Science.gov

Sample records for steel by properties

  1. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  2. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  3. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  4. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  5. Mechanical properties evaluations of an age hardenable martensitic steel deformed by equal channel angular pressing.

    PubMed

    Nili-Ahmadabadi, M; Shirazi, H; Iranpour Mobarake, M; Poorganji, B; Hossein Nedjad, S; Furuhara, T

    2010-09-01

    Effect of severe plastic deformation by equal channel angular pressing on the mechanical properties of an age hardenable low carbon martensitic steel was investigated. Equal Channel angular pressing was carried out on the solution-annealed steel up to four passes at room temperature through the route Bc. Aging was carried out at 753 K for 2.4 ks. It was found that after four passes deformation, the microstructure is consist of fine grained high angle grain boundaries and lamellar dislocation cell block. The strength of steel is increased considerably while a increasing in elongation is revealed. PMID:21133170

  6. Microstructure Evaluation and Mechanical Properties of Low Alloy Cryogenic Steel Processed by Normalizing Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Zili; Liu, Xiqin; Hou, Zhiguo; Zhou, Shuangshuang; Tian, Qingchao

    2016-09-01

    Effects of the normalizing treatment on microstructural evolution, mechanical properties, and impact fracture behavior of 20MnV low alloy cryogenic as-rolled steel were evaluated. The results indicate that grain boundary carbide and acicular ferrite of the as-rolled steel were eliminated and a large amount of nanoscale VC precipitates were observed after 860 °C normalizing treatment. The as-normalized steel had lower strength, higher elongation, and impact absorbed energy than as-rolled steel. The optimal comprehensive mechanical property, especially the superior cryogenic toughness with impact absorbed energy values at -20 and -50 °C were 62 and 40 J, respectively, was obtained at 860 °C. The as-rolled steel contained shearing crack and necking crack simultaneously, while 860 °C as-normalized steel only contained deflecting necking crack, indicating the significant improvement of the toughness.

  7. Nanoscale steel-brass multilayer laminates made by cold rolling: Microstructure and tensile properties

    SciTech Connect

    Kavarana, F.H.; Ravichandran, K.S.; Sahay, S.S.

    2000-05-10

    The thrust of this study is to fabricate steel-brass multilayer laminates with layer thicknesses in the nanometer range and to evaluate their mechanical properties. Repeated cold rolling of multilayer stacks was adopted to produce the laminates, because the relative simplicity and the low-cost nature of this process can allow the scaling-up of the technique to the level of commercial-scale production. This work is a continuation of a previous study, in which steel-brass laminates with layer thicknesses in the micrometer range were fabricated for the first time and their tensile properties were evaluated. The present work, however, emphasizes making multilayers with layer thicknesses in the nanometer range and evaluating their mechanical properties. The dependence of strength and ductility on the layer spacing in the nanometer range, is highlighted. It is shown that strength levels comparable to quenched and tempered low alloy steels can be achieved in the laminates by rolling down to the low end of nanometer range. The relevant strengthening mechanisms are also discussed.

  8. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  9. Formation of the Increased Wear-Resistant Properties of Hardox 450 Steel by Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Kormyshev, V. E.; Kapralov, E. V.; Ivanov, Y. F.; Zavatski, O. V.; Gromov, V. E.

    2016-09-01

    The structure-phase conditions formed during the deposition of surface coatings on Hardox 450 steel by the wire comprising C, V, Cr, Nb, W were examined by the methods of X- ray phase analysis and transmission electron diffraction microscopy. It was established that after the hardened layer was deposited, the wear-resistance increased 153 times and the coefficient of friction in the material decreased 2.5 times. It was concluded that the increased properties of the surface coating were due to the formation of martensitic structure and the occurrence of high volume fraction of carbide phase inclusions.

  10. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments

    NASA Astrophysics Data System (ADS)

    Mateo, A.; Zapata, A.; Fargas, G.

    2013-12-01

    AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.

  11. Structure and properties of a layered steel/vanadium alloy/steel composite prepared by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rogachev, S. O.; Rozhnov, A. B.; Khatkevich, V. M.; Nechaikina, T. A.; Morozov, M. V.

    2016-04-01

    The microstructure and hardness of a layered steel 08Kh17T/V-10Ti-5Cr/steel 08Kh17T composite, which was prepared by torsion under a high hydrostatic pressure at temperatures of 20, 200, and 400°C, have been studied. Severe plastic deformation under used conditions is shown to provide good joining of layers, which is accompanied by their substantial hardening (from 2.0 to 3.5 times). During deformation at temperatures of 20 and 200°C, fragmentation of the vanadium alloy layer into thinner layers is observed; at 400°C, mainly a plane interface between the vanadium alloy and the steel layers is formed.

  12. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  13. Estimation of mechanical properties of irradiated nuclear pressure vessel steel by use of subsized CT specimen and small punch specimen

    SciTech Connect

    Mao, X. . Dept. of Mechanical Engineering); Takahashi, H. ); Kodaira, T. )

    1991-11-01

    This paper reports on the 2-1/4 Cr-1M{sub 0} steel that has been selected as the material for the reactor pressure vessel (RPV) of a multipurpose experimental high temperature gas cooled reactor designed by JAERI. The 2-1/4 Cr-1M{sub 0} steel has successful records for high temperature pressure vessels in the petrochemical industries and the ASME Code Case authorizes the use of the steel in these pressure vessels. However, the steel has not been used to nuclear reactor pressure vessels so far. Since the material in the so-called belt line region of the nuclear pressure vessels undergo changes in toughness and strength due to neutron irradiation, it is quite urgent to collect the fracture toughness and strength data of the irradiated steel for the evaluation of the structural intergravity of the reactor pressure vessel of high radiation resistance. In order to study irradiation damage of 2-1/4 Cr-1M{sub 0} steel, small specimens are required because of the severe limitations on specimen size in irradiated-material testing facilities (e.g. the limited space available for testing in nuclear reactors and the narrow damage zone produced by charged particle accelerators). In order to obtain more information about fracture properties of the 2-1/4 Cr- 1M{sub 0} steel from specimens, a subsized compact tensile (CT) specimen, a small punch (SP) specimen and tensile specimen of the irradiated 2-1/4 Cr-1M{sub 0} steel were used to provide radiation effects on fracture toughness, yield strength and ultimate strength. The small punch test, which has been developed recently provides information of the yield and ultimate strength as well as fracture toughness. This report describes the behavior of the neutron irradiation embrittlement of the nuclear reactor pressure vessel steel 2-1/4 Cr-1M{sub 0} by use of new testing approach - subsized specimen techniques.

  14. Mechanical Properties of Sintered Martensitic Stainless Steel Fabricated by Metal Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Nakayama, Hideki; Kyogoku, Hideki

    The effects of sintering and heat treatment conditions on the mechanical properties of martensitic stainless steel fabricated by metal injection molding (MIM) process were investigated. The specimens were made by injecting the mixture of gas-atomized powders of 5 µm and 10 µm in mean particle diameter and a polymer binder into a metallic mold. The injection molded compacts were debound in air at various temperatures between 533 K and 593 K for 7.2 ks. They were sintered in vacuum at various temperatures between 1273 K and 1623 K for 7.2 ks. And the specimens were tempered at various temperatures between 373 K and 973 K after vacuum hardening. The density of the as-sintered compact of 5 µm powder was higher than that of the as-sintered compact of 10 µm powder. In case of the as-sintered compact of 5 µm powder, the tensile strength depended on the change in density, and the tensile strength of the compact sintered at 1373 K was 1600 MPa. On the other hand, in the case of the as-sintered compact of 10 µm powder, the tensile strength was rather lower than that of the as-sintered compact of 5 µm powder because of coarsening of the grain size. The tensile strength and elongation of the heat-treated compact of 5 µm powder were 1800 MPa and 12 %, respectively. The tensile strength and elongation of the heat-treated compact of 10 µm powder were 1680 MPa and 10 %, respectively. Thus, the mechanical properties of the compacts were approximately equal to those of the wrought material.

  15. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  16. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    NASA Astrophysics Data System (ADS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2015-02-01

    Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN-Al), while the others were pack aluminized followed by plasma nitriding (Al-PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (Rp) resistances were obtained in PN-Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al-PN specimens.

  17. Characterization of a boron alloyed 9Cr3W3CoVNbBN steel and further improvement of its high-temperature mechanical properties by thermomechanical treatments

    NASA Astrophysics Data System (ADS)

    Hollner, S.; Piozin, E.; Mayr, P.; Caës, C.; Tournié, I.; Pineau, A.; Fournier, B.

    2013-10-01

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with an improved high temperature (≅650 °C) mechanical strength are required for specific components. The 9-12% Cr martensitic steels are candidate for these applications. Previous works showed that the application of a thermomechanical treatment, including warm-rolling in metastable austenitic phase, to the commercial Grade 91 martensitic steel, allowed refining its microstructure, improving its precipitation state and its mechanical properties (hardness, tensile and creep properties). In the present paper, experimental steel called NPM, designed for good high-temperature creep resistance, is evaluated in terms of microstructure and mechanical properties, and compared to the G91 steel. Then the developed thermomechanical treatment is applied to this steel. Its microstructure is refined and its hardness and tensile properties are much better than the as-received NPM and therefore than the G91 steel. The cyclic softening effect still occurs for the optimized NPM, but this material once softened by cyclic loadings, still presents better creep properties than the as-received NPM steel, and even more than the commercial G91 steel.

  18. Mechanical properties of irradiated 9Cr-2WVTa steel

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.; Rieth, M.

    1998-09-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of {approx}60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by {approx}28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution.

  19. Effect of substrates on microstructure and mechanical properties of nano-eutectic 1080 steel produced by aluminothermic reaction

    SciTech Connect

    La, Peiqing Li, Zhengning; Li, Cuiling; Hu, Sulei; Lu, Xuefeng; Wei, Yupeng; Wei, Fuan

    2014-06-01

    Nano-eutectic bulk 1080 carbon steel was prepared on glass and copper substrates by an aluminothermic reaction casting. The microstructure of the steel was analyzed by an optical microscope, transmission electron microscopy, an electron probe micro-analyzer, a scanning electron microscope and X-ray diffraction. Results show that the microstructure of the steel consisted of a little cementite and lamellar eutectic pearlite. Average lamellar spacing of the pearlite prepared on copper and glass substrates was about 230 nm and 219 nm, respectively. Volume fraction of the pearlite of the two steels was about 95%. Hardness of the steel was about 229 and 270 HV. Tensile strength was about 610 and 641 MPa and tensile elongation was about 15% and 8%. Compressive strength was about 1043 and 1144 MPa. Compared with the steel prepared on copper substrate, the steel prepared on glass substrate had smaller lamellar spacing of the pearlite phase and higher strength, and low ductility due to the smaller spacing. - Highlights: • 1080-carbon steels were successfully prepared by an aluminothermic reaction casting. • Lamellar spacing of the nanoeutetic pearlite is less than 250 nm. • The compressive strength of the steel is about 1144 MPa. • The tensile ductility of the steel is about 15%.

  20. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. PMID:25261762

  1. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  2. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2013-03-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic-martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  3. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser -TIG hybrid welding

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Gao, Ming; Zeng, Xiaoyan

    2010-04-01

    This paper investigated the microstructure and mechanical properties of 304 stainless steel joints by tungsten inert gas (TIG) welding, laser welding and laser-TIG hybrid welding. The X-ray diffraction was used to analyze the phase composition, while the microscopy was conducted to study the microstructure characters of joints. Finally, tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint by laser welding had highest tensile strength and smallest dendrite size in all joints, while the joint by TIG welding had lowest tensile strength, biggest dendrite size. Furthermore, transition zone and heat affected zone can be observed in the joint of TIG welding. The fractograph observation showed that the TIG welding joint existed as cup-cone shaped fracture, while the laser welding and hybrid welding joints existed as pure-shear fracture. The laser welding and hybrid welding are suitable for welding 304 stainless steel owing to their high welding speed and excellent mechanical properties.

  4. Effects of the Formation of Al x Cu y Gradient Interfaces on Mechanical Property of Steel/Al Laminated Sheets by Introducing Cu Binding-Sheets

    NASA Astrophysics Data System (ADS)

    Wei, Aili; Liu, Xinghai; Shi, Quanxin; Liang, Wei

    2015-07-01

    Steel/Cu/Al laminated sheets were fabricated by two-pass hot rolling to improve the mechanical properties of steel/Al sheets. The bonding properties and deformability of the steel/Cu/Al sheets were studied. Steel/Al and steel/Cu/Al samples were rolled at 350°C for 15 min with the first-pass reduction of 40%, and then heated at 600°C for 5 min with different reductions. It was found that the steel/Cu/Al samples rolled by the second-pass reduction of 85% could endure the maximum 90° bend cycle times of 45, exhibiting excellent fatigue resistance as well as deformability. The steel/Al samples could only reach the maximum 90° bend cycle times of 20. Furthermore, the scanning electron microscope, energy-dispersive spectrometer, and electron backscattered diffraction results showed that the preferred growth orientations of Cu, Al4Cu9, and Al2Cu on the steel/Cu/Al laminated sheets are {-1, 1, 2} <1, -1, 1>, {1, 0, 0} <0, 1, 0> and {-1, 1, 2} <1, -1, 1> {1, 1, 0} <0, 0, 1>. The orientation relationships between Cu and Al2Cu are {1, 1, 0}(fcc)//{1, 1, 0}(bct) and {1, 1, 1}(fcc)//{1, 1, 1}(bct). The improved bonding property and excellent fatigue resistance as well as deformability were mainly ascribed to the tight combination and consistent deformability across steel, Al, and the transition layers (Cu, Al4Cu9, and Al2Cu).

  5. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  6. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  7. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  8. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  9. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  10. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section VIII of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 54.01-1... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  11. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  12. Correlation between magnetic properties and the hardness of powder steels

    SciTech Connect

    Ul`yanov, A.I.; Merzlyakov, E.F.; Faizullin, R.G.

    1994-07-01

    Density and carbon content are studied for their effect on strength (hardness) and magnetic (coercive force, saturation magnetization) properties of powder steels ZhGr1 and ZhGr1D3. It is shown that the hardness of articles made of these steels may be determined indirectly by measuring two magnetic characteristics.

  13. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    NASA Astrophysics Data System (ADS)

    Al-Hamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2012-10-01

    Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O2 gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kVRMS) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O2 plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  14. Determining the shear fracture properties of HIP joints of reduced-activation ferritic/martensitic steel by a torsion test

    NASA Astrophysics Data System (ADS)

    Nozawa, Takashi; Noh, Sanghoon; Tanigawa, Hiroyasu

    2012-08-01

    Hot isostatic pressing (HIP) is a key technology used to fabricate a first wall with cooling channels for the fusion blanket system utilizing a reduced-activation ferritic/martensitic steel. To qualify the HIPped components, small specimen test techniques are beneficial not only to evaluate the thin-wall cooling channels containing the HIP joint but also to use in neutron irradiation studies. This study aims to develop the torsion test method with special emphasis on providing a reasonable and comprehensive method to determine interfacial shear properties of HIP joints during the torsional fracture process. Torsion test results identified that the torsion process shows yield of the base metal followed by non-elastic deformation due to work hardening of the base metal. By considering this work hardening issue, we propose a reasonable and realistic solution to determine the torsional yield shear stress and the ultimate torsional shear strength of the HIPped interface. Finally, a representative torsion fracture process was identified.

  15. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  16. Microstructure Properties of EP-450 ODS Steel Manufactured by Highvoltage Discharge Compaction Technique

    NASA Astrophysics Data System (ADS)

    Bogachev, I.; Yudin, A.; Grigoryev, E.; Olevsky, E.; Chernov, I.; Staltsov, M.

    Oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated using high voltage discharge compaction to near theoretical density. Such rapid process in combination with high transmitted energy allows obtaining high density of the compacts, saving initial structure with minimal grain growth. Heterogeneity of the structure may occur in the boundary layers of the sample due to thermal and electromagnetic effects but the choice of optimal parameters of consolidation allows obtaining samples of acceptable quality.

  17. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  18. Tearing Resistance Properties of Cr-Mo Steels with Internal Hydrogen Determined by the Potential Drop Method

    NASA Astrophysics Data System (ADS)

    Konosu, Shinji; Shimazu, Hidenori; Fukuda, Ryohei

    2015-12-01

    The tearing resistance, dJ/da, of conventional 2.25Cr-1Mo steels and a V-bearing steel (2.25Cr-1Mo-0.3V steel) with internal hydrogen was measured using the effective offset potential drop method. Internal hydrogen refers to test specimens that are precharged (thermally charged) prior to testing. In general, Cr-Mo steels, used widely in the refining and petrochemical industries, are susceptible to temper embrittlement. However, very few studies have dealt with the effects of hydrogen and temper embrittlement on the tearing resistance. Test specimens were prepared by subjecting them to normalizing, tempering, and post-weld heat treatments that simulated actual conditions. Some specimens were embrittled by step cooling. Hydrogen substantially reduced dJ/da for all samples except for that for the V-bearing steel, and temper embrittlement caused additional adverse effects on dJ/da for samples with internal hydrogen for which the temper embrittlement parameter, i.e., the J-factor, was large.

  19. Mechanical properties of the samples produced by volume powder cladding of stainless steel using a continuous fiber laser

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Mironov, V. D.; Osintsev, A. V.; Ochkov, K. Yu

    2016-09-01

    Samples for tensile tests were manufactured by using one of the additive technologies - direct laser material deposition. Investigations were carried out at the facility Huffman HC-205 equipped with a fiber laser with a power up to 3.5 kW. Various strategies of layering metallic powder of stainless steel 316L were considered to optimize the modes of constructing the samples. We measured the stress-strain state of the produced samples by the method of digital image correlation. It is found that the nominal tensile strength of the samples produced by the direct growing using laser powder of 316L steel is of high level - 767 MPa.

  20. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  1. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques

    PubMed Central

    Seong, B. S.; Cho, Y. R.; Shin, E. J.; Kim, S. I.; Choi, S.-H.; Kim, H. R.; Kim, Y. J.

    2008-01-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 Å in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core–shell structured spherical precipitates with an average radius of ~50 Å, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 Å were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe3(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  2. The influence of severe plastic deformation by high pressure torsion on structure and mechanical properties of Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, G. G.; Astafurova, E. G.

    2010-07-01

    Hadfield steel single crystals have been deformed by high pressure torsion at room temperature (P=5GPa) for 1, 2, 3 revolutions. The resulting microstructure has been studied by means of transmission electron microscopy (TEM) and X-ray analysis. The size of fragments decreases with increasing number of revolutions due to interaction of slip dislocations, microbands and thin twins. As a result of severe plastic deformation, the microhardness of the Hadfield steel has been increased, and a portion of epsilon, α' martensite has been found.

  3. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  4. Correlation of magnetic properties with deformation in electrical steels

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  5. Measurement of steel corrosion in concrete by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul; Sumsion, Eric; Guthrie, Spencer; Mazzeo, Brian

    2010-10-01

    Steel corrosion is a major problem for aging bridge structures. The steel corrodes as chloride ions migrate to the buried steel. The properties of the corroded steel-concrete interface change due to the corrosion and can be measured by impedance spectroscopy. A new spectrometer was built to measure concrete slabs. A fitting function to the impedance spectra was used to determine relevant parameters correlated with corrosion. Data from the laboratory and the field demonstrate the utility of this technique.

  6. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    SciTech Connect

    Durmaz, M. Abakay, E.; Sen, U.; Sen, S.; Kilinc, B.

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  7. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow

  8. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  9. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  10. The Structure and Mechanical Properties of Bridge Steel Weldings With Glass-Steel Liners

    NASA Astrophysics Data System (ADS)

    Muzalev, V. N.; Semukhin, B. S.; Danilov, V. I.

    2016-04-01

    A new technology is developed for welding multi-span bridge constructions. The mechanical properties and structure of the low-carbon bridge steel welds have been studied. The welding parameters and application of steel-glass liners provide for long-term service of steel constructions in conformity with the welding industry specifications.

  11. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  12. Microstructures and Mechanical Properties of Bearing Steels Modified for Preparing Nanostructured Bainite

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hou, C. S.; Zhao, G.; Zhao, T.; Zhang, F. C.; Wang, T. S.

    2016-08-01

    Mo containing high-C-Cr bearing steel was modified with Si (0.8-1.5 wt.%) and 0.8Si-1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness.

  13. Microstructures and Mechanical Properties of Bearing Steels Modified for Preparing Nanostructured Bainite

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hou, C. S.; Zhao, G.; Zhao, T.; Zhang, F. C.; Wang, T. S.

    2016-10-01

    Mo containing high-C-Cr bearing steel was modified with Si (0.8-1.5 wt.%) and 0.8Si-1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness.

  14. Study of Influence of Heat Treatment on Cyclic Properties of L21HMF Cast Steel

    NASA Astrophysics Data System (ADS)

    Mroziński, Stanisław; Golański, Grzegorz

    2016-07-01

    This work presents the results of studies of CrMoV cast steel after long-term service and after regenerative heat treatment (RHT). The cast steel was investigated in the conditions of static and changeable load. The tests were carried out at room temperature and 550 °C. The fatigue lifetime curves were determined and described using the Basquin-Manson-Coffin relationship. It has been shown that the cast steel after RHT is characterized by smaller range of plastic strain and bigger range of stress amplitude, with the same value of total strain, compared with the cast steel after service. For the cast steel after RHT, the observed fatigue properties were different in comparison with the cast steel after service at small and large strains. At room temperature (20 °C) and at elevated temperature (550 °C), there is an increase in the life of samples of the cast steel after RHT in comparison with the samples of the cast steel after service only in the area of large strains ( ɛ ac > 1.2%). For small strains ɛ ac < 0.50%, the life of the cast steel after RHT at the examined temperatures is shorter than that of the cast steel after service. The paper shows that regardless of an explicit improvement in the strength properties (the static and cyclic ones), as a result of the performed RHT, a complete improvement in the fatigue properties of the cast steel does not occur.

  15. Microstructures and High-Temperature Mechanical Properties of a Martensitic Heat-Resistant Stainless Steel 403Nb Processed by Thermo-Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Liqing; Zeng, Zhouyu; Zhao, Yang; Zhu, Fuxian; Liu, Xianghua

    2013-11-01

    Thermo-mechanical treatments (TMT) at different rolling deformation temperatures were utilized to process a martensitic heat-resistant stainless steel 403Nb containing 12 wt pct Cr and small additions of Nb and V. Microstructures and mechanical properties at room and elevated temperatures were characterized by scanning electron microscopy, transmission electron microscopy, and hardness, tensile, and creep tests. The results showed that high-temperature mechanical behavior after TMT can be greatly improved and microstructures with refined martensitic lath and finely dispersed nanosized MX carbides could be produced. The particle sizes of M23C6 and MX carbides in 403Nb steel after conventional normalizing and tempering (NT) treatments are about 50 to 160 and 10 to 20 nm, respectively, while those after TMT at 1123 K (850 °C) and subsequent tempering at 923 K (650 °C) for 2 hours reach about 25 to 85 and 5 to 10 nm, respectively. Under the condition of 260 MPa and 873 K (600 °C), the tensile creep rupture life of 403Nb steel after TMT at 1123 K (850 °C) is 455 hours, more than 3 times that after conventional NT processes. The mechanisms for improving mechanical properties at elevated temperature were analyzed in association with the existence of finely dispersed nanosized MX particles within martensitic lath. It is the nanosized MX particles having the higher stability at elevated temperature that assist both dislocation hardening and sub-grain hardening for longer duration by pinning the movement of dislocations and sub-grain boundary migration.

  16. Tensile property of low carbon steel with gridding units

    NASA Astrophysics Data System (ADS)

    Wang, Chuanwei; Zhou, Hong; Zhang, Zhihui; Jing, Zhengjun; Cong, Dalong; Meng, Chao; Ren, Luquan

    2013-05-01

    Although much effort has been devoted to the mechanical properties of biomimetic coupled laser remelting (BCLR) processed steels, our understanding to the strengthening and toughening mechanisms of it has still remained unclear. To address it, here we studied the roles played by the gridding units of BCLR steels. Tensile tests show that the gridding units have a significant influence on the tensile properties. Interestingly, such an influence is essentially decided by the unit distance of gridding units. The strength increases with the unit distance narrowing while the ductility first increases with it up to a maximum then decreases. The mechanism behind these changes is attributed to the combined effects of the microstructure changes in the units and the stress transition throughout the BCLR samples.

  17. Mechanical properties of ferrite-perlite and martensitic Fe-Mn-V-Ti-C steel processed by equal-channel angular pressing and high-temeperature annealing

    NASA Astrophysics Data System (ADS)

    Zakharova, G. G.; Astafurova, E. G.; Tukeeva, M. S.; Naidenkin, E. V.; Raab, G. I.; Dobatkin, S. V.

    2011-09-01

    Using the method of equal-channel angular pressing (ECAP), submicrocrystalline structure is formed in lowcarbon Fe-Mn-V-Ti-C steel with the average grain size 260 nm in the ferrite-perlite state and 310 nm in the martensitic state. It is established that the ECAP treatment gives rise to improved mechanical properties (Hμ = 2.9 GPa, σ0 = 990 MPa in the ferrite-perlite and Hμ = 3.7 GPa, σ0 = 1125 MPa in martensitic states), decreased plasticity, and results in plastic flow localization under tensile loading. The high strength properties formed by the ECAP are shown to sustain up to the annealing temperature 500°C.

  18. Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels

    NASA Astrophysics Data System (ADS)

    Seong, B. S.; Shin, E. J.; Han, Y. S.; Lee, C. H.; Kim, Y. J.; Kim, S. J.

    2004-07-01

    The mechanical properties of transformation induced plasticity (TRIP) steels are strongly affected by the amount of retained austenite and the solute carbon in austenite. In this study, the Rietveld method using neutron diffraction patterns was introduced for determining the weight fraction of retained austenite and the solute carbon content. C-Si-Mn TRIP steels with different austempering temperatures were used. The retained austenite and the carbon content in the austenite of these steel sheets were quantitatively analyzed by neutron diffractions, and their effects on the mechanical properties of the steels were evaluated.

  19. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  20. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  1. Microstructure and oxidation properties of 16Cr-5Al-ODS steel prepared by sol-gel and spark plasma sintering methods

    NASA Astrophysics Data System (ADS)

    Xia, Y. P.; Wang, X. P.; Zhuang, Z.; Sun, Q. X.; Zhang, T.; Fang, Q. F.; Hao, T.; Liu, C. S.

    2013-01-01

    The 16Cr-5Al oxide dispersion strengthened (ODS) ferritic steel was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The phase characterization, microstructure and oxidation resistance of the 16Cr-5Al-ODS steel were investigated in comparison with the Al free 16Cr-ODS steel. X-ray diffraction (XRD) patterns showed that the Al free and Al added 16Cr-ODS steels exhibited typical ferritic characteristic structure. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) revealed that Y-Ti-O complexes with particle size of 10-30 nm were formed in the Al free matrix and Y-Al-O complexes with particle size of 20-100 nm were formed in the Al contained high-Cr ODS steel matrix. These complexes are homogeneously distributed in the matrices. The fabricated 16Cr-5Al-ODS steel exhibited superior oxidation resistance compared with the Al free 16Cr-ODS steel and the commercial 304 stainless steel owing to the formation of continuous and dense Al2O3 film on the surface.

  2. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.

    2016-07-01

    The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu, Ni2Mg3 phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  3. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    SciTech Connect

    Wallace, J.F.; Schwam, D.

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  4. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    SciTech Connect

    Sánchez-Hernández, Z.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Onofre-Bustamante, E.; Andraca Adame, J.; Dorantes-Rosales, H.

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  5. Effect of Heat Treatment on Microstructures and Mechanical Properties of Severe Plastically Deformed Hypo- and Hyper-Eutectoid Steels by Caliber Rolling Process.

    PubMed

    Yun, Shin-Cheon; Kim, Hyun-Jin; Bae, Chul-Min; Lee, Kee-Ahn

    2016-02-01

    This study investigated the effect of post-heat treatment on the microstructures and mechanical properties of severe plastically deformed hypo- and hyper-eutectoid steels that underwent a caliber rolling process. First, 28 passes of caliber rolling were performed on both the hypo-eutectoid steel with Fe-0.47% C (wt%) composition and the hyper-eutectoid steel with Fe-1.02%C (wt%) composition. Then, the caliber rolled materials underwent heat treatment at 500 degrees C for 1, 3, 5, 10, 30 and 60 minutes. The caliber rolled steel possessed a 300-400 nm-sized oval cementite structure created through elongating and segmentation regardless of the C composition. The observation of heat-treated microstructures showed that cementite structure became globular and ferrite size increased as heat treatment temperature increased. In the hardness measurement, the initial caliber rolled samples showed 372.8 Hv (hypoeutectoid) and 480.1 Hv (hyper-eutectoid). However, hardness dramatically decreased up to 10 min. heat treatments, and then showed a constant or small reduction with time. The yield strengths (compression) of caliber rolled hypo- and hypereutectoid steels obtained were 1097 MPa and 1426 MPa, respectively, and the yield strengths of the same steels after heat treatment (500 degrees C, 60 min.) were identified to be 868 MPa and 1316 MPa, respectively. PMID:27433697

  6. Effect of Heat Treatment on Microstructures and Mechanical Properties of Severe Plastically Deformed Hypo- and Hyper-Eutectoid Steels by Caliber Rolling Process.

    PubMed

    Yun, Shin-Cheon; Kim, Hyun-Jin; Bae, Chul-Min; Lee, Kee-Ahn

    2016-02-01

    This study investigated the effect of post-heat treatment on the microstructures and mechanical properties of severe plastically deformed hypo- and hyper-eutectoid steels that underwent a caliber rolling process. First, 28 passes of caliber rolling were performed on both the hypo-eutectoid steel with Fe-0.47% C (wt%) composition and the hyper-eutectoid steel with Fe-1.02%C (wt%) composition. Then, the caliber rolled materials underwent heat treatment at 500 degrees C for 1, 3, 5, 10, 30 and 60 minutes. The caliber rolled steel possessed a 300-400 nm-sized oval cementite structure created through elongating and segmentation regardless of the C composition. The observation of heat-treated microstructures showed that cementite structure became globular and ferrite size increased as heat treatment temperature increased. In the hardness measurement, the initial caliber rolled samples showed 372.8 Hv (hypoeutectoid) and 480.1 Hv (hyper-eutectoid). However, hardness dramatically decreased up to 10 min. heat treatments, and then showed a constant or small reduction with time. The yield strengths (compression) of caliber rolled hypo- and hypereutectoid steels obtained were 1097 MPa and 1426 MPa, respectively, and the yield strengths of the same steels after heat treatment (500 degrees C, 60 min.) were identified to be 868 MPa and 1316 MPa, respectively.

  7. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  8. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    SciTech Connect

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  9. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  10. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.

    PubMed

    Frutos, E; González-Carrasco, J L

    2015-06-01

    This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion. PMID:25778350

  11. Cathodic properties of different stainless steels in natural seawater

    SciTech Connect

    Johnsen, R.; Bardal, E.

    1985-05-01

    The cathodic properties of a number of stainless steels, which were exposed to natural seawater flowing at 0 to 2.5 m/s and polarized to potentials from -300 to -950 mV SCE, have been studied. The current density development at constant potential and the free corrosion potential during the exposure time were recorded continuously. At the end of the exposure period, after approximately 28 to 36 days of exposure, polarization curves were determined. After one to three weeks of exposure, depending on the water velocity, microbiological activity on the surface caused an increase in the current density requirement of the specimen. An explanation for the mechanism behind the current density increase caused by slime production from marine bacteria may be increased exchange current density, i/sub 0/. There was no measurable calcareous deposit on the stainless steel surfaces at the end of the exposure periods.

  12. Influence of copper on the structure and mechanical properties of pearlitic steels

    NASA Astrophysics Data System (ADS)

    Izotov, V. I.; Ilyukhin, D. S.; Getmanova, M. E.; Filippov, G. A.

    2016-06-01

    The structure and mechanical properties of pearlitic steels, which contain ~0.6% carbon and copper in the amount of 1.25 and 1.4%, have been studied in the states immediately after the pearlitic transformation (with different rates of cooling) and after tempering at 500°C. It has been established that tempered pearlitic steel with copper is 10-15% stronger than the steel of similar composition without copper. The strengthening of copper-containing pearlitic steel after tempering is caused by the precipitation of copper particles 5-20 nm in size in the ferritic regions of pearlite and in grains of free ferrite.

  13. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Li, Yajiang; Wang, Juan

    2016-08-01

    The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).

  14. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Li, Yajiang; Wang, Juan

    2016-10-01

    The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).

  15. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  16. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  17. Structure and properties of corrosion and wear resistant Cr-Mn-N steels

    NASA Astrophysics Data System (ADS)

    Lenel, U. R.; Knott, B. R.

    1987-06-01

    Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.

  18. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    PubMed Central

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  19. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    NASA Astrophysics Data System (ADS)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  20. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology.

    PubMed

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J Jussi; Valden, Mika; Hytönen, Vesa P

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  1. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology.

    PubMed

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J Jussi; Valden, Mika; Hytönen, Vesa P

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  2. Fatigue Properties of DLC-Coated Stainless Steel

    NASA Astrophysics Data System (ADS)

    Morita, Tatsuro; Tomita, Kouta; Kagaya, Chuji; Kumakiri, Tadashi; Ikenaga, Masaru

    This study was conducted to investigate the effect of DLC (diamond-like carbon) coating on fatigue properties of austenitic stainless steel SUS304. For the DLC coating, UBMS (unbalanced magnetron sputtering) equipment was used. The generated surface layer of about 2 μm thickness was composed of both the DLC layer possessing high hardness and a very thin intermediate layer to improve adhesion force between the DLC layer and the substrate. DLC coating, which was carried out at a relatively low temperature, had no influence on the microstructure so that the mechanical properties of the stainless steel were unchanged by the coating. The results of the plane-bending fatigue test showed that the DLC coating improved fatigue strength by 18%. From the results of detailed observation conducted on the fatigue fracture surface, it was suggested that the improvement in fatigue strength resulted from the suppression of fatigue crack initiation due to the surface layer, which had high adhesion force and strength.

