46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170...
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170...
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170...
78 FR 14122 - Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto the existing shell. Steel mills...
CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER ...
CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER SHELL HAS BEEN AFFIXED. SIGN SAYS "HERRICK IRON WORKS STEEL, OAKLAND, CALIFORNIA." NOTE CONDUIT FOR FUTURE INSTRUMENTATION. TOP OF STEEL CASE WILL BE LEVEL WITH BASEMENT CEILING. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 734. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
76 FR 78698 - Proposed Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...
Superplastic Forming of Duplex Stainless Steel for Aerospace Part
NASA Astrophysics Data System (ADS)
Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo
2011-08-01
In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, G.E.; Bell, F.R.
1963-06-26
A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)
37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...
37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
SIMS depth profiling of working environment nanoparticles
NASA Astrophysics Data System (ADS)
Konarski, P.; Iwanejko, I.; Mierzejewska, A.
2003-01-01
Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.
Stress analysis and failure of an internally pressurized composite-jacketed steel cylinder
NASA Technical Reports Server (NTRS)
Chen, Peter C. T.
1992-01-01
This paper presents a nonlinear stress analysis of a thick-walled compound tube subjected to internal pressure. The compound tube is constructed of a steel liner and a graphite-bismaleimide outer shell. Analytical expressions for the stresses, strains, and displacements are derived for all loading ranges up to failure. Numerical results for the stresses and the maximum value that the compound tube can contain without failure are presented.
Solid oxide fuel cell matrix and modules
Riley, B.
1988-04-22
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.
Large-scale thermal energy storage using sodium hydroxide /NaOH/
NASA Technical Reports Server (NTRS)
Turner, R. H.; Truscello, V. C.
1977-01-01
A technique employing NaOH phase change material for large-scale thermal energy storage to 900 F (482 C) is described; the concept consists of 12-foot diameter by 60-foot long cylindrical steel shell with closely spaced internal tubes similar to a shell and tube heat exchanger. The NaOH heat storage medium fills the space between the tubes and outer shell. To charge the system, superheated steam flowing through the tubes melts and raises the temperature of NaOH; for discharge, pressurized water flows through the same tube bundle. A technique for system design and cost estimation is shown. General technical and economic properties of the storage unit integrated into a solar power plant are discussed.
NASA Technical Reports Server (NTRS)
Woods, Jody L.
2015-01-01
This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.
Altitude Wind Tunnel at the NACA’s Aircraft Engine Research Laboratory
1945-06-21
Two men on top of the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The tunnel was a massive rectangular structure, which for years provided one of the highest vantage points on the laboratory. The tunnel was 263 feet long on the north and south legs and 121 feet long on the east and west sides. The larger west end of the tunnel, seen here, was 51 feet in diameter. The east side of the tunnel was 31 feet in diameter at the southeast corner and 27 feet in diameter at the northeast. The throat section, which connected the northwest corner to the test section, narrowed sharply from 51 to 20 feet in diameter. The AWT’s altitude simulation required temperature and pressure fluctuations that made the design of the shell more difficult than other tunnels. The simultaneous decrease in both pressure and temperature inside the facility produced uneven stress loads, particularly on the support rings. The steel used in the primary tunnel structure was one inch thick to ensure that the shell did not collapse as the internal air pressure was dropped to simulate high altitudes. It was a massive amount of steel considering the World War II shortages. The shell was covered with several inches of fiberglass insulation to retain the refrigerated air and a thinner outer steel layer to protect the insulation against the weather. A unique system of rollers was used between the shell and its support piers. These rollers allowed for movement as the shell expanded or contracted during the altitude simulations. Certain sections would move as much as five inches during operation.
Containers and systems for the measurement of radioactive gases and related methods
Mann, Nicholas R; Watrous, Matthew G; Oertel, Christopher P; McGrath, Christopher A
2017-06-20
Containers for a fluid sample containing a radionuclide for measurement of radiation from the radionuclide include an outer shell having one or more ports between an interior and an exterior of the outer shell, and an inner shell secured to the outer shell. The inner shell includes a detector receptacle sized for at least partial insertion into the outer shell. The inner shell and outer shell together at least partially define a fluid sample space. The outer shell and inner shell are configured for maintaining an operating pressure within the fluid sample space of at least about 1000 psi. Systems for measuring radioactivity in a fluid include such a container and a radiation detector received at least partially within the detector receptacle. Methods of measuring radioactivity in a fluid sample include maintaining a pressure of a fluid sample within a Marinelli-type container at least at about 1000 psi.
Valve assembly for use with high temperature and high pressure fluids
De Feo, Angelo
1982-01-01
The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.
Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim
2001-01-01
A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
Method for Detecting Perlite Compaction in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert
2010-01-01
Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.
Material with core-shell structure
Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI
2011-11-15
Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
Removable inner turbine shell with bucket tip clearance control
Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.
2000-01-01
A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.
Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.
1959-02-17
Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.
Mitri, F G; Fellah, Z E A
2006-07-01
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
Numerical analysis of the cylindrical rigidity of the vertical steel tank shell
NASA Astrophysics Data System (ADS)
Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr
2017-10-01
The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.
Power recovery system for coal liquefaction process
Horton, J.R.; Eissenberg, D.M.
A flow work exchanger for use in feeding a reactant material to a high-pressure reactor vessel comprises an outer shell, an inner shell concentrically disposed within said outer shell, means for conducting said reactant into the lower end of said lower shell and thence to said reactor vessel, and means for conducting a hotter product effluent from said reactor vessel into the upper end of said inner shell and out of the annulus between said inner and outer shells.
Power recovery system for coal liquefaction process
Horton, Joel R.; Eissenberg, David M.
1985-01-01
A flow work exchanger for use in feeding a reactant material to a high-pressure reactor vessel comprises an outer shell, an inner shell concentrically disposed within said outer shell, means for conducting said reactant into the lower end of said lower shell and then to said reactor vessel, and means for conducting a hotter product effluent from said reactor vessel into the upper end of said inner shell and out of the annulus between said inner and outer shells.
NASA Astrophysics Data System (ADS)
Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.
2017-03-01
Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
NIF Double Shell outer/inner shell collision experiments
NASA Astrophysics Data System (ADS)
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Zone heated diesel particulate filter electrical connection
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-03-30
An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Hilburger, Mark W.
2010-01-01
The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.
Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.
Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi
2010-11-01
Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Outer Continental Shelf Minor Source/Title V Minor Permit Modification Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States Environmental Protection Agency (EPA... decision granting Shell Offshore Inc.'s (``Shell'') request for minor modifications of Clean Air Act Outer...
77 FR 24980 - Notice on Outer Continental Shelf Oil and Gas Lease Sales
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Notice on Outer Continental Shelf Oil... Outer Continental Shelf oil and gas lease sales to be held during the bidding period May 1, 2012... Corporation ExxonMobil Exploration Company Group II. Shell Oil Company Shell Offshore Inc. SWEPI LP Shell...
NASA Astrophysics Data System (ADS)
Major, Maciej; Kosiń, Mariusz
2017-12-01
The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu
2011-12-01
Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.
Analysis of stress-strain state of support ring of vertical steel tank RVS-20000
NASA Astrophysics Data System (ADS)
Chepur, P. V.; Tarasenko, A. A.; Gruchenkova, A. A.
