualities of a biomass of microbes, adhered on surface of rumen mucosa. All enzymes from tissues (GDHTRF, TRC, TLC), revealed the hypersensibility to increase in the concentration medium of Zn2+, guanosine triphosphate (GTP), acting here in a role of negative modulators, and also adenosine monophosphate (AMP) and leucine, which acted as activators. However, in the same concentrations these effectors do not influence the activity of the bacterial glutamate dehydrogenase. And if all tissues enzymes are highly specific to coenzyme NADH, the bacterial ones almost in 3 times is more active at NADPH use. PMID:11642036

  18. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  19. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  20. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    PubMed

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  1. [Human semen lactate dehydrogenase isoenzymes in fertility studies (author's transl)].

    PubMed

    Gonzalez Buitrago, J M; García Díez, L C; de Castro, S

    1981-01-01

    The lactate dehydrogenase isoenzyme pattern has been obtained in the semen of 87 males undergoing fertility studies. The proportion of LDH-X, the isoenzyme specific to the spermatozoa, is reduced in proportion to the reduction of the sperm density and motility. LDH-X is the most abundant isoenzyme in the semen of normospermic subjects. As to the other isoenzymes, the most abundant ones are the LDH-2 and the LDH-3. The results obtained lead us to conclude that the measurement of the lactate dehydrogenase isoenzymes may be useful in studies of fertility as an indicative parameter of the quality of the semen.

  2. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae.

    PubMed

    Starzyk, R M; Merritt, R B

    1980-08-01

    The interspecies homology of dace supernatant (A2,AB,B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

  3. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  4. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    PubMed

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  5. Reversible inactivation of CO dehydrogenase with thiol compounds

    SciTech Connect

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.; Marx, Christian; Meyer-Klaucke, Wolfram; Meyer, Ortwin

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  6. Pyruvate dehydrogenase complex from germinating castor bean endosperm.

    PubMed

    Rapp, B J; Randall, D D

    1980-02-01

    Subcellular organelles from castor bean (Ricinus communis) endosperm were isolated on discontinuous sucrose gradients from germinating seeds which were 1 to 7 days postimbibition. Marker enzyme activities of the organelles were measured (fumarase, catalase, and triose phosphate isomerase) and the homogeneity of the organelle fractions was examined by electron microscopy. Pyruvate dehydrogenase complex activity was measured only in the mitochondrial fraction and attempts to activate or release the enzyme from the proplastid were not successful. A pathway is proposed for the most efficient use of endosperm carbon for de novo fatty acid biosynthesis that does not require the presence of the pyruvate dehydrogenase complex in the proplastid to provide acetyl-coenzymeA.

  7. [Effect of aggregating agents on the pentosephosphate pathway of carbohydrate metabolism in human blood platelet extracts].

    PubMed

    Makarov, S A; Kudriavtseva, G V; Kolotilova, A I

    1983-01-01

    Thrombin inhibits the rate of glucose-6-phosphate and 6-phosphogluconate oxidation. ADP decreases the incorporation of ribose-5-phosphate into metabolism. The effect of adrenaline on the pentose phosphate pathway reactions was not demonstrated. Cell destruction by means of freezing, thawing and treatment with Triton X-100 decreases the rate of the glucose-6-phosphate dehydrogenase reaction to a greater degree as compared with osmotic shock.

  8. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase.

    PubMed Central

    Birktoft, J J; Fernley, R T; Bradshaw, R A; Banaszak, L J

    1982-01-01

    The amino acid sequence of porcine heart mitochondrial malate dehydrogenase (mMDH; L-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been compared with the sequences of six different lactate dehydrogenases (LDH; L-lactate: NAD+ oxidoreductase, EC 1.1.1.27) and with the "x-ray" sequence of cytoplasmic malate dehydrogenase (sMDH). The main points are that (i) all three enzymes are homologous; (ii) invariant residues in the catalytic center of these enzymes include a histidine and an internally located aspartate that function as a proton relay system; (iii) numerous residues important to coenzyme binding are conserved, including several glycines and charged residues; and (iv) amino acid side chains present in the subunit interface common to the MDHs and LDHs appear to be better conserved than those in the protein interior. It is concluded that LDH, sMDH, and mMDH are derived from a common ancestral gene and probably have similar catalytic mechanisms. PMID:6959107

  9. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus.

    PubMed

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo; Ma, Yanhe

    2015-09-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD(+) as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn(174) was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases.

  10. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase

    SciTech Connect

    Mat-Jan, F.; Alam, K.Y.; Clark, D.P. )

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.

  11. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic dehydrogenase immunological test system. 866.5560 Section 866.5560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the...

  12. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic dehydrogenase immunological test system. 866.5560 Section 866.5560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the...

  13. A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase.

    PubMed

    Mullarky, Edouard; Lairson, Luke L; Cantley, Lewis C; Lyssiotis, Costas A

    2016-07-01

    Serine metabolism is likely to play a critical role in cancer cell growth. A recent study reports the identification of a novel small-molecule inhibitor of serine synthesis that targets 3-phosphoglycerate dehydrogenase (PHGDH), the first enzyme of the serine synthesis pathway, and selectively abrogates the proliferation of PHGDH overexpressing breast cancer cells. PMID:27652319

  14. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  15. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    PubMed Central

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  16. Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle.

    PubMed

    LeBlanc, Paul J; Peters, Sandra J; Tunstall, Rebecca J; Cameron-Smith, David; Heigenhauser, George J F

    2004-06-01

    This study examined the effects of short- and long-term aerobic training on the stable up-regulation of pyruvate dehydrogenase (PDH) and PDH kinase (PDK) in human skeletal muscle. We hypothesized that 8 weeks, but not 1 week, of aerobic training would increase total PDH (PDHt) and PDK activities compared to pretraining, and this would be detectable at the level of gene transcription (mRNA) and/or gene translation (protein). Resting muscle biopsies were taken before and after 1 and 8 weeks of aerobic cycle exercise training. PDHt and PDK activities, and their respective protein and mRNA expression, did not differ after 1 week of aerobic training. PDHt activity increased 31% after 8 weeks and this may be partially due to a 1.3-fold increase in PDH-E(1)alpha protein expression. PDK activity approximately doubled after 8 weeks of aerobic training and this was attributed to a 1.3-fold increase in PDK2 isoform protein expression. Similar to 1 week, no changes were observed at the mRNA level after 8 weeks of training. These findings suggest that aerobically trained human skeletal muscle has an increased maximal capacity to utilize carbohydrates, evident by increased PDHt, but increased metabolic control sensitivity to pyruvate through increased contribution of PDK2 to total PDK activity. PMID:15020699

  17. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  18. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  19. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  20. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  1. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  2. Glutamate dehydrogenases: the why and how of coenzyme specificity.

    PubMed

    Engel, Paul C

    2014-01-01

    NAD(+) and NADP(+), chemically similar and with almost identical standard oxidation-reduction potentials, nevertheless have distinct roles, NAD(+) serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD(+)-dependent for glutamate oxidation, NADP(+)-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD(+) reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD(+) but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP(+) reduction by NADH, maintaining the coenzyme pools at different oxidation-reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD(+)-dependent, NADP(+)-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD(+) or for NADP(+) has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2'- and 3'-hydroxyls, dictating NAD(+) specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD(+) only, NADP(+) only, or in higher animals both.

  3. Marked reduction of alcohol dehydrogenase in keratoconus corneal fibroblasts

    PubMed Central

    Kanoff, J.M.; Shankardas, J.; Dimitrijevich, S.

    2009-01-01

    Purpose To identify differentially expressed genes in keratoconus (KC) corneal fibroblasts. Methods Stromal keratocytes (having a fibroblast morphology) from KC keratoplasty specimens and eye bank donor corneas were isolated and expanded using a serum containing medium. RNA was isolated from three KC fibroblast cultures and five eye bank donor cornea fibroblast cultures. The targets from the cultured fibroblasts were hybridized to the Affymetrix U133 Plus 2.0 microarrays. Western blot analyses of cell lysates were performed to examine protein levels of interest in the two groups. Protein levels of select differentially expressed genes were further examined by immunohistochemistry. Keratocyte staining of archived KC keratoplasty specimens were graded using a 0 to 3+ scale and compared to five archived whole globes having normal corneas as well as to 10 Fuchs’ dystrophy keratoplasty specimens. Results Microarray analysis revealed up to a 212 fold reduction in the mRNA levels of alcohol dehydrogenase (class 1) beta polypeptide (ADH1B) in KC fibroblasts (p=0.04). Decreased alcohol dehydrogenase in KC fibroblasts was confirmed by western blot analysis of early passage primary keratocyte cell lysates. Immunohistochemistry using a monoclonal mouse immunoglobulin G (IgG) against human liver alcohol dehydrogenase revealed a dramatic difference in protein staining in the keratocytes of the KC group compared to the normal cornea group. Immunohistochemistry also showed decreased immunostaining against alcohol dehydrogenase in the KC stromal sections compared to those obtained from Fuchs’ endothelial corneal dystrophy samples. Conclusions Decreased alcohol dehydrogenase in KC corneal fibroblasts represents a strong marker and possible mediator of keratoconus. PMID:19365573

  4. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  5. Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd.

    PubMed

    Leyva, Luis A; Bashan, Yoav

    2008-10-01

    The mesquite amargo (Prosopis articulate), one of the main nurse trees of the Sonoran Desert in Mexico, is responsible for major, natural re-vegetation processes. It exudes gluconic acid in root exudates, a favorite carbon source for the plant growth-promoting bacterium Azospirillum brasilense. Two enzymes, gluconokinase (EC 2.7.1.12) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44), participating in the phosphogluconate pathway, are active in the bacteria. Bacterial 6-phosphogluconate dehydrogenase is a constitutive enzyme, while gluconokinase is induced upon exposure to gluconic acid. Both enzymes are active in young, non-inoculated mesquite seedlings growing under hydroponic conditions. When A. brasilense Cd bacteria are inoculated on the root system, the roots exhibit much higher activity of gluconokinase, but not 6-phosphogluconate dehydrogenase. Mesquite roots exhibit high levels of root colonization by the inoculating bacteria. At the same time, and also for plants growing under sand culture conditions, the seedlings grew taller, greener, had longer leaves, and were heavier.

  6. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    PubMed

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  7. Short Chain Dehydrogenase/Reductase Rdhe2 Is a Novel Retinol Dehydrogenase Essential for Frog Embryonic Development*

    PubMed Central

    Belyaeva, Olga V.; Lee, Seung-Ah; Adams, Mark K.; Chang, Chenbei; Kedishvili, Natalia Y.