  3. Effects of Properties on S45C Carbon Steel by Electroless NiP Adding Al2O3 Powder of Composite Deposition and Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hsien; Liang, Cheng; Chang, Chih-Chung

    2014-06-01

    This research studies the effects on the surface microstructure and mechanical properties of S45C carbon steel via electroless Ni-P, by adding αAl2O3 powder via composite deposition and various heat treatments. The plating specimens were treated with pH5 and pH8 baths heated to 350°C and 300°C, respectively, and soaked for 1 hr. Meanwhile, two different particle sizes of Al2O3 powder were added to the electroless Ni-P plating: 0.3 μm of αAl2O3 and 0.05 μm of γAl2O3 powder, respectively. The experimental results show that, after 1 hr of heat treatment at 300°C, the optimal hardness for the specimens using the pH8 of Ni-P with αAl2O3 and γAl2O3 added by composite deposition are HV0.05 1237 and HV0.05 1145, respectively. All of the specimens underwent the main precipitate phase of Ni3P after heat treatment.

  4. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    SciTech Connect

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  5. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    SciTech Connect

    Liu, Z. Q. Zhang, Z. F.

    2013-12-28

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels.

  6. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-12-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels.

  7. Weld Properties of a Free Machining Stainless Steel

    SciTech Connect

    J. A. Brooks; S. H. Goods; C. V. Robino

    2000-08-01

    The all weld metal tensile properties from gas tungsten arc and electron beam welds in free machining austenitic stainless steels have been determined. Ten heats with sulfur contents from 0.04 to 0.4 wt.% and a wide range in Creq/Nieq ratios were studied. Tensile properties of welds with both processes were related to alloy composition and solidification microstructure. The yield and ultimate tensile strengths increased with increasing Creq/Nieq ratios and ferrite content, whereas the ductility measured by RA at fracture decreased with sulfur content. Nevertheless, a range in alloy compositions was identified that provided a good combination of both strength and ductility. The solidification cracking response for the same large range of compositions are discussed, and compositions identified that would be expected to provide good performance in welded applications.

  8. Effects of elemental Sn on the properties and inclusions of the free-cutting steel

    NASA Astrophysics Data System (ADS)

    Chen, Shao-chun; Zhu, Rong; Xue, Li-qiu; Lin, Teng-chang; Li, Jing-she; Lin, Yang

    2015-02-01

    A new environment-friendly free-cutting steel alloyed with elemental Sn (Y20Sn) was developed to meet the requirements of machinability and mechanical properties according to GB/T8731—1988. The machinability of the steel is enhanced by the segregation of elemental Sn at grain boundaries. The effect of Sn segregation on intergranular brittle fracture at normal cutting temperature from 250°C to 400°C is confirmed. The formation mechanism of main inclusions MnS is influenced by the presence of Sn and the attachment of Sn around MnS itself as a surfactant, and this mechanism also explains the improvement in machinability and mechanical properties of the steel. In the steel, the relevant inclusions are mainly spherical or axiolitic, and are uniformly distributed in small volume. Such inclusions improve the machinability of the steel and do not impair the mechanical properties as well. Experimental results demonstrate that the appropriate content of Sn in the steel is 0.03wt% to 0.08wt%, and the remaining composition is close to that of standard Y20 steel.

  9. Mechanical properties of low activation Cr-Mn austenitic steels changes in liquid lithium

    NASA Astrophysics Data System (ADS)

    Vertkov, A. V.; Evtikhin, V. A.; Lyublinski, I. E.; Syichev, A. A.; Demina, E. V.; Prusakova, M. D.

    1993-08-01

    The mechanical properties of Fe0.06C12Cr14Mn4NiAlMo, Fe0.10C12Cr20Mn W, Fe0.25C12Cr20Mn2W, Fe0.06C17Cr19Mn3NiNbN, Fe0.0713Cr20MnN steels attacked by liquid lithium were studied. Preexposure of steels was performed in static isothermal lithium at 723 and 873 K; in the hot leg of a convection loop at 723 K, and in inert atmosphere at 723 and 873 K for 2600 h. Lithium contained up to 400 ppm nitrogen and up to 1% hydrogen. The mechanical properties were determined by tensile test in lithium and in vacuum at a strain rate of 1×10 -5-1×10 -3 s -1. It was shown that mechanical properties of tested steels after exposure in the lithium changed more than for CrNi steels. The strong embrittlement of steels containing nitrogen is associated with intergranular penetration of lithium. The character of other steels mechanical properties changes is difficult to explain and may be associated with nometallic impurities redistribution and steel phase composition changes. The main mechanical properties change took place continually for the first 1000 h at 723 K exposure. Noticeable change in the mechanical properties of the steels exposed to lithium at 873 K occuredeven until 2600 h of exposure. The effect of strength and ductility reduction through absorption did not occur.

  10. Steel Reoxidation by Gunning Mass and Tundish Slag

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Arnout, Sander; Van Ende, Marie-Aline; Zinngrebe, Enno; Jones, Tom; Blanpain, Bart; Guo, Muxing

    2015-01-01

    Steel reoxidation in the tundish has a significant influence on the steel cleanliness and therefore on the mechanical properties of the final product. In the present work, the steel reoxidation by two types of gunning mass (GM), viz. magnesia- and alumina-based GM, and two types of tundish slag, viz. lime-alumina-silica and lime-alumina slags, has been investigated. The evolution of the steel composition during the test was analyzed and predicted based on thermodynamic and kinetic considerations. The calculated steel composition agrees well with measured values, when assuming the mass transfer in slag phase limits the reoxidation reactions. The oxidation capacity of the gunning mass and tundish slag is quantified by calculating the oxygen amount supplied from the GM and the slag to the steel phase. It was found that compared to alumina GM, magnesia GM exhibits a stronger oxidation capacity due to its higher content of reducible oxides (10 wt pct SiO2 + 6 wt pct FeO). Compared to lime-alumina-silica tundish slag, lime-alumina slag (with more FeO + MnO contents) provides more oxygen to the molten steel in the present experimental conditions and consequently shows a stronger oxidation capacity.

  11. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar; Vo, Phuong; Mongrain, Rosaire; Irissou, Eric; Yue, Stephen

    2014-04-01

    In this study, the effects of heat treatment on the microstructure and mechanical properties of cold sprayed stainless steel 316L coatings using N2 and He as propellant gases were investigated. Powder and coating characterizations, including coating microhardness, coating porosity, and XRD phase analysis were performed. It was found that heat treatment reduced porosity, improved inter-particle bonding, and increased ductility. XRD results confirmed that no phase transformation occurred during deposition. Significant increase in UTS and ductility was observed for the annealed specimens obtained with nitrogen propellant, whereas little changes were observed for the helium propellant produced specimen.

  12. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  13. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  14. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    NASA Astrophysics Data System (ADS)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-09-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  15. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    SciTech Connect

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-09-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  16. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  17. Microstructure and mechanical properties of quenched and tempered 300M steel

    NASA Technical Reports Server (NTRS)

    Youngblood, J. L.; Raghavan, M.

    1978-01-01

    Type 300M steel, which is being used for the landing gear on the space shuttle orbiter, was subjected to a wide range of quenched and tempered heat treatments. The plane-strain fracture toughness and the tensile ultimate and yield strengths were evaluated. Cryogenic mechanical properties were obtained for conventionally heat-treated steel. The microstructure of all heat-treated test coupons was studied both optically and by transmission electron microscopy. Fracture surfaces were studied by means of scanning electron microscopy. Results indicate that substantial improvement in toughness with no loss in strength can be accomplished in quenched and tempered steel by austenitizing at 1255 K or higher. Low fracture toughness in conventionally austenitized 300M steel (1144 K) appears to be caused by undissolved precipitates, seen both in the submicrostructure and on the fracture surface, which promote failure by quasi-cleavage. The precipitates appeared to dissolve in the range 1200 to 1255 K.

  18. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  19. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  20. Effects of Aging Structures and Humidity on Fatigue Properties of Maraging Steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Kousuke; Nagano, Takanori; Moriyama, Michihiko; Wang, Xishu; Kawagoishi, Norio

    Effects of aging structures and humidity on fatigue properties of 350 grade 18% Ni maraging steel were investigated under rotating bending in relative humidity of 25% and 85%. Aging conditions tested were a conventional single aging and a double one which was aged at low temperature after the conventional aging. In each aging, under and peak aged steels were prepared. Tensile strength was increased by the double aging without reduction of the ductility. Proportional relation between fatigue limit and Vickers hardness held until 750HV in low humidity. However fatigue strength was largely decreased by high humidity, especially in the peak aged steel at the single aging. The decrease in fatigue strength by high humidity was mainly caused by the acceleration of a crack initiation due to the anodic dissolution. The acceleration of a crack initiation was larger in the steel peak aged at the single aging with larger precipitated particles.

  1. Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr-La alloying layer by high-energy micro-arc alloying process

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.

  2. Power frequency magnetic properties and aging of 4130 steel

    NASA Astrophysics Data System (ADS)

    Wilder, Aleta T.

    2006-05-01

    Cr-Mo steels are utilized in large, high-speed rotating machines where the mechanical stress requirements limit available soft magnetic laminate choices. Because this is currently a niche application, the magnetic properties of these steels are relatively undocumented. This paper presents the magnetic hysteresis behavior of a quenched and tempered 4130 steel at alternating frequencies up to 1200 Hz and temperatures up to 100 °C. The high coercivities and core losses are contrasted with a 3.2%Si-Fe alloy. "Aging" of this behavior over time of cyclic field application was not observed in 300 h. However, surface embrittlement was observed. Designers should be aware that cyclic magnetic fields, even in the absence of temperature excursions and mechanical stress, can lead to a relaxation of the 4130 microstructure and possible deterioration of yield strength.

  3. A discussion on improving hydration activity of steel slag by altering its mineral compositions.

    PubMed

    Wang, Qiang; Yan, Peiyu; Feng, Jianwen

    2011-02-28

    This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag.

  4. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  5. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  6. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Lee, Hyuk-Joong; Lee, Byeong-Joo; Lee, Sunghak; Kim, Nack J.; Kwak, Jai-Hyun

    2012-03-01

    An investigation was conducted into the effects of annealing temperature on microstructure and tensile properties of ferritic lightweight steels. Two steels were fabricated by varying the C content, and were annealed at 573 K to 1173 K (300 °C to 900 °C) for 1 hour. According to the microstructural analysis results, κ-carbides were formed at about 973 K (700 °C), which was confirmed by equilibrium phase diagrams calculated from a THERMO-CALC program. In the steel containing low carbon content, needle-shaped κ-carbides were homogeneously dispersed in the ferrite matrix, whereas bulky band-shaped martensites were distributed in the steel containing high carbon content. In the 973 K (700 °C)-annealed specimen of the steel containing high carbon content, deformation bands were formed throughout the specimen, while fine carbides were sufficiently deformed inside the deformation bands, thereby resulting in the greatest level of strength and ductility. These results indicated that the appropriate annealing treatment of steel containing high carbon content was useful for the improvement of both strength and ductility over steel containing low carbon content.

  7. Corrosion inhibition of steel by bacteria

    SciTech Connect

    Hernandez, G.; Kucera, V.; Thierry, D.; Pedersen, A. ); Hermansson, M. . Dept. of General and Marine Microbiology)

    1994-08-01

    Mild steel was exposed to Pseudomonas sp. S9 or Serratia marcescens in synthetic seawater. An increase in corrosion resistance over that i natural seawater was monitored by electrochemical techniques. Biological analyses were performed to characterize the system. The inhibition effect also was observed when mild steel was coated with bacteria and then immersed in synthetic seawater. When specimens coated with bacteria were transferred to a natural seawater flow system, the inhibition effect disappeared during the first 2 weeks.

  8. Ferromagnetic properties of cold rolled AISI 304L steel

    NASA Astrophysics Data System (ADS)

    Tavares, S. S. M.; da Silva, M. R.; Neto, J. M.; Miraglia, S.; Fruchart, D.

    2002-04-01

    The ferromagnetic properties (coercive force, residual and saturation magnetisation) of a cold rolled AISI 304L stainless steel were measured as function of the applied deformation, using a vibrating sample magnetometer. The martensite volume fraction produced by deformation was calculated through the magnetisation saturation ( σs) value. A maximum amount of martensite (81%) was obtained by applying a true deformation ɛ=2.41 and a heat treatment at 400°C after rolling. The residual induction ( Br) and the squareness (=ratio between residual ( Br) and saturation ( Bs) inductions) increased, while the coercive field ( Hc) decreased with the amount of deformation. The heat treatment at 400°C promotes as well the increase of both Br and Br/ Bs and the decrease of Hc. The magnetic properties obtained in the most severely deformed samples ( Hc=23.08-23.63 kJ/m 3, Br=1.01-1.20 T and Bs=1.12-1.28 T) are comparable to that of some hard and semi-hard alloys used as magnets. The stability of the ferromagnetic martensite ( α') was investigated by thermomagnetic analysis. The starting ( As) and final ( Af) temperatures of the martensite phase ( α') transformation into austenite during heating were determined to As=430-440°C and Af=610-616°C.

  9. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-02-01

    The solidification structures and the thermal properties of Fe-Mn-C steel ingots containing different manganese contents have been investigated and the phase transformation characteristics have been revealed by Thermo-Calc to assist development of the continuous casting technology of Fe-Mn-C steels. The results show that the thermal conductivity of the 0Mn steel is higher than that of the 3Mn steel. The thermal conductivity of the 6Mn steel is the lowest in the three kinds of steels below 1023 K (750 °C) and the highest above 1173 K (900 °C). The 0Mn steel has the highest value of the proportion of equiaxed grain zone area in the three kinds of steels, whereas the 3Mn steel has the lowest value of it in the steels. Manganese has the effect of promoting the coarsening of grains. The microstructure is martensite and a little retained austenite (3.8 mass pct) in the 6Mn steel, whereas the microstructure is bainite in the 3Mn steel. The 0Mn steel is characterized by ferrite and pearlite. The mean thermal expansion coefficients of the steels are in the range from 1.0 × 10-5 to 1.6 × 10-5 K-1, and the determinations of mold tapers of the 6Mn and 3Mn steels can refer to low-carbon steel. Using RA <60 pct as the criterion, the third brittle temperature region of the 6Mn steel is 873 K to 1073 K (600 °C to 800 °C), whereas those of the 3Mn steel and the 0Mn steel are 873 K to 1123 K (600 °C to 850 °C) and 873 K to 1173 K (600 °C to 900 °C), respectively. In the 6Mn and 3Mn steels, the deformation-induced ferrite (DIF) forms in sufficient quantities cause the recovery of the ductility at the low temperature end. However, since low strains are present when straightening, sufficient quantities of DIF cannot be formed. Thus, the ductility of the 6Mn and 3Mn steels cannot be improved during the continuous casting process. Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region.

  10. Springback evaluation for TRIP 800 steel sheets by simple bending tests

    NASA Astrophysics Data System (ADS)

    Avellaneda, F. J.; Miguel, V.; Coello, J.; Martínez, A.; Calatayud, A.

    2012-04-01

    TRIP steels, or Transformed Induced Plasticity steels, have excellent mechanical properties if compared with conventional steels. Strain hardening is also greater, thus they offer a good combination of strength and formability properties that may be justified by the multiphase structure of these steels. The highlighted characteristic of these steels is that they modify the microstructure with the deformation process as part of the austenite transforms to martensite, with the consequent change of the material properties. One of the main problems of TRIP steels is strong elastic recovery, or springback, after forming. In this work, the springback phenomenon is evaluated by bending tests and the influence of the variables involved in it is determined. The factor found to affect material recovery the most was the bending angle. Experimental bending forces do not agree with theoretical predictions.

  11. Influence of Direct Quenching on Microstructure and Mechanical Properties of Steel Plate for Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Xiao, Guizhi; di, Hongshuang; Zhu, Fuxian; Chen, Bingzhang; Qiu, Bing

    2010-08-01

    The influence of direct quenching on microstructure and mechanical properties of high performance steel plates for large oil storage tanks was studied. The direct quenched and tempered (DQ&T) steel plates were rolled at different finish rolling temperatures (1113 and 1173 K), and their microstructures and mechanical properties were compared with those of reheat quenched and tempered (RQ&T) steel plate. The optical microscopy of the DQ steel shows deformed grains elongated along the rolling direction, while complete equiaxed grains are visible in RQ steel. Transmission electron microscopy (TEM) of the DQ steel shows refined lath martensite with high density of dislocations, which acts as preferred precipitation sites for NbC or Nb(C,N) particles during tempering. In all the plates, strength decreases with increasing tempering temperature. The strength of RQ steel increased significantly compared with that of DQ steel at the higher tempering temperature, which leads to better tempering resistance in DQ steels. The optimum combination of strength and toughness (yield strength (YS) reaches 585 MPa, tensile strength (TS) 667 MPa, and Charpy impact energy at 253 K of 291 J) in the DQ steels is achieved by quenching at 1113 K and tempering at 923 K.

  12. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  13. Dynamic Material Property Measurement of Steel Thin Sheets using Laser-Based Ultrasonics

    NASA Astrophysics Data System (ADS)

    Nagata, Y.; Yamada, H.; Hashiguchi, S.; Lim, C. S.; Park, H. C.; Huh, H. J.; Kang, M. K.; Oh, K. J.

    2014-06-01

    A material property measurement system for steel sheets using laser-based ultrasonics was developed. The system consists of a pulsed Nd:YAG laser for ultrasonic generation and multi-channel interferometer coupled with a CW single frequency laser for ultrasonic detection. The system can measure the frequency of the S1 Lamb wave mode of zero group velocity (S1f) as well as the longitudinal resonance frequencies without ablative damage to the steel surface. It was confirmed that Poisson's ratio could be directly obtained by combining the measured S1f value and the longitudinal resonance frequencies. To evaluate the applicability of this system in an actual steel production setting, the system was installed in hot rolling pilot plant that produces steel samples. As a result, it was demonstrated that the system can measure dynamic changes in Poisson's ratio values within steel sheets, even in the hot rolling pilot plant environment. Material property data, such as Poisson's ratio, during the thin sheet production process will be very useful for manufacturing high value-added steel, such as sheets with uniform quality.

  14. The effect of additional high dose carbon implantation on the tribological properties of titanium implanted steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazunori; Sasaki, Jun; Ichiko, Osami; Hashiguchi, Yoshihiro

    1996-08-01

    The tribological properties and the structural changes of hardened steel implanted with titanium followed by carbon were investigated as a function of additional carbon dose. The dose of Ti was 5×10 17 Ti cm -2 and the additional C doses were 0, 4×10 17, 8×10 17 and 1.2×10 18 C cm -2. After Ti implantation, the steel surface transformed to a FeTiC ternary amorphous phase. Additional implantation of carbon to a dose of 4×10 17 C cm -2 produced fine TiC precipitates dispersed in the ternary amorphous matrix. When the additional C dose exceeded 8×10 17 C cm -2, very fine graphite precipitates appeared in the ternary amorphous phase. The steel surface with very fine graphite precipitates exhibited superior tribological properties. The benefits provided by additional high dose carbon implantation are considered as follows: strengthening of the amorphous phase, thickening of the modified layer, dispersion strengthening of the implanted layer by very fine graphite precipitates and lubrication effect by graphite particles. Comparing the friction properties of Ti+C implanted steel with that of C implanted steel, the role of Ti implantation is to reduce the friction of the surface during sliding and the role of C implantation is to increase the lifetime of the surface against wear.

  15. Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Kim, Hyoung Seop; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul; Shin, Sang Yong

    2016-06-01

    The correlation between the microstructures and tensile properties of strain-based American Petroleum Institute (API) X60 pipeline steels was investigated. Eight types of strain-based API X60 pipeline steels were fabricated by varying the chemical compositions, such as C, Ni, Cr, and Mo, and the finish cooling temperatures, such as single-phase and dual-phase regions. In the 4N and 5C steels, the volume fractions of bainitic ferrite (BF) and the secondary phases increased with the increasing C and adding Cr instead of Ni. In the 5C and 6NC steels, the volume fractions of acicular ferrite (AF) and BF decreased with increasing C and adding Ni, whereas the volume fractions of polygonal ferrite (PF) and the secondary phases increased. In the 6NC and 6NM steels, the volume fraction of BF was increased by adding Mo instead of Cr, whereas the volume fractions of PF and the secondary phases decreased. In the steels rolled in the single-phase region, the volume fraction of polygonal ferrite ranged from 40 to 60 pct and the volume fraction of AF ranged from 20 to 40 pct. In the steels rolled in the dual-phase region, however, the volume fraction of PF was more than 70 pct and the volume fraction of AF was below 20 pct. The strength of the steels with a high volume fraction of AF was higher than those of the steels with a high volume fraction of PF, whereas the yield point elongation and the strain hardening exponent were opposite. The uniform elongation after the thermal aging process decreased with increasing volume fraction of PF, whereas the uniform elongation increased with increasing volume fraction of AF. The strain hardening exponent increased with increasing volume fraction of PF, but decreased with increasing volume fraction of AF and effective grain size.

  16. The Mechanical and material properties of 316LN austenitic stainless steel for the fusion application in cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sas, J.; Weiss, K.-P.; Jung, A.

    2015-12-01

    Due to the constant increase of claims for all materials used in superconducting magnets in "magnetic fusion reactors", the article deals with the possibilities of increasing the mechanical properties of austenitic stainless steel tested at cryogenic conditions that ensure the transport of Helium to magnets. The aim of the experimental plan was to increase the mechanical properties of the steel grade 316LN tested at 4.2K from the original value Steel A: YS = 1045 MPa, UTS = 1528 MPa, A = 33% to the value of YS = 1204 MPa,UTS = 1642 MPa, A = 34% and Steel B: YS = 1173 MPa, UTS = 1541 MPa, A = 28% to the value of YS = 1351 MPa, UTS = 1645 MPa, A = 17%. The increase in mechanical properties of the steel grade under examination has been made by means of heat processing in the conditions of annealing: Th1 = 625 ° C / th1 = 696 h. The mechanical properties of steel were evaluated using static tension tests at 4,2 K. The samples were placed in a cryostat filled with liquid helium. Except for the mechanical properties, there were also evaluated structural changes depending on the conditions of heat processing by light optical microscopy and EBSD (Electron Backscatter Diffraction). The increase of steel properties used in low temperatures was achieved by heat processing.

  17. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel

    NASA Astrophysics Data System (ADS)

    Chen, Jianguo; Liu, Chenxi; Liu, Yongchang; Yan, Biyu; Li, Huijun

    2016-10-01

    In order to explore the influence of tantalum content on the microstructure and mechanical properties of low carbon RAFM (reduced activation ferritic/martensitic) steels, three low carbon RAFM steels with different tantalum contents (0%, 0.027%, 0.073%) were designed. The precipitation behavior and effect of precipitates on the mechanical properties of the Low-C RAFM steel were investigated. The results indicate that increase of tantalum content causes decrease of the prior austenite grain size and the amount of M23C6 carbides precipitated along prior austenite grain boundaries and packet boundaries as well as increase of the amount of MX nano-sized particles within intragranular regions. The impact properties of low carbon RAFM steels are excellent regardless of the tantalum content. The impact properties and hardness are obviously improved by increasing tantalum content, which may be related to increase of the number of MX and decrease of M23C6. Furthermore, the tensile properties at elevated temperature below 600 °C are hardly changed with increase of tantalum content, yet those at 800 °C are improved with increasing tantalum content. This implies that MX carbides would be more important for tensile properties at higher temperature.

  18. Magnetic measurement to evaluate material properties of ferromagnetic structural steels with planar coils

    SciTech Connect

    Ebine, Noriya; Ara, Katsuyuki

    1999-09-01

    The mechanical properties of a nuclear reactor pressure vessel (RPV) are degraded by fast neutron irradiation during operation. This is well-known as so-called as radiation embrittlement of RPV and an important problem to be considered in the assessment of residual life of the nuclear reactor. Hence the development of nondestructive means is required to measure directly the degree of material degradation in RPV. Here, nondestructive measurement experiments were carried out with a planar coil to evaluate changes of material properties of ferromagnetic structural steels. Examined steels were of A533B that is a low-alloy steel and of SUS410 that is a martensitic stainless steel. The planar coil has two windings; one is of primary for excitation and the other secondary for induction of output voltage. The coil was placed on a test plate with a magnetic yoke for application of a bias dc magnetic field, and excited with a constant current of 25 Hz. Then the output voltages were measured while slowly changing the bias field by excitation of the magnetic yoke with a triangular-wave form current of 0.005 Hz. Changes of output voltages with different test plates were correlated with their mechanical and magnetic properties. The correlation is so good that this measuring method could be applied to nondestructive evaluation of material degradation in ferromagnetic structural steels.

  19. Meso- and microstructural features of steel 12GBA produced by different methods of thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Derevyagina, Lyudmila S.; Panin, Viktor E.; Korznikov, Aleksandr V.; Gordienko, Antonina I.

    2015-10-01

    The effect of uniform isothermal forging (UF) and warm rolling (WR) on the structure of low-carbon tube steel 12GBA has been studied. It is shown that the structures of the treated steel differ significantly by the effective grain size, density of all boundaries, percentage of density of high angle boundaries (HABs) and low angle boundaries (LABs), carbide phase morphology in the perlite zone and texture of the ferrite phase. After forging steel has the greatest degree of grain refinement, maximum boundary density, and overrepresentation of LABs. This structural state of steel is characterized by a double-component texture: (001) + (111), <001> + <101>, while after warm rolling steel has a mono-component texture (111) <101>. The evident differences in the steel structure treated by WR and UF may have dual effect on the strength and plasticity properties of steel and its fracture behavior.

  20. Investigation on forming limit properties of dual phase steel

    NASA Astrophysics Data System (ADS)

    Pan, Libo; Rolfe, Bernard; Asgari, Alireza; Weiss, Matthias; Zhang, Zhijian

    2013-05-01

    The accurate representation of the forming limit properties in the material model is very important for predicting the onset of failure. In this study, the FLCs for two dual phase steels DP780 and DP600 were experimentally obtained. The FLSCs were derived numerically by setting up stretching models in ABAQUS in which experimental FLD data were employed as failure criteria. The results of FLSCs showed in good agreement with that transformed from theoretical calculation. A new type of forming limit diagram based on Polar representation of EPS (Effective Plastic Strain) which proposed by Stoughton and Yoon was conducted to analyse the difference of result caused by FLD and FLSD criteria. The forming processes of a special cup-type part drawing were modelled and simulated by utilizing FLD and FLSD as failure criteria, respectively. According to analysis, the Polar EPS diagram can intuitively describe formability problems in forming processes. To avoid the occurrence of failure, it was found that if strain path for the final stage in Polar EPS diagram can be controlled to locate in some safe zones which can be expressed by function related to some parameters, certain required EPS could be achieved without failure during forming. The results indicated that Polar EPS Diagram seemed to be a good tool to analyse formability in complex strain paths condition and could be used to strengthen formability by designing nonlinear paths.

  1. Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Tang, Jingming

    2016-03-01

    In the present investigation, TiC-TiB2 composite coating was deposited by electrical discharge hardening onto the surface of 40Cr steel with a TiC-TiB2 composite rod as electrode. The composite coating structure and phase compositions were characterized by SEM and XRD, the hardness and its distribution along coating were measured on micro-hardness machine. Wear resistance of composite coating was evaluated on MM-200 wear experiment machine. The results suggest that the major phases of the composite coating are TiB2, TiC and Fe3C. The micro hardness distribution along depth of composite coating is inhomogeneous, the micro hardness value of the composite coating is about 4 times of the substrate. The wear mechanism of 40Cr steel is mainly attributed to micro-cutting and adhesive wear, but the wear mechanism of composite coating is mainly attributed to micro-cutting, scratch and fatigue abrasion. The results show that the change of wear mechanism between the samples because of the hard particles and higher hardness of composite coating. Compared with the substrate, wear resistance of composite coating is 5 times higher than that of the substrate, friction coefficient of the coating decreased by 0.12-0.17 under the same wear environment. The erosion mechanism of the TiC-TiB2 composite coating is ploughing and cutting at low impact angles, but it failure in fatigue cracking and spalling at high impact angles.

  2. Ultrasonic investigations of cermets elastic properties in dependence on steel concentration and temperature of sintering

    NASA Astrophysics Data System (ADS)

    Abramovich, A.

    2012-12-01

    Cermets is a ceramic-metal composite usually produced by sintering a precompacted mixture of the initial powders. These composite materials were created for industrial applications to produce engineering structures possessing a high strength, thermal stability and resistance to aggressive media. In the present work elastic properties of cermets samples, obtained by sintering of corundum (α-Al2O3) and stainless steel powders were investigated in dependence on steel concentration 5 - 35% wt. and on temperature of sintering in vacuum 1400-1700°C. It was stated that values of elastic moduli are in complex dependence on concentration and temperature, reach maxima at steel concentration 15 - 20% wt. and increase with sintering temperature rise. In the work also the results of cermets microstructure researches and discussion of these results are presented. The results are discussed from stand view of ultrasound propagation through medium having grain boundaries which influence on the physical properties of composite.

  3. Effect of Rolling Temperature and Ultrafast Cooling Rate on Microstructure and Mechanical Properties of Steel Plate

    NASA Astrophysics Data System (ADS)

    Ye, Qibin; Liu, Zhenyu; Yang, Yu; Wang, Guodong

    2016-07-01

    Microstructure can vary significantly through thickness after ultrafast cooling of rolled steel plates, impacting their mechanical properties. This study examined the microstructure, microstructural banding at centerline, and mechanical properties through thickness for different ultrafast cooling conditions and rolling temperatures. One set of steels (UC1 and UC2) were ultrafast-cooled (UFC) at 40 K/s after finish rolling at 1223 K and 1193 K (950 °C and 910 °C), respectively, while the second set (LC) was cooled by laminar cooling at 17 K/s after finish rolling at 1238 K (965 °C). UFC produced microstructural variation through thickness; highly dislocated lath-type bainitic ferrite was formed near the surface, whereas the primary microstructure was acicular ferrite and irregular polygonal ferrite in the interior of UC1 and UC2 steels, respectively. However, UFC has the advantage of suppression of microstructural banding in centerline segregation regions. The ferrite grain size in both UFC-cooled steels was refined to ~5 μm, increasing strength and toughness. The optimum combination of properties was obtained in UC2 steel with appropriate low finish rolling temperature, being attributed to the distinct microstructure resulting from work-hardened austenite before UFC.

  4. Leaching characteristics of steel slag components and their application in cementitious property prediction.

    PubMed

    Li, Zaibo; Zhao, Sanyin; Zhao, Xuguang; He, Tusheng

    2012-01-15

    High-efficiency recovery and utilization of steel slag are important concerns for environmental protection and sustainable development. To establish a rapid method to evaluate the cementitious properties of steel slag, leaching tests were carried out on steel slag components via an evaporation-condensation method; the leaching characteristics and mechanism of the slag were also investigated. The relationship between leaching characteristics and cementitious properties, which were represented by mortar compressive strength, was analyzed. Results show that there exist significant differences among the amounts of chemically active leached components. The leaching process can be described by the shrinking unreacted core model controlled by intra-particle diffusion, and is in accordance with Kondo R hydration kinetics equation. The leaching process showed a good linear relationship between the amounts of components leached from steel slag and the mortar compressive strength of cementitious materials prepared from reference cement and steel slag with mass ratios of 50:50 and 70:30. The compressive strengths of mortars subjected to 7, 28, and 90 days of curing can be accurately predicted by the sum of leached (CaO+Al(2)O(3)) obtained after a certain length of leaching time.

  5. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  6. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  7. Evaluation of fatigue properties of EN31 steel heat treated using biodegradable gingili oil

    NASA Astrophysics Data System (ADS)

    Harichandra, B. P.; Prashanth, Mrudula; Prakash, S. V.

    2016-09-01

    Rotating bending fatigue is the most commonly encountered loading in most machines and machine tools. At the same time, modern literature in this area is very little. EN31 steel is a steel which is commonly used in load bearing applications which encounters fatigue loading. Further, studies on heat treated EN31 steel to improve fatigue strength is hardly reported. This paper takes this rare issue further ahead by using bio-degradable gingili oil to heat treat EN31 steel for fatigue applications. This paper reports the results of rotating bending fatigue study of EN31 steel. Fatigue tests were conducted for three conditions a) Untreated, b) Heat treated with water, and c) Heat treated with gingili oil, with cantilever loads ranging from 30% to 90% using double sided rotating bending fatigue testing machine. It is seen that EN31 steel heat treated using gingili oil has far superior fatigue properties than water treated and untreated ones, with gingili oil quenched specimen have ∼10 times more fatigue life than water quenched specimen and ∼100 times more than unquenched specimens when lower bending stresses are involved.

  8. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  9. Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

    SciTech Connect

    Choi, Kyoo Sil; Hu, Xiaohua; Sun, Xin; Taylor, Mark D.; De Moor, Emmanuel; Speer, John; Matlock, David K.

    2014-04-01

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and then to do a computational materials design approach for its performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases are determined based on the initial constituents’ properties from HEXRD test and the subsequent calibration of model prediction to tensile test results. Influence of various material parameters of the constituents on the macroscopic behaviors is then investigated by separately adjusting them by small amount. Based on the observation on the respective influence of constituents’ material parameters, a new set of material parameters are devised, which results in better performance in ductility. The results indicate that various material parameters may need to be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. In summary, higher austenite stability, less strength difference between the phases, higher hardening exponents of the phases are generally beneficial for the performance improvement. The information from this study can be used to devise new Q&P heat-treating parameters to produce the Q&P steels with better performance.

  10. A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels

    SciTech Connect

    Levey, P.R.; Bennekom, A. van

    1995-12-01

    The effects of nitrogen alloying on the corrosion properties of stainless steels (SS) is a matter of debate. A number of apparently contradictory results have been presented by various researchers. The actual mechanism by which nitrogen alloying influences the corrosion properties of SS has been the topic of even more controversy. The effects of nitrogen on the corrosion and mechanical properties of SS were reviewed. Various proposals relating to the mechanistic effect of nitrogen alloying on the corrosion properties of SS were evaluated critically by comparing the various theories.

  11. Influence of the Initial Microstructure on the Heat Treatment Response and Tensile Properties of TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Lee, Kyooyoung; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Won Hwi; Kim, Jeong In; Suh, Dong-Woo

    2016-08-01

    Microstructure evolution and mechanical properties were investigated in transformation-induced plasticity (TRIP) steel having a different initial microstructure. Compared with the cold-rolled structure that evolves into a typical microstructure of TRIP steel, the martensitic initial structure produces a more lath-type microstructure as the fraction of retained austenite increases in the initial microstructure. The interlath austenite after heat treatment contributes to improving the tensile properties by the enhanced stability and the refinement of the matrix phase.