2018-05-01
The refined finite element model of the joint of a fixed roof with a support ring for a large-size vertical steel tank RVS-20000 is executed. It considers the real geometry of metal shell plates - in accordance with the TP-704-1-60 design, geometric and physical nonlinearity, and features of the non-axisymmetric design loading scheme of the structure. Dependences of the SSS parameters of the support joint design on the size of the subsidence zone of the outer contour of the RVS-20000 bottom are obtained. It is established that at the value of subsidence zone coefficient n ≤ 1, a region of critical values occurs, exceeding which leads to the appearance of unacceptable plastic deformations of metal structures. The authors performed interpretation of the postprocessing of the finite element analysis, as a result of which the dependences of the parameters of the stress-strain state on the value of the zone of warping were obtained. The graphs of the dependence of the values of strains and stresses of the metal structure of the support ring on the size of the subsidence zone along the arc of the outer contour of the bottom are presented.
1984-07-01
primary chamber is lined with 2 in. of insulating mineral wool and 4 in. of castable refractory with a service temperature of 2500*F. 5.5.5.4...material. The refractory should be air cooled by circulating combustion air between it and the outer shell. A minimum of 2-in.-high density mineral wool or...passes through the roof. The 50-ft-high and 6-ft-4-in.-O.D. stack is constructed of steel and lined with 4 in. of refractory and 2 in. of mineral
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Shelf Permits Issued to Shell Gulf of Mexico, Inc., and Shell Offshore, Inc. for the Discoverer... Clean Air Act Outer Continental Shelf (OCS) permit applications, one from Shell Gulf of Mexico, Inc., for operation of the Discoverer drillship in the Chukchi Sea and one from Shell Offshore, Inc...
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the...
Organic Rankine cycle receiver development
NASA Technical Reports Server (NTRS)
Haskins, H. J.
1981-01-01
The selected receiver concept is a direct-heated, once-through, monotube boiler operated at supercritical pressure. The cavity is formed by a cylindrical copper shell and backwall, with stainless steel tubing brazed to the outside surface. This core is surrounded by lightweight refractory insulation, load-bearing struts, and an outer case. The aperture plate is made of copper to provide long life by conduction and reradiation of heat away from the aperture lip. The receiver thermal efficiency is estimated to be 97 percent at rated conditions (energy transferred to toluene divided by energy incident on aperture opening). Development of the core manufacturing and corrosion protection methods is complete.
Glass/Epoxy Door Panel for Automobiles
NASA Technical Reports Server (NTRS)
Bauer, J. L. JR.
1985-01-01
Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.
49 CFR 230.26 - Tensile strength of shell plates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26 Section... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of steel or wrought-iron shell plates is not known, it shall be taken at 50,000 psi for steel and 45,000...
49 CFR 230.26 - Tensile strength of shell plates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26 Section... Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of steel or wrought-iron shell plates is not known, it shall be taken at 50,000 psi for steel and 45,000...
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-03-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-06-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
NASA Astrophysics Data System (ADS)
Fudger, Sean James
Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is paramount. X-ray Diffraction Residual Stress Analysis (XRD-RSA) or Neutron diffraction was performed on numerous systems in multiple steel shell thickness variations. The analysis shows variation in the measured strain and stress results due to outer steel thickness, difference in CTE between materials, and relative position within the composite. Improvements in mechanical properties, namely ductility and yield stress, are a direct result of these measured strains.
Coomes, Edmund P.; Luksic, Andrzej T.
1988-12-06
Radiation pellets having an outer shell, preferably, of Mo, W or depleted U nd an inner filling of lithium hydride wherein the outer shell material has a greater melting point than does the inner filling material.
Sound Transmission through Two Concentric Cylindrical Sandwich Shells
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, P.; Bock, C.W.; Trachtman, M.
1979-04-01
The expectation energy values E/sub k/, V/sub ee/, V/sub nn/, V/sub en/, and E/sub T/ have been calculated for H/sub 2/ and the C/sub 1/, C/sub 2/, and C/sub 3/ hydrocarbons using a (9,5) basis set and the experimental geometries. Treating the theoretical reaction heat, ..delta..E/sub T/, as the resultant of the nuclear repulsion term, ..delta..V/sub nn/, and the net electron energy term, ..delta..E/sub elec/ = ..delta..E/sub k/ + ..delta..V/sub ee/ + ..delta..V/sub en/, the contribution of inner and outer shell electron energies to ..delta..E/sub elec/, and hence to ..delta..E/sub T/, has been calculated for a large number of hydrocarbonmore » reactions by evaluating the Coulson--Neilson energies eta/sub i/, where eta/sub i/ = E/sub elec/. For the vast majority of reactions, 67/84, the change in inner shell electron energy, (..delta sigma..eta/sub i/)/sub inner/, accounts for more than 10% of ..delta..E/sub elec/, in many cases being as high as 20-35%. Furthermore, in addition to these cases in which the change in inner shell electron energy serves to augment (significantly) the change in outer shell electron energy, there are other cases in which the change in inner shell electron energy either exceeds in magnitude the change in outer shell energy, or is even opposite in sign, indicative of inner and outer shell electrons acting contrariwise. Inner shell electron energies contribute to the reaction heats because they are structure dependent, like the more familiar orbital energies epsilon, but the dependence is of a different kind.« less
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
A numerical study of active structural acoustic control in a stiffened, double wall cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.
1994-01-01
It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.
Design and Fabrication of the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid
2006-10-01
The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.
Li, Hongmei; Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan
2017-11-01
An NbC-Fe composite powder was synthesized from an Nb₂O₅/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl₂-NaCl. The composite has a core-shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core-shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel.
Electrophoretic manipulation of multiple-emulsion droplets
NASA Astrophysics Data System (ADS)
Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick
2014-02-01
Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.
Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2004-11-01
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.
Method of fabricating nested shells and resulting product
Henderson, Timothy M.; Kool, Lawrence B.
1982-01-01
A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-01-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Individual specification requirements applicable to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section... within an outer shell. ...
Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan
2017-01-01
An NbC–Fe composite powder was synthesized from an Nb2O5/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl2–NaCl. The composite has a core–shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core–shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel. PMID:29104266
Densification control and analysis of outer shell of new high-temperature vacuum insulated composite
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou
2017-11-01
A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...
2018-01-25
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere
NASA Astrophysics Data System (ADS)
Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai
2016-12-01
The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...
Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu
2004-08-16
An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.
NASA Technical Reports Server (NTRS)
Chlebowski, T.; Seward, F. D.; Swank, J.; Szymkowiak, A.
1984-01-01
X-ray observations of Eta Car obtained with the high-resolution imager and solid-state spectrometer of the Einstein observatory are reported and interpreted in terms of a two-shell model. A soft component with temperature 5 million K is located in the expanding outer shell, and the hard core component with temperature 80 million K is attributed to the interaction of a high-velocity stellar wind from the massive central object with the inner edge of a dust shell. Model calculations based on comparison with optical and IR data permit estimation of the mass of the outer shell (0.004 solar mass), the mass of the dust shell (3 solar mass), and the total shell expansion energy (less than 2 x 10 to the 49th ergs).
Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Starr, Stanley; Nurge, Mark
2012-01-01
Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...
LC and ferromagnetic resonance in soft/hard magnetic microwires
NASA Astrophysics Data System (ADS)
Tian, Bin; Vazquez, Manuel
2015-12-01
The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094
Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less
Nano-G research laboratory for a spacecraft
NASA Technical Reports Server (NTRS)
Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)
1991-01-01
An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.