    2012-01-01

    The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates. PMID:22291023

  8. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics.

    PubMed

    Ciaccio, P J; Jaiswal, A K; Tew, K D

    1994-06-01

    A human oxidoreductase (H-37) that is overexpressed in ethacrynic acid-resistant HT29 colon cells (Ciaccio, P. J., Stuart, J.E., and Tew, K.D. (1993) Mol. Pharmacol. 43, 845-853) has been identified as a dihydrodiol dehydrogenase. Translated protein from a dihydrodiol dehydrogenase cDNA isolated from a library prepared from ethacrynic acid-resistant HT29 cell poly(A+) RNA was recognized by anti-H-37 IgG and was identical in molecular weight with H-37. The isolated cDNA was identical in both nucleotide and amino acid sequences with the recently cloned liver dihydrodiol dehydrogenase (Stolz, A., Hammond, L., Lou, H., Takikawa, H., Ronk, M., and Shively, J.E. (1993) J. Biol. Chem. 268, 10448-10457). Using this cDNA as probe, we have examined its induction by Michael acceptors. The steady state dihydrodiol dehydrogenase mRNA level in the ethacrynic acid-resistant line was increased 30-fold relative to that of wild-type cells. Twenty-four hour treatment of wild-type cells with ethacrynic acid or dimethyl maleate increased mRNA 10-fold and 5-fold, respectively. These changes are accompanied by both increased protein expression and increased NADP-dependent 1-acenaphthenol oxidative activity in cell cytosol. In gel shift assays, compared to wild type controls, increased binding of NAD(P)H quinone oxidoreductase human antioxidant response element (hARE) DNA to redox labile protein complexes present in treated and resistant cell nuclear extract was observed. Ethacrynic acid induced CAT activity 2-fold in Hepa1 cells stably transfected with NAD(P)H quinone oxidoreductase hARE-tk-CAT chimeric gene construct. Thus, dihydrodiol dehydrogenase protein is inducible by de novo synthesis from mRNA by structurally related monofunctional inducer Michael acceptors. Altered in vitro binding of nuclear protein to the hARE is indirect evidence for the involvement of an element similar to hARE in the regulation of dihydrodiol dehydrogenase by these agents. PMID:7515059

  9. Anomalous behaviour of yeast isocitrate dehydrogenase during isoelectric focusing

    PubMed Central

    Illingworth, John A.

    1972-01-01

    Isoelectric focusing of yeast isocitrate dehydrogenase apparently reveals a number of `isoenzymes'. These have isoelectric points near pH5.5 in crude material, but during purification the mean isoelectric point progressively rises to pH7.0 and the band pattern changes. The shift in isoelectric point during purification is apparently genuine, since it is also manifested in the electrophoretic and chromatographic properties of the enzyme. The multiple forms, however, are an artifact, generated by exposure of the enzyme to Ampholine, since their activities vary with the protein/Ampholine ratio and they cannot be observed in any system from which Ampholine is excluded. There are no detectable isoenzymes of yeast isocitrate dehydrogenase. PMID:4571177

  10. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    NASA Astrophysics Data System (ADS)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-07-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.

  11. Theoretical analysis of the glutamate dehydrogenase kinetics under physiological conditions.

    PubMed

    Popova, S V; Reich, J G

    1983-01-01

    A kinetic model of the glutamate dehydrogenase reaction has been formulated for the reversible reaction including all seven reactants (substrates and cofactors NAD(H) and NADP(H)). The model parameters have been evaluated from published initial-rate data. Analysis of the model at cofactor concentration near to that in the intact mitochondrion has shown that the competition for active sites between cofactors and substrates simultaneously present in mitochondria diminishes the steady-state rate of the reaction by a factor of 10 to 100 as compared to the maximal reaction rate. The model predicts near-equilibrium of the reaction substrates with NAD+/NADH cofactor pair and off-equilibrium with NADP+/NADPH. Substrate cycling with futile transfer of hydrogen from NADP+-system to NAD+-system has been found to account under in vivo conditions for no more than 2% of the maximal glutamate dehydrogenase activity in the mitochondria.

  12. Ribitol dehydrogenase from Klebsiella aerogenes. Purification and subunit structure

    PubMed Central

    Taylor, Susan S.; Rigby, Peter W. J.; Hartley, Brian S.

    1974-01-01

    Ribitol dehydrogenase has been purified to homogeneity from several strains of Klebsiella aerogenes. One strain yields 3–6g of pure enzyme from 1kg of cells. The enzyme is a tetramer of four subunits, mol.wt. 27000. Preliminary studies of the activity of the enzyme are reported. Peptide `maps' together with the amino acid composition indicate that the subunits are identical. ImagesPLATE 2PLATE 1 PMID:4618776

  13. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    PubMed

    Watanabe, Seiya; Sueda, Rui; Fukumori, Fumiyasu; Watanabe, Yasuo

    2015-01-01

    Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase. PMID:26382958

  14. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  15. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects. PMID:15512796

  16. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria

    PubMed Central

    Watanabe, Seiya; Sueda, Rui; Fukumori, Fumiyasu; Watanabe, Yasuo

    2015-01-01

    Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by “subunit-exchange”. To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase. PMID:26382958

  17. Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase.

    PubMed

    Choudhury, Rajarshi; Noor, Shahid; Varadarajalu, Lakshmi Prabha; Punekar, Narayan S

    2008-01-01

    NADP-glutamate dehydrogenase (NADP-GDH) along with glutamine synthetase plays a pivotal role in ammonium assimilation. Specific inhibitors were valuable in defining the importance of glutamine synthetase in nitrogen metabolism. Selective in vivo inhibition of NADP-GDH has so far been an elusive desideratum. Isophthalate, a potent in vitro inhibitor of Aspergillus niger NADP-GDH [Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 2005;151:1409-19], was evaluated for its efficacy in vivo. Dimethyl ester of isophthalate (DMIP), but not isophthalate, inhibited A. niger growth on agar as well as in liquid culture. This was ascribed to the inability of isophthalate to enter fungal mycelia. Subsequent to DMIP addition however, intracellular isophthalate could be demonstrated. Apart from NAD-GDH, no other enzyme including NAD-glutamate synthase was inhibited by isophthalate. A cross-over at NADP-GDH step of metabolism was observed as a direct consequence of isophthalate (formed in vivo from DMIP) inhibiting this enzyme. Addition of ammonium to DMIP-treated A. niger mycelia resulted in intensive vacuolation, retraction of cytoplasm and autolysis. Taken together, these results implicate glutamate dehydrogenase and NADP-GDH in particular, as a key target of in vivo isophthalate inhibition during ammonium assimilation. PMID:22578865

  18. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  19. Making biochemistry count: life among the amino acid dehydrogenases.

    PubMed

    Engel, Paul C

    2011-04-01

    The guiding principle of the IAS Medal Lecture and of the research it covered was that searching mathematical analysis, depending on good measurements, must underpin sound biochemical conclusions. This was illustrated through various experiences with the amino acid dehydrogenases. Topics covered in the present article include: (i) the place of kinetic measurement in assessing the metabolic role of GDH (glutamate dehydrogenase); (ii) the discovery of complex regulatory behaviour in mammalian GDH, involving negative co-operativity in coenzyme binding; (iii) an X-ray structure solution for a bacterial GDH providing insight into catalysis; (iv) almost total positive co-operativity in glutamate binding to clostridial GDH; (v) unexpected outcomes with mutations at the catalytic aspartate site in GDH; (vi) reactive cysteine as a counting tool in the construction of hybrid oligomers to probe the basis of allosteric interaction; (vii) tryptophan-to-phenylalanine mutations in analysis of allosteric conformational change; (viii) site-directed mutagenesis to alter substrate specificity in GDH and PheDH (phenylalanine dehydrogenase); and (ix) varying strengths of binding of the 'wrong' enantiomer in engineered mutant enzymes and implications for resolution of racemates.

  20. Characterization of a cellobiose dehydrogenase from Humicola insolens.

    PubMed Central

    Schou, C; Christensen, M H; Schülein, M

    1998-01-01

    The major cellobiose dehydrogenase (oxidase) (CBDH) secreted by the soft-rot thermophilic fungus Humicola insolens during growth on cellulose has been isolated and purified. It was shown to be a haemoflavoprotein with a molecular weight of 92 kDa and a pI of 4.0, capable of oxidizing the anomeric carbon of cellobiose, soluble cellooligosaccharides, lactose, xylobiose and maltose. Possible electron acceptors are 2,6-dichlorophenol-indophenol (DCPIP), Methylene Blue, 3,5-di-t-butyl-1,2-benzoquinone, potassium ferricyanide, cytochrome c and molecular oxygen. The oxidation of the prosthetic groups by oxygen was monitored at 449 nm for the flavin group and at 562 nm for the haem group. The curves were very similar to those of the cellobiose dehydrogenase from Phanerochaete chrysosporium, suggesting a similar mechanism. The pH-optima for the oxidation varied remarkably depending on the electron acceptor. For the organic electron acceptors, the pH-optima ranged from pH 4 for Methylene Blue to pH 7 for DCPIP and the benzoquinone. In the case of the FeIII-containing electron acceptors, the enzyme displayed alkaline pH-optima, in contrast to the properties of cellobiose dehydrogenases from Phanerochaete chrysosporium and Myceliophthora (Sporotrichum) thermophila. The enzyme has optimal activity at 65 degrees C. PMID:9461557

  1. Functional Analysis of a Mosquito Short Chain Dehydrogenase Cluster

    PubMed Central

    Mayoral, Jaime G.; Leonard, Kate T.; Defelipe, Lucas A.; Turjansksi, Adrian G.; Nouzova, Marcela; Noriegal, Fernando G.

    2013-01-01

    The short chain dehydrogenases (SDR) constitute one the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity towards the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes. PMID:23238893

  2. Histidine 51 facilitates proton transfer in alcohol dehydrogenase

    SciTech Connect

    Gould, R.M.; Plapp, B.V.