  12. Influence of the Initial Microstructure on the Heat Treatment Response and Tensile Properties of TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Lee, Kyooyoung; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Won Hwi; Kim, Jeong In; Suh, Dong-Woo

    2016-11-01

    Microstructure evolution and mechanical properties were investigated in transformation-induced plasticity (TRIP) steel having a different initial microstructure. Compared with the cold-rolled structure that evolves into a typical microstructure of TRIP steel, the martensitic initial structure produces a more lath-type microstructure as the fraction of retained austenite increases in the initial microstructure. The interlath austenite after heat treatment contributes to improving the tensile properties by the enhanced stability and the refinement of the matrix phase.

  13. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Shin, Sang Yong; Kim, Hyoung Seop; Lee, Sunghak; Kim, Sung-Kyu; Chin, Kwang-Geun; Kim, Nack J.

    2012-06-01

    In the present study, a high Mn twinning induced plasticity (TWIP) steel and two Al-added TWIP steels were fabricated, and their microstructures, tensile properties, and cup formability were analyzed to investigate the effects of Al addition on deformation mechanisms in tensile and cup forming tests. In the high Mn steel, the twin formation was activated to increase the strain hardening rate and ultimate tensile strength, which needed the high punch load during the cup forming test. In the Al-added TWIP steels, the twin formation was reduced, while the slip activation increased, thereby leading to the decrease in strain hardening rate and ultimate tensile strength. As twins and slips were homogeneously formed during the tensile or cup forming test, the punch load required for the cup forming and residual stresses were relatively low, and the tensile ductility was sufficiently high even after the cup forming test. This indicated that making use of twins and slips simultaneously in TWIP steels by the Al addition was an effective way to improve overall properties including cup formability.

  14. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.

    2014-09-01

    Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

  15. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  16. Enhancing the Mechanical Properties and Formability of Low Carbon Steel with Dual-Phase Microstructures

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Hashemi, R.; Sadeghi, E.; Fazaeli, A.; Ghazanfari, A.; Lashini, H.

    2016-02-01

    In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a good agreement with those obtained by the experimental test.

  17. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  18. Effects of Inclusions on Delayed Fracture Properties of Three TWinning Induced Plasticity (TWIP) Steels

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Shin, Sang Yong; Kim, Hyoung Seop; Lee, Sunghak; Kim, Sung-Kyu; Chin, Kwang-Geun; Kim, Nack J.

    2013-02-01

    In the present study, delayed fracture properties of a high-Mn TWinning Induced Plasticity (TWIP) steel and two Al-added TWIP steels were examined by dipping tests of cup specimens in the boiled water, after which the microcrack formation behavior was analyzed. The TWIP steels contained a small amount of elongated MnS inclusions, spherical-shaped AlN particles, and submicron-sized (Fe,Mn)3C carbides. Since MnS inclusions worked as crack initiation sites, longitudinal cracks were formed along the cup forming direction mostly by MnS inclusions. These cracks were readily grown when high tensile residual stresses affected the cracking or hydrogen atoms were gathered inside cracks, which resulted in the delayed fracture. In the Al-added steels, MnS inclusions acted as crack initiation and propagation sites during cup forming or boiled-water dipping test, but residual stresses applied to MnS might be low for the crack initiation and growth. Thus, longitudinal cracks formed by MnS inclusions did not work much for delayed fracture. AlN particles present in the Al-added steels hardly acted as crack initiation or growth sites for the delayed fracture because of their spherical shape.

  19. Dual-phase steel structure visualized by extremely slow electrons.

    PubMed

    Mikmeková, Šárka; Yamada, Katsumi; Noro, Hisato

    2015-12-01

    Mechanical properties of complex steels are affected by their multi-phase structure. Scanning electron microscopy (SEM) is routinely used for characterizing dual-phase (DP) steels, although the identification of steel constituents is not straightforward. In fact, there are several ways of enabling the ferrite-martensite segmentation by SEM, and a wide range of electron energies can be utilized. This study demonstrates the phase identification of DP steels at high, low and extremely low landing energies of the primary electrons from tens of keV to tens of eV. Visualization of the specimen surface at very low landing energies has been achieved by inserting an earthed detector between the pole piece and the negatively biased specimen. This 'cathode lens mode' enables the use of the full energy range up to the primary electron energies. It has been found that extremely slow electrons (<100 eV) are exceptionally suitable for separation of the martensite from the ferrite matrix due to high surface sensitivity, enabling visualization of very fine features. Moreover, the channelling contrast is significantly suppressed at the landing energy of tens of eV of the primary electrons, which enables separation of the phases clearly even in the images acquired at low magnification. The contrast between the phases at tens of eV can be explained by the different thickness of native oxide covering the martensite and the ferrite phase.

  20. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel.

    PubMed

    Flint, S H; Brooks, J D; Bremer, P J

    1997-10-01

    The quality of milk products is threatened by the formation of biofilms of thermophilic streptococci on the internal surfaces of plate heat exchangers used in milk processing. Although attachment to stainless steel surfaces is one of the first stages in the development of a biofilm, the mechanisms involved in attachment have not been reported. The cell surface properties of 12 strains of thermophilic streptococci were examined to determine their importance in attachment to stainless steel surfaces. Hydrophobicity, extracellular polysaccharide production and cell surface charge varied between the different strains but could not be related to numbers attaching. Treating the cells with sodium metaperiodate, lysozyme or trichloroacetic acid to disrupt cell surface polysaccharide had no effect on attachment. Treatment with trypsin or sodium dodecyl sulphate to remove cell surface proteins resulted in a 100-fold reduction in the number of bacteria attaching. This result suggests that the surface proteins of the thermophilic streptococci are important in their attachment to stainless steel. PMID:9351231

  1. Microstructure and properties of dual-phase steels containing fine precipitates

    SciTech Connect

    Gau, J.S.; Koo, J.Y.; Nakagawa, A.; Thomas, G.

    1981-07-01

    Very fine particles (carbides or carbonitrides) of the order of 20 A were extensively examined in the ferrite regions of dual-phase steels subjected to intercritical annealing followed by fast quenching to room temperature. These particles are probably formed during quenching after intercritical annealing. The driving force for the precipitation reaction may arise from the supersaturation of carbon (or nitrogen) in the ferrite phase. These precipitates in certain alloy compositions cause a deviation from the generally observed two phase mixture rule in that the strength of the dual-phase steels having a higher volume fraction of martensite is lower than that having a lower volume fraction of martensite. Thus, the influence of such precipitates must be considered in the structure-property relations of dual-phase steels when fast quenching is employed after intercritical annealing.

  2. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  3. Correlations between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels

    SciTech Connect

    Taylor, Mark D.; Choi, Kyoo Sil; Sun, Xin; Matlock, David K.; Packard, Corrine; Xu, Le; Barlat, Frederic

    2014-03-01

    Multiphase advanced high strength steels (AHSS) are being increasingly used in the automotive industry due to their low cost, good availability and excellent combination of strength and ductility. There is a keen interest from the automotive and steel industry for more fundamental understandings on the key microstructure features influencing the macroscopic properties, i.e., tensile properties, hole-expansion ratio and localized formability of AHSS. In this study, the micro- and macro-level properties for eight commercial DP980 steels are first characterized and quantified with various experimental methods. Correlations between macroscopic-level properties and relationships between various micro- and macro- properties for these steels are then established based on the experimental measurements. It is found that, despite their differences in their chemistry, processing parameters and sheet thickness, the eight DP980 steels do have common microstructural level properties governing their specific macroscopic properties in terms of strength, elongation and hole expansion performance.

  4. Frictional Properties of Nickel and Copper Implanted Low Carbon Steel Plates

    NASA Astrophysics Data System (ADS)

    Iwaki, Masaya; Hayashi, Hisashi; Kohno, Akio; Yoshida, Kiyota

    1981-01-01

    A study has been made of the frictional properties of nickel and copper implanted steel plates. Ion implantation was performed with doses of 1× 1015--3× 1017 ions/cm2 energies of 50-200 keV. The friction coefficients of Ni and Cu implanted specimens, measured at atmospheric room temperature with a Bowden-Leben type friction testing machine, had a tendency to increase as the total dose increased and the acceleration energy decreased. Concentration profiles were measured by secondary ion mass analysis in order to investigate the element concentration which contributes to the frictional properties. The results suggest that the amount of implanted ions remaining in the surface layer (0-400 Å) is of first importance in the frictional properties of Ni and Cu implanted steel plates.

  5. Effect of rust on the wettability of steel by water

    SciTech Connect

    Lu, W.; Chung, D.D.L.

    1998-04-01

    Rust, as formed on steel by immersion of low-carbon steel in water, was found to improve the wettability of steel by water. The advancing contact angle decreased from 87{degree} to 32{degree}, and the receding contact angle decreased from 81{degree} to 29{degree}. Cleansing of steel by acetone also helped improve the wettability, but the advancing angle only decreased from 87{degree} to 73{degree}, and the receding angle only decreased from 81{degree} to 41{degree}.

  6. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M. D.

    2013-07-01

    Prior cold worked (PCW) titanium-modified 14Cr-15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16-24% on creep properties of IFAC-1 SS, a titanium modified 14Cr-15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K. Creep rupture life of the steel increased with the increase in PCW at 923 K. This has been attributed to the partial retention of prior cold work induced dislocations which facilitated the extensive precipitation of secondary Ti(C,N) particles on the stable dislocation substructure. Creep rupture life of the steel did not vary with PCW at 973 K due to softening by recrystallization and absence of secondary Ti(C,N).

  7. Influence of thermal aging on microstructure and mechanical properties of CLAM steel

    NASA Astrophysics Data System (ADS)

    Huang, Lixin; Hu, Xue; Yang, Chunguang; Yan, Wei; Xiao, Furen; Shan, Yiyin; Yang, Ke

    2013-11-01

    In order to investigate the influence of thermal aging on microstructure and mechanical properties of CLAM (China low activation martensitic) steel, a comparison study was made on the as-tempered and the aged steels. The tempered CLAM steels were subjected to aging treatment at 600 °C for 1100 h and 3000 h, and at 650 °C for 1100 h, respectively. The changes of microstructure were characterized by both transmission electron microscope (TEM) and scanning electron microscope (SEM). The mechanical properties were evaluated by Charpy impact, tensile and Vickers hardness tests. The upper shelf energy (USE) of the thermal aged CLAM steel decreased with the extension of aging time, while the yield strength changed slightly. After long-term thermal aging, the MX type precipitates remained stable. The coarsening of M23C6 and the formation of Laves phase were confirmed by scanning/transmission electron microscopes. The Laves phase was the main factor leading to the increase of DBTT.

  8. Structure and properties of a steel strip cut from the Garin-Mikhailovskii railroad bridge in Novosibirsk

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Smirnov, A. I.; Popelyukh, A. I.; Bataev, A. A.; Popelyukh, P. A.

    2015-01-01

    The results of a study of the structure and mechanical properties of a steel strip cut from the first railroad bridge across the Ob river constructed 120 years ago are given. The steel for the bridge was made at the Votkinsk plant in the Urals at the end of the 19th century. In this work, the chemical composition of the steel has been analyzed and a comparison of the quality of the material with the contemporary analogs has been carried out. It has been established that the steel used in the production of the bridge is characterized by a low content of sulfur and phosphorus. At the same time, the metal contains an enhanced content of nonmetallic inclusions. The presence of inclusions oriented in the rolling direction favorably affects the resistance to fatigue cracking of the steel. The cracks are retarded at the boundaries between the inclusions and the metallic matrix.

  9. Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion

    SciTech Connect

    Maj, P.; Adamczyk-Cieślak, B.; Mizera, J.; Pachla, W.; Kurzydłowski, K.J.

    2014-07-01

    The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels. - Highlights: • Duplex stainless steel was hydro extruded to a total strain of 3.8 • After the last stage of deformation heterogeneous structure was obtained in the material • As a result of stresses non-diffusive transformation γ→α’ occurred in the material • Nanometric (sub)grains were obtained in the austenite regions.

  10. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  11. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  12. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils.

  13. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel

    NASA Astrophysics Data System (ADS)

    Kempen, K.; Yasa, E.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    Selective Laser Melting (SLM) is an Additive Manufacturing process in which a part is built in a layer by layer manner. A laser source selectively scans the powder bed according to the CAD data of the part to be produced. The high intensity laser beam makes it possible to completely melt the metal powder particles to obtain almost fully dense parts. In this work, the influence of process parameters in SLM (e.g. scan speed and layer thickness) and various age hardening treatments on the microstructure and mechanical properties of 18Ni-300 steel is investigated. It is shown that almost fully dense parts with mechanical properties comparable to those of conventionally produced maraging steel 300 can be produced by SLM.

  14. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel

    NASA Astrophysics Data System (ADS)

    Schäfer, L.

    1998-10-01

    Martensitic chrome steels with a high content of chromium incline to form delta ferrite frequently accompanied by massive dendritic carbide precipitations. Both phases mostly influence the mechanical properties of this steel in countercurrent manner. The relatively soft delta ferrite causes an increase of ductility and toughness, whilst the brittle dendritic carbides decreases both. Both phases mostly decrease the strength of the steel. One or the other influence will be dominant in dependence of the quantitative relation of the two phases. This is the cause for very different statements in the literature. The dendritic carbides should be avoided using a cooling rate of more than 10 3 K/min after the austenitization, because this phase mostly impairs the mechanical properties of the steel. However, the delta ferrite without dendritic carbides can be tolerated mostly.

  15. Microstructural Evolution and Mechanical Properties of Short-Term Thermally Exposed 9/12Cr Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-11-01

    The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

  16. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    NASA Astrophysics Data System (ADS)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment.

  17. Mechanical properties of 1950's vintage Type 304 stainless steel weldment components

    SciTech Connect

    Stoner, K.J.; Sindelar, R.L.; Awadalla, N.G. ); Hawthorne, J.R.; Hiser, A.L.; Cullen, W.H. )

    1990-01-01

    The primary coolant piping systems of the nuclear production reactors constructed in the 1950's at Savannah River Site are comprised of Type 304 stainless steel. A program has been completed which assessed the material properties of archival large diameter piping having approximately six years of service at temperatures between 25 and 125{degree}C. An extensive database of mechanical properties was produced for examination of material variability and to provide properties for engineering analysis, including piping fracture resistance assessment. Tensile properties, Charpy-V notch ductility, and elastic-plastic fracture toughness were established for base metal, weld metal and weld heat-affected-zone (HAZ) materials. A total of 375 mechanical specimens representing ASTM L-C and C-L orientations were tested at temperatures of 25 or 125{degree}C. The effect of dynamic loading on tensile and fracture toughness properties was also explored. The time-to-specimen maximum load ({approx}80 milliseconds) was chosen to simulate a seismic loading event. The mechanical properties of the vintage piping material were found typical of those of recently-produced commercial melts of Type 304 stainless steel piping and are consistent with ASME Code Section II design values. The toughness properties of welds fabricated by the Metal Inert Gas (MIG) welding process (multipass, Type 308 stainless steel filler), were found similar to the base materials, yielding a high fracture resistance. Practical applications of the mechanical properties database in piping fracture assessments are illustrated with the methodology for an elastic-plastic analysis. 10 refs., 9 figs., 8 tabs.

  18. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    SciTech Connect

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  19. Study on the morphology and properties of carburized and austempered microstructures in 430 D2 steel

    SciTech Connect

    Xinggui, W.; Suidong, Z.; Xin, C.; Chuenmei, L.; Liming, X.

    1995-12-31

    By means of carburizing and quenching, a high hard case can be produced in the surface of tool steel, but the brittleness of the case has limited its application in practice. In this paper, structure, composition and properties of the case and core carburized followed by austempering in 430D2 steel was studied. As the result of austempering, the optimum combination of strength and ductility of the carburized case has been achieved. There was no M3C phase in carburized case, indicating that the composition point of the carburized case lies in the M7C3 + Austenite quarter-phase field. In the isothermal period above Ms, lower bainite formed in the core structure, while a needle-like structure without carbides emerged in the outside case after a longer isothermal time. This dark needle-like structure seemed to be the isothermal martensite, which appeared to be dark since it was tempered in the following isothermal process. This tempered isotherm martensite probably improved the toughness and ductility of the carburized case; on the other hand, a large quantity of fine carbide formed in carburizing increased the wear resistance of the die steel and remedied the defect of heterogeneity of carbides in 430 D2 steel.

  20. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS

    SciTech Connect

    Morgan, M.

    2009-07-30

    Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high

  1. Comparison of microstructure and magnetic properties of 3% Si-steel, amorphous and nanostructure Finemet

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Rahmani, Kh.; Amiri Kerahroodi, M. S.

    2016-12-01

    This paper presents a comparison of microstructure and magnetic properties of polycrystalline 3%Si-steel, amorphous and nano-crystalline alloy Fe73.5Cu1Nb3Si13.5B9 (known as Finemet). Si-steels are industrially produced by casting, hot and cold rolling, annealing and coating. Samples of thin amorphous ribbons were prepared by the planar flow casting (PFC) method. Nano-crystalline samples are obtained after annealing in vacuum furnace at 560 °C for 1 h. The structure of specimens was investigated by XRD, SEM and FE-SEM. Also, magnetic properties were measured using vibrating sample magnetometer (VSM). The results showed that, hysteresis losses in as-quenched and nano-crystalline ribbons were by 94.75% and 96.06% less than 3%Si-steel, respectively. After the heat treatment of amorphous specimens, hysteresis area was decreased by 25% in comparison with heat treated specimen. This decreasing is occurred due to the formation of Fe3Si nanostructure with size of 10-17 nm and removing segregation after heat treatment.

  2. The effect of carbon concentration and plastic deformation on ultrasonic higher order elastic properties of steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Allison, S. G.; Salama, K.

    1985-01-01

    The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.

  3. Effect of pre-strain on mechanical properties and deformation induced transformation of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Zulfi, Fahri R.; Korda, Akhmad A.

    2016-08-01

    Effect of pre-strain on mechanical properties and deformation induced phase transformation of 304 stainless steel under tensile deformation has been studied. Pre-strain with the variation percentage of deformation was applied to the tensile test specimens. Tensile and hardness testing were carried out after pre-strain to study the mechanical properties change. Deformation induced phase transformation was investigated by using X-ray diffraction and optical microscope. XRD study indicates that metastable austenite transforms to martensite due to deformation. The martensite volume fraction increases with the increase in percentage of deformation. The increase in strength and hardness were associated with an increase in the volume fraction of martensite.

  4. Effect of recycling on residuals, processing, and properties of carbon and low-alloy steels

    NASA Astrophysics Data System (ADS)

    Stephenson, E. T.

    1983-02-01

    Because of the continuing increase in electric furnace steelmaking, which is a scrap-intensive process, and also in view of future new sources of scrap, such as municipal solid wastes, it is important to develop more knowledge about: (a) the effects of residual elements on steel, (b) processing strategies for producing high-residual steels, and (c) products in which residuals could be used to advantage. This review will first identify the important residual elements and the trends in their use and levels in steels. The effect of these elements on the processing phenomena and product properties of carbon and low-alloy steels will be discussed in detail. These phenomena and properties include hot shortness, scale adherence, room temperature tensile properties, impact resistance, and hardenability. Also discussed are examples of specific problems that residual elements present, both now and with emerging trends, for steel processing and applications, and the ways of using residuals to advantage.

  5. Properties of modified 9Cr-1Mo cast steel

    SciTech Connect

    Zucco, J.A.; Canonico, D.A.

    1996-09-01

    This report describes the development and testing of a cast version of the popular ASME P-91 ferritic stainless steel. ASME and ASTM have approved its use in pressure vessels and boilers. The allowable strength level of the cast material is slightly lower than that of P- 91 wrought steel. The report also describes shop and field welding procedures developed for the cast steel. Figs, tabs.

  6. Effect of Pre-intercritical Annealing Treatments on the Microstructure and Mechanical Properties of 0.33% Carbon Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Shukla, Neha; Das, Suvajeet; Maji, Sumanta; Chowdhury, Subhro Roy; Show, Bijay Kumar

    2015-12-01

    The present study is aimed at understanding the effect of different prior heat treatments on the microstructure and mechanical properties of 0.33% carbon dual-phase (DP) steel. For this purpose, different dual-phase steels were produced by subjecting the as-received steel to `hardening' (DP-H), `hardening + tempering' (DP-HT), and `austempering' (DP-AT) treatments prior to the intercritical annealing treatment. The study reveals that the prior hardening treatment in DP-H steel results in significant refinement of ferrite grains and formation of fine elongated martensite plates having an aspect ratio = 6.1 ± 3. These fine elongated martensites are responsible for poor ductility in DP-H steel. Although DP steel without any prior treatment (DP-AR) and DP-AT steel exhibit high strength and hardness, their ductility is limited by the presence of very hard martensite islands which act as the failure initiation sites in these steels. On the other hand, prior `hardening + tempering' treatment in DP-HT steel results in the formation of nearly spherical-shaped martensite (aspect ratio = 1.24 ± 0.13) along with coarse martensite laths. In addition, the presence of fine carbides is also found along the lath boundaries. These fine spherical martensites and fine carbides provide higher strain hardening to DP-HT steel. Accordingly, DP-HT steel exhibits adequate ductility as well as strength. Therefore, prior `hardening + tempering' treatment was found to the best prior treatment in the present study.

  7. Forming patterns and mechanical properties of austenitic chromium-nickel steel due to strain aging

    NASA Astrophysics Data System (ADS)

    Kamyshanchenko, N. V.; Krasilnikov, V. V.; Nikulin, I. S.; Gal'tsev, A. V.; Belenko, V. A.; Gal'tseva, I. N.

    2016-02-01

    The work presents the results of studies of forming patterns and mechanical properties of martensite transformation, found in the chromium-nickel steels of 08X18H10T grade, subjected to pre-heat treatment followed by deformation aging. Internal energy state is determined by using acoustic emission. The observed patterns improve the mechanical parameters of steels quenched and plastically deformed at low temperature and then subjected to temper under load in the optimum temperature being associated with obtaining a more stable condition of the structure through the processes of relaxation of internal stresses, high dispersion and uniform distribution of carbides and intermetallic particles, increasing the density of dislocations as well as through other processes occurring during deformation aging martensite. Start your abstract here...

  8. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL

    SciTech Connect

    Morgan, M

    2008-04-14

    The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of {sup 3}He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- toughness values than unexposed samples and that fracture toughness decreased with increasing decay {sup 3}He content. Forged steels were more resistant to the embrittling effects of tritium and decay {sup 3}He than annealed steels, although their fracture-toughness properties depended on the degree of sensitization that occurred during processing. The fracture process was dominated by microvoid nucleation, growth and coalescence; however, the size and spacing of microvoids on the fracture surfaces were affected by hydrogen and tritium with the lowest-toughness samples having the smallest microvoids and finest spacing.

  9. Effect of Austempering Conditions on the Microstructure and Tensile Properties of Low Alloyed Sintered Steel

    NASA Astrophysics Data System (ADS)

    Campos, M.; Sicre-Artalejo, J.; Muñoz, J. J.; Torralba, J. M.

    2010-07-01

    Because of the combination of strength and toughness, much interest has been focused on austempered sintered low-alloyed steels. Implementation of this treatment for powder metal components has been limited by interaction between the open porosity of the material and the cooling fluid. This work discusses the influence of different austempering environments and parameters on the microstructure and, as a consequence, on the final properties. The sintered steels selected are based on two different prealloyed powders, Fe-1.5Cr-0.2Mo and Fe-1.5Mo, with the addition of 0.6 wt pct graphite. Green samples with medium density (7.3 g/cm3) were sintered at 1393 and 1523 K (1120 and 1250 °C) to ensure a decrease in open porosity. The austempering treatment process requires austenitizing at 1133 K (860 °C) for 2 hours followed by quenching in different baths at 563 K (290 °C). The final strength and ductility are dependent upon the relative amounts of ferrite, pearlite, and bainite phases present in the austempered steel. Discussion of the experimental results compares the as-sintered and the austempered observations as well as the relationship between mechanical properties and the phases present in the final microstructures.

  10. Permanent effect of a cryogenic spill on fracture properties of structural steels

    NASA Astrophysics Data System (ADS)

    Keseler, H.; Westermann, I.; Kandukuri, S. Y.; Nøkleby, J. O.; Holmedal, B.

    2015-12-01

    Fracture analysis of a standard construction steel platform deck, which had been exposed to a liquid nitrogen spill, showed that the brittle fracture started at a flaw in the weld as a consequence of low-temperature embrittlement and thermal stresses experienced by the material. In the present study, the permanent effect of a cryogenic spill on the fracture properties of carbon steels has been investigated. Charpy V-notch impact testing was carried out at 0 °C using specimens, from the platform deck material. The average impact energy appeared to be below requirements only for transverse specimens. No pre-existing damage was found when examining the fracture surfaces and cross sections in the scanning electron microscope. Specimens of the platform deck material and a DOMEX S355 MCD carbon steel were tensile tested immersed in liquid nitrogen. Both steels showed a considerable increase in yield- and fracture strength and a large increase in the Lüders strain compared to the room temperature behavior. A cryogenic spill was simulated by applying a constant tensile force to the specimens for 10 min, at -196 C. Subsequent tensile tests at room temperature showed no significant influence on the stress-strain curve of the specimens. A small amount of microcracks were found after holding a DOMEX S355 MCD specimen at a constant force below the yield point. In a platform deck material tensile tested to fracture in liquid nitrogen, cracks associated with elongated MnS inclusions were found through the whole test region. These cracks probably formed as a result of the inclusions having a higher thermal contraction rate than the steel, causing decohesion at the inclusion-matrix interface on cooling. Simultaneous deformation may have caused formation of cracks. Both the microcracks and sulphide related damage may give permanently reduced impact energy after a cryogenic exposure.

  11. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  12. Effect of Intercritical Annealing on Microstructural Evolution and Properties of Quenched & Partitioned (Q&P) Steels

    NASA Astrophysics Data System (ADS)

    Wu, Riming; Jin, Xuejun; Wang, Chenglin; Wang, Li

    2016-04-01

    Transformation of metastable austenite into martensite in novel quenched & partitioned (Q&P) steels improves sheet formability, allowing this class of high-strength steels to be used for automotive structural components. The current work studies the microstructural evolution by varying intercritical annealing time ( t a), as well as its influence on the martensite-austenite constituent and mechanical properties of Q&P steels. As the t a was prolonged, the morphology of retained austenite progressively transformed from block to a mixture of block and film, and finally changed to totally film. Based on electron back-scatter diffraction (EBSD) measurements and uniaxial tensile response, the holding time of 600 s at 760 °C was determined to produce the best results in terms of highest volume fraction of retained austenite ( f γ = 15.8%) and largest strain (26.8%) at the ultimate tensile strength (892 MPa). This difference in work-hardening behavior corresponds directly to the transformation rate of retained austenite with different morphology. The slower rate of transformation of filmy austenite allowed for work hardening to persist at high strains where the transformation effect had already been exhausted in the blocky one. There is great potential for properties improvement through adjustment of metastability of retained austenite.

  13. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Lee, E. H.; Hunn, J. D.; Mansur, L. K.

    2001-10-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels.

  14. Comparison of the mechanical strength properties of several high-chromium ferritic steels

    SciTech Connect

    Booker, M.K.; Sikka, V.K.; Booker, B.L.P.

    1981-01-01

    A modified 9 Cr-1 Mo ferritic steel has been selected as an alternative material for breeder reactors. Different 9 Cr-1 Mo steels are already being used commercially in UK and USA and a 9 Cr-2 Mo steel (EM12) is being used commercially in France. The 12% Cr steel alloy HT9 is also often recommended for high-temperature service. Creep-rupture data for all six seels were analyzed to yield rupture life as a function of stress, temperature, and lot-to-lot variations. Yield and tensile strength data for the three 9 Cr-1 Mo materials were also examined. All results were compared with Type 304 stainless steel, and the tensile and creep properties of the modified and British 9 Cr-1 Mo materials were used to calculate allowable stress values S/sub 0/ per Section VIII, Division 1 and S/sub m/ per code Case N-47 to section III of the ASME Boiler and Pressure Vessel Code. these values were compared with code listings for American commercial 9 Cr-1 Mo steel, 2 1/4 Cr-1 Mo steel, and Type 304 stainless steel. The conclusion is made that the modified 9 Cr-1 Mo steel displays tensile and creep strengths superior to those of the other ferritic materials examined and is at least comparable to Type 304 stainless steel from room temperature to about 625/sup 0/C. 31 figures.

  15. Surface electrical properties of stainless steel fibres: An AFM-based study

    NASA Astrophysics Data System (ADS)

    Yin, Jun; D'Haese, Cécile; Nysten, Bernard

    2015-03-01

    Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.

  16. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy.

  17. Relationship between Material Properties and Local Formability of DP980 Steels

    SciTech Connect

    Choi, Kyoo Sil; Soulami, Ayoub; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.; Xu, Le; Barlat, Frederic

    2012-04-24

    A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today’s AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers. Various experiments were then performed on the eight different DP980 steels such as chemical composition analysis, static tensile test, hole expansion test, channel forming test. Scanning electron microscope (SEM) pictures of the DP980 steels were also obtained, and image processing tools were then adopted to those SEM pictures in order to quantify their various microstructural features. The results show that all DP980 steels show large discrepancy in their performance and that the tensile properties and hole expansion properties of these steels do not correlate with their local formability. According to the results up to date, it is not possible to correlate the microstructural features alone to the macroscopically measured deformation behaviors. In addition to image analysis, other experiments (i.e., nano-indentation test) are also planned to quantify the individual phase properties of the various DP steels.

  18. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  19. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  20. Elastic property ratios of a triple-stranded stainless steel arch wire.

    PubMed

    Kusy, R P; Dilley, G J

    1984-09-01

    The general elastic property ratio equations for nth-stranded wires are derived and then specified for the case of a triple-stranded arch wire. Several parameters are defined, including the modulus of elasticity (E) and the helical spring (kappa) and bending plane (lambda) shape factors. Thereafter, the elastic property ratios of a wide range of compositional/configurational combinations are determined, using a representative triple-stranded 0.0175 inch (3 X 0.008 inch) stainless steel wire as the base line. These results show that the particular 3 X 0.008 inch wire studied possesses the stiffness of an 0.010 inch stainless steel wire but has at least 20% more strength and range. Furthermore, the stiffness of the 3 X 0.008 inch multistranded wire is similar to an 0.016 inch nickel-titanium wire but only 40% that of an 0.016 inch beta titanium wire. When these elastic property ratios are compared with the previous results reported by Thurow, Burstone, and Kusy, differences are noted which can be explained on the basis of the mechanical property values and/or the geometric modeling assumed.

  1. Measurement of the magnetic properties of P9 and T22 steel taken from service in power station

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Karimian, N.; Liu, J.; Yin, W.; Davis, C. L.; Peyton, A. J.

    2014-06-01

    With the UK's aging power generation network, life-extension of steel plant components is a critical issue. However, in order to evaluate the likelihood of component failure, techniques must be developed to properly assess the level of degradation in power station steels. Electromagnetic inspection has the potential to quantify the level of degradation through in-situ measurements at elevated temperatures. This paper reports the results of tests carried out on thermally treated P9 and T22 steel samples with different microstructural states using major and minor B-H loop measurements and magnetic Barkhausen noise measurements. The results show that by careful selection of minor loop parameters, specific to the material under inspection and the material change under consideration, correlations can established between EM properties and material properties such as Vickers hardness. These results will be used as a basis for the further development of a fully field deployable device.

  2. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel

    NASA Astrophysics Data System (ADS)

    Piotrowski, Leszek; Chmielewski, Marek; Augustyniak, Boleslaw

    2012-08-01

    Magnetic properties of the grain oriented (GO) electrical steels are strongly affected by the stresses, both external and internal. The change is important even for the deformation resulting in stress level much lower than their yield limits. In this paper we present the results of investigation of the influence of compression and tension on the magnetoacoustic emission (MAE) signal properties. The experiment was performed with the help of bending machine in which the samples (0.3 mm thick, M140-30 S GO electrical steel) glued to the non-magnetic (austenitic steel) 8 mm thick bars were bent. The samples cut out in two directions (parallel and perpendicular to the rolling direction) were investigated. The elongation was measured directly with the help of tensometric bridge. Various parameters of the MAE signal, such as e.g. signal intensity and MAE peaks separation, have been examined.

  3. Fracture properties of a neutron-irradiated stainless steel submerged arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The ability of stainless steel cladding to increase the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws depends greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged arc, single-wire, oscillating-electrode method. Three layers of cladding provided a thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. Specimens were taken from near the base plate-cladding interface and also from the upper layers. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to a fluence of 2 x 10/sup 23/ neutrons/m/sup 2/ (>1 MeV). 10 refs., 16 figs., 4 tabs.

  4. Effects of Annealing Treatment Prior to Cold Rolling on Delayed Fracture Properties in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, Seok Su; Song, Hyejin; Kim, Jung Gi; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2016-02-01

    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 °C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}<011> α-fibers and {111}<112> γ-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.

  5. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect

    Barnhouse, E.J.; Lippold, J.C.

    1998-12-01

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  6. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Béchade, J. L.; Tournié, I.; Tancray, A.; Bougault, A.; Bonnaillie, P.

    2010-10-01

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  7. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds

    SciTech Connect

    Shah Hosseini, H. Shamanian, M.; Kermanpur, A.

    2011-04-15

    The microstructure and mechanical properties of Inconel 617/310 austenitic stainless steel dissimilar welds were investigated in this work. Three types of filler materials, Inconel 617, Inconel 82 and 310 austenitic stainless steels were used to obtain dissimilar joint using the gas tungsten arc welding process. Microstructural observations showed that there was no evidence of any possible cracking in the weldments achieved by the nickel-base filler materials. The welds produced by 617 and 310 filler materials displayed the highest and the lowest ultimate tensile strength and total elongation, respectively. The impact test results indicated that all specimens exhibited ductile fracture. Among the fillers, Inconel 617 exhibited superlative fracture toughness (205 J). The mechanical properties of the Inconel 617 filler material were much better than those of other fillers. - Research Highlights: {yields} A fine dendritic structure was seen for the Inconel 617 weld metal. {yields} A number of cracks were initiated when the 310 SS filler metal was used. {yields} All welded samples showed ductile fracture. {yields} The Inconel 617 filler material presents the optimum mechanical properties.

  8. Effect of Impurity Tin on the Creep Properties of a P91 Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Song, S.-H.; Xu, Y.-W.; Yang, H.-F.