Solid oxide fuel cell matrix and modules
Riley, Brian
1990-01-01
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.
Helmet of a laminate construction of polycarbonate and polysulfone polymeric material
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)
1991-01-01
An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.
Kitjaruwankul, Sunan; Wapeesittipan, Pattama; Boonamnaj, Panisak; Sompornpisut, Pornthep
2016-01-28
Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
The nylon scintillator containment vessels for the Borexino solar neutrino experiment
NASA Astrophysics Data System (ADS)
Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.
2014-06-01
The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, Margaret Stautberg
2015-12-01
To design an ultrasonic sensor to measure the attenuation and density of a slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ~12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of PZT5A epoxied to it. Themore » Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 cm and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.« less
Greenwood, Margaret Stautberg
2015-12-01
To design an ultrasonic sensor to measure the attenuation and density of slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ∼12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of lead zirconate titanate epoxied to it. The Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.
2011-02-01
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.
Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.
Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong
2015-06-17
Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.
46 CFR 42.13-15 - Definitions of terms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... line of the frame in a vessel with a metal shell and to the outer surface of the hull in a vessel with... vessel with a metal shell, and is the volume of displacement to the outer surface of the hull in a vessel... between the machinery space and peak bulkheads and continuous athwartships. When this lower deck is...
46 CFR 42.13-15 - Definitions of terms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... line of the frame in a vessel with a metal shell and to the outer surface of the hull in a vessel with... vessel with a metal shell, and is the volume of displacement to the outer surface of the hull in a vessel... between the machinery space and peak bulkheads and continuous athwartships. When this lower deck is...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... shore protection and beach and coastal restoration, or for use in construction projects funded in whole... Considering the Use of Outer Continental Shelf Sand, Gravel, and Shell Resources for Coastal Restoration and... will submit to BOEMRE to obtain OCS sand, gravel, and shell resources for use in shore protection and...
Tube-in-tube thermophotovoltaic generator
Ashcroft, John; Campbell, Brian; DePoy, David
1998-01-01
A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)
2009-01-01
For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.
Protein profiles of hatchery egg shell membrane
USDA-ARS?s Scientific Manuscript database
Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...
NASA Astrophysics Data System (ADS)
Hafni; Hadi, Syafrul; Edison
2017-12-01
Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Bulkheads and Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
Tube-in-tube thermophotovoltaic generator
Ashcroft, J.; Campbell, B.; DePoy, D.
1998-06-30
A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, T.
1998-06-16
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, Tomas
1998-01-01
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.
Loo, Billy W.
1982-01-01
A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ...
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong
2011-07-05
Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D
2015-12-31
Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less
Biomineral repair of abalone shell apertures.
Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A
2013-08-01
The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
NASA Astrophysics Data System (ADS)
Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.
2016-01-01
Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410 and 430 µm respectively, for 700, 900 and 1100 µm HFO droplets. The present numerical model is validated with experimental results available from the literature. Total variation between computational and experimental results is in the range of 3-7%.
Growth history of cultured pearl oysters based on stable oxygen isotope analysis
NASA Astrophysics Data System (ADS)
Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.
2007-12-01
We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.
Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun
2017-09-20
NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.
Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Von L. Richards
2011-09-30
This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspectionmore » procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.« less
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.
Coherent Extreme Ultraviolet Generation and Surface Studies Using Ultraviolet Excimer Lasers.
1986-02-10
of Outer-Shell Electrons" 7. "A Theoretical Model of Inner-Shell ......................... 30 A Excitation by Outer-Snell Electrons" E. "Anomalous...rays are feasible. Our work involves a program of activities, involving both experimental and theoretical components, to explore the physical... theoretical effort con- centrating on the character of high order multiquantum coupling in the inten- sity regime above 1017 WcM2 . In addition
Yu, Wenchao; He, Cheng; Cai, Zhongqiang; Xu, Fei; Wei, Lei; Chen, Jun; Jiang, Qiuyun; Wei, Na; Li, Zhuang; Guo, Wen; Wang, Xiaotong
2017-01-01
The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs. PMID:28955252
Novel Architecture for a Long-Life, Lightweight Venus Lander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugby, D.; Seghi, S.; Kroliczek, E.
2009-03-16
This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less
Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Reeves, Geoffrey D; Friedel, Reiner H W; Larsen, Brian A; Skoug, Ruth M; Funsten, Herbert O; Claudepierre, Seth G; Fennell, Joseph F; Turner, Drew L; Denton, Mick H; Spence, Harlan E; Blake, J Bernard; Baker, Daniel N
2016-01-01
We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.
Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions
Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; ...
2016-01-28
Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less
A novel investigation of heat transfer characteristics in rifled tubes
NASA Astrophysics Data System (ADS)
Jegan, C. Dhayananth; Azhagesan, N.
2018-05-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
SIRTF thermal design modifications to increase lifetime
NASA Astrophysics Data System (ADS)
Petrick, S. W.
1993-01-01
An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.
NASA Technical Reports Server (NTRS)
Schenk, Paul M.
2002-01-01
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Zhang, Lifeng
2016-06-01
In the current study, the three-dimensional fluid flow, heat transfer, and solidification in steel centrifugal continuous casting strands were simulated. The volume of fluid model was used to solve the multiphase phenomena between the molten steel and the air. The entrapment and final distribution of inclusions in the solidified shell were studied with the discussion on the effect of rotation behavior of the caster system. Main results indicate that after applying the rotation of the shell, the fluid flow transformed from a recirculation flow to a rotation flow in the mold region and was driven to flow around in the casting direction. As the distance below the meniscus increased, the distribution of the tangential speed of the flow and the centrifugal force along one diameter of the strand became symmetrical gradually. The jet flow from the nozzle hardly impinged on the same location on the shell due to the rotation of the shell during solidification. Thus, the shell thickness on the same height was uniform around, and the thinning shell and a hot spot on the surface of shell were avoided. Both of the measurement and the calculation about the distribution of oxide inclusions along the radial direction indicated the number of inclusions at the side and the center was more than that at the quarter on the cross section of billet. With a larger diameter, inclusions tended to be entrapped toward the center area of the billet.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Shelf Permits Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States... (OCS) permit to construct and Title V air quality operating permit to Shell Offshore, Inc. (``Shell'') for operation of the Kulluk conical drilling unit in the Beaufort Sea off the north coast of Alaska...
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2007-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
NASA Astrophysics Data System (ADS)
Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.
2004-03-01
Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).
Energy‐dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions
Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.
2016-01-01
Abstract We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy‐ and L shell‐dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions. PMID:27818855
Europa's differentiated internal structure: inferences from four Galileo encounters.
Anderson, J D; Schubert, G; Jacobson, R A; Lau, E L; Moore, W B; Sjogren, W L
1998-09-25
Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors
2012-11-01
temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell
Connector acts as quick coupling in coaxial cable application
NASA Technical Reports Server (NTRS)
Brejcha, A. G., Jr.
1966-01-01
Quick-coupling connector whose inner shells are threaded to the cable ends and whose outer shells have tracks that register in channels machined in the inner shells are rotated 45 deg to effect a locking of the coupling. This connector faithfully reproduces excellent electrical characteristics no matter how frequently assembled and disassembled.
Detection of MgCn in IRC + 10216: A new metal-bearing free radical
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Apponi, A. J.; Guelin, M.; Cernicharo, J.