    1987-05-01

    Operating through a proton relay system, His-51 has been proposed to serve as a base during ethanol oxidation by alcohol dehydrogenase. This residue is highly conserved in alcohol dehydrogenases. They have used mutamer directed mutagenesis to change this residue to Gln-51. Diethyl pyrocarbonate treatment decreases the activity of the wild type enzyme 60-fold, whereas the Gln-51 enzyme is inactivated by only 5-fold. The rate of inactivation is also much slower with the mutant enzyme. They conclude that His-51 is the reactive residue in yeast alcohol dehydrogenase. The mutation also alters the Km for acetaldehyde and the pH dependence of several kinetic constants. At pH 7.0 the Km for acetaldehyde is 18-fold higher in the Gln-51 enzyme, whereas Vmax for acetaldehyde reduction is the same as with the wild type enzyme. For ethanol oxidation the pH dependence of the log of Vmax and V/K shows a linear dependence with a slope of 0.5 and no discernible pK. They propose a mechanism that can explain these data. For the Gln-51 enzyme, after the ternary complex has formed in an Ordered Bi mechanism, a random component for proton release and hydride transfer occurs. With histidine at position 51, serving as a base, a more rapid proton release from the enzyme-NAD-ethanol complex precedes product formation.

  3. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  4. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool.

    PubMed

    Dry, I B; Wiskich, J T

    1987-08-15

    2-Oxoglutarate (2-OG)-dependent O2 uptake by washed or purified turnip (Brassica rapa L.) and pea (Pisum sativum L. cv. Massey Gem) leaf mitochondria, in the presence of malonate, was inhibited between 65 and 90% by micromolar levels of pyruvate. The inhibition was not observed in the absence of malonate and was reversed by alpha-cyano-4-hydroxycinnamic acid. The inhibition was also reversed by oxaloacetate or by malate, but not by any other tricarboxylic acid cycle intermediates. The stimulation of O2 uptake by oxaloacetate was half maximal at 8-9 microM and was transient, indicating its action was not mediated through the complete metabolic removal of pyruvate. Pyruvate had not effect on 2-OG oxidation under conditions in which pyruvate dehydrogenase was not active, indicating that pyruvate metabolism, rather than pyruvate itself, was responsible for producing the inhibition of 2-OG oxidation. Similar results were obtained with detergent-treated mitochondrial extracts with the exception that the inhibition of 2-OG oxidation by pyruvate could also be reversed by coenzyme A. The results suggest that pyruvate inhibits 2-oxoglutarate oxidation, in intact plant mitochondria, by sequestering intramitochondrial CoA as acetyl-CoA and, in the absence of citrate synthase activity, reduces the amount of free coenzyme A available for 2-oxoglutarate dehydrogenase. These results indicate that pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase share a common CoA pool within plant mitochondria and that the turnover of the acyl-CoA product of one enzyme will dramatically influence the activity of the other.

  5. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    SciTech Connect

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. )

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  6. A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate▿

    PubMed Central

    del Castillo, Teresa; Duque, Estrella; Ramos, Juan L.

    2008-01-01

    Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism. PMID:18245293

  7. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is

  8. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.

    PubMed

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J

    2003-01-01

    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  9. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene.

    PubMed Central

    Ehrenshaft, M; Daub, M E

    1994-01-01

    We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures. Images PMID:8085820

  10. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene.

    PubMed

    Ehrenshaft, M; Daub, M E

    1994-08-01

    We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures.

  11. Characterization of testis-specific isoenzyme of human pyruvate dehydrogenase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2006-04-01

    Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1. PMID:16436377

  12. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  13. Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise.

    PubMed Central

    Hagg, S A; Taylor, S I; Ruberman, N B

    1976-01-01

    1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity. PMID:825112

  14. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.; Mattingly, S.M.; Danson, M.

    1996-07-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based on the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with the continuous recycling of cofactor. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value chemical commodity. 23 refs., 5 figs.

  15. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer.

    PubMed

    Brisson, Lucie; Bański, Piotr; Sboarina, Martina; Dethier, Coralie; Danhier, Pierre; Fontenille, Marie-Joséphine; Van Hée, Vincent F; Vazeille, Thibaut; Tardy, Morgane; Falces, Jorge; Bouzin, Caroline; Porporato, Paolo E; Frédérick, Raphaël; Michiels, Carine; Copetti, Tamara; Sonveaux, Pierre

    2016-09-12

    Metabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy. We report that lactate sustains autophagy in cancer. In cancer cells preferentially to normal cells, lactate dehydrogenase B (LDHB), catalyzing the conversion of lactate and NAD(+) to pyruvate, NADH and H(+), controls lysosomal acidification, vesicle maturation, and intracellular proteolysis. LDHB activity is necessary for basal autophagy and cancer cell proliferation not only in oxidative cancer cells but also in glycolytic cancer cells. PMID:27622334

  16. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  17. Some properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1977-01-01

    Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. PMID:194582

  18. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    SciTech Connect

    Biehl, Ralf; Monkenbusch, Michael; Richter, Dieter; Hoffmann, Bernd; Merkel, Rudolf; Falus, Peter; Preost, Sylvain

    2008-09-26

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  19. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  20. Lactate dehydrogenase in two digenetic trematodes and their host.

    PubMed

    Haque, M; Siddiqi, A H; Siddiqui, J

    1990-12-01

    Polyacrylamide gel electrophoresis of the two digenetic trematodes, Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of the water buffalo, Bubalus bubalis revealed the presence of at least six and seven isoenzymes of lactate dehydrogenase (LDH), respectively in a partially purified enzyme preparation. The respective host tissues showed five isoenzymes of LDH, which are characteristic to the vertebrates. Both parachloromercuribenzoate and iodoacetate affected the LDH activity of the parasites and host tissues differently. Spectrophotometric analysis also showed different specific activity and susceptibility to the action of thiol inhibitors. The host LDH was quite stable at 57 degrees C for 30 min, but that of the parasites was less stable.

  1. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts

    SciTech Connect

    Gray, R.G.; Pollitt, R.J.; Webley, J.

    1987-08-01

    Intact cultured fibroblasts from a child with a new metabolic disorder, thought to be due to a deficiency of methylmalonic semialdehyde dehydrogenase, produced labeled CO/sub 2/ normally from (1-/sup 14/C)valine but not from (2-/sup 14/C)valine. CO/sub 2/ production from labeled beta-alanine was also much reduced, confirming the suspicion that malonic semialdehyde dehydrogenase is also deficient in this condition. An assay for malonic semialdehyde dehydrogenase in cell homogenates showed low activity but it was impossible to assess the degree of reduction.

  2. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria.

    PubMed

    Summitt, Candice B; Johnson, Lynnette C; Jönsson, Thomas J; Parsonage, Derek; Holmes, Ross P; Lowther, W Todd

    2015-03-01

    The primary hyperoxalurias (PH), types 1-3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157-515 contain the catalytic core with one FAD molecule. The 12-fold higher k(cat)/K(m) value of 0.93 M⁻¹·s⁻¹ for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a K(d) value of 125 μM for Hyp, a value ~1600-fold lower than the K(m) value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ₁ reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ₁₀ as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH. PMID:25697095

  3. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  4. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility.

    PubMed

    Zhang, Shuai; Hulver, Matthew W; McMillan, Ryan P; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs' pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D). PMID:24520982

  5. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    PubMed Central

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  6. Structural analysis of fungus-derived FAD glucose dehydrogenase

    PubMed Central

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-01-01

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535

  7. Kinetic properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed. PMID:217355

  8. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes.

    PubMed

    Chou, K H; Splittstoesser, W E

    1972-04-01

    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  9. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation

    PubMed Central

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang

    2015-01-01

    ABSTRACT Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1–PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure. PMID:25991547

  10. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation.

    PubMed

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang

    2015-07-01

    Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1-PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure. PMID:25991547

  11. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

    PubMed Central

    Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven

    2014-01-01

    Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702

  12. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    PubMed

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  13. Identification of the iron-sulfur center in trimethylamine dehydrogenase.

    PubMed

    Hill, C L; Steenkamp, D J; Holm, R H; Singer, T P

    1977-02-01

    Trimethylamine dehydrogenase [trimethylamine:(acceptor) oxidoreductase (demethylating), EC 1.5.99.7] from a facultative methylotroph bacterium has a molecular weight of 147,000 and contains two types of prosthetic groups, one a covalently bound organic chromophore of uncertain structure and the other containing iron and labile sulfur (S*). The structure of the Fe-S* center has been investigated by reactions of the enzyme with sodium mersalyl, o-xylyl-alpha,alpha'-dithiol, and p-methoxybenzenethiol in a 4:1 vol/vol hexamethylphosphoramide/water reaction medium, which destabilizes tertiary structure. Mersalyl treatment results in reduction of visible absorbance consistent with the presence of a 4-Fe center of the ferredoxin type. Reaction with thiols effects partial bleaching of the organic chromophore, as established by separate studies of a detached chromophore peptide, and results in removal (extrusion) of the core unit of the Fe-s* center in the form of the complexes [Fe4S*4(S2-o-xylyl)2]n2n- and [Fe4S*4(SC6H4OMe)4]2-, which were identified by absorption spectra. These results, in conjunction with control extrusion reactions of oxidized ferredoxins from spinach and Clostridium pasteurianum, establish that trimethylamine dehydrogenase contains one Fe4S*4 core unit most probably present as a ferredoxin-type, cysteinate-ligated cluster [Fe4S*4(S-Cys)4].

  14. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  15. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    PubMed

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  16. Retinol dehydrogenases: membrane-bound enzymes for the visual function.

    PubMed

    Lhor, Mustapha; Salesse, Christian

    2014-12-01

    Retinoid metabolism is important for many physiological functions, such as differenciation, growth, and vision. In the visual context, after the absorption of light in rod photoreceptors by the visual pigment rhodopsin, 11-cis retinal is isomerized to all-trans retinal. This retinoid subsequently undergoes a series of modifications during the visual cycle through a cascade of reactions occurring in photoreceptors and in the retinal pigment epithelium. Retinol dehydrogenases (RDHs) are enzymes responsible for crucial steps of this visual cycle. They belong to a large family of proteins designated as short-chain dehydrogenases/reductases. The structure of these RDHs has been predicted using modern bioinformatics tools, which allowed to propose models with similar structures including a common Rossman fold. These enzymes undergo oxidoreduction reactions, whose direction is dictated by the preference and concentration of their individual cofactor (NAD(H)/NADP(H)). This review presents the current state of knowledge on functional and structural features of RDHs involved in the visual cycle as well as knockout models. RDHs are described as integral or peripheral enzymes. A topology model of the membrane binding of these RDHs via their N- and (or) C-terminal domain has been proposed on the basis of their individual properties. Membrane binding is a crucial issue for these enzymes because of the high hydrophobicity of their retinoid substrates.

  17. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history.