    2014-09-01

    The creep properties of P91 steel specimens undoped and doped with 0.058 wt pct tin, which was normalized from 1328 K (1055 °C) and tempered at 1033 K (760 °C), were examined under different engineering stresses (150 to 210 MPa) and temperatures [873 K to 923 K (600 °C to 650 °C)]. The creep behavior followed the temperature-compensated power law and Monkman-Grant equations. In the temperature-compensated power law equation, the apparent activation energy and stress exponent for creep were approximately 541 kJ/mol and 12 for the undoped steel and 527 kJ/mol and 11 for the Sn-doped one, respectively. In the Monkman-Grant relation, the values of constants m and C were around 1.062 and 0.0672 for the undoped steel, and 1.012 and 0.0650 for the Sn-doped one, respectively. The 100 MPa stress creep lifetime at 873 K (600 °C) was estimated as 100641 hours for the undoped steel and 35290 hours for the Sn-doped steel, respectively. These indicated that Sn substantially deteriorated the creep properties of the steel. It was found that grain or subgrain boundary segregation of Sn could promote the nucleation of cavities or microcracks, thereby leading to the deterioration of the steel creep properties.

  9. Corrosion sensitization behavior and mechanical properties of liquid-nitrogen-deformed austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Maldonado, Julio Gerardo

    Plastic deformation of 304 stainless steel at liquid nitrogen temperature ({-}196sp°C) produces an almost complete transformation to strain-induced alphasp'/-martensite which provides the necessary conditions for a pseudo-recrystallization of the microstructure. This "so-called" pseudo-recrystallization results directly from the martensitic reversion (i.e. martensite to austenite reverse transformation) upon the application of heat treatment within the sensitization temperature range. The very fine duplex (alpha/gamma) microstructure which results (after heat treatment-0.1h-670sp°C) is also accompanied by a very extensive and homogeneous precipitation of chromium-rich carbides. The concomitant pseudo-recrystallization and precipitation processes not only have a profound positive effect on the sensitization behavior, but also affect the mechanical properties of the material. This suggests that 304 stainless steel could be thermo-mechanically treated, to in essence, heal itself and simultaneously produce an extremely fine (≈0.1mum) duplex grain structure with intermixed carbides to form a very high strength product. This might have important practical implications since 304 stainless steel is the material of choice in many engineering applications. Electrochemical testing, transmission electron microscopy, scanning electron microscopy, optical microscopy, neutron diffraction, X-ray diffraction, and mechanical testing were some of the techniques employed in this work.

  10. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging

    SciTech Connect

    Yan Haitao Bi Hongyun; Li Xin; Xu Zhou

    2009-03-15

    The influence of isothermal aging on precipitation behavior and mechanical properties of Nb-modified ferritic stainless steel was investigated using Thermo-calc software, scanning electron microscopy and transmission electron microscopy. It was observed that TiN, NbC and Fe{sub 2}Nb formed in the investigated steel and the experimental results agreed well with the results calculated by Thermo-calc software. During isothermal aging at 800 deg. C, the coarsening rate of Fe{sub 2}Nb is greater than that of NbC, and the calculated average sizes of NbC and Fe{sub 2}Nb of the aged specimen agreed with the experimental results. In addition, the tensile strength and micro-hardness of the ferritic stainless steel increased with increased aging time from 24 h to 48 h. But aging at 800 deg. C for 96 h caused the coarsening of the precipitation, which led to a decrease of tensile strength and micro-hardness.

  11. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect

    Lam, P; Robert Sindelar, R; Thad Adams, T

    2007-04-18

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  12. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect

    Lam, P; Andrew Duncan, A; Robert Sindelar, R; Thad Adams, T

    2009-04-27

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  13. Changes in the Material Properties of Steel 1.4762 Depending on the Temperature

    NASA Astrophysics Data System (ADS)

    Brnic, Josip; Turkalj, Goran; Krscanski, Sanjin; Niu, Jitai; Li, Qiang

    2016-09-01

    This paper presents the experimental results and analysis of the behaviour of steel 1.4762 at different temperatures. Tensile mechanical properties and creep behaviour were determined using uniaxial tests. Charpy impact test was used to determine impact energies at different temperatures. The mentioned mechanical properties are displayed as engineering stress-strain diagrams while material resistance to creep is presented in the form of creep curves. Based on Charpy impact energy an assessment of fracture toughness is given. Experimental results show that the values of mechanical properties are continuously decreased by increasing the temperature. After the temperature of 623 K (tensile strength: 468 MPa; yield strength: 298 MPa) the decrease of the ultimate strength and yield strength is especially emphasized and the difference between them becomes smaller. The creep resistance is considered quite small, except at low stress levels.

  14. Effect of layer thickness on the properties of nickel thermal sprayed steel

    NASA Astrophysics Data System (ADS)

    Nurisna, Zuhri; Triyono, Muhayat, Nurul; Wijayanta, Agung Tri

    2016-03-01

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni-5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  15. Recycling zinc by dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1995-06-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the increased cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The designed ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana has designed in a continuous process mode 900 tonnes of loose stamping plant scrap; this scrap typically has residual zinc below 0.1% and sodium dragout below 0.001%. This paper reviews pilot plant performance and the economics of recycling galvanized steel and recovering zinc using a caustic process.

  16. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  17. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  18. Effects of Ti, V, and rare earth on the mechanical properties of austempered high silicon cast steel

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Yanxiang

    2006-11-01

    The microstructure and mechanical properties of austempered high silicon cast steel pro and after treating with a modifier containing titanium, vanadium, and rare earth metals (so-called Ti-V-RE modifier) and austempered at different temperatures are investigated. The results show that the dendritic austempered structure and the blocky retained austenite are reduced after treating with the Ti-V-RE modifier. The modification can obviously improve the mechanical properties of austempered high silicon cast steel. The austempering temperature at which the optimum impact toughness is obtained shifts from about 320 °C for the steel unmodified to about 360 °C for the steel modified. High impact toughness is obtained in austempered high silicon cast steel high silicon cast steel when the retained austenite amount is about 15 to 25 pct for the modified steel and 20 to 35 pct for the unmodified steel.

  19. Service properties of Cr-Mo-V steels in different structural conditions

    SciTech Connect

    Mints, I.I.; Shul'gina, N.G.; Smirnova, A.P.

    1986-05-01

    The authors study the influence on heat-treatment cycles on the service properties of 12Kh1MF steel. Variations in heat analysis within specification limits do not have a marked influence on the stress-rupture strength of 15Kh1M1F steel in the investigated temperature-time interval but do significantly influence its long-term plasticity. The higher the stress-rupture strength of the material, the stronger this influence.

  20. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  1. Behaviour of Steel Arch Stabilized by a Textile Membrane

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Machacek, J.

    2015-11-01

    Behaviour of the slender steel arch supporting textile membranes in a membrane structure with respect to in-plane and out-of plane stability is investigated in the paper. In the last decades the textile membranes have been widely used to cover both common and exclusive structures due to progress in new membrane materials with eminent properties. Nevertheless, complex analysis of such membranes in interaction with steel structure (carbon/stainless steel perimeter or supporting elements) is rather demanding, even with specialized software. Laboratory model of a large membrane structure simulating a shelter roof of a concert stage was tested and the resulting stress/deflection values are presented. The model of a reasonable size was provided with prestressed membrane of PVC coated polyester fabric Ferrari® Précontraint 702S and tested under various loadings. The supporting steel structure consisted of two steel arch tubes from S355 grade steel and perimeter prestressed cables. The stability behaviour of the inner tube was the primary interest of the investigation. The SOFiSTiK software was used to analyse the structural behaviour in 3D. Numerical non-linear analysis of deflections and internal forces of the structure under symmetrical and asymmetrical loadings covers various membrane prestressing and specific boundary conditions. The numerical results are validated using test results. Finally, the preliminary recommendations for appropriate numerical modelling and stability design of the supporting structure are presented.

  2. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  3. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  4. Effect of Ti addition on the microstructure and mechanical properties of a cast Fe-Ni-Mo-Mn maraging steel

    NASA Astrophysics Data System (ADS)

    Nejad, S. Hossein; Nili Ahmadabadi, M.

    2003-10-01

    To study the effect of Ti on the age hardening behavior of Fe-Ni-Mn maraging steels, a Fe-Ni-Mo-Mn steel was alloyed with Ti then mechanical properties and aging behavior of two cast steels were investigated. In this regard, two heats of nominal compositions of Fe-10Ni-6Mo-3Mn and Fe-lONi-6Mo-3Mn-0. 7Ti were induction melted in air and vacuum respectively and cast in iron mold. After homogenizing at 1473K for 21.6ks and water quenching, solution annealing was performed at 1223K for 3.6ks followed by air cooling. Age hardening behavior at 773Kin the range of 0.36-172. 8 ks was determined. Tensile properties and Charpy impact toughness were measured in the solution annealed and peak-aged conditions. Fractographic features were studied by scanning electron microscope equipped with EDX microanalyses. Tensile properties of the alloys in the peakaged condition were in the range of grade 200 standard maraging steel. It has been found that Ti addition resulted in increasing of hardness and strength in aged condition and decreasing of Charpy impact toughness in both solution annealed and aged conditions. Ti addition also changes type and morphology of inclusions and fracture mechanism from semi-ductile intergranular mode to semi-ductile transgranular one.

  5. Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2014-10-01

    The present paper is the final part of a two-part paper where the influence of coiling temperature on the final microstructure and mechanical properties of Nb-Mo microalloyed steels is described. More specifically, this second paper deals with the different mechanisms affecting impact toughness. A detailed microstructural characterization and the relations linking the microstructural parameters and the tensile properties have already been discussed in Part I. Using these results as a starting point, the present work takes a step forward and develops a methodology for consistently incorporating the effect of the microstructural heterogeneity into the existing relations that link the Charpy impact toughness to the microstructure. In conventional heat treatments or rolling schedules, the microstructure can be properly described by its mean attributes, and the ductile-brittle transition temperatures measured by Charpy tests can be properly predicted. However, when different microalloying elements are added and multiphase microstructures are formed, the influences of microstructural heterogeneity and secondary hard phases have to be included in a modified equation in order to accurately predict the DB transition temperature in Nb and Nb-Mo microalloyed steels.

  6. HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS

    SciTech Connect

    Morgan, M; Monica Hall, M; Ps Lam, P; Dean Thompson, D

    2008-03-27

    The effect of hydrogen on the burst properties Type 304L stainless steel vessels was investigated. The purpose of the study was to compare the burst properties of hydrogen-exposed stainless steel vessels burst with different media: water, helium gas, or deuterium gas. A second purpose of the tests was to provide data for the development of a predictive finite-element model. The burst tests were conducted on hydrogen-exposed and unexposed axially-flawed cylindrical vessels. The results indicate that samples burst pneumatically had lower volume ductility than those tested hydraulically. Deuterium gas tests had slightly lower ductility than helium gas tests. Burst pressures were not affected by burst media. Hydrogen-charged samples had lower volume ductility and slightly higher burst pressures than uncharged samples. Samples burst with deuterium gas fractured by quasi-cleavage near the inside wall. The results of the tests were used to improve a previously developed predictive finite-element model. The results show that predicting burst behavior requires as a material input the effect of hydrogen on the plastic strain to fracture from tensile tests. The burst test model shows that a reduction in the plastic strain to fracture of the material will result in lower volume ductility without a reduction in burst pressure which is in agreement with the burst results.

  7. Microstructure, Precipitation, and Mechanical Properties of V-N-Alloyed Steel After Different Cooling Processes

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Fu-Ming; Yang, Zhan-Bing; Li, Chang-Rong

    2016-09-01

    Three cooling processes (direct air cooling, water cooling to 1023 K and 873 K (750 °C and 600 °C) followed by air cooling) after hot rolling are designed to develop V-N-alloyed 600 MPa grade high-strength steel for architectural construction. Microstructural characteristics, precipitation behavior, and mechanical properties were investigated. Experimental results indicate that all microstructures are composed of polygonal ferrite and pearlite. Compared to the microstructure obtained from traditional direct air cooling, the grain size of ferrite is refined from 6.5 to 4.6 μm and the interlamellar spacing of pearlite decreases from 136 to 45 nm, respectively, by the application of accelerated cooling and lower finish cooling temperature. The number fraction of high misorientation angle boundaries increases from 44 to 51 pct. Moreover, the sheet spacing of interphase precipitates decreases from (23 to 26 nm) to (14 to 17 nm) and the size of V(C,N) particles reduces from (5 to 8 nm) to (2 to 5 nm). Furthermore, the optimal mechanical properties are obtained in the steel water cooled to 873 K (600 °C), of which the yield strength, tensile strength, total elongation, uniform elongation, and impact energy at room temperature are 753 MPa, 922 MPa, 22 pct, 11 pct, and 36 J, respectively. Besides, the high yield strength is primarily attributed to the refined grains and precipitation hardening from interphase and random precipitation of nano-scale V(C,N) particles.

  8. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  9. The influence of scanning speed and number of scans on the properties of laser formed steel

    NASA Astrophysics Data System (ADS)

    Sanusi, Kazeem O.; Akinlabi, Stephen; Akinlabi, Esther T.

    2016-03-01

    Laser Beam Forming (LBF) process is an emerging and new forming method that generally requires brute force to forge the steel into the desired shape instead of using conventional methods. This study investigates the changes that occur in low carbon steel through the laser beam forming process. The parameters under investigation include variable scanning speed and number of scans at fixed laser intensity. The effect of these laser parameters on the chemical composition and properties of low carbon steel is assessed through characterisation of both the as received and LBF formed specimens. Characterizations of the laser formed steels were studied using microstructural analysis and micro hardness profiling. The results show that there is a significant increase in the mechanical properties of the LBF formed materials. Scanning power and the number of scans have a noticeable effect on the curvature achieved in the formed samples. The results obtained will contribute towards the further optimization of laser forming methods for steel for the optimization of the properties of steel using Laser Beam Forming process.

  10. Thermophysical Properties of a Chromium Nickel Molybdenum Steel in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Reschab, H.; Tanzer, R.; Schützenhöfer, W.; Pottlacher, Gernot

    2008-02-01

    Numerical simulation of vacuum arc re-melting, pressurized or protective electro-slag re-melting, and ingot casting have become quite important in the metal industry. However, a major drawback of these simulation techniques is the lack of accurate thermophysical properties for temperatures above 1,500 K. Heat capacity, heat of fusion, density, and thermal conductivity are important input parameters for the heat transfer equation. Since, direct measurements of thermal conductivity of alloys in the liquid state are almost impossible, its estimation from electrical conductivity using the Wiedemann Franz law is very useful. The afore-mentioned thermophysical properties of several steels are investigated within the context of an ongoing project. Here, we present a full set of thermophysical data for the chromium nickel molybdenum steel meeting the standard DIN 1.4435 (X2CrNiMo18-14-3); these values will be used by our partner to simulate various re-melting and solidification processes. Wire-shaped samples of the steel are resistively volume-heated, as part of a fast capacitor discharge circuit. Time-resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe. The voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers, the temperature of the sample with a pyrometer, and the volumetric expansion of the wire with a fast acting CCD camera. These measurements enable the heat of fusion, the heat capacity, and the electrical resistivity to be determined as a function of temperature in the solid and liquid phases. The thermal conductivity and thermal diffusivity are estimated via the Wiedemann Franz law.

  11. Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds

    SciTech Connect

    Babu, S.S.; Riemer, B.W.; Santella, M.L.; Feng, Z.

    1998-11-01

    An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

  12. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  13. The experiments for mechanical properties of 20Cr2Ni4 steel and the coefficient definition of constitutive equation

    NASA Astrophysics Data System (ADS)

    Pang, L.; Liu, G. C.; Lu, J. P.

    2015-12-01

    The 20Cr2Ni4 alloy steel has the properties of high strength, toughness and hardness. It is used in large cross-section carburized parts, such as gears, shafts and components which are required high strength and good toughness. In order to study the static mechanical properties and dynamic mechanical properties of 20Cr2Ni4 steel, the static compression experiment and the Hopkinson Pressure Bar test are conducted. The stress-strain relationship within the scope of 25∼400°C is obtained by experiments, and softening effect of strain rate and strengthening effect of temperature is comprehensively analyzed. The paper has a more comprehensive understanding on mechanical response of 20Cr2Ni4 steel within the scope of 25∼400°C. Based on the experiment data the parameters in Johnson-Cook constitutive equation of 20Cr2Ni4 have been gotten. The research results of this paper lay a foundation for the further applications of 20Cr2Ni4 steel.

  14. Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements

    NASA Astrophysics Data System (ADS)

    Gao, R.; Xia, L. L.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2014-12-01

    The effects of Al and Zr addition on improvement of oxidation resistance in lead-bismuth eutectic (LBE) and in air as well as the tensile properties were investigated for the oxide dispersion strengthened (ODS) steels. The 16Cr-4Al-0.8Zr-ODS steel samples were fabricated by a sol-gel method combining with spark plasma sintering technique. The tests in LBE at 600 °C for 1000 h indicate the good oxidation resistance comparing with the specimens without Zr/Al elements. The samples also exhibit superior oxidation resistance in air due to formation of dense and continuous aluminum oxide film. Minor Zr addition prevents the Al element induced coarsening of the oxide particles in ODS steels and significantly improves the ultimate tensile stress and total elongation of the samples.

  15. Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Mohammadzadeh, Mina

    2016-10-01

    A large amount of manganese (>10 wt pct) in nickel-free high nitrogen austenitic stainless steels (Ni-free HNASSs) can induce toxicity. In order to develop Ni-free HNASSs with low or no manganese, it is necessary to investigate their mechanical properties for biomedical applications. This work aims to study the Charpy V-notch (CVN) impact toughness properties of a Ni- and Mn-free Fe-22.7Cr-2.4Mo-1.2N HNASS plate in the temperature range of 103 K to 423 K (-170 °C to 150 °C). The results show that unlike conventional AISI 316L austenitic stainless steel, the Ni- and Mn-free HNASS exhibits a sharp ductile-to-brittle transition (DBT). The intergranular brittle fracture associated with some plasticity and deformation bands is observed on the fracture surface at 298 K (25 °C). Electron backscattered diffraction (EBSD) analysis of the impact-tested sample in the longitudinal direction indicates that deformation bands are parallel to {111} slip planes. By decreasing the temperature to 273 K, 263 K, and 103 K (0 °C, -10 °C, and -70 °C), entirely intergranular brittle fracture occurs on the fracture surface. The fracture mode changes from brittle fracture to ductile as the temperature increases to 423 K (150 °C). The decrease in impact toughness is discussed on the basis of temperature sensitivity of plastic flow and planarity of deformation mechanism.

  16. Effect of Partial Replacement of Si with Al on the Microstructures and Mechanical Properties of 1000 MPa TRIP Steels

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Hua; Zhang, Jun; Di, Huafang

    2014-11-01

    Two newly synthesized C-Mn-Si-Mo-Nb transformation-induced plasticity (TRIP) steels with and without Al addition were designed in order to achieve significant improvements in the mechanical properties. The effect of substitution of Si by Al on tensile properties and the microstructure of cold-rolled C-Mn-Si TRIP steel was investigated under different heat treatments. It was shown that a complex ultrafine microstructure composed of different phases was formed and two types of morphology for ferrite were detected (equiaxial and polygonal). The distribution of alloying elements was observed by using electron probe microanalysis. It was clear that C was concentrated in the retained austenite (RA) and small M/A (austenite/martensite) islands. The Al addition facilitated the formation of polygonal ferrite and increased the stability of the RA. The strain-hardening behavior was studied in detail. All the investigated specimens showed a very high strain-hardening exponent (instantaneous n) but their strain dependence was different. For the C-Mn-Si-Mo-Nb TRIP steel, the maximum n value was achieved when the strain was only about 0.04, while the n value of the Al substituted TRIP steel increased gradually until strains in the range of 0.07-0.10 were reached and the maximum value was achieved. As a result, the elongations of the steel with Al addition increased considerably without obvious deterioration of strength. It was the first time to find microtwinned martensite located between ferrite and bainitic ferrite after tensile deformation in the low alloy TRIP steel with Al.

  17. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    NASA Astrophysics Data System (ADS)

    Coteaţǎ, Margareta; Schulze, Hans-Peter; Pop, Nicolae; Beşliu, Irina; Slǎtineanu, Laurenţiu

    2011-05-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  18. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-05-04

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  19. 27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STAINLESS STEEL FERMENTING CASKS MADE BY ZERO MANG OF WASHINGTON, MISSOURI. VIEW LOOKING NORTH TOWARD VAULT OF THE TWELVE APOSTLES - Stone Hill Winery, 401 West Twelfth Street, Hermann, Gasconade County, MO

  20. 10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL, SOUTHEAST SPAN THROUGH CANAL, VIEW BLOCKED BY STEEL, CLAD COUNTER WEIGHT, WATER SPAN RAISED OUT OF VIEW - Cape Cod Canal Lift Bridge, Spanning Cape Cod Canal, Buzzards Bay, Barnstable County, MA

  1. Effect of metallurgical factors on the bulk magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Pampa; Chromik, Richard R.; Knight, Andrew M.; Wakade, Shekhar G.

    2014-04-01

    Non-oriented electrical steel (NOES) is one of the most common material used in electrical motors. Core loss and permeability are the most important properties that the motor manufacturers look for. Both these properties are structure sensitive and depend on several metallurgical factors; such as chemistry, grain size, crystallographic texture, cleanliness and stress states in non-oriented electrical steels. It has been observed in this course of the study that the grain size and Si content of NOES are the primary controlling factors to core loss, especially at higher frequencies. On the contrary, crystallographic texture plays an important role at lower frequencies. At higher frequency, core loss increases with increasing grain size and decreasing Si content of the steels. Small difference in grain size (~50 μm) at lower frequency range has little influence on the magnetic properties but has significant adverse effect as frequency reaches high enough.

  2. Evolution of the mechanical properties and microstructure of ferritic-martensitic steels irradiated in the BOR-60 reactor

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.; Ostrovsky, Z. E.; Goncharenko, Yu. D.

    2002-12-01

    The effect of neutron irradiation on mechanical properties of low-activation ferritic-martensitic (FM) steels 0.1C-9Cr-1W, V, Ta, B and 0.1C-12Cr-2W, V, Ti, B is studied under tension at temperatures of 330-540 °C and doses of 50 dpa. Steel 0.1C-13Cr-Mo, V, Nb, B was chosen for comparison. At irradiation temperatures of 330-340 °C, the radiation hardening of steel with 9%Cr achieves saturation at a dose of 10 dpa. In this case as compared to steels with 12%Cr, the fracture surface is characterized as ductile without cleavage traces. At irradiation temperatures higher than 420 °C, there is no difference in the behavior of the materials under investigation. The data on radiation creep obtained by direct measurement and from the profilometry data satisfy a model ɛ¯/ σ¯=B 0+D Ṡ, when B0 and D have the values typical for steels of FM type.

  3. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  4. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    A procedure and correlations are presented for predicting Charpy- impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  5. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Ding, Hui-Li; Zhang, Tao; Gao, Rui; Wang, Xian-Ping; Fang, Qian-Feng; Liu, Chang-Song; Suo, Jin-Ping

    2015-09-01

    Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90°C to 20°C. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60°C. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field ( H C) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of ln H C versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.

  6. Investigation of Mechanical Properties of Steel Fibre- Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A.; Tamme, V.; Laurson, M.

    2015-11-01

    Steel fibre-reinforced concrete (SFRC) is widely used in the structural elements of buildings: industrial floors, slabs, walls, foundation, etc. When a load is applied to a fibre- reinforced composite consisting of a low-modulus matrix reinforced with high-strength, high- modulus fibres, the plastic flow of the matrix under stress transfers the load to the fibre; this results in high-strength, high-modulus material which determines the stiffness and stress of the composite. In this study the equivalent flexural strength, equivalent flexural ratio Re,3 and the compressing strength of SFRC are investigated. Notched test specimens with five different dosages of steel fibres (20, 25, 30, 35, 40 kg/m3) were prepared using industrial concrete. Determination of flexural tension strength was carried out according to the EU norm EVS-EN 14651:2005+A1:2007. The equivalent flexural strength and subsequent equivalent flexural ratio Re,3 of SFRC with a dosage of 20, 25, 30, 35 kg/m3 similar to their average values and with a dosage of 40 kg/m3 were 31% higher than their average values. The compressive strength of the steel fibre-reinforced concrete was slightly higher compared to plain concrete, except specimens with the dosage of 40 kg/m3 where the increase was 30%.

  7. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  8. Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment

    NASA Astrophysics Data System (ADS)

    Tump, A.; Brandt, R.

    2016-03-01

    A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.

  9. Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming

    2016-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.

  10. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  11. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  12. Effects of boron and phosphorus on creep properties of a ferritic/martensitic steel for fast reactor cladding applications

    SciTech Connect

    Not Available

    1994-10-01

    The thermal efficiencies of both conventional and supercritical fossil-fueled power plants can be improved by increasing the operating temperatures and pressures. Increased thermal efficiency would also result in significant fuel cost savings, as well as reduced environmental emissions per megawatt generated. Creep properties of materials currently used as tubes in the hottest areas of the boiler, the superheater and reheater sections, limit the operating temperature. As such, steels with improved creep strength compared to these conventional alloys are needed to increase the operational efficiencies of thermal-electric generating stations. A new class of creep-resistant, 10%Cr martensitic steel has been developed for use as high temperature components, especially in the electric utility, petrochemical & chemical industries. The steel differs from other 9-12%Cr steels in two important ways: It is strengthened by a uniform dispersion of very fine, coarsening-resistant TiC particles rather than chromium-rich, M{sub 23}C{sub 6} precipitates; and the TiC particles are precipitated in austenite prior to the martensitic transformation, not during tempering. By carefully controlling the thermo-mechanical treatment, three TiC sizes were incorporated into the matrix: 4, 12 and 25 nm; grain size and precipitate volume fraction (0.005) were kept constant. Creep tests on these three specimen types were done at 550{degrees}C, 600{degrees}C and 650{degrees}C. Results indicate that reducing the average particle size from 25 to 4 nm (thereby also reducing the average inter-particle spacing) decreases the steady-state creep rate by more than four orders of magnitude. The prototype steel`s composition must now be optimized, and in doing so the effects of boron and phosphorus are investigated.

  13. Characterization of Micro/Nano Mechanical and Tribological Properties of Polymeric Coatings Deposited on Steel

    NASA Astrophysics Data System (ADS)

    Neill, Dustin

    This study aims to characterize the mechanical and tribological properties of three different polymeric coatings---polyurethane, 2K, and melamine---deposited on steel by analyzing the hardness, elastic modulus, and scratch resistance of each coating. This was accomplished by making indentation and scratch tests on each sample with a nano-indenter and analyzing the results with a Scanning Probe Microscope (SPM). Results of indentation tests show that melamine, with a hardness of 0.164 GPa and a modulus of 3.367 GPa, was both the hardest and stiffest of the three coatings, while the 2K coating, with a hardness of .104 GPa and a modulus of 2.721 GPa, was both the softest and most flexible. Scratch test results showed that the highest average critical load, at which the adhesion to the substrate steel failed, was 100.03 mN for the 2K coating, thus indicating that the 2K coating had the greater adhesion strength.

  14. Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles

    SciTech Connect

    Mahmoudi, A.; Ghavidel, M.R. Zamanzad; Nedjad, S. Hossein; Heidarzadeh, A.; Ahmadabadi, M. Nili

    2011-10-15

    Cold rolling and annealing of homogenized Fe-Ni-Mn-Mo-Ti-Cr maraging steels resulted in the formation of submicrocrystalline Fe{sub 2}(Mo,Ti) Laves phase particles. Optical and scanning electron microscopy, X-ray diffraction, tensile and hardness tests were used to study the microstructure, aging behavior and mechanical properties of the annealed steels. The annealed microstructures showed age hardenability during subsequent isothermal aging at 753 K. Ultrahigh fracture stress but poor tensile ductility was obtained after substantial age hardening in the specimens with 2% and 4% chromium. Increasing chromium addition up to 6% toughened the aged microstructure at the expense of the fracture stress by increasing the volume fraction of retained austenite. The Laves phase particles acted as crack nucleation sites during tensile deformation. - Highlights: {yields} Laves phases dispersed in a BCC iron matrix by annealing of cold rolled samples. {yields} The samples showed age hardenability during subsequent isothermal aging at 753 K. {yields} Ultrahigh fracture stress but poor ductility was obtained after age hardening. {yields} Increasing chromium addition toughened the aged microstructure. {yields} Laves phase particles acting as crack nucleation sites during tensile deformation.

  15. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.

    PubMed

    Wang, Nan; Xiong, Dangsheng; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-03-25

    A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications. PMID:25749123

  16. Phosphorus removal by electric arc furnace steel slag and serpentinite.

    PubMed

    Drizo, Aleksandra; Forget, Christiane; Chapuis, Robert P; Comeau, Yves

    2006-05-01

    Electric arc furnace (EAF) steel slag and serpentinite were tested in columns either alone or mixed with limestone to determine their capacity to remove phosphorus (P) from a solution containing initially 20mg P/L (for 114 days) than 400mg P/L (for 21 days). EAF steel slag was nearly 100% efficient due to specific P adsorption onto metal hydroxides and precipitation of hydroxyapatite. Serpentinite also showed a good performance that decreased with time, adsorption appearing to be the dominant mechanism for P removal. Mixing limestone with these two materials did not improve their performance and in the case of serpentinite, it actually even decreased it. In 114 days of experimentation, serpentinite alone and the mixture of serpentinite and limestone removed 1.0mg P/g while in 180 days of experimentation, EAF steel slag and the mixture of slag and limestone removed an average of 2.2mg P/g, without attaining their maximum P removal potential. The void hydraulic retention time (HRTv) was a key factor for growing hydroxyapatite crystals and had a significant effect on P removal efficiency by EAF steel slag. A temporary increase in HRTv caused by clogging resulted in an increase in EAF steel slag efficiency (from 80% to almost 100%) towards the end of investigation. Results from this study indicate that the use of EAF steel slag in constructed wetlands or filter beds is a promising solution for P removal via adsorption and precipitation mechanisms.

  17. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Jiang, Li; Ma, Yong; Fan, Ailan; Tang, Bin

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 μm. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 μm obtained at the gas pressure of 45 Pa is expected

  18. Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels

    NASA Astrophysics Data System (ADS)

    Auger, M. A.; de Castro, V.; Leguey, T.; Tarcísio-Costa, J.; Monge, M. A.; Muñoz, A.; Pareja, R.

    2014-12-01

    An oxide dispersion strengthened (ODS) alloy with nominal composition Fe-14Cr-2W-0.3Ti-0.24Y (wt.%) was produced by mechanical alloying using elemental powders, and subsequent hot isostatic pressing. The microstructure of the material and characteristics of the oxide particle dispersion were investigated by electron microscopy. The effect of heat treatments on the microhardness and tensile properties at room temperature was also studied. The results show that a fine dispersion of Y-O-rich nanoparticles is achieved, together with larger (Cr, Ti)-rich precipitates. The absence of Ti is apparent in the majority of these nanoparticles, in contrast with reported results for ODS Ti-modified steels processed with Y2O3 addition.

  19. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy. PMID:22160745

  20. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Farabi, N.; Chen, D. L.; Zhou, Y.

    2012-02-01

    The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

  1. Degradation of mechanical properties of stainless steel cladding due to neutron irradiation and thermal aging

    SciTech Connect

    Haggag, F.M.

    1994-09-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288{degrees}C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect following neutron irradiation at 288{degrees}C to a fluence of 5 X 10{sup 19} neutrons/cm{sup 2} (>1 MeV) was a 22% reduction in the USE and a 29{degrees}C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125{degrees}C) and no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J{sub {kappa}}) much more than did thermal aging alone. However, irradiation slightly decreased the tearing modulus but no reduction was caused by thermal aging alone. The effects of long-term thermal exposure times (20,000 and 50,000 h) will be investigated when the specimens become available. Also, long-term thermal exposure of the three-wire cladding as well as type 308 stainless steel weld materials at 343{degrees}C is in progress.

  2. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao

    2015-11-01

    The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.

  3. Formation of highly corrosion resistant stainless steel surface alloys for marine environments by laser surface alloying

    SciTech Connect

    Sridhar, K.; Deshmukh, M.B.; Khanna, A.S.; Wissenbach, K.

    1998-12-31

    Austenitic stainless steels (SS) such as UNS S30403 are being used for numerous industrial applications due to their goad mechanical properties and weldability. However in aggressive marine environments such as seawater, they suffer from localized corrosion. Even though newly developed highly alloyed SS`s possess very high pitting resistance, they are susceptible to the formation of secondary phases. In the present study, a laser surface alloying technique was employed for the formation of highly alloyed austenitic stainless steel surfaces on conventional 304 SS substrate. Microstructural characterization by optical and SEM revealed finer cells of austenitic phase in the laser alloyed zones with molybdenum contents in the range of 3 to 15 wt%. The pitting corrosion resistance of the surface alloys were ascertained by immersion and potentiodynamic polarization tests and the repassivation behavior by cyclic polarization tests. Also the influence of microstructural features on pitting behavior of highly alloyed and laser surface alloyed steels is studied.

  4. Electrochemical codeposition of sol-gel films on stainless steel: controlling the chemical and physical coating properties of biomedical implants.

    PubMed

    Okner, Regina; Favaro, Gregory; Radko, Anna; Domb, Abraham Jacob; Mandler, Daniel

    2010-12-14

    The electrochemically assisted codeposition of sol-gel thin films on stainless steel is described. Specifically, electrodeposition of films based on aminopropyltriethoxysilane (APTS), and its codeposition with propyltrimethoxysilane (PrTMOS) and phenyltrimethoxysilane (PhTMOS) has been accomplished by applying negative potentials. The latter increases the concentration of hydroxyl ions on the stainless steel surface and thus catalyzes the condensation and deposition of the sol-gel films. The films were characterized by profilometry, electrochemical impedance spectroscopy (EIS), alternating current voltammetry (ACV), goniometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM analysis of codeposited APTS:PrTMOS films disclosed the structural changes induced by altering the deposition solution composition and the applied potential. Codeposited APTS:PhTMOS did not show any structural differences from their electrodeposited homopolymers, while Nano Scratch Test clearly revealed the changes in the elastic and adhesion properties, suggesting the formation of an APTS:PhTMOS composite. EIS of the films showed good resistance towards penetration of hydrophilic species, such as hexacyanoferrate. ACV measurements of the homo and codeposits showed the decrease of the interfacial capacity as a result of the electrochemical deposition. In essence, controllable sol-gel films with tunable chemical and physical properties based on controlling the combination of the precursors, pH and electrochemical properties can be electrodeposited on conducting surfaces. The application of this approach has been demonstrated by coating a stainless steel coronary stent.