1995-01-01
A new metal-containing molecule, MgCN, has been detected toward the late-type star IRC + 10216, using the NRAO 12 m and IRAM 30 m telescopes. The N = 11 approaches 10, 10 approaches 9, and 9 approaches 8 transtions of this species which has a (sup 2)Sigma(sup +) ground state, have been observed in the outer envelope of this object at 3 mm. For the N = 11 approaches 10 transitions, the two spin-rotation components are clearly resolved and conclusively identify this new radical. These measurements imply a column of density for MgCN of N(sub tot) approximately 10(exp 12)/sq cm in the outer shell, which corresponds to a fractional abundance of f approximately 7x10(exp -10). This molecule, the metastable isomer of MgNC, is the third metal-bearing species thus far identified in the outer shell of IRC + 10216, and its detection implies a ratio of MgNC/MgCN approximately 22/1. MgCN may be formed through a reaction scheme involving magnesium and HNC or CN, both prominent outer shell molecules, or through synthesis on grains.
Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core
NASA Astrophysics Data System (ADS)
Adams, M. M.; Stone, D.; Lathrop, D. P.
2014-12-01
Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.
... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
Schenk, Paul M
2002-05-23
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
46 CFR 190.07-5 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Bulkheads or decks of the A Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where the term steel or...
46 CFR 190.07-5 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Bulkheads or decks of the A Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where the term steel or...
46 CFR 190.07-5 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Bulkheads or decks of the A Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where the term steel or...
46 CFR 190.07-5 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Bulkheads or decks of the A Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where the term steel or...
46 CFR 190.07-5 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Bulkheads or decks of the A Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where the term steel or...
NASA Astrophysics Data System (ADS)
Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.
2017-12-01
Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.
Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...
2016-06-30
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, M.M.
1979-11-01
A simple method for reconstructing spherically symmetric objects from slit-imaged emission was recently described by Vest and Steel. Although this method is valid for infinitesimal slit widths and practically noise-free irradiance data, it is shown here that its validity does not extend to slits of practical width in the laser-fusion program. However, a method is given for reducing the Vest--Steel plots with practical apertures to obtain information on core diameter, shell diameter, and shell thickness.
Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting
NASA Astrophysics Data System (ADS)
Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming
2016-02-01
In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... strake must be at least Grade E steel or a grade of steel that has equivalent chemical properties, mechanical properties, and heat treatment, and that is specially approved by the Commandant (CG-522). (2) The... chemical properties, mechanical properties, and heat treatment, and that is specially approved by the...
Mussel Shell Evaluation as Bioindicator For Heavy Metals
NASA Astrophysics Data System (ADS)
Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra
2010-05-01
Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.
Development of Automotive Liquid Hydrogen Storage Systems
NASA Astrophysics Data System (ADS)
Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.
2004-06-01
Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.
Electromagnetic diagnostic system for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2017-09-01
A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.
NASA Astrophysics Data System (ADS)
Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.
2012-07-01
Cracking in continuous casting of steels has been one of the main problems for decades. Many of the cracks that occur during solidification are hot tears. To better understand the factors leading to this defect, microstructure formation is simulated for a low carbon (LCAK) and two high strength low alloyed (HSLA) steel grades during the initial stage of the process where the first solidified shell is formed inside the mould and where breakouts typically occur. 2D simulation is performed using the multiphase-field software MICRESS [1], which is coupled to the thermodynamic database TCFE6 [2] and the mobility database MOB2 [2], taking into account all elements which may have a relevant effect on the mechanical properties and structure formation during or subsequent to solidification. The use of a moving-frame boundary condition allows travelling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. A heterogeneous nucleation model is included to permit the description of morphological transitions between the initial solidification and the subsequent columnar growth region. Furthermore, a macroscopic one-dimensional temperature solver is integrated to account for the transient and nonlinear temperature field during the initial stage of continuous casting. The external heat flux boundary conditions for this process were derived from thermal process data of the industrial slab caster. The simulation results for the three steel grades have been validated by thickness measurements of breakout shells and microstructure observation of the corresponding grades. Furthermore, the primary dendrite spacing has been measured across the whole thickness of the shell and compared with the simulated microstructures. Significant microstructure differences between the steel grades are discussed and correlated with their hot-cracking behavior.
Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge
NASA Astrophysics Data System (ADS)
Sobótka, Maciej
2014-03-01
The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.
Architecture in outer space. [multilayer shell systems filled with gas
NASA Technical Reports Server (NTRS)
Pokrovskiy, G. I.
1974-01-01
Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.
1996-01-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.
1996-10-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
46 CFR 32.57-5 - Definitions-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... decks, means divisions that are composed of steel or an equivalent metal, suitably stiffened, and made intact with the main structure of the vessel, including the shell, structural bulkheads, or decks. They... relative to the passage of flame. (e) Steel. Where the term “steel or other equivalent metal” is used in...
46 CFR 32.57-5 - Definitions-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... decks, means divisions that are composed of steel or an equivalent metal, suitably stiffened, and made intact with the main structure of the vessel, including the shell, structural bulkheads, or decks. They... relative to the passage of flame. (e) Steel. Where the term “steel or other equivalent metal” is used in...
46 CFR 32.57-5 - Definitions-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... decks, means divisions that are composed of steel or an equivalent metal, suitably stiffened, and made intact with the main structure of the vessel, including the shell, structural bulkheads, or decks. They... relative to the passage of flame. (e) Steel. Where the term “steel or other equivalent metal” is used in...
46 CFR 32.57-5 - Definitions-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... decks, means divisions that are composed of steel or an equivalent metal, suitably stiffened, and made intact with the main structure of the vessel, including the shell, structural bulkheads, or decks. They... relative to the passage of flame. (e) Steel. Where the term “steel or other equivalent metal” is used in...
46 CFR 32.57-5 - Definitions-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... decks, means divisions that are composed of steel or an equivalent metal, suitably stiffened, and made intact with the main structure of the vessel, including the shell, structural bulkheads, or decks. They... relative to the passage of flame. (e) Steel. Where the term “steel or other equivalent metal” is used in...
In-Line Capacitance Sensor for Real-Time Water Absorption Measurements
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Perusich, Stephen A.
2010-01-01
A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.
Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes
NASA Astrophysics Data System (ADS)
Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu
In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.
Van Ommen Kloeke, F; Bryant, R D; Laishley, E J
1995-12-01
A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.
Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158
Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
The jump-off velocity of an impulsively loaded spherical shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabaud, Brandon M.; Brock, Jerry S.
2012-04-13
We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less
NRC approves spent-fuel cask for general use: Who needs Yucca Mountain?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, J.