    PubMed

    Notaro, R; Afolayan, A; Luzzatto, L

    2000-03-01

    Glucose 6-phosphate dehydrogenase (G6PD) is a cytosolic enzyme encoded by a housekeeping X-linked gene whose main function is to produce NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions. Inherited G6PD deficiency is associated with either episodic hemolytic anemia (triggered by fava beans or other agents) or life-long hemolytic anemia. We show here that an evolutionary analysis is a key to understanding the biology of a housekeeping gene. From the alignment of the amino acid (aa) sequence of 52 glucose 6-phosphate dehydrogenase (G6PD) species from 42 different organisms, we found a striking correlation between the aa replacements that cause G6PD deficiency in humans and the sequence conservation of G6PD: two-thirds of such replacements are in highly and moderately conserved (50-99%) aa; relatively few are in fully conserved aa (where they might be lethal) or in poorly conserved aa, where presumably they simply would not cause G6PD deficiency. This is consistent with the notion that all human mutants have residual enzyme activity and that null mutations are lethal at some stage of development. Comparing the distribution of mutations in a human housekeeping gene with evolutionary conservation is a useful tool for pinpointing amino acid residues important for the stability or the function of the corresponding protein. In view of the current explosive increase in full genome sequencing projects, this tool will become rapidly available for numerous other genes.

  18. New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates.

    PubMed

    Barzegar, Abolfazl; Moosavi-Movahedi, Ali A; Kyani, Anahita; Goliaei, Bahram; Ahmadian, Shahin; Sheibani, Nader

    2010-02-01

    Polymerization and self-assembly of proteins into nanoaggregates of different sizes and morphologies (nanoensembles or nanofilaments) is a phenomenon that involved problems in various neurodegenerative diseases (medicine) and enzyme instability/inactivity (biotechnology). Thermal polymerization of horse liver alcohol dehydrogenase (dimeric) and yeast alcohol dehydrogenase (tetrameric), as biotechnological ADH representative enzymes, was evaluated for the development of a rational strategy to control aggregation. Constructed ADH nuclei, which grew to larger amorphous nanoaggregates, were prevented via high repulsion strain of the net charge values. Good correlation between the variation in scattering and lambda(-2) was related to the amorphousness of the nanoaggregated ADHs, shown by electron microscopic images. Scattering corrections revealed that ADH polymerization was related to the quaternary structural changes, including delocalization of subunits without unfolding, i.e. lacking the 3D conformational and/or secondary-ordered structural changes. The results demonstrated that electrostatic repulsion was not only responsible for disaggregation but also caused a delay in the onset of aggregation temperature, decreasing maximum values of aggregation and amounts of precipitation. Together, our results demonstrate and propose a new model of self-assembly for ADH enzymes based on the construction of nuclei, which grow to formless nanoaggregates with minimal changes in the tertiary and secondary conformations. PMID:19444390

  19. Creation of a thermostable NADP⁺-dependent D-amino acid dehydrogenase from Ureibacillus thermosphaericus strain A1 meso-diaminopimelate dehydrogenase by site-directed mutagenesis.

    PubMed

    Akita, Hironaga; Doi, Katsumi; Kawarabayasi, Yutaka; Ohshima, Toshihisa

    2012-09-01

    A thermostable, NADP(+)-dependent D: -amino acid dehydrogenase (DAADH) was created from the meso-diaminopimelate dehydrogenase of Ureibacillus thermosphaericus strain A1 by introducing five point mutations into amino acid residues located in the active site. The recombinant protein, expressed in Escherichia coli, was purified to homogeneity using a two-step separation procedure and then characterized. In the presence of NADP(+), the protein catalyzed the oxidative deamination of several D: -amino acids, including D: -cyclohexylalanine, D: -isoleucine and D: -2-aminooctanoate, but not meso-diaminopimelate, confirming the creation of a NADP(+)-dependent DAADH. For the reverse reaction, the corresponding 2-oxo acids were aminated in the presence of NADPH and ammonia. In addition, the D: -amino acid dehydrogenase showed no loss of activity at 65 °C, indicating the mutant enzyme was more thermostable than its parental meso-diaminopimelate dehydrogenase.

  20. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  1. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts

    SciTech Connect

    Kuwabata, Susumu; Tsuda, Ryo; Yoneyama, Hiroshi )

    1994-06-15

    Electrolysis at potentials between -0.7 and -0.9 V vs SCE of carbon dioxide-saturated phosphate buffer solutions (pH7) containing formate dehydrogenase (FDH) and either methyl viologen (MV[sup 2+]) or pyrroloquinolinequinone (PQQ) as an electron mediator yielded formate with current efficiencies as high as 90%. The enzyme was durable as long as the electrolysis was carried out in the dark. Electrolysis of phosphate buffer solutions containing sodium formate in the presence of methanol dehydrogenase (MDH) and MV[sup 2+] at -0.7 V vs SCE yielded formaldehyde if the concentration of the enzyme used was low, whereas both formaldehyde and methanol were produced for relatively high concentrations of the enzyme where the methanol production began to occur when the formaldehyde produced accumulated. The use of PQQ in place of MV[sup 2+] as the electron mediator exclusively produced methanol alone after some induction period in the electrolysis. On the basis of these results, successful attempts have been made to reduce carbon dioxide to methanol with cooperative assistance of FDH and MDH in the presence of PQQ as the electron mediator. The role of enzyme and mediator in these reduction processes is discussed in detail. 34 refs., 10 figs., 2 tabs.

  2. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  3. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways. PMID:21416338

  4. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  5. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  6. [Activity of NADP-dependent glycerol-3-phosphate dehydrogenase in skeletal muscles of animals].

    PubMed

    Epifanova, Iu E; Glushankov, E P; Kolotilova, A I

    1978-01-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity was studied in sketetal muscles of the rat, rabbit and frog. The dehydrogenase activity in the skeletal muscles of the rat and rabbit was higher than that of the frog. The enzyme activity was found to depend upon the buffer, being higher in tris-HCl buffer than in triethanolamine buffer.

  7. Activity of select dehydrogenases with Sepharose-immobilized N6-carboxymethyl-NAD

    PubMed Central

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N6-carboxymethyl-NAD (N6-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N6-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N6-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N6-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N6-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N6-amine group on NAD. PMID:25611453

  8. The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance.

    PubMed

    Feller, G; Pauly, J P; Smal, A; O'Carra, P; Gerday, C

    1991-09-20

    Cardiac lactate dehydrogenase from the hemoglobin- and myoglobin-free antarctic icefish has been purified by affinity chromatography. Structural and kinetic properties of the enzyme were found close or identical to those of its skeletal muscle counterpart and other M-type lactate dehydrogenases. A model involving a dual oxidative-anaerobic metabolism of the icefish heart is proposed. PMID:1911860

  9. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  10. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  11. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  12. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    PubMed

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  13. Changing kinetic properties of glucose-6-phosphate dehydrogenase from pea chloroplasts during photosynthetic induction

    SciTech Connect

    Yuan, X.; Anderson, L.E.

    1987-04-01

    The first enzyme of the oxidative pentose phosphate pathway, glucose-6-P dehydrogenase (EC 1.1.1.49), is inactivated when pea chloroplasts are irradiated. They have examined the kinetics of light inactivation of glucose-6-P dehydrogenase in intact chloroplasts during photosynthetic induction and the kinetic parameters of the active (dark) and less active (light) form of the dehydrogenase. Light inactivation of the dehydrogenase is rapid and occurs before photosynthetic O/sub 2/ evolution is measureable in intact chloroplasts. Likewise dark activation is quite rapid. The major change in the kinetic parameters of glucose-6-phosphate dehydrogenase is in maximal velocity. This light inactivation probably prevents operation of a futile cycle involving glucose-6-P, NADPH and oxidative and reductive pentose phosphate pathway enzymes.

  14. [Characterization of aldehyde dehydrogenase gene fragment from mung bean Vigna radiata using the polymerase chain reaction].

    PubMed

    Ponomarev, A G; Bubiakina, V V; Tatarinova, T D; Zelenin, S M

    1998-01-01

    Two degenerate oligonucleotide sequence primers and polymerase chain reactions on total DNA have been utilized to clone on 651--bp gene fragment coding the central part of amino acid sequence of an earlier unknown aldehyde dehydrogenase (ALDH) from mung bean. The deduced partial amino acid sequence for this aldehyde dehydrogenase shows about 65% sequence identity to ALDHs of Vibrio cholerae Rhodococcus sp., Alcaligenes eutrophus and about 45% sequence identity to mammalian ALDHs 1 and 2, ALDHs of Aspergillus niger and A, nidulans, the betain aldehyde dehydrogenase from spinach. Alignment of the mung bean aldehyde dehydrogenase partial amino acid sequence with the sequence of 16 NAD(P)(+)-dependent aldehyde dehydrogenases has demonstrated that all strictly conserved amino acid residues and all three conservative regions are identical. PMID:9778740

  15. Effect of dexamethasone on testicular enzymes of the Embden-Meyerhof and pentose-phosphate pathways.

    PubMed

    Valivullah, H M; Aruldhas, M M; Govindarajulu, P

    1983-04-01

    The influence of dexamethasone on the specific activities of testicular enzymes involved in the Embden-Meyerhof and pentose-phosphate pathways was studied in pre-pubertal, pubertal and adult rats. All of the enzymes showed a decrease in specific activity after dexamethasone treatment, an effect which was most drastic in pre-pubertal animals. After cessation of treatment, the specific activity of all the enzymes reverted to normal levels, except for glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pre-pubertal group.

  16. Intracellular coagulation inhibits the extraction of proteins from Prochloron

    NASA Technical Reports Server (NTRS)

    Fall, R.; Lewin, R. A.; Fall, L. R.

    1983-01-01

    Protein extraction from the prokaryotic alga Prochloron LP (isolated from the ascidian host Lissoclinum patella) was complicated by an irreversible loss of cell fragility in the isolated algae. Accompanying this phenomenon, which is termed intracellular coagulation, was a redistribution of thylakoids around the cell periphery, a loss of photosynthetic O2 production, and a drastic decrease in the extractability of cell proteins. Procedures are described for the successful preparation and transport of cell extracts yielding the enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase as well as other soluble proteins.

  17. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa.