  5. Investigation on Mechanical Properties of 9%Cr/CrMoV Dissimilar Steels Welded Joint

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Lu, Fenggui; Yang, Renjie; Wang, Peng; Xu, Xiaojin; Huo, Xin

    2015-04-01

    Advanced 9%Cr steel with good heat resistance and CrMoV with good toughness were chosen as candidate materials to fabricate combined rotor for steam turbine operating at over 620 °C. But the great difference in base metals properties presents a challenge in achieving sound defect-free joint with optimal properties in dissimilar welded rotor. In this paper, appropriate selection of filler metal, welding parameters, and post-weld heat treatment was combined to successfully weld 1100-mm-diameter 9%Cr/CrMoV dissimilar experimental rotor through ultra-narrow gap submerge arc welding. Some properties such as hardness, low-cycle fatigue (LCF), and high-cycle fatigue (HCF) combined with microstructural characterization qualify the integrity of the weld. Microstructural analysis indicated the presence of high-temperature tempered martensite as the phase responsible for the improved properties obtained in the weld. The Coffin-Manson parameters were obtained by fitting the data in LCF test, while the conditional fatigue strength was derived from the HCF test based on S-N curve. Analysis of hardness profile showed that the lowest value occurred at heat-affected zone adjacent to base metal which represents the appropriate location of fracture for the samples after LCF and HCF tests.

  6. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    PubMed

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution. PMID:26093948

  7. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    PubMed

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution.

  8. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  9. Quantitative study of multi-phases in TRIP-aided steels by means of neutron diffraction: a review

    NASA Astrophysics Data System (ADS)

    Seong, B. S.; Maneewong, A.; Shin, E.; Lee, K. H.

    2014-12-01

    The retained austenite and solute carbon in C-Si-Mn TRIP steels were quantitatively analyzed by neutron diffractometry, and their effects on the mechanical properties of the steels were studied. The decreasing of austempering temperature increased the volume fraction of retained austenite as well as the solute carbon in an austenite phase. However, the samples containing lower silicon showed a large variation in the amount of retained austenite and solute carbon in austenite with austempering temperature. The amount of retained austenite was proportional to the solute carbon in austenite. The elongation in TRIP steel was affected by both the volume fraction of retained austenite and the solute carbon in austenite.

  10. Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels

    SciTech Connect

    Zinkle, S.J.; Robertson, J.P.; Klueh, R.L.

    1998-09-01

    The key thermophysical and mechanical properties for 8--9%Cr reduced activation ferritic/martensitic steels are summarized, including temperature-dependent tensile properties in the unirradiated and irradiated conditions, stress-rupture behavior, elastic constants, thermal conductivity, thermal expansion, specific heat, and ductile-to-brittle transition temperature. The estimated lower and upper temperatures limits for structural applications are 250 and 550 C due to radiation hardening/embrittlement and thermal creep considerations, respectively.

  11. Investigation of Thermal and Mechanical Properties of Quenchable High-Strength Steels in Hot Stamping

    NASA Astrophysics Data System (ADS)

    Gorriño, Anton; Angulo, Carlos; Muro, Maider; Izaga, Julian

    2016-06-01

    The interfacial heat transfer coefficient (IHTC) is determined in the industrial range of contact pressure applied during the hot stamping process of boron steel sheets, under similar conditions to those used in industrial practice. The mechanical properties and microstructure of the parts are also examined. Moreover, the influence of the stamping pressure on the IHTC is investigated in detail via mechanical property and microstructural characterization.

  12. Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels

    NASA Astrophysics Data System (ADS)

    Xie, Rui; Lu, Zheng; Lu, Chenyang; Liu, Chunming

    2014-12-01

    Pre-alloyed powders of oxide dispersion strengthened (ODS) steels were produced by atomization. The atomized powders without mechanical alloying (MA) and with short-time MA were consolidated by hot isostatic pressing (HIP). The morphology and microstructure of the atomized and the MA powders were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of 9Cr-ODS steels with different MA time was characterized by high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and atom probe tomography (APT). The results showed that high-density of nanosized precipitates and ultrafine grains are formed in the ODS steels using the processing route, which remarkably reduce MA time. The yield strength and ultimate tensile strength of ODS steels are improved with the increase of MA time.

  13. Non-destructive electromagnetic-acoustic evaluation methods of anisotropy and elastic properties in structural alloy steel rolled products

    NASA Astrophysics Data System (ADS)

    Muraviev, V. V.; Muravieva, O. V.; Gabbasova, M. A.

    2015-10-01

    Application opportunities of acoustic structural analysis methods for evaluation of elastic properties and anisotropy by the example of cold-rolled sheets and spring steel rods are presented. Methods are based on application of non-contact electromagnetic-acoustic transducers of encircling and laid-on types developed by the authors and measurements of volume, Rayleigh and Lamb waves parameters. The methods developed can be used as a research tool of material structural analysis, anisotropy of properties when choosing heat treatment techniques and conditions, under intensive plastic deformation and other external energy deposition, including non-conventional material production with hierarchy structure and development of new technologies and safe constructions.

  14. Effects of overaging temperature on the microstructure and properties of 600 MPa cold-rolled dual-phase steel

    NASA Astrophysics Data System (ADS)

    Kuang, Chun-fu; Zheng, Zhi-wang; Zhang, Gong-ting; Chang, Jun; Zhang, Shen-gen; Liu, Bo

    2016-08-01

    C-Mn steels prepared by annealing at 800°C for 120 s and overaging at 250-400°C were subjected to pre-straining (2%) and baking treatments (170°C for 20 min) to measure their bake-hardening (BH2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH2 behavior of 600 MPa cold-rolled dual-phase (DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250-350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH2 value initially increases and then decreases. The maximum BH2 value of 83 MPa was observed for the specimen overaged at 350°C.

  15. Structure and Mechanical Properties of Nitrogen Austenitic Steel after Ultrasonic Forging

    NASA Astrophysics Data System (ADS)

    Narkevich, N. A.; Tolmachev, A. I.; Vlasov, I. V.; Surikova, N. S.

    2016-03-01

    Electron microscopy and X-ray diffraction have been used to investigate a nitrogen 07Kh17AG18 steel with an austenitic structure after the surface deformation treatment—ultrasonic forging. During ultrasonic forging, an austenitic structure transforms into a new structure with an elevated concentration of deformation-induced stacking faults, a lot of deformation microtwins, ɛ-martensite crystals. The austenite lattice parameter is found to be decreased in the surface layer. After ultrasonic forging, nitrided steel exhibits enhanced strength properties with retained high plasticity.

  16. Mechanical properties and fatigue crack growth rate of laser-welded 4130 steel

    NASA Astrophysics Data System (ADS)

    Tsay, L. W.; Li, Y. M.; Chen, C.; Cheng, S. W.

    1992-07-01

    The effect of the type of the postweld heat treatment (PWHT) on the mechanical and fatigue properties of AISI 4130 laser-welded steel were investigated using results of tensile, impact, and fatigue-crack-growth tests and SEM observations. The results show that necking of a tensile specimen is concentrated in the overtempered zone, resulting in an overall reduction in elongation of the weld. It was found that a 1-hr PWHT at 525 C or a laser multiple-tempering process can greatly improve the impact toughness of laser-welded steel.

  17. Structures and properties of rapidly solidified 9Cr-lMo steel

    NASA Astrophysics Data System (ADS)

    Megusar, J.; Lavernia, E.; Domalavage, P.; Harling, O. K.; Grant, N. J.

    1984-05-01

    Irradiation induced shifts of the DBTT and possible hydrogen embrittlement of ferritic steels are currently considered major problems for CTR applications. Rapid solidification and in particular liquid dynamic compaction (LDC) has been studied in developing 9Cr-1Mo steel as a candidate first wall material. Structural refinements such as reduction of segregation, fine grain size and fine size of second phase particles are retained in this process and this will have a favorable effect on fracture properties. LDC has also the potential of preparing first wall components directly from the melt and this would have an economic advantage over conventional ingot technology.

  18. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  19. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  20. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    SciTech Connect

    Maendl, S.; Rauschenbach, B.

    2003-08-26

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 deg. C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry)

  1. Effect of Implantation Sequence on Tribological Behavior of GCr15 Steel by PBII

    NASA Astrophysics Data System (ADS)

    Gu, Le; Zhou, Hui; Cao, Guojian; Tang, Guangze; Ma, Xinxin; Wang, Liqin

    2016-05-01

    In the present work, the effect of implantation sequence on tribological behavior of GCr15 steel treated by plasma-based ion implantation of carbon and nitrogen has been investigated. The treated GCr15 steels were characterized for microstructure and abrasive wear performance through combination of Raman spectroscopy, nano-indentation, and wear tests. Raman spectroscopy indicated that diamond-like carbon (DLC) films were formed after implantation of carbon with or without implantation of nitrogen, and the implantation of nitrogen after the implantation of carbon destroyed the graphite structure of the DLC films. The nano-indentation and wear tests showed that nanohardness as well as wear resistance of the GCr15 steel treated with the implantation sequence of nitrogen-carbon was better than those with the implantation sequence of carbon-nitrogen. Meanwhile, the properties were improved with increasing of carbon ion fluence.

  2. A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1972-01-01

    The mechanical and stress corrosion properties are presented of vacuum melted Custom 455 stainless steel alloy bar (1.0-inch diameter) and sheet (0.083-inch thick) material aged at 950 F, 1000 F, and 1050 F. Low temperature mechanical properties were determined at temperatures of 80 F, 0 F, -100 F, and -200 F. For all three aging treatments, the ultimate tensile and 0.2 percent offset yield strengths increased with decreasing test temperatures while the elongation held fairly constant down to -100 F and decreased at -200 F. Reduction in Area decreased moderately with decreasing temperature for the longitudinal round (0.250-inch diameter) specimens. Notched tensile strength and charpy V-notched impact strength decreased with decreasing test temperature. For all three aging treatments, no failures were observed in the unstressed specimens or the specimens stressed to 50, 75, and 100 percent of their yield strengths for 180 days of alternate immersion testing in a 3.5 percent NaCl solution. As indicated by the results of tensile tests performed after alternate immersion testing, the mechanical properties of Custom 455 alloy were not affected by stress or exposure under the conditions of the evaluation.

  3. Evolution of mechanical properties of M50 bearing steel due to rolling contact fatigue

    NASA Astrophysics Data System (ADS)

    Allison, Bryan D.

    balls after RCF was developed. Using this method, it is possible to determine the full stress-strain response of material after material that has undergone RCF. The micro-hardness of the material within the RCF affected region was found to increase by nearly 10% and yield strength increased 13% when high contact stress levels were employed in fatigue experiments. It was demonstrated that the number of cycles does contribute to hardness increase, but the applied Hertzian stress is the dominant factor. Mechanical processing was found to significantly retard the rate of mechanical property evolution, implying that it would also significantly improve the life. Similarly, it was observed that the rate of hardening is slower when silicon nitride is used to interact with the M50 specimen than another M50 component. This supports the idea that hybrid bearings last longer than more traditional all-steel bearings. Finally, an empirical model of the evolution of the constitutive response of the bearing material within the RCF affected region was developed based on the results of these analyses. This model can be used to predict the constitutive response of the material within the RCF affected region of an M50 steel ball, given the initial hardness, number of RCF cycles, and applied Hertzian stress. Further, it is now possible to solve the local yield strength as a function of depth within the RCF affected region given these same parameters.

  4. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    NASA Astrophysics Data System (ADS)

    Margolin, B.; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-01

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  5. The aging behavior of types 308 and 308CRE stainless steels and its effect on mechanical properties

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1987-01-01

    Aging of 308 and 308CRE SS was studied at 475 to 850/sup 0/C for aging times up to 10,000 hours. Above 550/sup 0/C, aging of 308 steel resulted in precipitation of carbides and the transformation of ferrite to sigma phase or the formation of sigma phase in initially ferrite-free material. The elevated-temperature aging of 308CRE steel resulted in the precipitation of titanium-rich carbides, nitrides, and sulfides, and the transformation of ferrite to sigma phase. The distribution of precipitates was affected by the initial condition of the materials. The elevated-temperature creep properties, and in particular the improved properties of 308CRE, were related to the precipitate distribution. Below 550/sup 0/C, aging of welded type 308 steel, precipitation of G-phase within the ferrite was observed, as well as the decomposition of ferrite into alpha and alpha prime. With the help of a novel mechanical properties microprobe, which was capable of determining the hardness of the minor constituent ferrite phase, the hardness behavior as a function of aging could be related to the microstructures. These results are interpreted in terms of the potential susceptibility of these alloys to 475/sup 0/C embrittlement.

  6. Irradiation Induced Defect Characterization in Reactor Pressure Vessel Steel by Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Han, Yougn-Soo; Shin, Eun-Joo; Lee, Chang-Hee; Park, Duck-Gun

    The degradation of the mechanical properties of the RPV (Reactor Pressure Vessel) steel during an irradiation in a nuclear power plant is closely related to the irradiation induced defects. The size of these defects is known to be a few nanometer, and the small angle neutron scattering technique is regarded as the best non destructive technique to characterize the nano sized inhomogeneities in bulk samples. The investigated the RPV steel has been used in YeongKwang nuclear power plant at Korea and the Cu content of the RPV steel is 0.06 wt%. The RPV steel was irradiated in the HANARO reactor at KAERI. The small angle neutron scattering experiments were performed by the SANS instrument in the HANARO reactor. The nano sized irradiation induced defects were quantitatively analyzed by SANS and the type of the irradiation induced defects was discussed in detail. The relation between irradiation induced defects and the yield strength was investigated. The characteristics of irradiation induced defects in low Cu containing RPV steel were discussed.

  7. Multilayered titanium-steel composite produced by explosive welding

    NASA Astrophysics Data System (ADS)

    Malyutina, Yu. N.; Skorohod, K. A.; Shevtsova, K. E.; Chesnokova, A. V.

    2015-10-01

    Multilayered titanium-steel composite consisting of alternating high-strength and ductile metallic materials were produced by explosive welding. Different types of weld joints formed in the composite were recognized by methods of microstructural analysis. Wave-shaped and flat geometry of welds are typical of steel and titanium layers, respectively. Structural features such as lack of penetration, shear bands, recrystallized metals and martensitic structure were detected in the vortex and weld-adjacent zones of impacted materials. The impact strength of the layered composite was 65% higher as compared to that of VT23 titanium alloy. A favorable role of interlayers in the multilayered composite has been confirmed by toughness tests.

  8. Changes in the Structure and Properties of Welded Joints of Low-Alloy Steels, Subjected to Cyclic Loads

    NASA Astrophysics Data System (ADS)

    Kuskov, V. N.; Kovenskiy, I. M.; Kuskov, K. V.

    2016-04-01

    Time-varying loads negatively affect the properties and structure of materials. Structural failures typically occur at loads below the yield point. In this work, fatigue tests of welded joints of low-alloy steels were carried out in an asymmetric cycle at loads of 60 and 80% of the yield strength. The stress ratio was 0.8-0.9. On the basis of the results of the tests, equations linking the number of cycles to failure with test parameters were obtained. Such equations can be used for estimating the residual life of elements both under construction and in operation. It has been found that the failure is not instantaneous. Specimens of steels continue to resist variable loads for 4000 - 26000 cycles to failure, depending on steel grade and the parameters of the test. Under operating conditions, it gives an opportunity to discover the onset of failure and dispose of the defective part or to replace the entire structure. A standard technique was used to measure the microhardness on the fractured specimens. The distance between the nearest indentations was 0.2 mm. The results of the measurements were plotted in graphs of ahardness change characteristic for all steels under study. A microhardness “step” has been discovered in areas with high dislocation density, as evidenced by x-ray diffraction and transmission electron microscopy. An intermediate stage of the investigation is the development of recommendations for determining the moment of failure of welded constructions with a probability of 95%.

  9. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  10. GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS (U)

    SciTech Connect

    Lam, P

    2006-06-08

    This report is a compendium of sets of mechanical properties of carbon and low alloy steels following the short-term effects of hydrogen exposure. The property sets include the following: Yield Strength; Ultimate Tensile Strength; Uniform Elongation; Reduction of Area; Threshold Cracking, K{sub H} or K{sub th}; Fracture Toughness (K{sub IC}, J{sub IC}, and/or J-R Curve); and Fatigue Crack Growth (da/dN). These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  11. Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization.

    PubMed

    Walke, Witold; Paszenda, Zbigniew; Pustelny, Tadeusz; Opilski, Zbigniew; Drewniak, Sabina; Kościelniak-Ziemniak, Magdalena; Basiaga, Marcin

    2016-06-01

    The study of most of the literature devoted to the use of coronary stents indicates that their efficiency is determined by the physicochemical properties of the implant surface. Therefore, the authors of this study suggested conditions for the formation of SiO2 layers obtained with the use of sol-gel methodology showing physicochemical properties adequate to the specific conditions of the cardio-vascular system. Previous experience of authors helped them much to optimize the coating of 316LVM steel surface with SiO2. The values of parameters that determine the usefulness of the coating in medical applications have been determined. In order to identify the phenomena taking place at the boundary of phases and to evaluate the usefulness of the proposed surface modification, taking into consideration the medical sterilization (steam or ethylene oxide (EO)), the potentiodynamic, impedance, adhesion, surface morphology and biological assessment characterizations were performed. Regardless of the usage of the sterilizing agent (steam, EO) the study showed the reduction of critical force causing layer's delamination. The research results of corrosion resistance study also confirmed a slight decrease of SiO2 barrier properties of the samples after sterilization in contact with the artificial plasma. SiO2 layers after the sterilization process did not show significant features of cytotoxicity and had no negative influence on blood cell counts, which confirmed the results of quantitative and qualitative studies. PMID:27040207

  12. Mechanical properties of thermally aged cast stainless steels from shippingport reactor components.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.; Energy Technology

    1995-06-07

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approx}13 y at {approx}281 C (538 F) for the hot-leg components and {approx}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y and the KRB reactor pump cover plate (CF-8) after {approx}8 y of service.

  13. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-04-01

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approximately}13 y at {approximately}281 C (538 F) for the hot-leg components and {approximately}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of {approximately} 15 y and the KRB reactor pump cover plate (CF-8) after {approximately} 8 y of service.

  14. Corrosion monitoring of reinforcing steel in concrete by electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Qiao, Guofu; Hong, Yi; Ou, Jinping

    2010-04-01

    Health degradation by corrosion of steel in civil engineering, especially in rough environment, is a persistent problem. Structural health monitoring (SHM) techniques can lead to improved estimates of structural safety and serviceability. A novel all solid state-current confined corrosion sensor has been developed to provide the platform for corrosion monitoring of the steel bar in concrete beam by electrochemical method. Finite element method has been used to certify the current confined effect of the sensor. The sensors have been used in concrete beams to monitor the corrosion of the steel bar. Also, half-cell potential of the beam has obtained. The results shows that the corrosion sensor can effectively confine the current in the fixed area which is 45mm×π×Dsteel bar and the monitoring results of the corrosion sensor are accurate.

  15. Microstructure and Mechanical Properties of Mn-Containing Maraging Steels

    NASA Astrophysics Data System (ADS)

    Hamed Zargari, Habib; Hossein Nedjad, Syamak

    2015-09-01

    An attempt to the modification of the microstructure and mechanical properties of affordable, Mn-containing maraging alloys is reported. These alloys have demonstrated strong age hardening but suffered with premature intergranular brittleness despite their potential applications in tooling, dies, and machinery industries. An Fe-10Ni-6Mo-3Mn-1Ti (wt.%) alloy was prepared by vacuum melting and processed by homogenization (1250 °C/48 h), cold rolling, solution annealing (950 °C/1 h), and aging treatments (500 °C/4 h). It presented tensile strength of about 2.65 GPa, a few percent of tensile elongation and a mixed ductile-brittle fracture mode. Transmission electron microscopy (TEM) revealed the precipitation of a nearly spherical phase. Crystal symmetry of the second phase precipitates was identified hexagonal close-packed corresponding reasonably to the Fe2Mo Laves phase having lattice parameters of a = 0.4745 and c = 0.7754 nm. Precipitation of a Mo-enriched second-phase particle was occasionally found at prior austenite grain boundaries but the pronounced grain boundary precipitation was never identified. Energy-filtering transmission electron microscopy using the Mo-M4,5 post edge revealed remarkable segregation of Mo at grain boundaries.

  16. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1987-09-01

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 290/sup 0/C. The results indicate that thermal aging increases the tensile strength and decreases the impactenergy, J/sub IC/ and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The low-carbon CF-3 steels were the most resistant and the molybdenum-containing high-carbon CF-8M steels were the most susceptible to low-temperature embrittlement. The influence of nitrogen content and distribution of ferrite on loss of toughness are discussed. Data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 450/sup 0/C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steels. 13 refs., 13 figs., 2 tabs.

  17. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  18. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  19. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  20. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-06-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  1. Nanoscale Precipitation in a Maraging Steel Studied by APFIM

    NASA Astrophysics Data System (ADS)

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475°C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  2. Nanoscale precipitation in a maraging steel studied by APFIM.

    PubMed

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  3. Microstructure-Property Relationship in the Thermomechanically Processed C-Mn-Si-Nb-Al-(Mo) TRIP Steels before and after PS/BH Treatment

    SciTech Connect

    Timokhina, I. B.; Enomoto, M; Miller, Michael K; Pereloma, E. V.

    2012-01-01

    The effect of prestraining and bake hardening (PS/BH) on the development of microstructures and mechanical properties in thermomechanically processed transformation-induced plasticity (TRIP) steels with additions of Nb, Mo, and Al was studied by atom probe tomography (APT) and transmission electron microscopy (TEM). An increase in number density and sizes of clusters and nanoscale precipitates was observed in both steels but was more significant in the Nb-Al-Mo steel than in the Nb-Al steel. This increase could be explained by the possible fast diffusion of Nb and Mo atoms at low temperatures, as was observed for surface diffusivity. The contributions of cluster strengthening and precipitation strengthening to the yield strength increment after PS/BH were estimated.

  4. Microstructure-Property Relationship in the Thermomechanically Processed C-Mn-Si-Nb-Al-(Mo) Transformation-Induced Plasticity Steels Before and After Prestraining and Bake Hardening Treatment

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Enomoto, M.; Miller, M. K.; Pereloma, E. V.

    2012-07-01

    The effect of prestraining and bake hardening (PS/BH) on the development of microstructures and mechanical properties in thermomechanically processed transformation-induced plasticity (TRIP) steels with additions of Nb, Mo, and Al was studied by atom probe tomography (APT) and transmission electron microscopy (TEM). An increase in number density and sizes of clusters and nanoscale precipitates was observed in both steels but was more significant in the Nb-Al-Mo steel than in the Nb-Al steel. This increase could be explained by the possible fast diffusion of Nb and Mo atoms at low temperatures, as was observed for surface diffusivity. The contributions of cluster strengthening and precipitation strengthening to the yield strength increment after PS/BH were estimated.

  5. Influence of the PM-Processing Route and Nitrogen Content on the Properties of Ni-Free Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lefor, Kathrin; Walter, M.; Weddeling, A.; Hryha, E.; Huth, S.; Weber, S.; Nyborg, L.; Theisen, W.

    2015-03-01

    Ni-free austenitic steels alloyed with Cr and Mn are an alternative to conventional Ni-containing steels. Nitrogen alloying of these steel grades is beneficial for several reasons such as increased strength and corrosion resistance. Low solubility in liquid and δ-ferrite restricts the maximal N-content that can be achieved via conventional metallurgy. Higher contents can be alloyed by powder-metallurgical (PM) production via gas-solid interaction. The performance of sintered parts is determined by appropriate sintering parameters. Three major PM-processing routes, hot isostatic pressing, supersolidus liquid phase sintering (SLPS), and solid-state sintering, were performed to study the influence of PM-processing route and N-content on densification, fracture, and mechanical properties. Sintering routes are designed with the assistance of thermodynamic calculations, differential thermal analysis, and residual gas analysis. Fracture surfaces were studied by X-ray photoelectron spectroscopy, secondary electron microscopy, and energy dispersive X-ray spectroscopy. Tensile tests and X-ray diffraction were performed to study mechanical properties and austenite stability. This study demonstrates that SLPS process reaches high densification of the high-Mn-containing powder material while the desired N-contents were successfully alloyed via gas-solid interaction. Produced specimens show tensile strengths >1000 MPa combined with strain to fracture of 60 pct and thus overcome the other tested production routes as well as conventional stainless austenitic or martensitic grades.

  6. Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.

    2011-07-01

    Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction

  7. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  8. Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.

  9. Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

    SciTech Connect

    Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H C; Sherby, O D

    2005-10-03

    The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.

  10. Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

    SciTech Connect

    Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H; Sherby, O D

    2006-01-31

    The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.

  11. Welding-induced mechanical properties in austenitic stainless steels before and after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-03-01

    The effects of neutron irradiation on the mechanical properties of welded joints made of austenitic stainless steels have been investigated. The materials are welded AISI 304 and AISI 347, so-called test weld materials, irradiated with neutrons at 573 K to doses of 0.3 and 1.0 dpa. In addition, an AISI 304 from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 573 K, was investigated. The mechanical properties of heat-affected zones and base materials were analysed before and after irradiation. Tensile parameters were determined at room temperature and at 573 K, for all materials and irradiation conditions. In the test weld materials it is found that radiation hardening is lower and loss of ductility is higher in the heat-affected zone than in the base material. In the in-service material radiation hardening is about the same in heat-affected zone and base material. After irradiation, deformation takes place by stacking faults and twins, at both room temperature and high temperature, contrary to unirradiated materials, where deformation takes place by twinning at room temperature and by dislocation cells at high temperature. No defect free channels are observed.

  12. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Byeong-Joo; Lee, Sunghak

    2016-06-01

    The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn ( α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α'-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

  13. Study of Monotonic Properties' Relevance for Estimation of Cyclic Yield Stress and Ramberg-Osgood Parameters of Steels

    NASA Astrophysics Data System (ADS)

    Marohnić, Tea; Basan, Robert

    2016-09-01

    Most of existing methods for estimation of cyclic stress-strain parameters have been developed for steels in general with no regard to the peculiarities of individual steel subgroups. Also, proposed models were commonly developed and evaluated without systematically determining if, and to what extent, individual monotonic properties contribute to their accuracy. In this work, a thorough statistical analysis of experimental datasets of 116 different steels obtained from literature was performed in order to determine which monotonic properties might be relevant for the estimation of cyclic yield stress and cyclic Ramberg-Osgood parameters of unalloyed, low-alloy and high-alloy steels. Only certain monotonic properties used in existing methods were found to be suitable for estimation purposes, while for a number of monotonic properties used in those references no such conclusion can be given. Furthermore, obtained results indicate that steels should not be treated as a single group since different sets of monotonic properties proved to be relevant for unalloyed, low- and high-alloy steel subgroups. Provided list of specific monotonic properties relevant for estimation of individual cyclic parameters of particular steel subgroups can be used for improving the accuracy of existing or development of new estimation methods.

  14. Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, T.

    2012-06-01

    Hydrogen environment embrittlement (HEE) of stainless steels in the environment of high pressure and low temperature hydrogen gas was evaluated using a very simple mechanical properties testing procedure. In the method, the high-pressure hydrogen environment is produced just inside the hole in the specimen. In this work, the effects of HEE on fatigue properties for austenitic stainless steels SUS304L and SUS316L were evaluated at 298 and 190 K. The effects of HEE on the tensile properties of higher strength stainless steels, such as strain-hardened 316, SUS630, and other alloys, SUH660 and Alloy 718 were also examined. The less effect of HEE on fatigue properties of SUS316L and tensile properties of strain-hardened 316 were observed compared with SUS304L and other steels at room temperature and 190 K.

  15. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  16. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  17. Evolution of mechanical properties of boron/manganese 22MnB5 steel under magnetic pulse influences

    NASA Astrophysics Data System (ADS)

    Falaleev, A. P.; Meshkov, V. V.; Vetrogon, A. A.; Shymchenko, A. V.

    2016-02-01

    The boron/manganese 22MnB5 steel can be noted as the widely used material for creation of details, which must withstand high amount of load and impact influences. The complexity and high labor input of restoration of boron steel parts leads to growing interest in the new forming technologies such as magnetic pulse forming. There is the investigation of the evolution of mechanical properties of 22MnB5 steel during the restoration by means of magnetic pulse influence and induction heating. The heating of 22MnB5 blanks to the temperature above 9000C was examined. The forming processes at various temperatures (800, 900 and 9500C) were performed during the experiments. The test measurements allowed to obtain the relationships between the strain and the operation parameters such as induced current, pulse discharge time and the operation temperature. Based on these results the assumption about usage of these parameters for control of deformation process was made. Taking into account the load distribution and the plasticity evolution during the heating process, the computer simulation was performed in order to obtain more clear strain distribution through the processed area. The measurement of hardness and the comparison with the properties evolution during hot stamping processes confirmed the obtained results.

  18. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.

    PubMed

    Krawczynska, Agnieszka Teresa; Lewandowska, Malgorzata; Pippan, Reinhard; Kurzydlowski, Krzysztof Jan

    2013-05-01

    In the present study, the high pressure torsion (HPT) was used to refine the grain structure down to the nanometer scale in an austenitic stainless steel. The principles of HPT lay on torsional deformation under simultaneous high pressure of the specimen, which results in substantial reduction in the grain size. Disks of the 316LVM austenitic stainless steel of 10 mm in diameter were subjected to equivalent strains epsilon of 32 at RT and 450 degrees C under the pressure of 4 GPa. Furthermore, two-stage HPT processes, i.e., deformation at room temperature followed by deformation at 450 degrees C, were performed. The resulting microstructures were investigated in TEM observations. The mechanical properties were measured in terms of the microhardness and in tensile tests. HPT performed at two-stage conditions (firstly at RT next at 450 degrees C) gives similar values of microhardness to the ones obtained after deforming only at 450 degrees C but performed to higher values of the overall equivalent strain epsilon. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel was evaluated. PMID:23858838

  19. Torsional properties of stainless steel Canal Master U and Flexogates.

    PubMed

    Camps, J J; Pertot, W J

    1994-11-01

    The purpose of this study was to evaluate and compare the torsional properties of Flexogates and Canal Master U instruments. Torsion and bending tests were performed on both designs of instrument according to ANSI/ADA specification number 28 criteria and standards. Ten instruments of each size, sizes 25 to 50 were used for each test. Four parameters were measured: the moment at failure, the rotation at failure, the separation point at failure and the bending moment at a 45 degrees angle. Both instruments satisfied ANSI/ADA standards for rotation at failure and bending moment. Canal Master U satisfied ANSI/ADA standards for moment at failure in all sizes except 45 and 50. Flexogates did not satisfy these standards in all sizes except 50. Flexogates separated at the end of the shaft whereas Canal master U separated just behind the cutting head. Both instruments showed favourable physical properties for preparing root canals.

  20. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  1. Influence of reverted austenite on the texture and magnetic properties of 350 maraging steel

    NASA Astrophysics Data System (ADS)

    Abreu, Hamilton F. G.; Silva, Jean J.; Silva, Manoel R.; Gomes da Silva, Marcelo J.

    2015-11-01

    The aging temperature to improve magnetic properties in Maraging-350 steel (Mar-350) is limited by the onset of austenite reversion. The traditional process of cooling after aging is to remove the piece from the oven and then to air cool it. The purpose of this research was to characterize the reverted austenite and to investigate the effect of cooling below the martensite start temperature (Ms) on the magnetic properties. The Mar350 samples aged at temperatures above 550 °C, and subsequently cooled in liquid nitrogen presented less austenite than samples cooled in air, resulting in higher magnetization saturation and a lower coercive force. A combination of optical microscopy (OM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques were used to characterize the presence of reverted austenite. The crystallographic texture of both martensite and reverted austenite were analyzed. The texture of the reverted austenite coincides with the texture of the parent austenite indicating that a phenomenon of texture memory is present.

  2. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  3. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  4. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  5. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herbst, Sebastian; Schledorn, Mareike; Maier, Hans Jürgen; Milenin, Andrij; Nürnberger, Florian

    2016-04-01

    Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders' surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

  6. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  7. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  8. Particles into 410L Stainless Steel by a Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Zeybek, A.; Barroso, S. Pirfo; Chong, K. B.; Edwards, L.; Fitzpatrick, M. E.

    2014-06-01

    Addition of yttria to steels has been proposed for the fabrication of oxide-dispersion-strengthened materials for nuclear power applications. We have investigated materials prepared from 12 Cr martensitic stainless steel, AISI 410L, produced by powder metallurgy. Materials were produced with and without yttria addition, and two different sizes of yttria were used, 0.9 µm and 50 nm. Tensile and mini-creep tests were performed to determine mechanical properties. Optical microscopy, SEM, TEM, and EDX analysis were used to investigate the microstructures and deformation mechanisms and to obtain information about non-metallic inclusion particles. SiO2, MnS, and Y2Si2O7 inclusion particles were observed. An SiO2 and Y2O3 interaction was seen to have occurred during the ball milling, which impaired the final mechanical properties. Small-angle neutron scattering experiments showed that the matrix chemistry prevented effective dissolution of the yttria.

  9. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young's modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young's modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  10. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    SciTech Connect

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young`s modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young`s modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  11. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    NASA Astrophysics Data System (ADS)

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  12. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the application of compositions containing natural and synthetic rubbers to steel. Polyurethane elastomers, chlorinated rubber coatings, and rubber containing acrylic adhesives are among the coatings discussed. Studies of the degradation of rubber coatings applied to steel are included. Bonding properties, adhesion strength, weathering, and anticorrosive properties are discussed. Additional information on anticorrosive coatings may be found in other bibliographies. (Contains a minimum of 147 citations and includes a subject term index and title list.)

  13. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the application of compositions containing natural and synthetic rubbers to steel. Polyurethane elastomers, chlorinated rubber coatings, and rubber containing acrylic adhesives are among the coatings discussed. Studies of the degradation of rubber coatings applied to steel are included. Bonding properties, adhesion strength, weathering, and anticorrosive properties are discussed. Additional information on anticorrosive coatings may be found in other bibliographies. (Contains a minimum of 180 citations and includes a subject term index and title list.)

  14. Near-threshold fatigue crack growth properties at elevated temperature for 1Cr-1Mo-0.25V steel and 12Cr stainless steel

    NASA Astrophysics Data System (ADS)

    Matsuoka, Saburo; Takeuchi, Etsuo; Nishijima, Satoshi; McEvily, Arthur J.

    1989-04-01

    Near-threshold fatigue crack growth properties were investigated for a low-alloy steel 1Cr-1Mo-0.25V and a stainless steel SUS403 (13Cr) in the temperature range from 25 to 550°C. Fatigue tests were conducted at frequencies of 0.5, 5, and 50 Hz, in a manner designed to avoid crack closure. The effective value of threshold stress intensity range increased with increasing temperature and with decreasing frequency for the Cr-Mo-V steel, whereas the effective threshold stress intensity range was independent of temperature and frequency in the case of the SUS403 steel. At a given Δ K value, the fatigue crack growth rates accelerated with increasing temperature and with decreasing frequency for the Cr-Mo-V steel. However, although the rate of fatigue crack growth was independent of frequency at a given temperature for the SUS403 steel, the rate did increase with temperature. The observed threshold levels and crack growth behavior were closely related to the oxidation process of the bare surface formed at the crack tip during each load cycle.