1993-07-01
The Nuclear Regulatory Commission (NRC) on April 7, 1993, added Pacific Sierra Nuclear Associates`s (PSNA`s) VSC-24 spent-fuel container to its list of approved storage casks. Unlike previously approved designs, however, the cask was made available for use by utilities without site-specific approval. The VSC-24 (ventilated storage cask) is a 130-ton, 16-foot high vertical storage container composed of a ventilated concrete cask (VCC) housing a steel multi-assembly sealed basket (MSB). A third component, a transfer cask (MTC), shields, supports, and protects the MSB during fuel loading and VCC loading operations. The VCC is a cylindrical reinforced-concrete cask 29 inches thick, withmore » a 1.75-inch-thick A 36 steel liner. The cask contains eight vents-four on the top and four on the bottom-to provide for MSB (and fuel rod) cooling. Its concrete shell provides protection against shearing and penetration by tornado projectiles, protects the MSB in the event of a drop or tipover, and is designed to withstand internal temperatures of 350 degrees Farenheit. The VCC is closed with a bolted-down cover of 0.75-inch-thick A 36 steel. The MSB, which provides the primary boundary for 24 spent fuel rods, is a cylindrical steel shell with a thick shield plug and steel cover plates welded at each end. The shell and covers are constructed from SA 516 Grade 70 pressure vessel steel. Fuel is housed in a basket fabricated from SA 516 Grade 70 sheet steel. Penetrations in the MSB`s structural and shield lids allow for vacuum drying and backfilling with helium after fuel loading. Although its manufacturer claims a design life of 50 years, the NRC has licensed the VSC-24 cask for 20 years.« less
Zhang, Xinghao; Guo, Ruiying; Li, Xianglong; Zhi, Linjie
2018-06-01
Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].
Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong
2006-08-01
To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P < 0.05). The mean degree of straightening in stainless steel K files group was significantly bigger than in ProTaper group (P < 0.05). The canals prepared by ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.
NASA Technical Reports Server (NTRS)
Richards, Hadley T.
1954-01-01
A turbine blade with a porous stainless-steel shell sintered to a supporting steel strut has been fabricated for tests at the NACA by Federal-Mogul Corporation under contract from the Bureau of Aeronautics, Department of the Navy. The apparent permeability of this blade, on the average, more nearly approaches the values specified by the NAGA than did two strut-supported bronze blades in a previous investigation. Random variations of permeability in the present blade are substantialy greater than those of the bronze blades, but projected improvements in certain phases of the fabrication process are expected to reduce these variations.
Simulation of Corrosion Process for Structure with the Cellular Automata Method
NASA Astrophysics Data System (ADS)
Chen, M. C.; Wen, Q. Q.
2017-06-01
In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.
Feedthrough terminal for high-power cell
Kaun, T.D.
1982-05-28
A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.
NASA Astrophysics Data System (ADS)
Li, Wen; Wang, Tong; Na, Yu
2017-08-01
FRP tube-concrete-steel tube composite column (DSTC) was a new type of composite structures. The column consists of FRP outer tube and steel tube and concrete. Concrete was filled between FRP outer tube and steel tube. This column has the character of light and high strength and corrosion resistance. In this paper, properties of DSTC axial compression were studied in depth. The properties were studied by two groups DSTC short columns under axial compression performance experiment. The different size of DSTC short columns was importantly considered. According to results of the experiment, we can conclude that with the size of the column increases the ability of it to resist deformation drops. On the other hand, the size effect influences on properties of different concrete strength DSTC was different. The influence of size effect on high concrete strength was less than that of low concrete.
Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
NASA Astrophysics Data System (ADS)
Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar
2018-04-01
A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.
Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water
NASA Astrophysics Data System (ADS)
Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao
2018-03-01
F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.
Levitated Duct Fan (LDF) Aircraft Auxiliary Generator
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.
2011-01-01
This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko
In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.
High temperature oxidation behavior of ODS steels
NASA Astrophysics Data System (ADS)
Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.
2004-08-01
Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.
Larger sized wire arrays on 1.5 MA Z-pinch generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu
Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less
Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell
NASA Technical Reports Server (NTRS)
Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.
1987-01-01
During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.
49 CFR 179.400-9 - Stiffening rings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...
49 CFR 179.400-9 - Stiffening rings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...
49 CFR 179.400-9 - Stiffening rings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...
Lid design for low level waste container
Holbrook, R.H.; Keener, W.E.
1995-02-28
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.
Lid design for low level waste container
Holbrook, Richard H.; Keener, Wendell E.
1995-01-01
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Hypersonic research engine project. Phase 2: Aerothermodynamic integration model development
NASA Technical Reports Server (NTRS)
Jilly, L. F. (Editor)
1971-01-01
The fabrication of the various components of the HRE AIM was completed. The purge system necessary for the cavity bounded by the outer shell assembly and the outer cowl body was studied. Preparations were begun for establishing a format for test data acquisition and reduction.
Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...
2016-06-11
Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less
A surface crack in shells under mixed-mode loading conditions
NASA Technical Reports Server (NTRS)
Joseph, P. F.; Erdogan, F.
1988-01-01
The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.
Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less
Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl
NASA Astrophysics Data System (ADS)
Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.
2018-03-01
Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.
Mold Flux Crystallization and Mold Thermal Behavior
NASA Astrophysics Data System (ADS)
Peterson, Elizabeth Irene
Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.
Application of welded steel sandwich panels for tank car shell impact protection.
DOT National Transportation Integrated Search
2013-04-01
This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...
Application of welded steel sandwich panels for tank car shell impact protection
DOT National Transportation Integrated Search
2013-04-30
This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...
NASA Astrophysics Data System (ADS)
Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.
2016-04-01
Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f
Evaluation of the Mechanical Properties and Effectiveness of Countermine Boots.
1998-03-01
regarding comfort except that the 60 shanks overall length of approximately 5.7 in should allow normal flexure of the forefoot . Weight, however, is...When the electron beam strikes an element in the sample, electrons are ejected from inner atomic shells to outer shells resulting in ions in the
A novel metal flow imaging using electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Wondrak, Thomas; Soleimani, Manuchehr
2017-06-01
The measurement of gas-liquid metal two phase flow is a challenging task due to the opaqueness and the high temperatures. For instance, during continuous casting of steel the distribution of argon gas and liquid steel in the submerged entry nozzle is of high interest, since it influences the quality of the produced steel. In this paper we present the results of a feasibility study for applying the electrical capacitance tomography (ECT) to detect the outer surface of a liquid metal stream. The results of this study are the basis for the development of a new contactless sensor which should be able to detect the outer shape of a liquid metal jet using ECT and the bubbles inside the jet at the same time with mutual inductance tomography.
Angelescu, Daniel G; Caragheorgheopol, Dan
2015-10-14
The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.
Bergman, Werner
1986-01-01
An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.
Bergman, W.
1985-01-09
An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Manoel; Diaz, Marcos
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less
Torsional Alfvén Waves in a Dipolar Magnetic Field
NASA Astrophysics Data System (ADS)
Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.
2017-12-01
The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.
Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor
Hutter, Ernest; Pardini, John A.
1977-03-15
A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads.
Rogalla, N.S.; Carter, J.G.; Pojeta, J.
2003-01-01
The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an "inner" shell layer of finely textured porcelaneous and/or matted structure. This "inner" layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.
Turbine blade with spar and shell
Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL
2012-04-24
A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.
Core-Shell Structure of Intermediate Precipitates in a Nb-Based Z-Phase Strengthened 12% Cr Steel.
Rashidi, Masoud; Andrén, Hans-Olof; Liu, Fang
2017-04-01
In creep resistant Z-phase strengthened 12% Cr steels, MX (M=Nb, Ta, or V, and X=C and/or N) to Z-phase (CrMN, M=Ta, Nb, or V) transformation plays an important role in achieving a fine distribution of Z-phase precipitates for creep strengthening. Atom probe tomography was employed to investigate the phase transformation in a Nb-based Z-phase strengthened trial steel. Using iso-concentration surfaces with different concentration values, and subtracting the matrix contribution enabled us to reveal the core-shell structure of the transient precipitates between MX and Z-phase. It was shown that Z-phase forms by diffusion of Cr into NbN upon ageing, and Z-phase has a composition corresponding to Cr1+x Nb1-x N with x=0.08.
Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen
2010-01-01
A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.
Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material
Izzo, Valerie A.; Parks, Paul B.
2017-06-22
MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Fournier, K. B.; Colvin, J. D.
2015-06-15
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
May, M. J.; Fournier, K. B.; Colvin, J. D.; ...
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.
2015-06-01
High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... Drilling Programs in the Chukchi and Beaufort Seas, AK AGENCY: National Marine Fisheries Service (NMFS... harassment, by Shell Offshore Inc. (Shell) incidental to offshore exploration drilling on Outer Continental... drilling programs in 2010. ADDRESSES: The applications related to this action are available by writing to...
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Checa, Antonio G.; Macías-Sánchez, Elena; Ramírez-Rico, Joaquín
2016-01-01
The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure. PMID:27181457
NASA Astrophysics Data System (ADS)
Othman, Syed Muhammad Naufal bin Syed; Sulaiman, Erwan bin; Husin, Zhafir Aizat; Khan, Faisal; Mazlan, Mohamed Mubin Aizat
2015-05-01
This paper proposes an initial design of 12 slot, 10 pole outer-rotor field-excitation flux switching motor (FEFSM) with two different rotor width based from 2 different formula to design the rotor width. Hence, initial design include the three coil test to determine the U, W, V-phase, the flux strengthening and weakening, flux at various armature coil and field-excitation coil current, and finally the torque at various JA and JE. As for the materials, the stator and rotor consists of steel sheets made of electromagnetic steels, copper for armature coils and field excitation coils as the only field for magnetic flux source. There will be some design specification and restriction on outer-rotor FEFSM based on 2D-Finite Element Analysis will be applied to design the proposed machine.
New configuration for efficient and durable copper coating on the outer surface of a tube
Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...
2017-03-27
A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less
New configuration for efficient and durable copper coating on the outer surface of a tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.
A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less
Behaviour of wrapped cold-formed steel columns under different loading conditions
NASA Astrophysics Data System (ADS)
Baabu, B. Hari; Sreenath, S.
2017-07-01
The use of Cold Formed Steel (CFS) sections as structural members is widely accepted because of its light nature. However, the load carrying capacity of these sections will be less compared to hot rolled sections. This study is meant to analyze the possibility of strengthening cold formed members by wrapping it with Glass Fiber Reinforced Polymer (GFRP) laminates. Light gauge steel columns of cross sectional dimensions 100mm x 50mm x 3.15mm were taken for this study. The effective length of the section is about 750mm. A total of 8 specimens including the control specimen is tested under axial and eccentric loading. The columns were tested keeping both ends hinged. For both loading cases the buckling behaviour, ultimate load carrying capacity and load-deflection characteristics of the CFS columns were analyzed. The GFRP laminates were wrapped on columns in three different ways such that wrapping the outer surface of web and flange throughout the length of specimen, wrapping the outer surface of web alone throughout the length of specimen and wrapping the outer surface of web and flange for the upper half length of the specimen where the buckling is expected. For both loading cases, the results indicated that the column with wrapping at the outer surface of web and flange throughout the length of specimen provides better strength for it.
Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng
2013-04-14
Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Bulkheads or decks of the “A” Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... need meet no requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where...
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Bulkheads or decks of the “A” Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... need meet no requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Bulkheads or decks of the “A” Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... need meet no requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Bulkheads or decks of the “A” Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... need meet no requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Bulkheads or decks of the “A” Class shall be composed of steel or equivalent metal construction, suitably stiffened and made intact with the main structure of the vessel; such as shell, structural bulkheads, and... need meet no requirements relative to the passage of flame. (e) Steel or other equivalent metal. Where...
Hoover, William R.; Mead, Keith E.; Street, Henry K.
1977-01-01
The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.
Family of spherical models with special gravitational properties
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.
2015-03-01
A new method for studying the structural and gravitational properties of spherical systems based on an analysis of the ratio of the potentials for their subsystems and shells has been developed. It has been proven for the first time that the gravitational virial Z( r) of the subsystem without allowance for the influence of the outer shell is equal to twice the work done to disperce the subsystem's matter to infinity. A new class of spherical models has been constructed in which: (1) the ratio of the contribution to the potential at point r from the spherical subsystem to the contribution from the outer shell does not depend on radius and is equal to a constant γ; (2) the ratio of the gravitational energy W( r) to Z( r) for the spherical subsystem does not depend on r; and (3) the models are described by a power law of the density ρ = cr - κ and potential . Expressions for the gravitational energy W( r) and virial Z( r) have been found for the subsystem. The limiting case of ρ( r) ∝ r -5/2, where the subsystem's potential at any sampling point is exactly equal to the potential from the outer shell and Z( r) is equivalent to its gravitational energy W( r), is considered in detail. The results supplement the classical potential theory. The question about the application of the models to the superdense nuclear star cluster in the center of the Milky Way is discussed.
Free-form reticulated shell structures searched for maximum buckling strength
NASA Astrophysics Data System (ADS)
Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji
2017-10-01
In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.
Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram
2006-01-01
The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322
Monte Carlo simulations of nematic and chiral nematic shells
NASA Astrophysics Data System (ADS)
Wand, Charlie R.; Bates, Martin A.
2015-01-01
We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
49 CFR 178.601 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... proportion to the reduction in volume. (4) Variation 4. Variations are permitted in outer packagings of a... steel; (viii) An increase greater than 10% or any decrease in the steel thickness of the head, body, or... body), type (e.g., mechanically seamed or welded flange), and materials of closure (other than the...
49 CFR 178.601 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... proportion to the reduction in volume. (4) Variation 4. Variations are permitted in outer packagings of a... steel; (viii) An increase greater than 10% or any decrease in the steel thickness of the head, body, or... body), type (e.g., mechanically seamed or welded flange), and materials of closure (other than the...
49 CFR 178.601 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... proportion to the reduction in volume. (4) Variation 4. Variations are permitted in outer packagings of a... steel; (viii) An increase greater than 10% or any decrease in the steel thickness of the head, body, or... body), type (e.g., mechanically seamed or welded flange), and materials of closure (other than the...
Peharda, Melita; Calcinai, Barbara; Puljas, Sanja; Golubić, Stjepko; Arapov, Jasna; Thébault, Julien
2015-07-01
Pronounced differences with respect to the extent of infestation and the degree of Lithophaga lithophaga shell damage inflicted by euendolithic taxa at two sites in the Adriatic Sea representing different productivity conditions, are described. Shells collected from the eastern part of Kaštela Bay, which is characterized by higher primary productivity, have significantly more shell damage then the shell collected from a site on the outer coast of the island of Čiovo exposed to the oligotrophic Adriatic Sea. The presence of endoliths and their perforations were detected in different layers of the shell, including solidly mineralized parts of the skeleton and within the organic lamellae incorporated into the shell. Phototrophic endoliths were not observed in the specimens. The most serious damage to L. lithophaga shells was the boring clionaid sponge Pione vastifica, which was more common in shells collected from Kaštela. Copyright © 2015 Elsevier Ltd. All rights reserved.
An investigation of green iridescence on the mollusc Patella granatina
NASA Astrophysics Data System (ADS)
Brink, D. J.; van der Berg, N. G.