    PubMed

    Westhoff, D; Kamp, G

    1997-08-01

    Evidence is provided that the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase is covalently linked to the fibrous sheath. The fibrous sheath is a typical structure of mammalian spermatozoa surrounding the axoneme in the principal piece of the flagellum. More than 90% of boar sperm glyceraldehyde 3-phosphate dehydrogenase activity is sedimented after cell disintegration by centrifugation. Detergents, different salt concentrations or short term incubation with chymotrypsin do not solubilize the enzyme, whereas digestion with trypsin or elastase does. Short term incubation with trypsin (15 minutes) even resulted in an activation of glyceraldehyde 3-phosphate dehydrogenase. Purification on phenyl-Sepharose yielded a homogeneous glyceraldehyde 3-phosphate dehydrogenase as judged from gel electrophoresis SDS-PAGE and native gradient PAGE. The molecular masses are 41.5 and 238 kDa, respectively, suggesting native glyceraldehyde 3-phosphate dehydrogenase to be a hexamer. Rabbit polyclonal antibodies raised to purified glyceraldehyde 3-phosphate dehydrogenase show a high specificity for mammalian spermatozoal glyceraldehyde 3-phosphate dehydrogenase, while other proteins of boar spermatozoa or the muscle glyceraldehyde 3-phosphate dehydrogenase are not labelled. Immunogold staining performed in a post-embedding procedure reveals the localization of glyceraldehyde 3-phosphate dehydrogenase along the fibrous sheath in spermatozoa of boar, bull, rat, stallion and man. Other structures such as the cell membrane, dense fibres, the axoneme or the mitochondria are free of label. During the process of sperm maturation, most of the cytoplasm of the sperm midpiece is removed as droplets during the passage through the epididymis. The labelling of this cytoplasm, in immature boar spermatozoa and in the droplets, indicates that glyceraldehyde 3-phosphate dehydrogenase is completely removed from the midpiece during sperm maturation in the epididymis. The inverse

  18. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    PubMed Central

    Markey, Keira A; Uldall, Maria; Botfield, Hannah; Cato, Liam D; Miah, Mohammed A L; Hassan-Smith, Ghaniah; Jensen, Rigmor H; Gonzalez, Ana M; Sinclair, Alexandra J

    2016-01-01

    Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. PMID:27186074

  19. Protein-mediated assembly of succinate dehydrogenase and its cofactors.

    PubMed

    Van Vranken, Jonathan G; Na, Un; Winge, Dennis R; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data.

  20. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  1. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  2. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors

    PubMed Central

    Hedstrom, Lizbeth; Liechti, George; Goldberg, Joanna B.; Gollapalli, Deviprasad R.

    2016-01-01

    Inosine 5′-monophosphate dehydrogenase (IMPDH) catalyzes the first committed step of guanosine 5′-monophosphate (GMP) biosynthesis, and thus regulates the guanine nucleotide pool, which in turn governs proliferation. Human IMPDHs are validated targets for immunosuppressive, antiviral and anticancer drugs, but as yet microbial IMPDHs have not been exploited in antimicrobial chemotherapy. Selective inhibitors of IMPDH from Cryptosporidium parvum have recently been discovered that display anti-parasitic activity in cell culture models of infection. X-ray crystal structure and mutagenesis experiments identified the structural features that determine inhibitor susceptibility. These features are found in IMPDHs from a wide variety of pathogenic bacteria, including select agents and multiply drug resistant strains. A second generation inhibitor displays antibacterial activity against Helicobacter pylori, demonstrating the antibiotic potential of IMPDH inhibitors. PMID:21517780

  3. [Sorbitol-6-Phosphate Dehydrogenase Gene Polymorhism in Malus Mill. (Rosaceae)].

    PubMed

    Boris, K V; Kudryavtsev, A M; Kochieva, E Z

    2015-11-01

    The sorbitol-6-phosphate dehydrogenase gene (S6PDH) sequences of six representatives of the genus Malus, which belong to five different taxonomic sections, were examined for the first time. The exon-intron structure and polymorphism of the nucleotide and amino acid sequences of these genes was characterized. The intraspecific polymorphism of the S6PDH gene was assessed for the first time in 40 Russian and foreign apple (Malus domestica) cultivars. It was demonstrated that the interspecific polymorphism level of the S6PDH coding sequences in the studied. representatives of the genus Malus was 4%, and the intraspecific polymorphism level of M. domestica cultivars was very low, constituting 0.96%. PMID:26845854

  4. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    PubMed

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules.

  5. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst.

    PubMed

    An, Hongjie; Jin, Bo; Dai, Sheng

    2015-01-01

    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications. PMID:25435501

  6. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    SciTech Connect

    Hedstrom,L.; Gan, L.

    2006-01-01

    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  7. Method To Identify Specific Inhibiutors Of Imp Dehydrogenase

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    2000-11-28

    This invention relates to methods to identify specific inhibitors of the purine nucleotide synthesis enzyme, IMP dehydrogenase (IMPDH). IMPDH is an essential enzyme found in all free-living organisms from humans to bacteria and is an important therapeutic target. The invention allows the identification of specific inhibitors of any IMPDH enzyme which can be expressed in a functional form in a recombinant host cell. A variety of eukaryotic or prokaryotic host systems commonly used for the expression of recombinant proteins are suitable for the practice of the invention. The methods are amenable to high throughput systems for the screening of inhibitors generated by combinatorial chemistry or other methods such as antisense molecule production. Utilization of exogenous guanosine as a control component of the methods allows for the identification of inhibitors specific for IMPDH rather than other causes of decreased cell proliferation.

  8. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.

    PubMed

    Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji

    2015-01-15

    The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure.

  9. [Sorbitol-6-Phosphate Dehydrogenase Gene Polymorhism in Malus Mill. (Rosaceae)].

    PubMed

    Boris, K V; Kudryavtsev, A M; Kochieva, E Z

    2015-11-01

    The sorbitol-6-phosphate dehydrogenase gene (S6PDH) sequences of six representatives of the genus Malus, which belong to five different taxonomic sections, were examined for the first time. The exon-intron structure and polymorphism of the nucleotide and amino acid sequences of these genes was characterized. The intraspecific polymorphism of the S6PDH gene was assessed for the first time in 40 Russian and foreign apple (Malus domestica) cultivars. It was demonstrated that the interspecific polymorphism level of the S6PDH coding sequences in the studied. representatives of the genus Malus was 4%, and the intraspecific polymorphism level of M. domestica cultivars was very low, constituting 0.96%.

  10. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  11. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease.

    PubMed

    El Kadmiri, N; Slassi, I; El Moutawakil, B; Nadifi, S; Tadevosyan, A; Hachem, A; Soukri, A

    2014-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.

  12. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    PubMed

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  13. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  14. Xanthine Dehydrogenase Is Transported to the Drosophila Eye

    PubMed Central

    Reaume, A. G.; Clark, S. H.; Chovnick, A.

    1989-01-01

    The rosy (ry) locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase. Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. This report demonstrates that enzyme which is synthesized in some tissue other than the eye is transported and sequestered at the eye. Previous studies find that no leader sequence is associated with this molecule but a peroxisomal targeting sequence has been noted, and the enzyme has been localized to peroxisomes. This represents a rare example of an enzyme involved in intermediary metabolism being transported from one tissue to another and may also be the first example of a peroxisomal protein being secreted from a cell. PMID:2513252

  15. Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Senior, D J; Tsai, C S

    1988-04-01

    Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. PMID:3355167

  16. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    PubMed

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  17. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  18. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect. PMID:27266256

  19. Mechanistic enzymology of CO dehydrogenase from Clostridium thermoaceticum

    SciTech Connect

    Ragsdale, S.W.

    1992-01-01

    The final steps in acetyl-CoA biosynthesis by anaerobic bacteria are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. An important achievement was to establish conditions under which acetyl-CoA synthesis by purified enzymes equals the in vivo rate of acetate synthesis. Under these optimized conditions we established that the rate limiting step in the synthesis of acetyl-CoA from methyl-H[sub 4]folate, CO and CoA is likely to be the methylation of CODH by the methylated corrinoid/iron-sulfur protein. We then focused on stopped flow studies of this rate limiting transmethylation reaction and established its mechanism. We have studied the carbonylation of CODH by infrared and resonance Raman spectroscopy and determined that the [Ni-Fe[sup 3-4]S[sub 4

  20. On dihydroorotate dehydrogenases and their inhibitors and uses.

    PubMed

    Munier-Lehmann, Hélène; Vidalain, Pierre-Olivier; Tangy, Frédéric; Janin, Yves L

    2013-04-25

    Proper nucleosides availability is crucial for the proliferation of living entities (eukaryotic cells, parasites, bacteria, and virus). Accordingly, the uses of inhibitors of the de novo nucleosides biosynthetic pathways have been investigated in the past. In the following we have focused on dihydroorotate dehydrogenase (DHODH), the fourth enzyme in the de novo pyrimidine nucleosides biosynthetic pathway. We first described the different types of enzyme in terms of sequence, structure, and biochemistry, including the reported bioassays. In a second part, the series of inhibitors of this enzyme along with a description of their potential or actual uses were reviewed. These inhibitors are indeed used in medicine to treat autoimmune diseases such as rheumatoid arthritis or multiple sclerosis (leflunomide and teriflunomide) and have been investigated in treatments of cancer, virus, and parasite infections (i.e., malaria) as well as in crop science. PMID:23452331

  1. Absence of effects of dietary wheat bran on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver and adipose tissue.

    PubMed

    Stanley, J C; Lambadarios, J A; Newsholme, E A

    1986-03-01

    1. The effects of a 100 g/kg dietary substitution of wheat bran on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of some key enzymes of carbohydrate and lipid metabolism in liver and adipose tissue were studied. 2. Wheat bran had no effect on body-weight gain, food consumption or faecal dry weight. 3. Wheat bran had no effect on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40), ATP-citrate (pro-3S)-lyase (EC 4.1.3.8), pyruvate kinase (EC 2.7.1.40) and fructose-1,6-bisphosphatase (EC 3.1.3.11). The activity of hepatic 6-phosphofructokinase (EC 2.7.1.11) increased but only when expressed on a body-weight basis. 4. Wheat bran had no effect on the activities of adipose tissue glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), ATP-citrate (pro-3S)-lyase, hexokinase (EC 2.7.1.1), 6-phosphofructokinase and pyruvate kinase. 5. These results suggest that unlike guar gum and bagasse, wheat bran does not change the flux through some pathways of lipogenesis in liver and adipose tissue when mice are given high-sucrose diets.

  2. Lysyl-tRNA synthetase from Bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction.

    PubMed

    Takita, Teisuke; Nakagoshi, Makoto; Inouye, Kuniyo; Tonomura, Ben'ichiro

    2003-01-24

    Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue. PMID:12507472

  3. Physicochemical Characterization of a Thermostable Alcohol Dehydrogenase from Pyrobaculum aerophilum

    PubMed Central

    Vitale, Annalisa; Thorne, Natasha; Lovell, Scott; Battaile, Kevin P.; Hu, Xin; Shen, Min; D'Auria, Sabato; Auld, Douglas S.