  15. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method

    NASA Astrophysics Data System (ADS)

    Jin, Wanqin; Yang, Liming; Yang, Wei; Chen, Bin; Chen, Jie

    2014-12-01

    A novel method for grafting of 2-hydroxyethyl methacrylate (HEMA) onto the surface of stainless steel (SS) was explored by using 60Co-γ irradiation. The surface of SS was modified by coating of dopamine before radiation grafting. The grafting reaction was performed in a simultaneous irradiation condition. The chemical structures change of the surface before and after grafting was demonstrated by Fourier transform infrared (FTIR) spectrometer. The hydrophilicity of the samples was determined by water contact angle measurement in the comparison of the stainless steel in the conditions of pristine, dopamine coated and HEMA grafted. Surface morphology of the samples was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The corrosion resistance properties of the samples were evaluated by Tafel polarization curve. The hemocompatibility of the samples were tested by platelet adhesion assay.

  16. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  17. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    NASA Astrophysics Data System (ADS)

    Lim, Sang-Sub; Mun, Jae-Chul; Kim, Tae-Won; Kang, Chung-Gil

    2014-12-01

    In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

  18. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    NASA Astrophysics Data System (ADS)

    Tich Nguyen, Van; Phuong Doan, Dinh; BaoTrung Tran, Tran; Duong Luong, Van; Nguyen, Van An; Phan, Anh Tu

    2010-09-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm-3 and 490 HB, respectively. Report submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9-12 November 2010.

  19. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-07-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  20. Microstructure and property examination of the weld HAZ in Grade 100 microalloyed steel

    NASA Astrophysics Data System (ADS)

    Poorhaydari-Anaraki, Kioumars

    The microstructure and mechanical property variations across different regions of the heat-affected zone (HAZ) of a Grade 100 microalloyed steel were examined for a range of heat inputs from 0.5 to 2.5 kJ/mm. Autogenous gas tungsten arc welding was performed on plates of Grade 100 steel to create the HAZ. The weld thermal cycles were recorded by embedding thermocouples at different locations in the plates. Examination of precipitate alterations (dissolution, coarsening and reprecipitation) was carried out theoretically and/or experimentally using transmission electron microscopy (TEM). Iron matrix phase transformations and grain size changes were examined with optical microscopy as well as TEM (both thin foils and carbon replicas). Hardness measurements (macro-, micro- and nano-hardness) were mainly used for examination of mechanical properties across the HAZ. Hardness measurements across the HAZ showed hardening in 0.5 kJ/mm weld samples and softening in the 1.5 and 2.5 kJ/mm weld samples. This was mainly due to the difference in cooling rates, since fast cooling results in microstructures with finer structures (especially grain size) and higher levels of solutes and sub-structure in the matrix. The coarse-grained HAZ (CGHAZ) had a higher hardness relative to the fine-grained HAZ (FGHAZ), regardless of the heat input, due to the formation of bainitic and martensitic fine structures (laths/plates) inside large prior austenite grains. The CGHAZ-0.5 kJ/mm consisted of packets of untempered lath martensite and coarse regions of autotempered martensite or aged massive ferrite. Increasing the heat input to 1.5 and 2.5 kJ/mm resulted in mainly bainitic microstructures (e.g., granular bainite) with some acicular ferrite and grain-boundary ferrite in the CGHAZ. The FGHAZ was mainly made up of polygonal ferrite, with considerable amounts of bainitic ferrite in the case of the 0.5 kJ/mm weld sample. Nb-rich carbides mostly survived the thermal cycles experienced in FGHAZ

  1. Bridging the Design-Manufacturing-Materials Data Gap: Material Properties for Optimum Design and Manufacturing Performance in Light Vehicle Steel-Intensive Body Structures

    NASA Astrophysics Data System (ADS)

    Zuidema, Blake K.

    2012-09-01

    As safety and fuel economy regulations become increasingly more challenging around the world, light vehicle manufacturers are facing increasing pressure to reduce the weight of their vehicles cost effectively while maintaining or improving safety performance. Optimum light vehicle steel body structure weight and performance are achieved when the constraints of design, manufacturing, and material properties are considered simultaneously. ArcelorMittal has invested heavily over the past several years to close the gap between material property knowledge and the inter-relation between material performance and design and manufacturing efficiency. Knowledge gained through this process is presented and the importance of achieving this simultaneous 3-way optimization is illustrated by a lightweight steel door design example from ArcelorMittal's S-in motion catalog of lightweight steel solutions.

  2. Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness

    NASA Astrophysics Data System (ADS)

    Brnic, J.; Turkalj, G.; Canadija, M.; Lanc, D.; Krscanski, S.

    2011-11-01

    In this paper some experimental results and analyses regarding the behavior of AISI 420 martensitic stainless steel under different environmental conditions are presented. That way, mechanical properties like ultimate tensile strength and 0.2 percent offset yield strength at lowered and elevated temperatures as well as short-time creep behavior for selected stress levels at selected elevated temperatures of mentioned material are shown. The temperature effect on mentioned mechanical properties is also presented. Fracture toughness was calculated on the basis of Charpy impact energy. Experimentally obtained results can be of importance for structure designers.

  3. Effect of Microstructure and Texture on Anisotropy and Mechanical Properties of SAE 970X Steel Under Hot Rolling

    NASA Astrophysics Data System (ADS)

    Masoumi, Mohammad; Mohtadi-Bonab, M. A.; de Abreu, Hamilton Ferreira Gomes

    2016-07-01

    This paper presents the effect of microstructure and crystallographic texture by developed in hot rolling and different post-treatments on anisotropic and mechanical properties of SAE 970X steel. The experimental results showed that the hot-rolled sample followed by quenching and consequent tempering at 700 °C led to a significant improvement in anisotropic and mechanical properties. This happened due to the reduction in the number of grains oriented with {001} planes parallel to normal direction. Also, the formation of new strain-free and recrystallized grains associated with {111}//ND and {110}//ND directions improved the mechanical properties. These grains corresponded to the close-packed planes in BCC structure as well.

  4. Effect of Cyclic Aging on Mechanical Properties and Microstructure of Maraging Steel 250

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Naz, Nausheen; Baloch, Rasheed Ahmed

    2010-10-01

    The effects of thermal cyclic aging on mechanical properties and microstructure of maraging steel 250 were studied using hardness tester, tensile testing machine, impact tester, optical, scanning electron, and stereo microscopy. Samples were solution annealed at 1093 K for 1 h followed by air cooling to form bcc martensite. Cyclic aging treatments were carried out at 753 and 773 K for varying time periods. Increase in hardness and strength with corresponding decrease in ductility and impact strength was observed with increasing aging cycles. Reverted austenite was detected by x-ray diffraction technique formed as a result of cyclic aging. The presence of reverted γ was also confirmed by EDX-SEM analysis and attributed to the formation of Mo- and Ni-rich regions which transformed to γ on cooling. Heterogeneity in composition and amount of reverted γ was found to increase with increase in aging cycles and aging time. Fractography reveals the change in fracture mode from ductile dimple-like to brittle cleavage with increase in hardness and strength due to cyclic aging.

  5. Magnetic properties and magnetic domain structure of grain-oriented Fe-3%Si steel under compression

    NASA Astrophysics Data System (ADS)

    Perevertov, O.; Schäfer, R.

    2016-09-01

    The influence of an applied compressive stress on the magnetic properties and domain structure in Goss-textured (110) [001] Fe-3%Si steel is studied. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of compressive stress. With stress increase the domain structure without applied field evolves from 180° slab-like domains along the surface-parallel easy axis first into stress pattern I, then into the checkerboard pattern and finally into stress pattern II, in which all internal domains are oriented along the transverse axes. The magnetization process under compression is realized by surface closure [001] domains that grow into the bulk at the expense of transverse domains. The domain evolution by these three stress patterns is not practically noticeable in hysteresis curves above 10 MPa—they change continuously with the same effective field being valid for curves from 10 to 67 MPa. The comparison with previous measurements under different stress/cutting angle combinations shows that for the prediction of a constricted hysteresis loop it is sufficient to consider the energy difference between surface-parallel and transverse easy axes neglecting details of the spatial organization of transverse domains.

  6. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    NASA Astrophysics Data System (ADS)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  7. Charpy toughness and tensile properties of a neutron irradiated stainless steel submerged-arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The possibility of stainless steel cladding increasing the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws is highly dependent upon the irradiated properties of the cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged-arc, single-wire, oscillating electrode method. Three layers of cladding were applied to provide a cladding thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. There was considerable dilution of the type 309 in the first layer of cladding as a result of excessive melting of the base plate. Specimens for the irradiation study were taken from near the base plate/cladding interface and also from the upper layers of cladding. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to neutron fluences of 2 x 10/sup 23/ n/m/sup 2/ (E > 1 MeV). When irradiated, both types 308 and 309 cladding showed a 5 to 40% increase in yield strength accompanied by a slight increase in ductility in the temperature range from 25 to 288/sup 0/C. All cladding exhibited ductile-to-brittle transition behavior during impact testing.

  8. Influence of Cu-Interlayer Thickness on Microstructures and Mechanical Properties of MIG-Welded Mg-Steel Joints

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Sun, D. Q.; Sun, Y.

    2016-03-01

    The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

  9. Window type: 2x3 fixed multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 2x3 fixed multipaned steel window flanked by 1x3 multipaned steel casements. Concrete sill and spandrel also illustrated. Building 43, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  10. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    NASA Astrophysics Data System (ADS)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  11. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  12. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles

    DOE PAGES

    Jiao, Z. B.; Luan, J. H.; Guo, W.; Poplawsky, J. D.; Liu, C. T.

    2016-09-01

    The effects of welding and post-weld heat treatment (PWHT) on nanoscale co-precipitation, grain structure, and mechanical properties of an ultra-high strength steel were studied through a combination of atom probe tomography (APT) and mechanical tests. Our results indicate that the welding process dissolves all pre-existing nanoparticles and causes grain coarsening in the fusion zone, resulting in a soft and ductile weld without any cracks in the as-welded condition. A 550 °C PWHT induces fine-scale re-precipitation of NiAl and Cu co-precipitates with high number densities and ultra-fine sizes, leading to a large recovery of strength but a loss of ductility withmore » intergranular failure, whereas a 600 °C PWHT gives rise to coarse-scale re-precipitation of nanoparticles together with the formation of a small amount of reverted austenite, resulting in a great recovery in both strength and ductility. Our analysis indicates that the degree of strength recovery is dependent mainly upon the re-precipitation microstructure of nanoparticles, together with grain size and reversion of austenite, while the ductility recovery is sensitive to the grain-boundary structure. In conclusion, APT reveals that the grain-boundary segregation of Mn and P may be the main reason for the 550 °C embrittlement, and the enhanced ductility at 600 °C is ascribed to a possible reduction of the segregation and reversion of austenite.« less

  13. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Dae Whan

    2012-01-01

    Tensile, fatigue, and creep tests were conducted to investigate the effect of grain refinement by the addition of nitrogen on mechanical properties of nitrogen alloyed type 316LN stainless steel. Grain size was reduced from 100 μm to 47 μm as nitrogen concentration was increased from 0.04% (N04) to 0.10% (N10). When nitrogen concentration was increased, there was a 20% increase in yield stress and a 14% increase in UTS, respectively. Elongation was not significantly changed with increasing nitrogen concentration. As nitrogen concentration was increased, there was a 41% increase in fatigue life and an approximately sixfold increase in the time to rupture. As grain size was reduced from 100 μm to 47 μm, there was an 8% increase in yield stress and a 3% increase in UTS, respectively. Elongation was little changed with decreasing grain size. As grain size was reduced from 100 μm to 47 μm, there was a 9% increase in fatigue life and a 23% increase in the time to rupture. The grain refinement achieved by the addition of nitrogen improved the high temperature mechanical properties of nitrogen alloyed type 316LN stainless steel but was not the main mechanism for improvement of mechanical properties.

  14. Effect of tempering on the microstructure, electrical, and magnetic properties of Eurofer-97 steel

    NASA Astrophysics Data System (ADS)

    Sandim, M. J. R.; Farrão, F. U.; Oliveira, V. B.; Bredda, E. H.; Santos, A. D.; dos Santos, C. A. M.; Sandim, H. R. Z.

    2015-06-01

    Reduced-activation ferritic-martensitic Eurofer-97 steel is a potential candidate for structural application in future nuclear fusion reactors. Samples of Eurofer-97 steel were cold rolled to 80% reduction in thickness, austenitized at 1050 and 1150 °C for 30 min and tempered at several temperatures up to 800 °C for 2 h each. The microstructural characterization of the samples was performed using Vickers microhardness testing and electron backscatter diffraction (EBSD). Electrical resistivity and coercive field measurements were also performed to follow microstructural changes during isothermal tempering. Results were discussed with focus on the precipitation of MX and M23C6 carbides and related changes in these properties.

  15. Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.

    1979-01-01

    An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.

  16. Effects of internal helium on mechanical properties of NITRONIC[trademark] 40 stainless steel

    SciTech Connect

    Mosley, W.C.

    1993-01-01

    This report describes results of tests on annealed Nitronic 40 stainless steel containing 0.0, 0.26, and 2.6 appM helium-3 (He-3), over the temperature range 25-842 C. Ultimate tensile strength, 0.2% offset yield strength, total elongation, uniform elongation, nonuniform elongation, and reduction-in-area were measured. The predominant effect of He-3 is decreased ductility caused by inhibition of necking. Annealed Nitronic 40 exhibits greater sensitivity to internal He-3 than solution-annealed Incoloy 903 and high-energy-rate forged 316L stainless steel.

  17. Structure and mechanical properties of hot-deformed low-carbon martensitic steel

    NASA Astrophysics Data System (ADS)

    Romanov, I. D.; Shatsov, A. A.; Zakirova, M. G.; Berezin, S. K.

    2016-03-01

    The structural changes in low-carbon martensitic 15Kh2G2NMFBA steel induced by its hot forging in the temperature range 1150-850°C have been studied. The calculated cracking resistance parameter I c is in agreement with its experimental value. A relation is found between the lath sizes in the martensite structure and the change in the impact toughness characteristics. A combined regime of hot deformation and hot treatment of the low-carbon martensitic steel is proposed to form submicrometer-sized structural elements and high strength and impact toughness characteristics.

  18. Corrosion inhibition properties of graphene oxide on mild steel in 3.5% NaCl

    NASA Astrophysics Data System (ADS)

    Anandh Senthilvasan, Prem; Rangarajan, Murali

    2016-09-01

    In this work the corrosion inhibition of mild steel in 3.5% Sodium chloride (NaCl) solution at ambient conditions by Graphene Oxide (GO) has been studied. Graphene oxide was prepared by Modified Hummers Method and characterized by Fourier Transform Infrared spectroscopy (FTIR), UV-Visible spectroscopy (UV-Vis), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermo-Gravimetric Analysis (TGA). The electrochemical corrosion behaviour of mild steel has been studied in the absence and presence of GO coatings by Tafel polarization and impedance analyses. The modified electrode has 44.8mV potential shift in the cathodic direction and reduction in current by 41.9 μA (61%). This indicates the strong protection offered by graphene oxide film. The obtained impedance spectra also clearly show that the charge transfer resistance of graphene oxide film is much higher than that of the uncoated steel electrode, demonstrating the strong protection offered by graphene oxide films for mild steel.

  19. TRITIUM AND DECAY HELIUM EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL WELDMENTS

    SciTech Connect

    Morgan, M; Scott West, S; Michael Tosten, M

    2007-08-31

    J-Integral fracture toughness tests were conducted on tritium-exposed-and-aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite interfaces were embrittled by tritium and decay helium. Fracture toughness values decreased for both base metals and weldments with increasing decay helium content in the range tested (50-200 appm).

  20. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples. PMID:17084503

  1. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel.

    PubMed

    Yang, Sheng-Min; Chen, Yi-Chun; Pan, Yeong-Tsuen; Lin, Dong-Yih

    2016-06-01

    In this study, 2205 duplex stainless steel (DSS) was employed to enhance the antibacterial properties of material through silver doping. The results demonstrated that silver-doped 2205 DSS produces an excellent bacteria-inhibiting effect against Escherichia coli and Staphylococcus aureus. The antibacterial rates were 100% and 99.5%, respectively. Because the mutual solubility of silver and iron is very low in both the solid and liquid states, a silver-rich compound solidified and dispersed at the ferrite/austenite interface and the ferrite, austenite, and secondary austenite phases in silver-doped 2205 DSS. Doping 2205 DSS with silver caused the Creq/Nieq ratio of ferrite to decrease; however, the lower Creq/Nieq ratio promoted the rapid nucleation of γ2-austenite from primary α-ferrite. After 12h of homogenisation treatment at 1200 °C, the solubility of silver in the γ-austenite and α-ferrite phases can be increased by 0.10% and 0.09%, respectively. Moreover, silver doping was found to accelerate the dissolution of secondary austenite in a ferrite matrix during homogenisation. PMID:27040232

  2. Fatigue Properties of SUS304 Stainless Steel after Ultrasonic Nanocrystal Surface Modification (unsm)

    NASA Astrophysics Data System (ADS)

    Zhang, K. Y.; Pyoun, Y. S.; Cao, X. J.; Wu, B.; Murakami, R.

    The changing of materials surface properties method always was taken into improving the fatigue strength. In this paper, an ultrasonic nanocrystal surface modification(UNSM) technique was used on the SUS 304 stainless steel to form a nanostructured surface layer with different static load(70N, 90N, 110N, 130N) and the vibration strike number was about 20,000times/mm2. The untreated and different condition specimens fatigue strength was all tested by a dual-spindle rotating bending fatigue test machine. SPring-8(a large synchrotron radiation facility) was used to test the surface nanocrystallization components. The X-ray diffraction (XRD), the scanning electron microscopy (SEM), optical microscope and a micro-Vickers hardness tester (MVK-E3, Akashi) were separately used to get the surface residual stresses, fracture surface after fatigue testing, metallographic structure and the microhardness of the nanostructured surface layer. The result showed that martensite transformation took place on the surface of specimens, the surface residual stresses had only a small increase and some cracks occurred between the martensite layer and the austenite layer, but the fatigue strength of 90N improved 81%.

  3. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-07-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  4. Microstructure and Properties of Cast B-Bearing High Speed Steel

    NASA Astrophysics Data System (ADS)

    Fu, Hanguang; Ma, Shengqiang; Hou, Jianqiang; Lei, Yongping; Xing, Jiandong

    2013-04-01

    Microstructure, mechanical properties, and wear resistance of B-bearing high-speed steel (HSS) roll material containing 0.90-1.00% C, 1.3-1.5% B, 0.8-1.5% W, 0.8-1.5% Mo, 4.6-5.0% Cr, 1.0-1.2% V, and 0.15-0.20% Ti were studied by means of the optical microscopy (OM), the scanning electron microscopy (SEM), x-ray diffraction (XRD), hardness, impact toughness, and pin-on-disk abrasion tests. The results showed that as-cast structure of B-bearing HSS consisted of α-Fe-, M23(B,C)6-, M3(B0.7C0.3)-, and M2(B,C)-type borocarbides, a small quantity of retained austenite, and a small amount of TiC. The hardness and impact toughness values of as-cast B-bearing HSS reached 65-67 HRC and 80-85 kJ/cm2, respectively. There were many M23(B,C)6-precipitated phases in the matrix after tempering, and then, with increasing temperature, the amount of precipitated phases increased considerably. Hardness of B-bearing HSS gradually decreased with the increasing tempering temperature, and the change of tempering temperature had no obvious effect on impact toughness. B-bearing HSS tempered at 500 °C has excellent wear resistance, which can be attributed to the effect of boron.

  5. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-10-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  6. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.

  7. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Li, C. W.; Han, L. Z.; Luo, X. M.; Liu, Q. D.; Gu, J. F.

    2016-08-01

    The microstructure and mechanical properties of reactor pressure vessel (RPV) steel were investigated after tempering at different temperatures ranging from 580 to 700 °C for 5 h. With increasing tempering temperature, the impact toughness, which is qualified by Charpy V-notch total absorbed energy, initially increases from 142 to 252 J, and then decreases to 47 J, with a maximum value at 650 °C, while the ultimate tensile strength varies in exactly the opposite direction. Comparing the microstructure and fracture surfaces of different specimens, the variations in toughness and strength with the tempering temperature were generally attributed to the softening of the bainitic ferrite, the agminated Fe3C carbides that resulted from decomposition of martensite/austenite (M/A) constituents, the precipitation of Mo2C carbides, and the newly formed M/A constituents at the grain boundaries. Finally, the correlation between the impact toughness and the volume fraction of the M/A constituents was established, and the fracture mechanisms for the different tempering conditions are explained.

  8. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    NASA Astrophysics Data System (ADS)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in

  9. Development of Reduction Technique of Thermal Stress Induced in Steel Plate Bonded by CFRP Plates

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka; Nagao, Takashi; Kobayashi, Akira

    In CFRP bonded onto steel plate, thermal stress is induced in steel plate by temperature change, due to difference in coefficients of thermal expansion between steel and CFRP. In this study, reduction technique of the thermal stress in steel plate, which is additional bonding of aluminum alloy plates, is proposed. Namely, the coefficient of thermal expansion of composite plate consisted of CFRP and aluminum plates is designed as that of steel. In this research, to verify the effectiveness of developed method, heat tests of CFRP and aluminum plates bonded onto steel plate were carried out. As a result of the tests, infinitesimal thermal stresses in steel plate with CFRP and aluminum plates were measured while large thermal stresses were measured in conventional CFRP bonded onto steel plate. Additionally, to confirm the test results, numerical analysis was also carried out.

  10. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  11. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  12. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-11-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  13. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-06-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  14. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  15. Characterization of microstructural and mechanical properties of a reduced activation ferritic oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.

    2011-09-01

    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered Reduced Activation Ferritic Martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic steels would allow a substantial increase of the operating temperature from ˜823 K to about 923 K. Temperatures above 973 K in the He cooled modular divertor concept necessitate the use of Reduced Activation Ferritic (RAF)-ODS-steels, which are not limited by a phase transition. The development concentrates on the ferritic ODS-steel Fe-13Cr-1W-0.3Ti-0.3Y 2O 3. The microstructures of a mechanically alloyed powder particle are observed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ageing experiments for 1000 h and 3000 h at 1123.5 K and 1223.5 K of compacted Fe-13Cr-1W-0.3Ti-0.3Y 2O 3 were executed. The impact especially on the oxide particles in terms of segregation and decomposition effects were monitored by electron energy loss spectroscopy (EELS). Long term vacuum creep experiments have been performed with rolled Fe-13Cr-1W-0.3Ti-0.3Y 2O 3 at 923.5 K and 1023.5 K, which will be compared to reference alloys.

  16. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  17. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system

    NASA Astrophysics Data System (ADS)

    Carretero, E.; Alonso, R.; Pelayo, C.

    2016-08-01

    The optical and electrical properties of stainless steel oxynitride thin films have been studied for different flow rates of the reactive gases during the deposition process. Films were deposited in an in-line magnetron sputtering system under similar conditions as those found in large area industrial systems. The study of the optical properties was performed by IR-VIS spectrophotometry, DC conductivity measurements were performed by the four point method and the microstructural study and chemical analysis were performed by XRD, FESEM and XPS. The results show the transition of sample films from metal to semiconductor, as well as the feasibility of obtaining visible absorbing coatings with low DC conductivity from low-cost materials. The deposited films show the typical growth structure for samples produced in in-line deposition systems commonly used in the large area coatings industry.

  18. Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel

    NASA Astrophysics Data System (ADS)

    Srivatsa, Kulkarni; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-10-01

    The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.

  19. Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel

    NASA Astrophysics Data System (ADS)

    Srivatsa, Kulkarni; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-08-01

    The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.

  20. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    SciTech Connect

    Dong, Futao; Du, Linxiu; Liu, Xianghua; Xue, Fei

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.

  1. Effects of cryomilling on the microstructures and high temperature mechanical properties of oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Gwon, Jin-Han; Kim, Jeoung-Han; Lee, Kee-Ahn

    2015-04-01

    The effects of cryomilling on the microstructures and high temperature mechanical properties of oxide dispersion-strengthened (ODS) steel were examined. Cryomilling was newly tried on this ODS steel to control oxides, grains, and dislocation microstructures. Fe-14Cr-3W-0.4Ti (wt.%) alloy powder and 0.3 wt.%Y2O3 powder were mixed and were mechanically alloyed (MA) through ball milling at each of room temperature (RT) and -150 °C and then hot isostatic pressing (HIP), hot rolling, and annealing processes were implemented to manufacture two types of ODS ferritic steel, K1 (RT) and K4 (-150 °C). Oxide particles were shown to be finer and more uniformly distributed in K4 (5-10 nm size distribution) than in K1 (average size 30 nm). The two alloys were subjected to high temperature compression (RT ∼ 900 °C) tests. K4 represented higher yield strength under all temperature conditions. However, K4 showed rapid strength decreases at high temperatures exceeding 700 °C and showed similar levels of strengths to K1 at 900 °C. This is considered attributable to the fact that although cryomilling increased the number density of oxide particles, it simultaneously reduced grain sizes too much, so that grain boundary weakening at high temperatures could not be sufficiently prevented.

  2. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  3. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations concerning the development and fabrication of natural and synthetic rubbers for use in coatings on steel. Coating materials include polyurethane elastomers, chlorinated rubber, and rubber-containing acrylic adhesives. References to bonding properties, mechanical strength, steel-wire reinforced rubbers, anticorrosion, and weather-resistance are covered. (Contains 50-250 citations and includes a subject term index and title list.)

  4. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    SciTech Connect

    Sablik, M.J. ); Kaminski, D.A.; Jiles, D.C.; Biner, S.B. )

    1993-05-15

    Magnescope[sup 1] magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik [ital et] [ital al].[sup 2

  5. Material property relationships for pipeline steels and the potential for application of NDE

    NASA Astrophysics Data System (ADS)

    Smart, Lucinda; Bond, Leonard J.

    2016-02-01

    The oil and gas industry in the USA has an extensive infrastructure of pipelines, 70% of which were installed prior to 1980, and almost half were installed during the 1950s and 1960s. Ideally the mechanical properties (i.e. yield strength, tensile strength, transition temperature, and fracture toughness) of a steel pipe must be known in order to respond to detected defects in an appropriate manner. Neither current in-ditch methods nor the ILI inspection data have yet determined and map the desired mechanical properties with adequate confidence. In the quest to obtain the mechanical properties of a steel pipe using a nondestructive method, it is important to understand that there are many inter-related variables. This paper reports a literature review and an analysis of a sample set of data. There is promise for correlating the results of NDE measurement modalities to the information required to develop relationships between those measurements and the mechanical measurements desired for pipelines to ensure proper response to defects which are of significant threat.

  6. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Tong-He; Wu, Yu-Guang; Liu, An-Dong; Zhang, Xu; Wang, Xiao-Yan

    2003-09-01

    The corrosion and pitting corrosion resistance of C+Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2Ti, TiC, Fe2C and Fe3C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6×1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55 mV to 160 mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  7. The Influence of Corrosion and Cross-Section Diameter on the Mechanical Properties of B500c Steel

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Ch. Alk.

    2009-03-01

    Corrosion is a negative contributor on the structural integrity of concrete structures and leads to degradation of the mechanical properties of steel rebar. Exposure to chloride, seawater, salt and saltwater and deicing chemical environments influences the concrete-steel bond and weakens it. A considerable strength factor of the two-phase steel B500c (martensitic, ferritic-perlitic) is considered to be the outer martensitic cortex thickness, which varies according to the area of the rebar cross section. In order to evaluate the influence of corrosion and the size of the area on the mechanical properties of B500c steel, an experimental investigation was conducted on B500c ribbed steel rebar of 8, 12, 16, and 18 mm diameter, and which were artificially corroded for 10, 20, 30, 45, 60, 90, and 120 days. The laboratory tests suggest that corrosion duration and rebar cross-sectional area size had a significant impact on the strength and ductility degradation of the specimens. The tensile mechanical properties before and after corrosion indicated progressive variation and drastic drop in their values. The extended salt spray exposure enhanced the damage and created pits and notches, resulting in stress concentration points and progressive reduction of ductility and available energy. Anti-seismic design and codes that ignore the influence of the size of the cross-section area and the level of corrosion and mechanical behavior of reinforcing steel could lead to unpredictable performance during severe ground motion.

  8. Influence of uniaxial, biaxial and plane strain pre-straining on the dynamic tensile properties of high strength sheet steels

    NASA Astrophysics Data System (ADS)

    Larour, P.; Verleysen, P.; Bleck, W.

    2006-08-01

    The influence of pre-straining and microstructure on the dynamic properties of car body high strength steels has been investigated at room temperature. The mechanical properties of a dual phase steel DP600, a TRIP steel TRIP700 and an austenitic steel AISI 301LN2B (1.4318) have been determined performing high speed servohydraulic and split-Hopkinson bar tensile tests in the strain rate range from 0.005s-1 up to 950s-1. The pre-straining modes and levels, respectively 10% uniaxial, 10% plane strain and 5% biaxial pre-straining, have been chosen in this investigation according to industrial use. 10% plane strain pre-straining brings the highest increase of yield and tensile strength values. 5% biaxial and 10% uniaxial pre-straining have similar effect on strength properties. The austenitic steel presents a pronounced minimum for tensile strength values at around 1/s. A combination of adiabatic heating and exothermic γ to α' transformation produces some significant softening effects in the austenitic steel grade.

  9. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  10. Ultralow friction induced by tribochemical reactions: a novel mechanism of lubrication on steel surfaces.

    PubMed

    Li, Ke; Amann, Tobias; Walter, Michael; Moseler, Michael; Kailer, Andreas; Rühe, Jürgen

    2013-04-30

    The tribological properties of two steel surfaces rubbing against each other are measured while they are in contact with 1,3-diketones of varying structure. Such systems show after a short running-in period ultralow friction properties with a coefficient of friction of as low as μ = 0.005. It is suggested that the extremely favorable friction properties are caused by a tribochemical reaction between the 1,3-diketones and the steel surfaces, leading to formation of a chelated iron-diketo complex. The influence of temperature and the molecular structure of the 1,3 diketo-lubricants onto the friction properties of the system is elucidated under both static and dynamic conditions. With progression of the tribochemical reaction, the sliding surfaces become very conformal and smooth, so that the pressure is greatly reduced and further wear is strongly reduced. All iron particles potentially generated by wear during the initial running-in period are completely dissolved through complex formation. It is proposed that the tribochemical polishing reaction causes a transition from boundary lubrication to fluid lubrication.

  11. Elevated-temperature tensile and creep properties of several ferritic stainless steels

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

  12. Evaluation of Bending Strength in Friction Welded Alumina/mild Steel Joints by Applying Factorial Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Vivek Prabhu, M.

    Joining of metal with ceramics has become significant in many applications, because they combine properties like ductility with high hardness and wear resistance. By friction welding technique, alumina can be joined to mild steel with AA1100 sheet of 1mm thickness as interlayer. In the present work, investigation of the effect of friction time on interlayer thickness reduction and bending strength is carried out by factorial design. By using ANOVA, a statistical tool, regression modeling is done. The regression model predicts the bending strength of welded ceramic/metal joints accurately with ± 2% deviation from the experimental values.

  13. Effect of Hydrogen on Mechanical Properties of 23Co14Ni12Cr3Mo Ultrahigh Strength Steel

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Wen, Chen; Yu, Mei; Li, Songmei

    2013-12-01

    In order to evaluate the effect of hydrogen on mechanical properties of 23Co14Ni12Cr3Mo ultrahigh strength steel, the specimens were electrochemically hydrogen charged for different times. The tensile property, fatigue fracture behavior, fatigue crack growth (FCG) behavior, and threshold stress intensity (Δ K th) of the samples were studied. The fracture morphology was characterized by scanning electron microscopy. It was shown that tensile strength decreases from 2300 to 2000 MPa, critical fatigue stress from 577 to 482 MPa, and Δ K th from 27.4 to 14.3 MPam0.5 with the increasing hydrogen contents from 0.0001 to 0.0008 wt.%. Hydrogen enhances the FCG rate from 2.4 × 10-3 to 3.6 × 10-3 mm/cycle at Δ K = 80 MPam0.5 in the hydrogen-charging range. Microscopic observation showed that the tensile fracture is a combination of overload microvoids and some intergranular regions for 0 h, and isolated areas of transgranular (TG) fracture are observed with brittle cleavage for 24-72 h. The fatigue fracture is ductile for the uncharged specimens, while the hydrogen-charged specimens show mainly brittle TG fracture. These results suggest that hydrogen degrades the fracture behavior of 23Co14Ni12Cr3Mo ultrahigh strength steel.

  14. The effect of long-term aging on the impact properties of modified 9Cr-1Mo steel

    SciTech Connect

    Alexander, D.J.; Maziasz, P.J.; Brinkman, C.R.

    1992-12-31

    The Charpy impact and room-temperature tensile properties of two heats of modified 9Cr-1Mo steel have been examined after aging at temperatures from 482 to 704C for times up to 75,000 h. In general, aging at lower temperatures (482, 538, or 593C) resulted in little change in the room-temperature tensile properties, but rapid increases in the transition temperature, with the greatest increase for an aging time of 25,000 h. The upper-shelf energy level decreased, reaching a minimum at 25,000 h, followed by recovery at 50,000-h aging. At higher aging temperatures (649 and 704C) there was little change in the transition temperatures, but significant softening at room temperature, and large increases in the upper-shelf energy.

  15. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  16. [Quantitative analysis of Mn and Si of alloy steels by laser-induced breakdown spectroscopy].

    PubMed

    Sun, Lan-Xiang; Yu, Hai-Bin; Xin, Yong; Cong, Zhi-Bo

    2010-12-01

    The concentration of Mn and Si in different kinds of steels was determined by laser-induced breakdown spectroscopy (LIBS). The multivariate quadratic nonlinear function was adopted for calibration. Samples including common alloy steels, stainless steels and carbon tool steels were analyzed. The matrix effect was serious because of large difference in compositions of different kinds of steels and strong line overlaps in steel spectra. Therefore, the common calibration methods that only use one analytical line to calibrate the complex chemical compositions of alloy steels will lose much information. The multivariate calibration methods, however, can utilize more information of spectra, successfully reduce the matrix effect and improve the measurement repeatability and accuracy of LIBS. Compared with the common calibration method based on one analytical line, the relative standard deviation was reduced from above 20% to below 10%, and the accuracy was increased by more than 5 times for Mn and more than 6 times for Si.