2005-01-01
In this paper we investigate the relatively rare phenomenon of iridescence on the outer surface of seashells (not the well known pearly inner surfaces). Using reflection spectroscopy and scanning electron microscopy we show that rows of iridescent green spots on the mollusc Patella granatina are caused by a thin-film stack buried about 100 µm below the rough outer surface of the shell. The high-density layers in the stack seem to be made of crystalline aragonite, but according to Raman spectroscopy and ellipsometry measurements the low-density layers as well as the bulk of the shell wall are a mixture of porous aragonite and organic materials such as carotenoids.
Global optimization of additive potential energy functions: Predicting binary Lennard-Jones clusters
NASA Astrophysics Data System (ADS)
Kolossváry, István; Bowers, Kevin J.
2010-11-01
We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
USDA-ARS?s Scientific Manuscript database
Introduction: Safety regulations are being drafted for the shell egg industry. Sanitation standard operating procedures are an important precursor to HACCP regulations. Salmonella is the pathogen was most often associated with egg-borne outbreaks. Developing effective sanitation procedures that wil...
USDA-ARS?s Scientific Manuscript database
A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-01-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067
Stability of generic thin shells in conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Amirabi, Z.
2017-07-01
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p=ω σ . It is shown that, for the physical domain of ω , i.e., 0<ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated.
2014-05-10
based on modified fullerenes , carbon nanotubes and gold nanoparticles (including nanocages and nanorods) were very recently reported.4 Nevertheless, this...ratios of 1:1.6 and 1:16, in order to form an onion- like core-shell structure, containing TiN core and shells of TPP (inner shell) and chitosan (outer...These results nicely correlate with the cells viability results and the formation of the ROS is most likely the cause of the cells death (Figure 24
Shell Inspection History and Current CMM Inspection Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua Daniel
The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.
Dudev, Todor; Lin, Yen-lin; Dudev, Minko; Lim, Carmay
2003-03-12
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.
Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst
2011-10-25
We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.
Complementary high performance sensing of gases and liquids using silver nanotube
NASA Astrophysics Data System (ADS)
Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On
2017-11-01
A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.
The Effects of Propellant Burn on the Surface Composition of Gun Steel
1981-11-01
ion beam analysis method has been used to characterize the depths and compositions of the outer, sub-micron layers of gun steel surfaces that have...STEEL A. Niiler R. Birkmire S. E. Caldwell November 1981 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY...1L162618AH80 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research § Development Command Ballistic Research Laboratory ATTN: DRDAR-BL. APG
Theory of nanotube faraday cage
NASA Astrophysics Data System (ADS)
Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.
2003-03-01
Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.
NASA Astrophysics Data System (ADS)
Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.
2016-10-01
Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Panchapakesan; Kent, Paul R; Mochalin, Vadym N
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core ofmore » the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
Nuclear reactor containment structure with continuous ring tunnel at grade
Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.
1977-01-01
A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation. PMID:24251105
Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu
2013-01-01
Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328
Large-deformation and high-strength amorphous porous carbon nanospheres
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing
2016-04-01
Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.
Polymer micromold and fabrication process
Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.
1997-08-19
A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.
Polymer micromold and fabrication process
Lee, Abraham P.; Northrup, M. Allen; Ahre, Paul E.; Dupuy, Peter C.
1997-01-01
A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.
Rane, Ashish Babulal; Gattani, Surendra Ganeshlal; Kadam, Vinayak Dinkar; Tekade, Avinash Ramrao
2009-11-01
The aim of present investigation was to develop press coated tablet for pulsatile drug delivery of ketoprofen using hydrophilic and hydrophobic polymers. The drug delivery system was designed to deliver the drug at such a time when it could be most needful to patient of rheumatoid arthritis. The press coated tablets containing ketoprofen in the inner core was formulated with an outer shell by different weight ratio of hydrophobic polymer (micronized ethyl cellulose powder) and hydrophilic polymers (glycinemax husk or sodium alginate). The release profile of press coated tablet exhibited a lag time followed by burst release, in which outer shell ruptured into two halves. Authors also investigated factors influencing on lag time such as particle size and viscosity of ethyl cellulose, outer coating weight and paddle rpm. The surface morphology of the tablet was examined by a scanning electron microscopy. Differential scanning calorimeter and Fourier transformed infrared spectroscopy study showed compatibility between ketoprofen and coating material.
A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua
Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less
Application of the Wavy Mechanical Face Seal to Submarine Seal Design.
1982-07-01
to Stainless Steel Bond Strength Tests. . . 31 3-1 Seal Design ...... .................... ... 54 3-2 Offset and Tilt Results...primer, Loctite Superbonder 420 with the addi- tion of two stainless steel rings for the inner and outer diam- eter of the carbon insert to give a...near zero clearance fit, and the use of the 3M 1838 B/A epoxy also with the same stainless steel rings. Static and dynamic tests on the seal under water
Temporal Progression of Visual Injury from Blast Exposure
2013-09-01
included the design and construction of a silencer and dump tank. The final design is shown in Figure 8. A steel barrel lined with 2” of acoustic foam...was selected as the dump tank. It surrounds a rubber barrel lined with foam composite. The steel barrel is allowed to recoil on a cart, absorbing...test. Figure 8. (Left) Inner silencer assembly completed during Q4 of Year 1. (Right) Final silencer assembly with the outer steel drum
NDE of Space Shuttle Solid Rocket Motor field joint
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.
1987-01-01
One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
Static-stress analysis of dual-axis confinement vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.
Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M
2015-01-14
This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.
Self-healing coatings containing microcapsule
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun
2012-01-01
Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Tarling, Geraint A.; Manno, Clara; Harper, Elizabeth M.; Tynan, Eithne
2016-05-01
Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal's life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≤1. While the waters from which the damaged specimens were collected at the Greenland Sea sea-ice margin were not ΩAr≤1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≤1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≤1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≤1, and when dissolution does occur the animal has an effective means of self-repair. We suggest that future studies of pteropod shell condition are undertaken on specimens from which the periostracum has not been removed in preparation.
Hydrogen-isotope permeation barrier
Maroni, Victor A.; Van Deventer, Erven H.
1977-01-01
A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.
Some preliminary calculations of whole atom Compton scattering of unpolarized photons
NASA Astrophysics Data System (ADS)
Bergstrom, P. M.; Surić, T.; Pisk, K.; Pratt, R. H.
1992-07-01
This paper represents a preliminary attempt to develop a practical prescription for calculating whole atom cross sections for the Compton scattering of unpolarized photons from the bound electrons of an atom for the entire spectrum of scattered photon energies. We initially study the scattering of 2.94 keV photons from carbon. We make use of our new second order S-matrix computer code in this case to verify that, when our recently developed criterion for the validity of the relativistic impulse approximation (which concerns the average momentum contributing to the photon spectrum ( pav)) is satisfied, the spectrum is adequately described by the impulse approximation. This criterion is generally satisfied in the peak intensity region for scattering by the outer shells, which dominate at these scattered photon energies. For soft scattered photons, however, the spectrum, dominated by K shell contributions, is given by terms corresponding to the contribution of the " p· A" term in the nonrelativistic interaction Hamiltonian, not included in the impulse approximation. Here, the spectrum is adequately reproduced by the K shell contribution. We then consider scattering of 17.4 keV photons from aluminum and 279.1 keV photons from lead. In these cases we use the S-matrix for the K shell and the impulse approximation for the outer shells, and find good agreement with experiment.