    2013-01-01

    In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes. PMID:23755111

  4. Structural insight into the type-II mitochondrial NADH dehydrogenases.

    PubMed

    Feng, Yue; Li, Wenfei; Li, Jian; Wang, Jiawei; Ge, Jingpeng; Xu, Duo; Liu, Yanjing; Wu, Kaiqi; Zeng, Qingyin; Wu, Jia-Wei; Tian, Changlin; Zhou, Bing; Yang, Maojun

    2012-11-15

    The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.

  5. Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4.

    PubMed

    Kukimoto-Niino, Mutsuko; Tokmakov, Alexander; Terada, Takaho; Ohbayashi, Naomi; Fujimoto, Takako; Gomi, Sumiko; Shiromizu, Ikuya; Kawamoto, Masaki; Matsusue, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2011-09-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. PDC activity is tightly regulated by four members of a family of pyruvate dehydrogenase kinase isoforms (PDK1-4), which phosphorylate and inactivate PDC. Recently, the development of specific inhibitors of PDK4 has become an especially important focus for the pharmaceutical management of diabetes and obesity. In this study, crystal structures of human PDK4 complexed with either AMPPNP, ADP or the inhibitor M77976 were determined. ADP-bound PDK4 has a slightly wider active-site cleft and a more disordered ATP lid compared with AMPPNP-bound PDK4, although both forms of PDK4 assume open conformations with a wider active-site cleft than that in the closed conformation of the previously reported ADP-bound PDK2 structure. M77976 binds to the ATP-binding pocket of PDK4 and causes local conformational changes with complete disordering of the ATP lid. M77976 binding also leads to a large domain rearrangement that further expands the active-site cleft of PDK4 compared with the ADP- and AMPPNP-bound forms. Biochemical analyses revealed that M77976 inhibits PDK4 with increased potency compared with the previously characterized PDK inhibitor radicicol. Thus, the present structures demonstrate for the first time the flexible and dynamic aspects of PDK4 in the open conformation and provide a basis for the development of novel inhibitors targeting the nucleotide-binding pocket of PDK4. PMID:21904029

  6. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  7. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    PubMed Central

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  8. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children.

    PubMed

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas

    2014-12-01

    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis.

  9. Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2015-01-01

    Proteomics and biochemical analyses were used to unravel the basis for higher growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium compared to soluble. Proteomic analysis using 2-DE, MALDI-TOF/MS and LC-MS revealed the involvement of nine proteins. Down-regulation of fructose bisphosphate aldolase with decreased concentrations of glucose-6-phosphate and fructose-6-phosphate indicated diminished glycolysis. However, up-regulation of phosphoglycerate mutase, increase in the activities of 6-phosphogluconate dehydratase, 2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrogenase suggested induction of Entner-Doudoroff and pentose phosphate pathways. These pathways generate sufficient energy from gluconic acid, which is also used for biosynthesis as indicated by up-regulation of elongation factor Tu, elongation factor G and protein disulfide isomerase. Increased reactive oxygen species (ROS) formation resulting from organic acid oxidation leads to overexpressed manganese superoxide dismutase and increased activities of catalase and ascorbate peroxidase. Thus the organism uses gluconate instead of glucose for energy, while alleviating extra ROS formation by oxidative defense enzymes. PMID:25053519

  10. Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae

    PubMed Central

    Liu, Long; Zhuge, Xin; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua

    2015-01-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. PMID:25595755

  11. Setaria cervi: enzymes of glycolysis and PEP-succinate pathway.

    PubMed

    Anwar, N; Ansari, A A; Ghatak, S; Krishna Murti, C R

    1977-04-15

    Setaria cervi, the filarial parasite inhabiting the Indian water buffalo (Bubalus bubalis Linn.) contained almost all the enzymes involved in glycogen degradation. Significant activities of glycogen phosphorylase, glucokinase, phosphoglucomutase, phosphoglucose isomerase, phosphofructokinase, FDP-aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphopyruvate hydratase, pyruvate kinase, lactate dehydrogenase glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were detected in cell-free extracts of whole worms. The presence of PEP-carboxykinase, malate dehydrogenase, fumarase and fumarate reductase revealed the functioning of the PEP-succinate pathway in addition to phosphorylating glycolysis and pentose phosphate pathway in the parasite. Excepting fumarate reductase all other enzymes were localized in the particulate-free cytosol fraction, although small amounts of glycogen phosphorylase, aldolase and lactate dehydrogenase were also detected in the mitochondrial fraction.

  12. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  13. AB104. Glucose-6 phospate dehydrogenase deficiency among mongolian neonates

    PubMed Central

    Batjargal, Khishigjargal; Nansal, Gerelmaa; Zagd, Gerelmaa; Ganbaatar, Erdenetuya

    2015-01-01

    Background and objective Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in humans, affecting 400 million people worldwide and a high prevalence in persons of African, Middle Asian countries. The most common clinical manifestations are neonatal jaundice and acute hemolytic anemia, which is caused by the impairment of erythrocyte’s ability to remove harmful oxidative stress triggered by exogenous agents such as drugs, infection, or fava bean ingestion. Neonatal hyperbilirubinemia caused by G6PD is strongly associated with mortality and long-term neurodevelopmental impairment. The study aims to determine a level of G6PD in healthy neonates. Methods We obtained blood spot samples from 268 infants around 24-72 hours in their age who has unsuspected intranatal and neonatal disorders. Glucose 6 phosphate dehydrogenase “Perkin Elmer, Finland” level is determined by Victor 2D Fluorometer assay, developing of neonatal jaundice is examined by recall. Results The76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PD, other 23.5% (n=63) was 0.96±0.51 Ug/Hb with G6PD deficiency. In the both sex, 51.5% of male 0.88±0.46 Ug/Hb (n=33) and 47.6% of female (n=30) 0.97±0.55 Ug/Hb was assessed with G6PD deficiency. Developing Jaundice period in number of 63 neonates with G6PD deficiency, 86% of neonates (n=54) was in 1-4 days, 4% of neonates (n=3) was in 5-7 days and there is no sign of jaundice in 9% (n=6). Therefore neonates with G6PD deficiency, 53.9% (n=34) continued jaundice more than two weeks. Conclusions G6PD deficiency was determined in male neonates (51.5%) more than female (47.6%). The 76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PDH other 23.5% (n=63) of all participants was 0.96±0.51 Ug/Hb with G6PD deficiency. It shows that G6PD might be one potential risk of neonatal jaundice and hyperbilirubinemia in neonates in Mongolia.

  14. Improvement of the soy formate dehydrogenase properties by rational design.

    PubMed

    Kargov, I S; Kleimenov, S Y; Savin, S S; Tishkov, V I; Alekseeva, A A

    2015-06-01

    Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 μM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.

  15. Dietary methimazole-induced hypothyroidism reduces hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis in Pelteobagrus fulvidraco.

    PubMed

    Chen, Qi-Liang; Luo, Zhi; Shi, Xi; Wu, Kun; Zhuo, Mei-Qin; Song, Yu-Feng; Hu, Wei

    2015-01-01

    The present study was conducted to investigate the effects and mechanisms of hypothyroidism, induced by administration of 0.2% methimazole through the food, on lipid metabolism in the liver of juvenile yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish were fed diets containing either 0 or 2g methimazole per kg of diet for 8weeks, respectively. The results showed that fish fed diet containing methimazole had a significant reduction in growth performance, plasma THs levels and hepatic lipid content. Meanwhile, methimazole treatment inhibited the activities of lipogenic enzymes (6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase) and the mRNA levels of genes involved in lipogenesis (6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, fatty acid synthase, acetyl-CoA carboxylase α, sterol-regulator element-binding protein-1 and liver X receptor), but increased lipolytic enzyme (carnitine palmitoyltransferase 1) activity and the expression of genes involved in lipolysis (carnitine palmitoyltransferase 1a, hormone-sensitive lipase and peroxisome proliferators-activated receptor α). Thus, our study indicated that dietary methimazole-induced hypothyroidism could disturb the normal processes of lipid metabolism at the enzymatic and molecular levels in yellow catfish, and the reduced hepatic lipid content by hypothyroidism was attributable to the down-regulation of lipogenesis and up-regulation of lipolysis.

  16. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids

    PubMed Central

    Gallego, Oriol; Belyaeva, Olga V.; Porté, Sergio; Ruiz, F. Xavier; Stetsenko, Anton V.; Shabrova, Elena V.; Kostereva, Natalia V.; Farrés, Jaume; Parés, Xavier; Kedishvili, Natalia Y.

    2006-01-01

    Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low Km values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low Km values for retinoids (0.12–1.1 μM), whilst they strongly differ in their kcat values, which range from 0.35 min−1 for AKR1B1 to 302 min−1 for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. PMID:16787387

  17. Crystal Structures of a Hyperthermophilic Archaeal Homoserine Dehydrogenase Suggest a Novel Cofactor Binding Mode for Oxidoreductases.

    PubMed

    Hayashi, Junji; Inoue, Shota; Kim, Kwang; Yoneda, Kazunari; Kawarabayasi, Yutaka; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2015-07-08

    NAD(P)-dependent dehydrogenases differ according to their coenzyme preference: some prefer NAD, others NADP, and still others exhibit dual cofactor specificity. The structure of a newly identified archaeal homoserine dehydrogenase showed this enzyme to have a strong preference for NADP. However, NADP did not act as a cofactor with this enzyme, but as a strong inhibitor of NAD-dependent homoserine oxidation. Structural analysis and site-directed mutagenesis showed that the large number of interactions between the cofactor and the enzyme are responsible for the lack of reactivity of the enzyme towards NADP. This observation suggests this enzyme exhibits a new variation on cofactor binding to a dehydrogenase: very strong NADP binding that acts as an obstacle to NAD(P)-dependent dehydrogenase catalytic activity.

  18. Esterase and Malate Dehydrogenase Phenotypes in Portuguese Populations of Meloidogyne Species

    PubMed Central

    Pais, Célia S.; de O. Abrantes, Isabel M.

    1989-01-01

    Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes. PMID:19287618

  19. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  20. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  1. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  2. FAD requirement for the reduction of coenzyme F420 by formate dehydrogenase from Methanobacterium formicicum.