  17. Basic properties of sintering dust from iron and steel plant and potassium recovery.

    PubMed

    Zhan, Guang; Guo, Zhancheng

    2013-06-01

    With the production of crude steel, China produces several million tons of sintering dusts which contain a great deal of valuable metals such as, K, Na, Zn, Pb. If discharged directly without adequate treatment, these elements can lead to adverse effects on the environment. Therefore, it is very necessary to determine how to separate these elements from the dust before discharge. Several physical and chemical detection methods were used to study the basic properties of sintering dust. At the same time, preliminary experiments on the recovery of the potassium resources from the sintering dust were carried out. The mean particle size of the electrostatic precipitator (ESP) dust determined by a laser granulometer was 41.468 microm. Multi-point BET and single-point BET analysis showed that the surface area of the ESP dust was 2.697 m2/g. XRD measurements detected the following phases in the ESP dust: Fe2O3, Fe3O4, KCl and NaCl, and Fe2O3, Fe3O4 and SiO2 in the water-washed dust. SEM-EDS results proved that in the ESP dust, K mostly existed in the form of KCl particles without being coated. Leaching experiments showed that the KCl in the ESP dust could be separated and recovered by water leaching and fractional crystallization. Through the recovery experiments, the yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.03%, 13.58%, 14.03% and 9.97%, respectively. This process is technically viable and considerable in economic benefit. There was almost no secondary pollution produced in the whole recovery process.

  18. Facile fabrication of micro-nano-rod structures for inducing a superamphiphobic property on steel surface

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yu, Sirong

    2016-01-01

    The development of the lyophobic surface has potentially practical value in many fields. In this study, a superamphiphobic ZnO film was fabricated on X90 pipeline steel surface via a combined approach using electrodeposition, hydrothermal treatment and chemical modification. The ZnO with micro-nano-rod structures was in situ grown on the deposited Zn coating, and the chemical modification achieved superomniphobic property of the ZnO film. The contact angles of water and glycerol on this film were about 157.59° and 153.76°, respectively, and the sliding angles of them were <10°. In addition, the superamphiphobic ZnO film was excellent repellent to other liquids, including salted water, ethanol-water, crude oil and wax. Both the morphology and the low-surface-energy material play key roles in fabricating the superamphiphobic ZnO film on the steel surface. Importantly, the deposited Zn coating and the superamphiphobic ZnO film ensure the surface with corrosion resistance and excellent lyophobic property, respectively.

  19. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  20. Fatigue crack growth properties of a cryogenic structural steel at liquid helium temperature

    SciTech Connect

    Konosu, Shinji; Kishiro, Tomohiro; Ivano, O.; Nunoya, Yoshihiko; Nakajima, Hideo; Tsuji, Hiroshi

    1996-01-01

    The structural materials of the coils of superconducting magnets utilized in thermonuclear fusion reactors are used at liquid helium (4.2 K) temperatures and are subjected to repeated thermal stresses and electromagnetic forces. A high strength, high toughness austenitic stainless steel (12Cr-12Ni-10Mn-5Mo-0.2N) has recently been developed for large, thick-walled components used in such environments. This material is non-magnetic even when subjected to processing and, because it is a forging material, it is advantageous as a structural material for large components. In the current research, a large forging of 12Cr-12Ni-10Mn-5Mo-0.2N austenitic stainless steel, was fabricated to a thickness of 250 mm, which is typical of section thicknesses encountered in actual equipment. The tensile fatigue crack growth properties of the forging were examined at liquid helium temperature as a function of specimen location across the thickness of the forging. There was virtually no evidence of variation in tensile strength or fatigue crack growth properties attributable to different sampling locations in the thickness direction and no effect of thickness due to the forging or solution treatment associated with large forgings was observed.

  1. Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels

    SciTech Connect

    Griffin, John, A.; Bates, Charles, E.

    2005-09-19

    The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designers with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.

  2. A mechanical property and stress corrosion evaluation of 431 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties of type 431 stainless steel in two conditions: annealed bar and hardened and tempered bar are presented. Test specimens, manufactured from approximately 1.0 inch (2.54 cm) diameter bar stock, were tested at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C). The test data indicated excellent tensile strength, notched/unnotched tensile ratio, ductility, shear, and impact properties at all testing temperatures. Results of the alternate immersion stress corrosion tests on stressed and unstressed longitudinal tensile specimens 0.1250 inch (0.3175 cm) diameter and transverse C-ring specimens, machined from 1.0 inch (2.54 cm) diameter bar stock, indicated that the material is not susceptible to stress corrosion cracking when tested in a 3.5 percent NaCl solution for 180 days.

  3. Structure and mechanical properties of as-received and heat-treated stainless steel orthodontic wires.

    PubMed

    Khier, S E; Brantley, W A; Fournelle, R A

    1988-03-01

    A combination of x-ray diffraction analysis with mechanical testing in tension and bending has been used to investigate the metallurgical structures and mechanical properties for as-received and heat-treated stainless steel orthodontic wires. Two different proprietary wire types were selected, having a wide range in cross-sectional dimensions: 0.016-, 0.030-, and 0.050- or 0.051-inch diameters, and 0.017 X 0.025-inch rectangular specimens. Heat treatments were performed for 10 minutes in air at temperatures of 700 degrees, 900 degrees, and 1100 degrees F. The x-ray diffraction patterns showed that the as-received 0.016-inch diameter and 0.017 X 0.025-inch wires of both proprietary types consisted of a two-phase structure containing a martensitic phase along with the austenitic phase. This duplex structure was converted entirely to austenite with heat treatment for one wire type, but persisted after heat treatment for the other wire type. The largest diameter, 0.050- or 0.051-inch, wires of both types were single-phase austenitic structure for both the as-received and heat-treated conditions. Evidence of substantial preferred crystallographic orientation or texturing in these orthodontic wires was also found by x-ray diffraction. As in our previous studies, the modulus of elasticity in bending was significantly less than the value obtained in tension for only the smaller cross-sectional wires. The 0.05 radian flexural yield strength correlated more closely with the 0.2% offset yield strength in tension than with the yield strength for 0.05% and 0.1% permanent offsets.

  4. Tritium and decay helium effects on the fracture toughness properties of types 316L, 304L and 21Cr-6Ni-9Mn stainless steels

    SciTech Connect

    Morgan, M.J.; Tosten, M.H

    1994-10-01

    J-integral fracture mechanics techniques and electron microscopy observations were used to investigate the effects of tritium and its radioactive decay product, {sup 3}He, on Types 316L, 304L and 21Cr-6Ni-9Mn stainless steels. Tritium-exposed-and-aged steels had lower fracture-toughness values and shallower sloped crack-growth-resistance curves than unexposed steels. Both fracture-toughness parameters decreased with increasing concentrations of {sup 3}He. The fracture-toughness reductions were accompanied by a change in fracture mode from microvoid-nucleation-and-growth processes in control samples to grain-and-twin-boundary fracture in tritium-charged-and-aged samples. Type 316L stainless steel had the highest fracture-toughness values and Type 21Cr-6Ni-9Mn had the lowest. Samples containing {sup 3}He but degassed of tritium had fracture toughness properties that were similar to uncharged samples. The results indicate that helium bubbles enhance the embrittlement effects of hydrogen by affecting the deformation properties and by increasing localized hydrogen concentrations through trapping effects.

  5. Microstructures and Mechanical Properties of a New As-Hot-Rolled High-Strength DP Steel Subjected to Different Cooling Schedules

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Du, Lin-Xiu; Wang, Jian-Jun; Gao, Cai-Ru; Yang, Tong-Zi; Wang, An-Yang; Misra, R. D. K.

    2013-11-01

    Controlled rolling followed by accelerated cooling was carried out in-house to study the microstructure and mechanical properties of a low carbon dual-phase steel. The objective of the study described here was to explore the effect of cooling schedule, such as air cooling temperature and coiling temperature, on the final microstructure and mechanical properties of dual-phase steels. Furthermore, the precipitation behavior and yield ratio are discussed. The study demonstrates that it is possible to obtain tensile strength and elongation of 780 MPa and 22 pct, respectively, at the two cooling schedules investigated. The microstructure consists of 90 pct ferrite and 10 pct martensite when subjected to moderate air cooling and low temperature coiling, such that the yield ratio is a low 0.69. The microstructure consists of 75 pct ferrite and 25 pct granular bainite with a high yield ratio of 0.84 when the steel is directly cooled to the coiling temperature. Compared to the conventional dual-phase steels, the high yield strength is attributed to precipitation hardening induced by nanoscale TiC particles and solid solution strengthening by high Si content. The interphase precipitates form at a suitable ledge mobility, and the row spacing changes with the rate of ferrite transformation. There are different orientations of the rows in the same grain because of the different growth directions of the ferrite grain boundaries, and the interface of the two colonies is devoid of precipitates because of the competitive mechanisms of the two orientations.

  6. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  7. Thermally Oxidized C, N Co-Doped ANATASE-TiO2 Coatings on Stainless Steel for Tribological Properties

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Shu, Xuefeng; Li, Xiuyan; Tang, Bin; Lin, Naiming

    2013-07-01

    Ti(C, N) coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. Carbon-nitrogen co-doped titanium dioxide (C-N-TiO2) coatings were fabricated by oxidative of the Ti(C, N) coatings in air. The prepared C-N-TiO2 coatings were characterized by SEM, XPS and XRD. Results reveal that the SS substrates were entirely shielded by the C-N-TiO2 coatings. The C-N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The tribological behavior of the coatings was tested with ball-on-disc sliding wear and compared with substrate. Such a C-N-TiO2 coatings showed good adhesion with the substrate and tribological properties of the SS in terms of much reduced friction coefficient and increased wear resistance.

  8. Decontamination of steel by melt refining: A literature review

    SciTech Connect

    Ozturk, B.; Fruehan, R.J.

    1994-12-31

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs.

  9. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  10. Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry

    SciTech Connect

    Simoes, A.M.P.; Ferreiro, M.G.S. ); Rondot, B.; Belo, M. . Centre d'Etudes de Chimie Metallurgique)

    1990-01-01

    Moss-Schottky plots and photoelectrochemical measurements were made on films formed at different potentials on AISI 304 stainless steel in a borate/boric acid solution, pH 9.2. The results allowed the determination of the semiconductive properties and band structure of the films, which account for the existence of two kinds of films depending on the formation potential. For potentials below 0 V (SCE), the results point out for a film with an inverse spinel structure constituted by Cr-substituted magnetite with two donor levels. Above 0 V only one donor level is detected, which should be Fe{sup 2 +} on tetrahedral sites.

  11. Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties

    SciTech Connect

    Penik, M.A. Jr.

    1997-04-01

    Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.

  12. Precipitation Behavior and Mechanical Properties of Ti-Mo Medium-Carbon Steel During Austenite to Bainite Transformation

    NASA Astrophysics Data System (ADS)

    Deng, Xiangtao; Wang, Zhaodong; Misra, R. D. K.; Han, Jie; Wang, Guodong

    2015-02-01

    The precipitation behavior and evolution of mechanical properties of Ti-Mo-bearing microalloyed medium-carbon steel during austenite to bainite transformation were studied, and two different cooling rates including ultrafast cooling (~80 °C/s) and accelerated cooling (~15 °C/s) during transformation were also investigated. The results suggest that Ti-Mo-bearing medium-carbon steel yield finer microstructure and nano-precipitates during austenite to bainite transformation during both ultrafast cooling and accelerated cooling processes. Yield strength and tensile strength obtained by ultrafast cooling process were higher than the accelerated cooling process, while the elongation was slightly reduced. Microstructural characterization indicated that grain refinement and precipitation hardening were the primary reasons for the increase in strength. Ultrafast cooling increased the density of dislocations and refined the grain size. Average size of precipitates containing Ti and Mo was 3-6 nm by ultrafast cooling process, while average precipitate size obtained by accelerated cooling process was 6-9 nm.

  13. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    PubMed

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability.

  14. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    NASA Astrophysics Data System (ADS)

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-01

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 μΩ cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  15. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    SciTech Connect

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-07

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 {mu}{Omega} cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  16. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    PubMed

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea. PMID:21133137

  17. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  18. Multiple pathways for steel regulation suggested by genomic and sequence analysis of the murine Steel gene

    SciTech Connect

    Bedell, M.A.; Copeland, N.G.; Jenkins, N.A.

    1996-03-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5{prime} flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5{prime} untranslated region (UTR), a 0.8-kb ORF and a long 3{prime} UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5{prime} UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3{prime} UTR. In addition, the 3{prime} UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. 39 refs., 4 figs.

  19. Multiple Pathways for Steel Regulation Suggested by Genomic and Sequence Analysis of the Murine Steel Gene

    PubMed Central

    Bedell, M. A.; Copeland, N. G.; Jenkins, N. A.

    1996-01-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5' flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5' untranslated region (UTR), a 0.8-kb ORF and a long 3' UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5' UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3' UTR. In addition, the 3' UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. PMID:8849898

  20. Seismic Rehabilitation of RC Frames by Using Steel Panels

    SciTech Connect

    Mowrtage, Waiel

    2008-07-08

    Every major earthquake in Turkey causes a large number of building suffer moderate damage due to poor construction. If a proper and fast retrofit is not applied, the aftershocks, which may sometimes come days or weeks after the main shock, can push a moderately damaged building into a major damage or even total collapse. This paper presents a practical retrofit method for moderately damaged buildings, which increases the seismic performance of the structural system by reducing the displacement demand. Fabricated steel panels are used for the retrofit. They are light-weight, easy to handle, and can be constructed very quickly. Moreover, they are cheap, and do not need formwork or skilled workers. They can be designed to compensate for the stiffness and strength degradation, and to fit easily inside a moderately damaged reinforced concrete frame.To test the concept, a half-scale, single-story 3D reinforced concrete frame specimen was constructed at the shake-table laboratories of the Kandilli Observatory and Earthquake Research Institute of Bogazici University, and subjected to recorded real earthquake base accelerations. The amplitudes of base accelerations were increased until a moderate damage level is reached. Then, the damaged RC frames was retrofitted by means of steel panels and tested under the same earthquake. The seismic performance of the specimen before and after the retrofit was evaluated using FEMA356 standards, and the results were compared in terms of stiffness, strength, and deformability. The results have confirmed effectiveness of the proposed retrofit scheme.

  1. Effects of thermal aging and neutron irradiation on the mechanical properties of stainless steel weld overlay cladding

    SciTech Connect

    Haggag, F.M.; Nanstad, R.K.

    1991-01-01

    Stainless steel weld overlay cladding was fabricated using the three-wire, series-arc method. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens. Since irradiation of the stainless steel cladding to 5 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV) was conducted at 288{degrees}C for 1605 h, tensile, Charpy V-notch (CVN), precracked Charpy V-notch (PCVN), and compact fracture toughness specimens were thermally aged at 288{degrees}C for 1605 h. Additional specimens are being aged to 20,000 and 50,000 h. Thermal aging of three-wire, series-arc stainless steel weld overlay cladding at 288{degrees}C for 1604 h resulted in appreciable decrease (16%) in the CVN upper-shelf energy, but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect, following neutron irradiation at 288{degrees}C to a fluence of 5 {times} 10{sup 19} neutrons/cm{sup 2} (>MeV), was a 22% reduction in the CVN upper-shelf energy and a 29{degrees}C shift at the 41-J level. The effect of thermal aging on tensile properties was very small or negligible. However, the combined effect after neutron irradiation was an increase in the yield strength (6 to 34% at test temperatures from 288 to {minus}125{degrees}C) and no apparent change in ultimate strength and total elongation. Also, neutron irradiation reduced the initiation fracture toughness (J{sub Ic}) much more than did thermal aging. However, irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. The effects of long-term thermal exposure times (20,000 and 50,000 h) will be investigated when the specimen become available.

  2. Effects of thermal aging and neutron irradiation on the mechanical properties of stainless steel weld overlay cladding

    SciTech Connect

    Haggag, F.M.; Nanstad, R.K.

    1991-12-31

    Stainless steel weld overlay cladding was fabricated using the three-wire, series-arc method. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens. Since irradiation of the stainless steel cladding to 5 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV) was conducted at 288{degrees}C for 1605 h, tensile, Charpy V-notch (CVN), precracked Charpy V-notch (PCVN), and compact fracture toughness specimens were thermally aged at 288{degrees}C for 1605 h. Additional specimens are being aged to 20,000 and 50,000 h. Thermal aging of three-wire, series-arc stainless steel weld overlay cladding at 288{degrees}C for 1604 h resulted in appreciable decrease (16%) in the CVN upper-shelf energy, but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect, following neutron irradiation at 288{degrees}C to a fluence of 5 {times} 10{sup 19} neutrons/cm{sup 2} (>MeV), was a 22% reduction in the CVN upper-shelf energy and a 29{degrees}C shift at the 41-J level. The effect of thermal aging on tensile properties was very small or negligible. However, the combined effect after neutron irradiation was an increase in the yield strength (6 to 34% at test temperatures from 288 to {minus}125{degrees}C) and no apparent change in ultimate strength and total elongation. Also, neutron irradiation reduced the initiation fracture toughness (J{sub Ic}) much more than did thermal aging. However, irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. The effects of long-term thermal exposure times (20,000 and 50,000 h) will be investigated when the specimen become available.

  3. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  4. Microstructure Evolution and Corrosion Property of Medium-Carbon Alloy Steel after High-Temperature Carburization Process

    NASA Astrophysics Data System (ADS)

    Dewei, Deng; Tingting, Niu; Haiying, Liu; Lin, Zhang; Qi, Sun

    2016-04-01

    In the present study, the effects of carburization treatment on the microstructure and corrosion property of medium-carbon steels (40Cr) were investigated by means of X-ray diffraction (XRD), electron microprobe analyzer (EMPA), optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical corrosion, respectively. It was found that the microstructures beneath the surface were refined and a smooth transition microstructure from the surface to the core was observed in carburized samples. The fine plate-like but not granular carbide precipitation (Cr7C3) was observed in carburized sample by heat-treatment. The carburized specimens exhibited some effectiveness in the improvement of hardness and a smooth transition hardness profile. Corrosion resistance of 40Cr was improved by carburization treatment, resulting in the higher self-corrosion potential and the lower self-corrosion current density.

  5. Mechanical properties of 1950's vintage 304 stainless steel weldment components after low temperature neutron irradiation

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K. ); Hawthorne, J.R.; Hiser, A.L. ); Lott, R.A.; Begley, J.A.; Shogan, R.P. . Science and Technology Center)

    1991-01-01

    The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950's from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150{degrees}C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25{degrees}C and 125{degrees}C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125{degrees}C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J{sub def} at 1 mm crack extension) is between 20% to 65%; the range of J{sub 1C} values are 72.8 to 366 kJ/m{sup 2} for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies.

  6. Mechanical properties of 1950`s vintage 304 stainless steel weldment components after low temperature neutron irradiation

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K.; Hawthorne, J.R.; Hiser, A.L.; Lott, R.A.; Begley, J.A.; Shogan, R.P.

    1991-12-31

    The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950`s from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150{degrees}C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25{degrees}C and 125{degrees}C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125{degrees}C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J{sub def} at 1 mm crack extension) is between 20% to 65%; the range of J{sub 1C} values are 72.8 to 366 kJ/m{sup 2} for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies.

  7. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding †

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; Wang, Y.; Chen, J.; David, S. A.; Feng, Z.

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  8. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  9. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  10. Magnetic properties of unrusted steel drums from laboratory and field-magnetic measurements

    SciTech Connect

    Ravat, D.

    1996-09-01

    Detection and precise location of buried ferromagnetic objects and estimation of the type and quantity of the objects are becoming increasingly important in environmental investigations worldwide. If laboratory-derived magnetizations were used to model steel drums, the models would under-estimate the resulting magnetic anomalies considerably and, in turn, would overestimate the number of buried drums at an environmental investigation site. Apparent bulk magnetization values for unrusted vertically oriented 55 and 30 gallon drums have been calculated (i.e., the values corrected for the effect of shape demagnetization of the drums). These range from {approximately}90 to {approximately}125 SI units for volume susceptibility and from {approximately} 325 to {approximately} 2,750 A/m for remanent magnetization (based on eight 55 gallon and four 30 gallon drums). Further deviations in these values could arise from the and thickness of the steel and variations in manufacturing conditions affecting magnetizations. From the point of view of modeling the drums, at most source-to-observation distances applicable to environmental investigations, the equivalent source method is able to approximate the observed anomalies of steel drums better than the 3-D modeling method. With two years of rusting, magnetic anomalies of some of the drums have reduced, while in other drums they have slightly increased. The overall magnetic changes caused by rusting appear to be more complex than anticipated, at least in the initial phase of rusting.

  11. Tensile properties of ferritic/martensitic steels irradiated in STIP-I

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Long, B.; Tong, Z. F.

    2008-06-01

    Specimens of ferritic/martensitic (FM) steels T91, F82H, Optimax-A and the electron beam weld (EBW) of F82H were irradiated in the Swiss spallation neutron source (SINQ) Target-3 in a temperature range of 90-370 °C to displacement doses between 3 and 12 dpa. Tensile tests were performed at room temperature and the irradiation temperatures. The tensile test results demonstrated that the irradiation hardening increased with dose up to about 10 dpa. Meanwhile, the uniform elongation decreased to less than 1%, while the total elongation remained greater than 5%, except for an F82H specimen of 9.8 dpa tested at room temperature, which failed in elastic deformation regime. At higher doses of 11-12 dpa, the ductility of some specimens recovered, which could be due to the annealing effect of a short period of high temperature excursion. The results do not show significant differences in tensile properties for the different FM steels in the present irradiation conditions.

  12. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  13. The improvement of cryogenic mechanical properties of Fe-12 Mn and Fe-8 Mn alloy steels through thermal/mechanical treatments

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1979-01-01

    An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.

  14. Optimization of chemical vapor deposition diamond films growth on steel: correlation between mechanical properties, structure, and composition.

    PubMed

    Laikhtman, A; Rapoport, L; Perfilyev, V; Moshkovich, A; Akhvlediani, R; Hoffman, A

    2011-09-01

    In the present work we perform optimization of mechanical and crystalline properties of CVD microcrystalline diamond films grown on steel substrates. A chromium-nitride (Cr-N) interlayer had been previously proposed to serve as a buffer for carbon and iron inter-diffusion and as a matching layer for the widely differing expansion coefficients of diamond and steel. However, adhesion and wear as well as crystalline perfection of diamond films are strongly affected by conditions of both Cr-N interlayer preparation and CVD diamond deposition. In this work we assess the effects of two parameters. The first one is the temperature of the Cr-N interlayer preparation: temperatures in the range of 500 degrees C-800 degrees C were used. The second one is diamond film thickness in the 0.5 microm-2 microm range monitored through variation of the deposition time from approximately 30 min to 2 hours. The mechanical properties of so deposited diamond films were investigated. For this purpose, scratch tests were performed at different indentation loads. The friction coefficient and wear loss were assessed. The mechanical and tribological properties were related to structure, composition, and crystalline perfection of diamond films which were extensively analyzed using different microscopic and spectroscopic techniques. It was found that relatively thick diamond film deposited on the Cr-N interlayer prepared at the temperature similar to that of the CVD process has the best mechanical and adhesion strength. This film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. In other cases, cracking and delamination of the films took place at low to moderate indentation loads.

  15. Microstructure and mechanical property of ferritic-martensitic steel cladding under a 650 °C liquid sodium environment

    NASA Astrophysics Data System (ADS)

    Kim, Jun Hwan; Kim, Sung Ho

    2013-11-01

    A study was carried out to investigate the effect of liquid sodium on the microstructural and mechanical property of ferritic-martensitic steel (FMS) used for a Sodium-cooled Fast Reactor (SFR) cladding tube. A quasi-dynamic device characterized by natural circulation was constructed and a compatibility test between FMS and liquid sodium was performed. HT9 (12Cr-1MoWVN) and Gr.92 (9Cr-2WNbVNB) coupons as well as a Gr.92 cladding tube were immersed in the 650 °C liquid sodium up to 3095 h and a microstructural observation, a mechanical property evaluation such as nanoindentation, and a ring tension test were also done in this study. The results showed that both HT9 and Gr.92 exhibited macroscopic weight loss behavior where pitting and decarburization took place. Weight loss as well as the decarburization process decreased as the chromium content increased. A compatibility test over the cladding tube revealed that a decrease of the mechanical property caused by the aging process governed the whole mechanical property of the cladding tube.

  16. Effect of post-weld heat treatment on the mechanical properties of electron beam welded joints for CLAM steel

    NASA Astrophysics Data System (ADS)

    Wu, Qingsheng; Zheng, Shuhui; Liu, Shaojun; Li, Chunjing; Huang, Qunying

    2013-11-01

    In this paper the microstructure and mechanical properties of electron beam weld (EBW) joints for China low activation martensitic (CLAM) steel, which underwent a series of different post weld heat treatments (PWHTs) were studied. The aim of the study was to identify suitable PWHTs that give a good balance between strength and toughness of the EBW joints. The microstructural analyses were performed by means of optical microscope (OM) and scanning electron microscope (SEM). The mechanical properties were determined via tensile tests and Charpy impact tests. The results showed that the tensile strength of the as-weld joint (i.e. without any PWHT) were close to that of the base metal, but the impact toughness was only 13% of that of the base metal due to the existence of a delta-ferrite microstructure. To achieve a significant improvement in toughness a PWHT needs to be performed. If a one-step PWHT is applied tempering at 760 °C for 2 h gives EBW joints with high strength at a still acceptable toughness level. If a two-step PWHT is applied, a process involving quenching at 980 °C for 0.5 h followed by tempering at 740 °C or 760 °C for 2 h gives EBW joints with high strength and toughness properties. Whenever possible a two-step PWHT should be applied in favor of a one-step process, because of higher resulting strength and toughness properties.

  17. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    NASA Astrophysics Data System (ADS)

    Fernández, P.; Lancha, A. M.; Lapeña, J.; Serrano, M.; Hernández-Mayoral, M.

    2002-12-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 °C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 °C/5000 h and 600 °C/1000 h) the general microstructure of the steel (tempered martensite with M 23C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  18. The effect of TMCP parameters on the microstructure and mechanical properties of Ti-Nb microalloyed steel.

    PubMed

    Nowotnik, A; Siwecki, T

    2010-03-01

    The aim of this work was to study the influence of thermo-mechanical controlled process parameters on the refinement of microstructure during processing as well as the final microstructure and mechanical properties of Nb microalloyed steel. The steel was investigated and thermo-mechanical controlled process simulations were carried out using the material testing system 810. The effect of deformation sequences with constant finish rolling temperature and accelerated controlled cooling rate were studied with regard to strength and microstructure of heavy plate. The optimized thermo-mechanical controlled process parameters will be discussed in relation to the microstructure and precipitate evolution, as well as the mechanical properties of high-strength steel, microalloyed with Nb and Ti. The best results for strength were obtained for accelerated controlled cooling rates >5 degrees C s(-1) in the present cases where the finishing temperature was 850 degrees C, for both light and heavy reductions. PMID:20500376

  19. The effect of TMCP parameters on the microstructure and mechanical properties of Ti-Nb microalloyed steel.

    PubMed

    Nowotnik, A; Siwecki, T

    2010-03-01

    The aim of this work was to study the influence of thermo-mechanical controlled process parameters on the refinement of microstructure during processing as well as the final microstructure and mechanical properties of Nb microalloyed steel. The steel was investigated and thermo-mechanical controlled process simulations were carried out using the material testing system 810. The effect of deformation sequences with constant finish rolling temperature and accelerated controlled cooling rate were studied with regard to strength and microstructure of heavy plate. The optimized thermo-mechanical controlled process parameters will be discussed in relation to the microstructure and precipitate evolution, as well as the mechanical properties of high-strength steel, microalloyed with Nb and Ti. The best results for strength were obtained for accelerated controlled cooling rates >5 degrees C s(-1) in the present cases where the finishing temperature was 850 degrees C, for both light and heavy reductions.

  20. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  1. Finite Element Analysis of Deformation Due to Ball Indentation and Evaluation of Tensile Properties of Tempered P92 Steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Ballal, A. R.; Peshwe, D. R.; Mathew, M. D.

    2015-08-01

    Ball indentation (BI) technique has been effectively used to evaluate the tensile properties with minimal volume of material. In the present investigation, BI test carried out on P92 steel (9Cr-0.5Mo-1.8W), using 0.76 mm diameter silicon nitride ball indenter was modeled using finite element (FE) method and analyzed. The effect of test temperature [300 K and 923 K (27 °C and 650 °C)], tempering temperature [1013 K, 1033 K, and 1053 K (740 °C, 760 °C, and 780 °C)], and coefficient of friction of steel (0.0 to 0.5) on the tensile strength and material pile-up was investigated. The stress and strain distributions underneath the indenter and along the top elements of the model have been studied to understand the deformation behavior. The tensile strength was found to decrease with increase in tempering and test temperatures. The increased pile-up around the indentation was attributed to the decrease in strain hardening exponent ( n) with increase in the test temperature. The pile-up height determined from profilometry studies and FE analysis as well as the load depth curve from BI and FE analysis was in agreement. The maximum strain location below the indentation changes with the test temperature. Stress-strain curves obtained by conventional tensile, BI test, and representative stress-strain concepts of FE model were found exactly matching.

  2. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  3. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure

    NASA Astrophysics Data System (ADS)

    Hochanadel, P. W.; Edwards, G. R.; Robino, C. V.; Cieslak, M. J.

    1994-04-01

    The microstructure of investment cast PH 13-8 Mo stainless steel heat-treated to various conditions was studied using light and electron microscopy, electron probe microanalysis, and Mössbauer spectroscopy. The mechanical properties were investigated by using uniaxial tensile testing, hardness testing, and Charpy impact testing. The Β-NiAl strengthening precipitates, though detectable by electron diffraction, were difficult to resolve by transmission electron microscopy (TEM) in specimens aged at low temperatures (566 °C and below). A high dislocation density was observed in the lath martensitic structure. The higher strength and lower ductility observed at low aging temperatures was attributed to both the high dislocation density and the precipitation of Β-NiAl. When samples were aged at high temperatures (> 566 °C), a lower dislocation density and a reverted austenite fraction on the order of 15 pct were observed. Spherical Β-NiAl precipitates were observed in the overaged condition. The decrease in strength and corresponding increase in ductility observed in samples aged at temperatures above 566 °C were attributed to the reverted austenite and recovery. Mechanical properties were improved when the homogenizing temperature and time were increased. Electron probe microanalysis quantified the increased homogeneity realized by increasing homogenizing temperature and time. Elimination of the refrigeration step, which normally follows the solution treatment, did not degrade the mechanical properties. Mössbauer spectroscopy showed only minor decreases in the fraction of retained austenite when refrigeration followed the solution treatment.

  4. Fatigue Testing of TBC on Structural Steel by Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Kovarik, Ondrej; Medricky, Jan; Curry, Nicholas; Bjorklund, Stefan; Nylen, Per

    2015-01-01

    For applications with variable loading, fatigue performance of coated parts is of utmost importance. In this study, fatigue performance of conventional structural steel coated with thermal barrier coating (TBC) was evaluated in cyclic bending mode by "SF-Test" device. Testing was carried out at each stage of the TBC preparation process, i.e., for as-received and grit-blasted substrates, as well as for samples with Ni-based bond-coat and complete TBC: bond-coat with YSZ-based top-coat. Comparison of results obtained for different loading amplitudes supplemented by fractographic analysis enabled identification of dominating failure mechanisms and demonstrated applicability of the high-frequency resonant bending test for evaluation of fatigue resistance alteration at each stage of the TBC deposition process.

  5. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

    PubMed

    van Zomeren, André; van der Laan, Sieger R; Kobesen, Hans B A; Huijgen, Wouter J J; Comans, Rob N J

    2011-11-01

    Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH±12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained

  6. Electroless Co-P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-06-01

    The effect of Co-P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13-15% after coating with Co-P-CNT. The resistivity of the coating was measured to be 104 μΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample.

  7. Influence of PC-GTAW Parameters on the Microstructural and Mechanical Properties of Thin AISI 1008 Steel Joints

    NASA Astrophysics Data System (ADS)

    Kumar, Ravindra; Anant, Ramkishor; Ghosh, P. K.; Kumar, Ankit; Agrawal, B. P.

    2016-09-01

    Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.

  8. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Sathyajith, S.; Swaroop, S.

    2012-12-01

    This paper discusses the results of laser peening without coating on low carbon austenitic stainless steel 316L. Unlike typical experiments on laser peening without coating (LPwC) performed with frequency doubled (green) laser and underwater irradiation, the present study reports LPwC with infrared radiation using thin layer of water as confinement medium. The dependence of laser pulse density on properties such as surface roughness, surface residual stress, microhardness, and corrosion behavior of LPwC specimen were investigated. The magnitude of surface compressive residual stress on laser peened specimen showed appreciable improvement compared to unpeened base material. Microhardness of the specimen improved by 30-40% after LPwC. However, the potentiodynamic polarization study indicated that though there is an enhancement of corrosion potential (Ecorr), the corrosion current density (Icorr) increased with increase in laser pulse density.

  9. Influence of PC-GTAW Parameters on the Microstructural and Mechanical Properties of Thin AISI 1008 Steel Joints

    NASA Astrophysics Data System (ADS)

    Kumar, Ravindra; Anant, Ramkishor; Ghosh, P. K.; Kumar, Ankit; Agrawal, B. P.

    2016-07-01

    Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.

  10. Grain refinement of a nickel and manganese free austenitic stainless steel produced by pressurized solution nitriding

    SciTech Connect

    Mohammadzadeh, Roghayeh Akbari, Alireza

    2014-07-01

    Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, and micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.

  11. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    SciTech Connect

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the

  12. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    SciTech Connect

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  13. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    NASA Astrophysics Data System (ADS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  14. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  15. Electrochemical Treatment of Textile Dye Wastewater by Mild Steel Anode.

    PubMed

    Bhavya, J G; Rekha, H B; Murthy, Usha N

    2014-04-01

    This paper presents the results of the treatment of textile dye wastewater generated from a textile processing industry by electrochemical method. Experiments were conducted at current densities of 12, 24 and 48 A/m2 using mild steel as anode and cathode. During the various stages of electrolysis, parameters such as COD, color and BOD5 were determined in order to know the feasibility of electrochemical treatment. It was observed that increasing the electrolysis time and increased current density bring down the concentration of pollutants. Also COD removal rate and energy consumption during the electrolysis were calculated and presented in this paper. The present study proves the effectiveness of electrochemical treatment using MS as anode for TDW oxidation.