    PubMed Central

    Schauer, N L; Ferry, J G

    1983-01-01

    The partial purification of the formate dehydrogenase from cell-free extracts of Methanobacterium formicicum decreased the rate of coenzyme F420 reduction 175-fold relative to the rate of methyl viologen reduction. FAD, isolated from this organism, reactivated the coenzyme F420-dependent activity of purified formate dehydrogenase and restored the activity ratio (coenzyme F420/methyl viologen) to near that in cell-free extracts. Neither flavin mononucleotide nor FADH2 replaced FAD. The reduced form of FAD inhibited the reactivation of coenzyme F420-dependent formate dehydrogenase activity by the oxidized form. The results suggest that native formate dehydrogenase from Methanobacterium formicicum contains noncovalently bound FAD that is required for coenzyme F420-dependent activity. PMID:6874636

  3. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered. PMID:24711919

  4. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  5. Effect of phenylpyruvate on pyruvate dehydrogenase activity in rat brain mitochondria

    PubMed Central

    Land, John M.; Clark, John B.

    1973-01-01

    1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of 14CO2 from [1-14C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a Ki of 100μm. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria. PMID:16742815

  6. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes.

    PubMed

    de Souza, João C P; Iost, Rodrigo M; Crespilho, Frank N

    2016-03-15

    Recently, many strategies are being explored for efficiently wiring glucose dehydrogenase (GDh) enzymes capable of glucose (fuel) oxidation. For instance, the use of GDh NAD(+)-dependent for glucose oxidation is of great interest in biofuel cell technology because the enzyme are unaffected by the presence of molecular oxygen commonly present in electrolyte. Here we present the fabrication of flexible carbon fibers modified with nitrated carbon nanoblisters and their application as high-performance GDh bioanodes. These bioelectrodes could electro-oxidize glucose at -360 mV (vs. Ag/AgClsat) in the presence of a molecular oxygen saturated electrolyte with current densities higher than 1.0 mAcm(-2) at 0.0 V. It is corroborated by open circuit potential, where a potential stabilization occurs at -150 mV in a long term stability current-transient experiment. This value is in agreement with the quasi-steady current obtained at very low scan rate (0.1 mVs(-1)), where the onset potential for glucose oxidation is -180 mV. X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the nitrated blisters and edge-like carbon structures, enabling highly efficient enzyme immobilization and low overpotential for electron transfer, allowing for glucose oxidation with potential values close to the thermodynamic cofactor. PMID:26516686

  7. Triazaspirodimethoxybenzoyls as Selective Inhibitors of Mycobacterial Lipoamide Dehydrogenase

    SciTech Connect

    Bryk, Ruslana; Arango, Nancy; Venugopal, Aditya; Warren, J. David; Park, Yun-Hee; Patel, Mulchand S.; Lima, Christopher D.; Nathan, Carl

    2010-06-25

    Mycobacterium tuberculosis (Mtb) remains the leading single cause of death from bacterial infection. Here we explored the possibility of species-selective inhibition of lipoamide dehydrogenase (Lpd), an enzyme central to Mtb's intermediary metabolism and antioxidant defense. High-throughput screening of combinatorial chemical libraries identified triazaspirodimethoxybenzoyls as high-nanomolar inhibitors of Mtb's Lpd that were noncompetitive versus NADH, NAD{sup +}, and lipoamide and >100-fold selective compared to human Lpd. Efficacy required the dimethoxy and dichlorophenyl groups. The structure of an Lpd-inhibitor complex was resolved to 2.42 {angstrom} by X-ray crystallography, revealing that the inhibitor occupied a pocket adjacent to the Lpd NADH/NAD{sup +} binding site. The inhibitor did not overlap with the adenosine moiety of NADH/NAD{sup +} but did overlap with positions predicted to bind the nicotinamide rings in NADH and NAD{sup +} complexes. The dimethoxy ring occupied a deep pocket adjacent to the FAD flavin ring where it would block coordination of the NADH nicotinamide ring, while the dichlorophenyl group occupied a more exposed pocket predicted to coordinate the NAD{sup +} nicotinamide. Several residues that are not conserved between the bacterial enzyme and its human homologue were predicted to contribute both to inhibitor binding and to species selectivity, as confirmed for three residues by analysis of the corresponding mutant Mtb Lpd proteins. Thus, nonconservation of residues lining the electron-transfer tunnel in Mtb Lpd can be exploited for development of species-selective Lpd inhibitors.

  8. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

    PubMed Central

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A

    1991-01-01

    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis. PMID:1924300

  9. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

    PubMed

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A

    1991-10-01

    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis.

  10. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    PubMed

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  11. Sorbitol dehydrogenase from bovine lens: purification and properties.

    PubMed

    Marini, I; Bucchioni, L; Borella, P; Del Corso, A; Mura, U

    1997-04-15

    Bovine lens sorbitol dehydrogenase (L-iditol:NAD+ 2-oxidoreductase, EC 1.1.1.14) (SDH) was purified to electrophoretic homogeneity (51 U/mg of protein) and characterized for both kinetic and some structural properties. The enzyme proves to be a homotetramer of 156 kDa containing one equivalent of zinc ion per subunit. Metal chelators such as EDTA and 1,10-phenanthroline determine a loss of enzyme activity which can be specifically recovered by addition of either zinc or manganese ions. Inactivation induced not only by metal chelators but also by thiol reagents is effectively prevented by the pyridine cofactor. Bovine lens SDH is active on polyalcohols and keto-sugars with more than three carbon atoms, and also requires special steric constraints for substrate recognition. Of the polyols, xylitol is the most effective substrate (kcat/KM of 8.1 s-1 mM-1), followed by sorbitol (kcat/KM of 1.59 s-1 mM-1); fructose, the most effective carbonyl substrate, displays a kcat/KM of only 0.9 s-1 mM-1. Analysis at the steady state of initial velocities as a function of the concentration of different substrates and cofactors and studies of product inhibition indicate for both fructose reduction and sorbitol oxidation a Theorell and Chance-type kinetic mechanism of action.

  12. Novel steroid inhibitors of glucose 6-phosphate dehydrogenase.

    PubMed

    Hamilton, Niall M; Dawson, Martin; Fairweather, Emma E; Hamilton, Nicola S; Hitchin, James R; James, Dominic I; Jones, Stuart D; Jordan, Allan M; Lyons, Amanda J; Small, Helen F; Thomson, Graeme J; Waddell, Ian D; Ogilvie, Donald J

    2012-05-10

    Novel derivatives of the steroid DHEA 1, a known uncompetitive inhibitor of G6PD, were designed, synthesized, and tested for their ability to inhibit this dehydrogenase enzyme. Several compounds with approximately 10-fold improved potency in an enzyme assay were identified, and this improved activity translated to efficacy in a cellular assay. The SAR for steroid inhibition of G6PD has been substantially developed; the 3β-alcohol can be replaced with 3β-H-bond donors such as sulfamide, sulfonamide, urea, and carbamate. Improved potency was achieved by replacing the androstane nucleus with a pregnane nucleus, provided a ketone at C-20 is present. For pregnan-20-ones incorporation of a 21-hydroxyl group is often beneficial. The novel compounds generally have good physicochemical properties and satisfactory in vitro DMPK parameters. These derivatives may be useful for examining the role of G6PD inhibition in cells and will assist the future design of more potent steroid inhibitors with potential therapeutic utility. PMID:22506561

  13. Structural and Kinetic Studies of Formate Dehydrogenase from Candida boidinii.

    PubMed

    Guo, Qi; Gakhar, Lokesh; Wickersham, Kyle; Francis, Kevin; Vardi-Kilshtain, Alexandra; Major, Dan T; Cheatum, Christopher M; Kohen, Amnon

    2016-05-17

    The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented. PMID:27100912

  14. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  15. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    PubMed Central

    2011-01-01

    Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256

  16. Malate dehydrogenase: a useful phylogenetic marker for the genus Aeromonas.

    PubMed

    Farfán, Maribel; Miñana-Galbis, David; Garreta, Albert; Lorén, J Gaspar; Fusté, M Carmen

    2010-12-01

    The reconstruction of correct genealogies among biological entities, the estimation of the divergence time between organisms or the study of the different events that occur along evolutionary lineages are not always based on suitable genes. For reliable results, it is necessary to look at full-length sequences of genes under stabilizing selection (neutral or purifying) and behaving as good molecular clocks. In bacteria it has been proved that the malate dehydrogenase gene (mdh) can be used to determine the inter- and intraspecies divergence, and hence this gene constitutes a potential marker for phylogeny and bacterial population genetics. We have sequenced the full-length mdh gene in 36 type and reference strains of Aeromonas. The species grouping obtained in the phylogenetic tree derived from mdh sequences was in agreement with that currently accepted for the genus Aeromonas. The maximum likelihood models applied to our sequences indicated that the mdh gene is highly conserved among the Aeromonas species and the main evolutionary force acting on it is purifying selection. Only two sites under potential diversifying selection were identified (T 108 and S 193). In order to determine if these two residues could have an influence on the MDH structure, we mapped them in a three-dimensional model constructed from the sequence of A. hydrophila using the human mitochondrial MDH as a template. The presence of purifying selection together with the linear relationship between substitutions and gene divergence makes the mdh an excellent candidate gene for a phylogeny of Aeromonas and probably for other bacterial groups.

  17. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling.

    PubMed

    Ahn, Heejin; Lee, Kyunghee; Kim, Jin Man; Kwon, So Hyun; Lee, Seoung Hoon; Lee, Soo Young; Jeong, Daewon

    2016-01-01

    Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and activation of the LDH A2B2 isotype during osteoclast differentiation as well as the LDH A1B3 and B4 isotypes during osteoclast maturation after pre-osteoclast formation. Glucose consumption and lactate production in growth media were accelerated during osteoclast differentiation, together with enhanced expression of H+-lactate co-transporter and increased extracellular acidification, demonstrating that glycolytic metabolism was stimulated during differentiation. Further, oxygen consumption via mitochondria was stimulated during osteoclast differentiation. On the contrary, depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabolism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stimulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast formation via osteoclast precursor fusion and NFATc1 signaling. PMID:27077737

  18. Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice.

    PubMed

    Yu, Hsu-Sheng; Oyama, Tsunehiro; Isse, Toyohi; Kitakawa, Kyoko; Ogawa, Masanori; Pham, Thi-Thu-Phuong; Kawamoto, Toshihiro

    2009-11-01

    Acetaldehyde is an intermediate of ethanol oxidation. It covalently binds to DNA, and is known as a carcinogen. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme that oxidizes acetaldehyde. Approximately 45% of Chinese and Japanese individuals have the inactive ALDH2 genotypes (ALDH2*2/*2 and ALDH2*1/*2), and Aldh2 knockout mice appear to be a valid animal model for humans with inactive ALDH2. This review gives an overview of published studies on Aldh2 knockout mice, which were treated with ethanol or acetaldehyde. According to these studies, it was found that Aldh2 -/- mice (Aldh2 knockout mice) are more susceptible to ethanol and acetaldehyde-induced toxicity than Aldh2 +/+ mice (wild type mice). When mice were fed with ethanol, the mortality was increased. When they were exposed to atmospheres containing acetaldehyde, the Aldh2 -/- mice showed more severe toxic symptoms, like weight loss and higher blood acetaldehyde levels, as compared with the Aldh2 +/+ mice. Thus, ethanol and acetaldehyde treatment affects Aldh2 knockout mice more than wild type mice. Based on these findings, it is suggested that ethanol consumption and acetaldehyde inhalation are inferred to pose a higher risk to ALDH2-inactive humans. These results also support that ALDH2-deficient humans who habitually consume alcohol have a higher rate of cancer than humans with functional ALDH2. PMID:19874182

  19. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  20. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  1. The structure and allosteric regulation of glutamate dehydrogenase.

    PubMed

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  2. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    PubMed Central

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  3. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    PubMed Central

    Wang, Guosheng; Zhao, Xingbo; Zhong, Juming; Cao, Meng; He, Qinghua; Liu, Zhengxin; Lin, Yaqiu; Xu, Yaou; Zheng, Yucai

    2013-01-01

    The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak (Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak. PMID:23739677

  4. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  5. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation.

  6. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    PubMed Central

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30C, and interestingly, it could utilize NAD+ and NADP+ as coenzymes with similar efficiency and showed no obvious difference toward NAD+ and NADP+. In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum. PMID:25622822

  7. Phenotypic and Neuropathological Characterization of Fetal Pyruvate Dehydrogenase Deficiency.

    PubMed

    Pirot, Nathalie; Crahes, Marie; Adle-Biassette, Homa; Soares, Anais; Bucourt, Martine; Boutron, Audrey; Carbillon, Lionel; Mignot, Cyril; Trestard, Laetitia; Bekri, Soumeya; Laquerrière, Annie

    2016-03-01

    To distinguish pyruvate dehydrogenase deficiency (PDH) from other antenatal neurometabolic disorders thereby improving prenatal diagnosis, we describe imaging findings, clinical phenotype, and brain lesions in fetuses from 3 families with molecular characterization of this condition. Neuropathological analysis was performed in 4 autopsy cases from 3 unrelated families with subsequent biochemical and molecular confirmation of PDH complex deficiency. In 2 families there were mutations in the PDHA1 gene; in the third family there was a mutation in the PDHB gene. All fetuses displayed characteristic craniofacial dysmorphism of varying severity, absence of visceral lesions, and associated encephaloclastic and developmental supra- and infratentorial lesions. Neurodevelopmental abnormalities included microcephaly, migration abnormalities (pachygyria, polymicrogyria, periventricular nodular heterotopias), and cerebellar and brainstem hypoplasia with hypoplastic dentate nuclei and pyramidal tracts. Associated clastic lesions included asymmetric leukomalacia, reactive gliosis, large pseudocysts of germinolysis, and basal ganglia calcifications. The diagnosis of PDH deficiency should be suspected antenatally with the presence of clastic and neurodevelopmental lesions and a relatively characteristic craniofacial dysmorphism. Postmortem examination is essential for excluding other closely related entities, thereby allowing for biochemical and molecular confirmation. PMID:26865159

  8. Immobilization and enzymatic properties of Bacillus megaterium glucose dehydrogenase

    SciTech Connect

    Baron, M.; Fontana, J.D.; Guimaraes, M.F.; Woodward, J.

    1996-12-31

    The enzymatic production of hydrogen gas from renewable sources of energy; e.g., cellulose, starch, lactose, can be obtained by coupling the reactions catalyzed by glucose dehydrogenase (GDH) and hydrogenase. In order to enhance the thermostability of GDH from Bacillus megaterium, the enzyme was immobilized by ionic adsorption using the polycationic polymer DEAE-(dextran)Sephadex. The effect of enzyme concentration on immobilization showed a tendency to increase the activity of the immobilized enzyme with the increase of the amount of added GDH. When the enzyme: support ratio was 15.97 U: 100 mg, the immobilization yield was 84.76%. The enzymatic profiles for the immobilized GDH were a little different when compared to those for free enzyme with respect to the effects of pH and temperature. Concerning the effect of incubation time carried at pH 7.5 and at 40{degrees}C, the maximum production of reduced coenzyme by the immobilized enzyme was reached within 4 h and it was maintained up to 16 h without loss of enzymatic activity. The coupling of the immobilized GDH activity with that for free alkaline cellulose (Novozym. 342) demonstrated the possibility for obtaining reduced coenzyme from the cellulose hydrolysis and the immobilized GDH could be reassayed 10 times maintaining its enzyme activity.

  9. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity.

    PubMed

    Dong, Xing; Fan, Yunchang; Zhang, Heng; Zhong, Yingying; Yang, Yang; Miao, Juan; Hua, Shaofeng

    2016-05-01

    Ionic liquids (ILs) were widely used in scientific and industrial application and have been reported to possess potential toxicity to the environment and human health. The effects of six typical N-methylimidazolium-based ILs ([Cnmim]X, n=4, 6, 8; X=Br(-), Cl(-), BF4(-), CF3SO3(-)) on the lactic dehydrogenase (LDH) activity and the molecular interaction mechanism of ILs and the LDH were investigated with the aid of spectroscopic techniques. Experimental results showed that the LDH activity was inhibited in the presence of ILs. For the ILs with the same anion but different cations, their inhibitory ability on the LDH activity increased with increasing the alkyl chain length on the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of LDH with the addition of ILs. Both positive ΔH and ΔS suggested that hydrophobicity was the major driven force in the interaction process as expected. PMID:26802246

  10. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    DOE PAGESBeta

    Huo, Lu; Davis, Ian; Liu, Fange; Andi, Babak; Esaki, Shingo; Iwaki, Hiroaki; Hasegawa, Yoshie; Orville, Allen M.; Liu, Aimin

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD+-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation.« less

  11. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    SciTech Connect

    Huo, Lu; Davis, Ian; Liu, Fange; Andi, Babak; Esaki, Shingo; Iwaki, Hiroaki; Hasegawa, Yoshie; Orville, Allen M.; Liu, Aimin

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacyl intermediate and an NAD+-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp3-to-sp2 transition during enzyme-mediated oxidation.

  12. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    SciTech Connect

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  13. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization.

    PubMed

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M

    2014-02-01

    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents. PMID:24064207

  14. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication.

    PubMed

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  15. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum.

    PubMed

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-27

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51 kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2 kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30°C, and interestingly, it could utilize NAD(+) and NADP(+) as coenzymes with similar efficiency and showed no obvious difference toward NAD(+) and NADP(+). In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum.

  16. Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene.

    PubMed

    Stone, E M; Rothblum, K N; Schwartz, R J

    The function of introns in the evolution of genes can be explained in at least two ways: either introns appeared late in evolution and therefore could not have participated in the construction of primordial genes, or RNA splicing and introns existed in the earliest organisms but were lost during the evolution of the modern prokaryotes. The latter alternative allows the possibility of intron participation in the formation of primordial genes before the divergence of modern prokaryotes and eukaryotes. Blake suggested that evidence for intron-facilitated evolution of a gene might be found by comparing the borders of functional protein domains with the placement of introns. We therefore examined glyceraldehyde phosphate dehydrogenase (GAPDH), a glycolytic enzyme, because it is the first protein for which the following data are available: X-ray crystallographic studies demonstrating structurally independent protein 'domains' which were highly conserved during the divergence of prokaryotes and eukaryotes; and a study of genomic organization which mapped introns in the gene. Sequencing of the chicken GAPDH gene revealed 11 introns. We report here that sites of three of the introns (IV, VI and XI) correspond closely with the borders of the NAD-binding, catalytic and helical tail domains of the enzyme, supporting the hypothesis that introns did have a role in the evolution of primitive genes. In addition, other biochemical and structural data were used to construct a model of the intron-mediated assembly of the GAPDH gene that explains the existence of 10 introns.

  17. Isocitrate dehydrogenase mutations: new opportunities for translational research

    PubMed Central

    Keum, Young-Sam; Choi, Bu Young

    2015-01-01

    Over the last decade, comprehensive genome-wide sequencing studies have enabled us to find out unexpected genetic alterations of metabolism in cancer. An example is the identification of arginine missense mutations of isocitrate dehydrogenases-1 and -2 (IDH1/2) in glioma, acute myeloid leukemia (AML), chondrosarcomas, and cholangiocarcinoma. These alterations are closely associated with the production of a new stereospecific metabolite, (R)-2-hydroxyglutarate (R-2HG). A large number of follow-up studies have been performed to address the molecular mechanisms of IDH1/2 mutations underlying how these events contribute to malignant transformation. In the meanwhile, the development of selective mutant IDH1/2 chemical inhibitors is being actively pursued in the scientific community and pharmaceutical industry. The present review article briefly discusses the important findings that highlight the molecular mechanisms of IDH1/2 mutations in cancer and provides a current status for development of selective mutant IDH1/2 chemical inhibitors. [BMB Reports 2015; 48(5): 266-270] PMID:25787993

  18. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase*

    PubMed Central

    Takahashi-Íñiguez, Tóshiko; Aburto-Rodríguez, Nelly; Vilchis-González, Ana Laura; Flores, María Elena

    2016-01-01

    Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.

  19. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  20. Glucose-6-phosphate dehydrogenase deficiency: the added value of cytology.

    PubMed

    Roelens, Marie; Dossier, Claire; Fenneteau, Odile; Couque, Nathalie; Da Costa, Lydie

    2016-06-01

    We report the case of a 2 year-old boy hospitalized into the emergency room for influenza pneumonia infection. The evolution was marked by a respiratory distress syndrome, a severe hemolytic anemia, associated with thrombocytopenia and kidney failure. First, a diagnosis of hemolytic uremic syndrome (HUS) has been judiciously suggested due to the classical triad: kidney failure, hemolytic anemia and thrombocytopenia. But, strikingly, blood smears do not exhibit schizocytes, but instead ghosts and hemighosts, some characteristic features of a glucose-6-phosphate dehydrogenase deficiency. Our hypothesis has been confirmed by enzymatic dosage and molecular biology. The unusual initial aplastic feature of this anemia could be the result of a transient erythroblastopenia due to the viral agent, at the origin of the G6PD crisis on a background of a major erythrocyte anti-oxydant enzyme defect. This case of G6PD defect points out the continuously importance of the cytology, which was able to redirect the diagnosis by the hemighost and ghost detection.