  16. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung

    Two types (CN66, CN71) of high interstitial stainless steels (HISSs) were investigated for down-hole application in sour gas well environments. Experiments were designed to identify factors that have a significant effect on mechanical properties. The three factors examined in the study were carbon + nitrogen content (0.66 or 0.71 mass %), cooling rate in quenching (air or water), and heat treatment time (2 or 4 hours). The results showed that the cooling rate, C+N content, and the two-factor interaction of these variables have a significant effect on the mechanical properties of HISSs. Based on the statistical analysis results on mechanical properties, extensive analyses were undertaken to understand the strengthening mechanisms of HISSs. Microstructure analysis revealed that a pearlite phase with a high carbide and/or nitride content is dissolved in the matrix by heat treatment at 1,200 ºC which is considered the dissolution to increase the concentration of interstitial elements in steels. The distribution of elements in HISSs was investigated by quantitative mapping using EPMA, which showed that the high carbon concentration (carbide/cementite) area was decreased by increases in both the cooling rate and C+N content. The ferrite volume fraction of each specimen is increased by an increase in cooling rate, because there is insufficient time to form austenite from retained ferrite. The lattice expansion of HISS was investigated by the calculation of lattice parameters under various conditions, and these investigations confirm the solid solution strengthening effect on HISSs. CN66 with heat treatment at fast cooling has the highest wear resistance; a finding that was consistent with hardening mechanisms that occur due to an increased ferrite volume fraction. In addition, precipitates on the surface and the chemical bonding of chromium were investigated. As the amount of CrN bonding increased, the wear resistance also increased. This study also assessed the

  17. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  18. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  19. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    NASA Astrophysics Data System (ADS)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  20. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  1. Structural features and mechanical properties of austenitic Hadfield steel after high-pressure torsion and subsequent high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Tukeeva, M. S.; Melnikov, E. V.; Maier, H. J.; Astafurova, E. G.

    2012-06-01

    Mechanisms of structure fragmentation and strengthening of single crystals of a Hadfield steel after warm torsion under high-pressure torsion (HPT) and subsequent annealing in a temperature range of 400-800°C have been studied. Multiple twinning and formation of ultrafine carbides upon HPT at 400°C ( P = 5 GPa) promote rapid fragmentation of the microstructure. They are responsible for the high mechanical properties of the steel after HPT and the thermal stability of the microstructure up to an annealing temperature of 500°C.

  2. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  3. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    SciTech Connect

    R, Shashanka Chaira, D.

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  4. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  5. Structural-phase states and wear resistance of surface formed on steel by surfacing

    SciTech Connect

    Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.

  6. Mineral CO2 sequestration by steel slag carbonation.

    PubMed

    Huijgen, Wouter J J; Witkamp, Geert-Jan; Comans, Rob N J

    2005-12-15

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar CO2 pressure, 100 degrees C, and a particle size of <38 microm. The two most important factors determining the reaction rate are particle size (<2 mm to <38 microm) and reaction temperature (25-225 degrees C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step. The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zone during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism.

  7. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  8. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  9. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    SciTech Connect

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  10. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  11. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    PubMed

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill.

  12. Evolution of Recrystallization by Changes in Magnetic Hysteresis Loop in a Non-Oriented Electric Steel Cold Rolled

    NASA Astrophysics Data System (ADS)

    da Silva, F. E.; Freitas, F. N. C.; Abreu, H. F. G.; Gonçalves, L. L.; Moura, E. P.; Silva, M. R.

    2011-06-01

    Non-oriented steels, with low carbon, are widely used in the fabrication of electrical motor nucleus. The performance of these motors is affected by the level of recrystallization. These steels can come from the steel plant in two different conditions: totally processed or semi-processed. The semi-processed steels have a partially deformed structure and are submitted to the final annealing process after reaching the end shape. An adequate annealing heat treatment is important to get an appropriate magnetic property. In the present study, samples of an electric steel, with the composition (0.05 wt% C, 1.28wt% Si, 0.29wt% Mn), cold rolled 50% in thickness, were withdrawn during the industrial heat treatment at temperatures of 575, 580, 600, 620 and 730 °C with the objective of evaluating the evolution of recrystalization with temperature. Magnetic properties were measured at room temperature in a vibrating sample magnetometer. Although the changes in magnetic hysteresis loop with temperature are difficult to observe, they have been identified by using pattern classification techniques, such as principal-component analysis and Karhunen-Loève expansion. These tools have been applied to vectors which are built from each hysteresis loop, properly renormalized, whose components correspond to amplitude of the loop at given equally spaced values of the renormalized field. The samples have been classified in four sets, namely, set A corresponding to temperatures 575/580, set B corresponding to temperatures 600/620, set C corresponding to the samples without annealing heat treatment, and set D corresponding to recrystallized samples. The results for the classification of the different microstructures have been obtained by using both techniques, and in particular a 100% success rate has been reached by using Karhunen-Loève expansion.

  13. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    SciTech Connect

    Liu, W.S.; Cai, Q.S. Ma, Y.Z.; Wang, Y.Y.; Liu, H.Y.; Li, D.X.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and the failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.

  14. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  15. Window type: 4x4 multipaned steel window flanked by 1x4 multipaned ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 4x4 multipaned steel window flanked by 1x4 multipaned steel, casements. Concrete stoop, entry overhang and pipe rail detail also illustrated. Building 36, facing northwest - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  16. Window type: paired 2x4 multipaned steel windows flanked by 1x4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 2x4 multipaned steel windows flanked by 1x4 multipaned steel casements, breaking building corner. Raised panel door front entry also illustrated. Ground floor detail Building 19, facing north - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  17. Window type: paired 3x2 multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 3x2 multipaned steel window flanked by 1x3 multipaned steel casements, breaking building corner. Broad overhanging eave also illustrated. Second story detail. Building 13, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  18. Mechanical-property degradation of cast stainless steel components from the Shippingport reactor

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    The mechanical properties of cast stainless steels from the Shippingport reactor have been characterized. Baseline properties for unaged materials were obtained from tests on either recovery-annealed material or material from a cooler region of the component. The materials exhibited modest decrease in impact energy and fracture toughness and a small increase in tensile strength. The fracture toughness J-R curve, J{sub IC} value, tensile flow stress, and Charpy-impact energy of the materials showed very good agreement with estimations based on accelerated laboratory aging studies. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy that would be achieved after long-term aging, were established from materials that were aged further in the laboratory at temperatures between 320 and 400{degrees}C. The results showed very good agreement with estimates; the activation energies ranged from 125 to 250 kJ/mole and the minimum room temperature impact energy was <75 J/cm{sup 2}. The estimated impact energy and fracture toughness J-R curve for materials from the Ringhals reactor hot and crossover-leg elbows are also presented.

  19. The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: an XPS and EIS study.

    PubMed

    Galicia, Policarpo; Batina, Nikola; González, Ignacio

    2006-07-27

    This work studies the evolution of 1018 carbon steel surfaces during 3-15 day immersion in alkaline sour medium 0.1 M (NH4)2S and 10 ppm CN(-) as (NaCN). During this period of time, surfaces were jointly characterized by electrochemical techniques in situ (electrochemical impedance spectroscopy, EIS) and spectroscopic techniques ex situ (X-ray photoelectron spectroscopy, XPS). The results obtained by these techniques allowed for a description of electrical and chemical properties of the films of corrosion products formed at the 1018 steel surface. There is an interconversion cycle of chemical species that form films of corrosion products whose conversion reactions favor two different types of diffusions inside the films: a chemical diffusion of iron cations and a typical diffusion of atomic hydrogen. These phenomena jointly control the passivity of the interface attacked by the corrosive medium.

  20. Modification of Alumina and Spinel Inclusions by Calcium in Liquid Steel

    NASA Astrophysics Data System (ADS)

    Verma, Neerav

    2011-12-01

    Steel Cleanliness plays a crucial role in determining steel properties such as toughness, ductility, formability, corrosion resistance and surface quality. The production of clean steel often involves the elimination or chemical and morphological modification of oxide and sulfide inclusions. Along with deteriorating the steel properties, solid inclusions can affect steel castability through nozzle clogging. Nozzle clogging occurs when solid inclusions accumulate in the caster pouring system such as the ladle shroud or submerged entry nozzle (SEN). Thus, it is important to understand how to achieve desired inclusion characteristics (shape, size and chemistry) through the steelmaking process. Among the various practices adopted in industries to counteract the effect of solid inclusions, modification of solid inclusions to liquid or partially liquid state through calcium treatment is one of the methods. Calcium can be used because it has a strong ability to form oxides and sulfides. In Al-killed steels, the most common inclusions are alumina (Al2O3) inclusions, which are solid at steelmaking temperatures. On calcium treatment, solid alumina inclusions are converted to calcium aluminates, which have liquidus temperatures lower than steelmaking temperature (1600°C) [14]. It has been found that alumina inclusions may contain some MgO and such inclusions are termed alumina magnesia spinels (Al2O3.xMgO) [18]. These spinels are more stable than alumina and it has been suggested that they might be more difficult to modify [18]. But, some authors have proposed that MgO can actually help in the liquefaction of inclusions, and have demonstrated successful modification of spinels by Ca treatment [20, 21]. In the present research, the mechanism of transformation of alumina and spinel inclusions upon calcium treatment was studied by characterizing transient evolution of inclusions. A vacuum induction was used for melting, making additions (Al, Al-Mg and CaSi2) and sampling. The

  1. Evaluation of grain boundary embrittlement of phosphorus added F82H steel by SSTT

    NASA Astrophysics Data System (ADS)

    Kim, Byung Jun; Kasada, Ryuta; Kimura, Akihiko; Tanigawa, Hiroyasu

    2012-02-01

    Non-hardening embrittlement (NHE) can be happened by a large amount of He on grain boundaries over 500-700 appm of bulk He without hardening at fusion reactor condition. Especially, at high irradiation temperatures (>≈420 °C), NHE accompanied by intergranular fracture affects the severe accident and the safety of fusion blanket system. Small specimen tests to evaluate fracture toughness and Charpy impact properties were carried out for F82H steels with different levels of phosphorous addition in order to simulate the effects of NHE on the shift of transition curve. It was found that the ductile to brittle transition temperature (DBTT) and reference temperature ( T0) after phosphorous addition is shifted to higher temperatures and accompanied by intergranular fracture at transition temperatures region. The master curve approach for evaluation of fracture toughness change by the degradation of grain boundary strength was carried out by referring to the ASTM E1921.

  2. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  3. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  4. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  5. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  6. Strain rate dependence of impact properties of sintered 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Lee, Woei-Shyan; Lin, Chi-Feng; Liu, Tsung-Ju

    2006-12-01

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 -3 s -1 to 7.5 × 10 3 s -1. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 × 10 3 s -1. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  7. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  8. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    SciTech Connect

    Morgan, M.J.

    1991-01-01

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels.

  9. The effects of tritium and decay helium on the fracture toughness properties of stainless steels

    SciTech Connect

    Morgan, M.J.

    1991-12-31

    J-integral fracture mechanics techniques and scanning electron microscopy observations were used to investigate the effects of tritium and its decay product, helium-3, on Types 304L, 316L, 21-6-9, A286, and JBK-75 (Modified A286) stainless steels. Tritium-exposed samples of each steel had lower fracture toughness values and less resistance to stable crack growth than control samples. Type 316L stainless steel was more resistant to the embrittling effects of tritium and decay helium than the other steels.

  10. Reports of the measurement of elastic properties of 51XX series steels for the heat treatment distortion project

    SciTech Connect

    Darling, T.; Migliori, A.; Armstrong, P.E.; Vaidya, R.; Scherer, C.; Lowe, T.

    1997-09-01

    We have measured the temperature dependence of the elastic constants of the 51XX series steels [gear steels] for a range of phases. At RT the normalized steel (pearlite) has the highest value of the moduli, the bainite phase the next highest, and martensite the lowest. Extrapolation of the austenite suggests that at RT austenite has lower moduli than martensite. For all the grades and phases of steels examined, the behavior of the elastic constants is similar: a curve could be drawn for each of the moduli from all the phases and all the grades would not deviate by more than {+-}4%. The normalized phase (100% pearlite in 5180) is stable up to 900 C. Bainite is stable up to 500 C. Martensite starts to change above 150 C as it tempers or strain relieves; once this is complete, the martensite moduli increase to similar values to bainite. Extrapolations are discussed. Behavior in lower carbon steels (5140, 5120) should conform to above; there is no explanation for the anomalous behavior of the quenched 5120 steel.

  11. Residual stress measurements in forced convective quenched steel bars by means of neutron diffraction

    SciTech Connect

    Hernandez-Morales, B.; Hawbolt, B.E.; Brimacombe, J.K.

    1996-12-31

    The residual stress distributions in 38.1 mm-dia., forced convective quenched bars of interstitial-free (IF), 1045 carbon, and alloyed steels were determined by neutron diffraction. The IF and 1045 carbon steel quenched bars exhibited compressive axial and circumferential (hoop) residual stresses near the surface and tensile values at the center. The radial residual stresses were tensile at all radial positions, decreasing towards zero near the surface. In contrast, the measured axial and circumferential components of the residual stress tensor in the alloyed eutectoid steel quenched bar were tensile near the surface and decreased to compressive values at the center. The radial component showed a maximum compressive value at the center and approached zero close to the surface. Metallographic analysis and hardness testing of the three steel specimens, revealed that the IF steel had transformed completely to ferrite, while the 1045 carbon steel bar transformed to martensite near the surface and a mixture of pearlite, ferrite and martensite at the center. On the other hand, the alloyed eutectoid steel specimen transformed entirely to martensite with small amounts of bainite near the center of the rod. The observed differences in the residual stress distributions in the three steels were explained based on the sequence of phase transformations that took place during quenching.

  12. Effects of Heat Treatment on the Microstructure and Mechanical Properties of Low-Carbon Steel with Magnesium-Based Inclusions

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Feng, Pei-Hsien; Pan, Yan-Chi; Hwang, Weng-Sing; Su, Yen-Hao; Lu, Muh-Jung

    2016-10-01

    The effects of heat treatment on the microstructure and mechanical properties of Mg-containing (7 ppm), low-carbon commercial steel (SS400) were investigated. Twenty different heat treatment paths were performed using a Gleeble 1500 thermomechanical simulator. It was observed by using an optical microscope that as the cooling rate increased and holding temperature decreased, the volume fractions of pearlite, Widmanstätten ferrite, and grain boundary allotriomorphs ferrite fell, whereas that of acicular ferrite (AF) increased. Quantifying the fractions of AF and other phases by using electron backscatter diffraction shows that the heat treatment path with a cooling rate of 20 K/s and holding temperature of 723 K (450 °C) induced the highest volume fraction (44 pct) of AF. As such, the toughness of the sample was increased 12.4 times compared with that observed in the sample containing 4 pct AF. Typical inclusions were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The results showed that the magnesium-based complex inclusions could act as nucleation sites of AF. Inclusions with a size of about 5 μm can serve as heterogeneous nucleation sites for AF. Mg-containing SS400 steel also has excellent hot-ductility in the temperature range of 973 K to 1273 K (700 °C to 1000 °C), and the minimum percentage reduction in area (R.A pct) value of around 63 pct at 1073 K (800 °C).

  13. Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Wang, Jun; Lin, Yuanhua; Gu, Tan; Zeng, Dezhi; Huang, Runbo; Ji, Xiong; Fan, Hongyuan

    2014-04-01

    Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ɛ-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ɛ-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.

  14. Effects of Heat Treatment on the Microstructure and Mechanical Properties of Low-Carbon Steel with Magnesium-Based Inclusions

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Feng, Pei-Hsien; Pan, Yan-Chi; Hwang, Weng-Sing; Su, Yen-Hao; Lu, Muh-Jung

    2016-08-01

    The effects of heat treatment on the microstructure and mechanical properties of Mg-containing (7 ppm), low-carbon commercial steel (SS400) were investigated. Twenty different heat treatment paths were performed using a Gleeble 1500 thermomechanical simulator. It was observed by using an optical microscope that as the cooling rate increased and holding temperature decreased, the volume fractions of pearlite, Widmanstätten ferrite, and grain boundary allotriomorphs ferrite fell, whereas that of acicular ferrite (AF) increased. Quantifying the fractions of AF and other phases by using electron backscatter diffraction shows that the heat treatment path with a cooling rate of 20 K/s and holding temperature of 723 K (450 °C) induced the highest volume fraction (44 pct) of AF. As such, the toughness of the sample was increased 12.4 times compared with that observed in the sample containing 4 pct AF. Typical inclusions were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The results showed that the magnesium-based complex inclusions could act as nucleation sites of AF. Inclusions with a size of about 5 μm can serve as heterogeneous nucleation sites for AF. Mg-containing SS400 steel also has excellent hot-ductility in the temperature range of 973 K to 1273 K (700 °C to 1000 °C), and the minimum percentage reduction in area (R.A pct) value of around 63 pct at 1073 K (800 °C).

  15. A 365 foot tall stainless steel stack supported by a trussed A-36 steel tower: Design and construction aspects

    SciTech Connect

    Nicholas, D.M.

    1995-10-01

    According to the requirements of the technical specifications prepared by A and E Neil and Gunter Inc. Custodis has designed a single-wall tower supported stack, with an 8 feet-0 inch I.D. stainless steel flue. The top of the stack was set at an elevation of 365 feet above grade. The stack is supported/suspended by a square A-36 steel trussed tower which reaches a height of 265 feet above grade. The breaching is set at approximately 100 feet above grade and the gas duct allows the stack to service two boilers, jointly or individually. The unusual design configuration required a trussed tower arrangement and details which allowed the gradual erection of the steel stack segments inside the tower`s square section, as well as the sequential lift of the stack segments toward their final elevation. This condition required careful selection of the tower vertical bracing and especially the horizontal bracing to provide a stable stack/tower structural system during both the erection phase and the final stage. The selected configuration allowed the stack segments to be assembled first, then lifted gradually within the tower`s square section along its entire height. Eventually, the stack was set at its final elevation and certain horizontal bracing trusses, which had initially been only partially erected, were completed to assure the tridirectional stability of the stack-tower final structural system. The overall construction was completed during the summer of 1993 and has performed successfully since, both operationally and structurally.

  16. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    SciTech Connect

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  17. Long-term aging of type 308 stainless steel welds: Effects on properties and microstructure

    SciTech Connect

    Alexander, D.J.; Vitek, J.M.; David, S.A.

    1994-09-01

    Multipass gas tungsten arc welds with type 308 stainless steel filler metal in type 304L base plate have been aged at 400, 475, or 550{degrees}C for times up to 5,000 h. The changes in mechanical properties as a result of these agings have been followed with tensile, impact, and fracture toughness testing, using subsize tensile, half-size Charpy, and 0.45T compact specimens, respectively. The changes in the microstructure were evaluated with optical and transmission electron microscopy. Relatively little change was observed in the tensile properties for any of the aging treatments, but significant embrittlement was observed in the impact and fracture toughness testing. The transition temperatures increased rapidly for aging at 475 or 550{degrees}C, and more slowly for aging at 400{degrees}C. The upper-shelf energies and the fracture toughness showed similar responses, with only a small decrease for 400{degrees}C aging, but much greater and rapid decreases with aging at 475 or 550{degrees}C. Aging at 400 or 475{degrees}C resulted in the spinodal decomposition of the ferrite phase in the weld metal into iron-rich alpha and chromium-enriched alpha prime. In addition, at 475{degrees}C G-phase precipitates formed homogeneously in the ferrite and also at dislocations. At 550{degrees}C carbides formed and grew at the ferrite-austenite interfaces, and some ferrite transformed to sigma phase. These changes must all be considered in determining the effect of aging on the fracture properties.

  18. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a

  19. Toughness and sulfide stress cracking resistance of 13Cr stainless steel OCTG manufactured by ausforming process

    SciTech Connect

    Miyata, Yukio; Yamane, Yasuyoshi; Tamaki, Katsuomi

    1995-10-01

    An ausformed and tempered 13Cr martensitic stainless steel newly developed for OCTG gives a better SSC resistance and a higher low temperature toughness than the conventional, quenched and tempered 13Cr steel. The value of Sc obtained by the NACE three point bent beam test for the ausformed and tempered 13Cr steel with the yield strength of 640MPa reaches 10.0 ({times}10ksi) as a result of carbide spheroidization during ausforming, which is compared with 8.0 ({times}10ksi) for the conventional 13Cr steel with the same strength. This treatment also gives a higher low temperature toughness of 150J in Charpy absorbed energy at 0 C owing to fine microstructure, which is compared with 70J for the conventional 13Cr steel.

  20. Effect of Heat Treatment Process on Mechanical Properties and Microstructure of a 9% Ni Steel for Large LNG Storage Tanks

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.

    2013-12-01

    In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.

  1. Neural network analysis for erosion wear of nickel-aluminide coatings on steel by plasma spraying

    NASA Astrophysics Data System (ADS)

    Mishra, S. C.; Chaithanya, M.; Satapathy, Alok; Ananthapadmanabhan, P. V.; Sreekumar, K. P.

    2010-02-01

    In the present investigation plasma spray inter metallic coating of Nickel-aluminide was deposited on mild steel substrates. The response of plasma sprayed nickel-aluminide coatings to the impingement of such solid particles has been presented in this work. Nickel pre-mixed with alumina powder is deposited on mild steel substances by atmospheric plasma spraying at various operating power level. The coatings are subjected to erosion wear test. An erosion test setup developed in our laboratory is used to simulate real time erosive situations. Dry silica sand of average particle size 400 micron is used as the erodent. The erosion rate is calculated on the basis of 'coating mass losses. The erosion studies are made and different velocities and impingement angles. A computational technique (ANN analysis) is used to predict the rate of erosion wear under various operational conditions. This technique involves database training to predict property parameter evolutions in process having large number of interdependent variables. This paper presents the database construction, implementation protocol and also the set of predicted results related to the erosion wear rate of nickel-aluminide coating. It is shown that the erosion wear is strongly influenced by the angle of impact. The test is conducted at room temperature i.e.27°C and 60% RH. Ni3Al coatings deposited at different power levels (10, 12, 16, 20, 24 kW) are found to exhibit different wear rate under similar test conditions.

  2. Detection of localized fatigue damage in steel by thermography

    NASA Astrophysics Data System (ADS)

    Medgenberg, Justus; Ummenhofer, Thomas

    2007-04-01

    Fatigue damage of unalloyed steels in the high cycle regime is governed by localized cyclic plastic deformations and subsequent crack initiation. The extent of early microplastic deformations depends on the applied stress level, stress concentration at macroscopic notches, surface treatment, residual stresses etc. The onset of a nonlinear material response can be regarded as an early indicator of fatigue damage. During fatigue loading thermoelastic coupling and thermoplastic dissipation cause characteristic temperature variations in tested specimens which have been assessed by a highly sensitive infrared camera. A specialized data processing method in the time domain has been developed which allows to separate the different contributions to the measured temperature signal. In contrast to other methods - as e.g. measuring the rise of mean temperature during fatigue loading - the proposed methodology is based on measurements during the stabilized temperature regimen and offers very high spatial resolution of localized phenomena. Investigations have been made on mildly notched cylindrical and also on welded specimens. The results confirm the close relation between the local temperature signal and typical fatigue phenomena. The new methodology allows for a much better localization and quantification of effects as cyclic plasticity, crack initiation, crack growth etc. The following paper presents considerations and experimental results of an application of thermography to the local assessment of fatigue damage.

  3. HYDROGEN OUTGASSING AND SURFACE PROPERTIES OF TIN COATED STAINLESS STEEL CHAMBERS.

    SciTech Connect

    HE,P.; HSEUH,H.C.; MAPES,M.; TODD,R.; WEISS,D.; WILSON,D.

    2002-11-11

    The stainless steel vacuum chambers of the 248m accumulator ring of Spallation Neutron Source (SNS) are coated with {approx} 100 nm of titanium nitride (TiN) to reduce the secondary electron yield. The coating is produced by DC magnetron sputtering using a long cathode imbedded with permanent magnets. The outgassing rates of several SNS half-cell chambers were measured with and without TiN coating, and before and after in-situ bake. One potential benefit of a TiN coating is to serve as hydrogen permeation barrier that reduces the ultimate outgassing rate. By varying the coating parameters, films of different surface roughness were produced and analyzed by Auger electron spectroscopy, scanning electron microscopy and atomic force microscopy to illustrate the dependence of the outgassing on the film structure.

  4. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  5. Properties of multilayer coatings produced by coaxial laser cladding

    NASA Astrophysics Data System (ADS)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  6. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Chih; Hou, Chun-Kan

    2010-02-01

    The effect on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel of nitriding time from 0 to 240 s in the acquired-inhibitor method has been studied. It was found that the volume fraction of nitride precipitates increased with increasing nitriding time. However, the average diameter of the nitride precipitates decreased with increasing nitriding time. Two kinds of nitride precipitates were found to have formed after primary recrystallization annealing. A fine rod-shaped precipitate was found to be Si 3N 4 and and a coarse, lozenge-shaped precipitate was MnSiN 2. Moreover, primary grain size decreased with increasing nitriding time due to retarding of the grain growth by precipitates. After secondary recrystallization annealing, the specimen that was nitrided for 30 s obtained the largest volume fraction of abnormal growth grains and largest area percentage of Goss grains. Conversely, specimens that were nitrided more or less than 30 s demonstrated poor secondary recrystallization and obtained low area percentage of Goss grains. Furthermore, the optimum nitriding time to obtain the best magnetic properties was 30 s. In addition, the optimum nitrogen content was 150 ppm.

  7. Sliding Wear Properties of HVOF Thermally Sprayed Nylon-11 and Nylon-11/Ceramic Composites on Steel

    NASA Astrophysics Data System (ADS)

    Jackson, L.; Ivosevic, M.; Knight, R.; Cairncross, R. A.

    2007-12-01

    Polymer and polymer/ceramic composite coatings were produced by ball-milling 60 μm Nylon-11 together with nominal 10 vol.% of nano and multiscale ceramic reinforcements and by HVOF spraying these composite feedstocks onto steel substrates to produce semicrystalline micron and nanoscale reinforced polymer matrix composites. Room temperature dry sliding wear performance of pure Nylon-11, Nylon-11 reinforced with 7 nm silica, and multiscale Nylon-11/silica composite coatings incorporating 7-40 nm and 10 μm ceramic particles were characterized using a pin-on-disk tribometer. Coefficient of friction and wear rate were determined as a function of applied load and coating composition. Surface profilometry and scanning electron microscopy were used to characterize and analyze the coatings and wear scars. The pure Nylon-11 coating experienced less wear than the composites due to the occurrence of two additional wear mechanisms: abrasive and fatigue wear.

  8. Properties of graphite-stainless steel composite in bipolar plates in simulated anode and cathode environments of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Renata

    2014-09-01

    The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm-3 H2SO4 + 2 ppm F- saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F- (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.

  9. Study of PRIMAVERA steel samples by positron annihilation spectroscopy technique II - Lifetime measurements

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Grafutin, V.; Ilyukhina, O.; Burcl, R.; Ballesteros, A.; Hähner, P.

    2012-02-01

    In the present article, a positron annihilation lifetime technique was used for the study of VVER-440/230 weld materials, manufactured in the frame of the international PRIMAVERA project on microstructural investigation of the irradiated WWER-440 reactor pressure vessel steel. The present results complement our previous report of positron angular correlation experiments and provide in-depth characterization of vacancy type defects behavior under irradiation and thermal treatment. The results give new insight into the previously published atom probe tomography and angular correlation of annihilation radiation studies. The measurements do not show any association of phosphorus or its segregation to the open volume defects investigated by positron annihilation spectroscopy. The embrittlement effects related to the phosphorus seem to be effectively annealed-out during 475 °C thermal treatment and the post annealing microstructure and mechanical properties of the material are consequently affected mostly by agglomerations of vacancy clusters coarsened during thermal treatment.

  10. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries.

    PubMed

    Wen, Y H; Peng, H B; Raabe, D; Gutierrez-Urrutia, I; Chen, J; Du, Y Y

    2014-01-01

    Shape memory alloys are a unique class of materials that can recover their original shape upon heating after a large deformation. Ti-Ni alloys with a large recovery strain are expensive, while low-cost conventional processed Fe-Mn-Si-based steels suffer from a low recovery strain (<3%). Here we show that the low recovery strain results from interactions between stress-induced martensite and a high density of annealing twin boundaries. Reducing the density of twin boundaries is thus a critical factor for obtaining a large recovery strain in these steels. By significantly suppressing the formation of twin boundaries, we attain a tensile recovery strain of 7.6% in an annealed cast polycrystalline Fe-20.2Mn-5.6Si-8.9Cr-5.0Ni steel (weight%). Further attractiveness of this material lies in its low-cost alloying components and simple synthesis-processing cycle consisting only of casting plus annealing. This enables these steels to be used at a large scale as structural materials with advanced functional properties.

  11. Examination of surface conditions and other physical properties of commonly used stainless steel acupuncture needles

    PubMed Central

    Xie, Yi Min; Xu, Shanqing; Zhang, Claire Shuiqing; Xue, Charlie Changli

    2014-01-01

    Objectives The present work examined the surface conditions and various other physical properties of sterilised single-use stainless steel acupuncture needles from two of the most popular brands widely used in many countries. Methods Scanning electron microscope (SEM) images were taken for 10 randomly chosen needles from each brand. Further SEM images were taken after each of these needles underwent a standard manipulation with an acupuncture needling practice gel. A comparison of forces and torques during the needling process was also carried out. Results The SEM images revealed significant surface irregularities and inconsistencies at the needle tips, especially for needles from one of the two brands. Metallic lumps and small, loosely attached pieces of material were observed on the surfaces of some needles. Some of the lumps and pieces of material seen on the needle surfaces disappeared after the acupuncture manipulation. If these needles had been used on patients, the metallic lumps and small pieces of material could have been deposited in human tissues, which could have caused adverse events such as dermatitis. Malformed needle tips might also cause other adverse effects including bleeding, haematoma/bruising, or strong pain during needling. An off-centre needle tip could result in the needle altering its direction during insertion and consequently failing to reach the intended acupuncture point or damaging adjacent tissues. Conclusions These findings highlight the need for improved quality control of acupuncture needles, with a view to further enhancing the safety and comfort of acupuncture users. PMID:24522003

  12. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    DOEpatents

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  13. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Hatchways closed by weathertight covers of steel or... Conditions of Assignment of Freeboard § 42.15-30 Hatchways closed by weathertight covers of steel or other... height above the deck of hatchway coamings fitted with weathertight hatch covers of steel or...

  14. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hatchways closed by weathertight covers of steel or... Conditions of Assignment of Freeboard § 42.15-30 Hatchways closed by weathertight covers of steel or other... height above the deck of hatchway coamings fitted with weathertight hatch covers of steel or...

  15. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Hatchways closed by weathertight covers of steel or... Conditions of Assignment of Freeboard § 42.15-30 Hatchways closed by weathertight covers of steel or other... height above the deck of hatchway coamings fitted with weathertight hatch covers of steel or...

  16. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Hatchways closed by weathertight covers of steel or... Conditions of Assignment of Freeboard § 42.15-30 Hatchways closed by weathertight covers of steel or other... height above the deck of hatchway coamings fitted with weathertight hatch covers of steel or...

  17. Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Shin, Sang Yong; Lee, Sunghak; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul

    2015-09-01

    Two types of strain-based American Petroleum Institute (API) X60 linepipe steels were fabricated at two finish cooling temperatures, 673 K and 723 K (400 °C and 450 °C), and the effects of the finish cooling temperatures on the tensile properties after thermal aging were investigated. The strain-based API X60 linepipe steels consisted mainly of polygonal ferrite (PF) or quasi-polygonal ferrite and the volume fraction of acicular ferrite increased with the increasing finish cooling temperature. In contrast, the volume fractions of bainitic ferrite (BF) and secondary phases decreased. The tensile properties before and after thermal aging at 473 K and 523 K (200 °C and 250 °C) were measured. The yield strength, ultimate tensile strength, and yield ratio increased with the increasing thermal aging temperature. The strain hardening rate in the steel fabricated at the higher finish cooling temperature decreased rapidly after thermal aging, probably due to the Cottrell atmosphere, whereas the strain hardening rate in the steel fabricated at the lower finish cooling temperature changed slightly after thermal aging. The uniform elongation and total elongation decreased with increasing thermal aging temperature, probably due to the interactions between carbon atoms and dislocations. The uniform elongation decreased rapidly with the decreasing volume fractions of BF and martensite and secondary phases. The yield ratio increased with the increasing thermal aging temperature, whereas the strain hardening exponent decreased. The strain hardening exponent of PL steel decreased rapidly after thermal aging because of the large number of mobile dislocations between PF and BF or martensite or secondary phases.

  18. Electrochemical synthesis and properties of ceria films grown on stainless steel

    NASA Astrophysics Data System (ADS)

    Živković, Lj. S.; Lair, V.; Lupan, O.; Ringuedé, A.

    2011-12-01

    Electrochemical synthesis of ceria films was performed on a stainless steel substrate in view of Solid Oxide Fuel Cells (SOFC) applications. Films were obtained from aqueous nitrate solutions via cathodic deposition method at room temperature. A constant potential value of -0.8 V/(SCE) was applied to reduce the molecular oxygen as hydroxide precursor, leading to a formation of adherent, homogeneous and covering films in 20 min deposition time. Structure, morphology and composition of as-grown coatings were studied by X-ray diffraction, Raman and energy-dispersive X-ray spectroscopy, as well as scanning electron microscopy. Cubic fluorite-type nanostructured ceria of leaf-like particles was synthesized. Thermal annealing (600°C, 1 h) was found to enhance ceria crystallinity.

  19. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  20. Effect of shielding gas composition on the properties of hyperbaric GMA welds in duplex steels

    SciTech Connect

    Ware, N.; Dos Santos, J.F.; Richardson, I.

    1994-12-31

    By using Ar/He based shielding gas mixtures with a variety of oxygen and nitrogen additions the absorption of active gas components into duplex stainless steels welded under hyperbaric conditions was examined. The pressure levels used corresponded to seawater depths of 100m, 200m and 300m. The GMAW process in the short circuit transfer mode was used for all tests. Both bead-on-plate and ``V`` butt joints were carried out. The effect of variations in the weld metal active gas components on the weld metal chemical composition and phase balance was investigated. In a second set of tests the effect of varying heat inputs on the phase balance and microstructure was assessed.