Compound Walls For Vacuum Chambers
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1988-01-01
Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.
Effects of long-range interactions on curvature energies of viral shells
NASA Astrophysics Data System (ADS)
Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf
2016-05-01
We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.
Solar-thermal reaction processing
Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy
2014-03-18
In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
NASA Astrophysics Data System (ADS)
Moya, Pablo S.; Pinto, Víctor A.; Sibeck, David G.; Kanekal, Shrikanth G.; Baker, Daniel N.
2017-11-01
Using Van Allen Probes Energetic Particle, Composition, and Thermal Plasma-Relativistic Electron-Proton Telescope (ECT-REPT) observations, we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion, and no change in flux values depends strongly on L and energy. Enhancement events are more common for ˜2 MeV electrons at L ˜ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no-change events are more frequent at L < 3.5 for E ˜ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion, or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at geosynchronous orbit may be used as a proxy to monitor E≥1.8 MeV electrons in the outer belt.
HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...
HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Holographic Lens for Pilot’s Head-Up Display
1975-04-01
in fringe stability. A 5 ft x 9 ft x 40 in. high acoustical enclosure, constructed with six lb/ft3 mineral wool sand- wiched between a solid 24 gauge...VIBRATION ISOLATION A 5 ft x 9 ft x 40 in. high acoustic enclosure, consisting of 6 lb. /ft 3 mineral wool sandwiched between 24 gauge sheet steel...consists of 6 lb./ft 3 density of mineral wool sandwiched between an inner, 26-gauge, perforated steel panel and an outer, 24-gauge, steel panel. A close
Wetting Behavior of Mold Flux Droplet on Steel Substrate With or Without Interfacial Reaction
NASA Astrophysics Data System (ADS)
Zhou, Lejun; Li, Jingwen; Wang, Wanlin; Sohn, Il
2017-08-01
The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10- μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
Equipment for Subpicosecond Extreme Ultraviolet Facility.
1986-02-05
Excitation Induced by...................... 36 Coherent Motion of Outer-Shell Electrons" E. "A Theoretical Model of Inner-Shell...efficient production of x-rays are feasible. Our work involves a program of activities, involving both experimental -nd theoretical components, to...in addition to a theoretical effort con- itrating on the character of high order multiquantum coupling in the inten- I regime above 10 1 7 W cm2 . In
Origin of coronas in metagabbros of the Adirondack mts., N. Y
Whitney, P.R.; McLelland, J.M.
1973-01-01
Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and Ringwood, 1967). Amphibole coronas about opaque oxides in rocks of both areas are the result of oxide/plagioclase reactions with addition of magnesium from coexisting olivine. Based on published experimental data, pressure and temperature at the time of corona formation were on the order of 8 kb and 800?? C for the garnet bearing coronas, with somewhat lower pressures indicated for the clinopyroxene/spinel coronas. ?? 1973 Springer-Verlag.
Prospects For Earth-Based Measurements Of Europa's Librations
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.
2010-10-01
The exploration of Europa is of great interest because it may be hospitable to certain life forms [1]. Several lines of evidence suggest that a subsurface ocean exists beneath an icy shell [2,3], but there is debate about the thickness of the shell [4], which impacts Europa's astrobiological potential. As in the case of Mercury, it may be possible to determine whether an outer shell is decoupled from the interior and to evaluate the shell thickness by measuring the amplitude of forced longitude librations [5,6]. In the simplest configuration of a rigid shell decoupled from a spherically symmetric interior, the libration amplitude is amplified from the nominal value of 18" by C/Cs, where C is the polar moment of inertia of the body and Cs is that of the outer shell that participates in the librations. For a 100-km thick shell, the libration amplitude would reach 200", an estimate that remains valid even in the presence of gravitational coupling between asymmetrical layers [7]. If there are significant departures from rigid behavior, the shell may deform with the ocean underneath and exhibit a libration amplitude of 52" [8]. Europa reaches closest approach in October 2011, offering a once-in-a-decade opportunity to measure spin rate variations by tracking radar speckles, as advocated by Holin [9,10]. Librations of a rigid shell thinner than 100 km would be detectable. We will describe the experimental design and expected sensitivity. References: [1] NRC, Europa Science Strategy, 1999. [2,3] Kivelson et al, Greeley et al, in Jupiter, CUP, 2004. [4] Greenberg, Unmasking Europa, Praxis, 2008. [5] Peale, Nature 262, 1976. [6] Margot et al, Science 316, 2007. [7] van Hoolst et al, Icarus 195, 2008. [8] Goldreich and Mitchell, Icarus, in press. [9] Green, in Radar Astronomy, McGraw-Hill, 1968. [10] Holin, Radiophys. Quant. Elec. 31, 1988.
Chemical modification of the cocoa shell surface using diazonium salts.
Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck
2017-05-15
The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, P.; Kent, P. R. C.; Mochalin, V.
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbonnanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of themore » nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbonnanostructure appears, with a shell-shell spacing of about ~3.4 Å for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large (~29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Paul R
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core ofmore » the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
NASA Astrophysics Data System (ADS)
Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan
2016-06-01
In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faduska, A.; Rau, E.; Alger, J.V.
Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)
NASA Astrophysics Data System (ADS)
Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.
2016-11-01
Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for η Car-like eruptions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.D-0215(A).
Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells
NASA Astrophysics Data System (ADS)
Saemi, J.; Sedighi, M.; Shariati, M.
2015-09-01
The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.
Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S
2008-04-01
Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessarymore » for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).« less
Shi, Run; Summers, Danny; Ni, Binbin; ...
2016-12-30
A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle-resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sin nα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index, and L shell. The difference in electron PADs between the inner and outer belt ismore » distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Finally, besides being dependent on electron energy, magnetic activity, and L shell, the results show a clear dependence on MLT, with higher n values on the dayside.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Run; Summers, Danny; Ni, Binbin
A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle-resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sin nα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index, and L shell. The difference in electron PADs between the inner and outer belt ismore » distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Finally, besides being dependent on electron energy, magnetic activity, and L shell, the results show a clear dependence on MLT, with higher n values on the dayside.« less
Benedick, William B.; Daniel, Charles J.
1977-01-01
The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.
Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S
2009-01-01
The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.
Mahmoud, Mahmoud A
2013-05-28
Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.
Metallurgical Analysis of Ball Bearing Seized During Operation
NASA Astrophysics Data System (ADS)
Jha, Abhay K.; Swathi Kiranmayee, M.; Ramesh Narayanan, P.; Sreekumar, K.; Sinha, P. P.
2012-06-01
440C stainless steel of martensitic grade is being extensively used for bearing application because of its high wear and corrosion resistance. This alloy steel with 1 wt.% C along with 17 wt.% Cr, 1 wt.% Mn and up to 0.75 wt.% Mo has a number of primary carbides, which provide high hardness and good wear resistance. Owing to its unique performance characteristic, this steel finds a number of applications in space program. One such application is bearing used in booster pump assembly of propulsion system. During one of the ground tests of propulsion system, booster pump bearing seized operation after performing its partial intended function. The bearing was removed from the assembly and cut open. The ball and outer caging were analyzed using metallographic techniques and compared with another bearing taken from the fresh stock. Study indicated that ball as well as outer caging experienced exposure to high temperature and resulted in phase transformation. This article highlights the details of investigations carried out.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... plates, whether or not attached to non-steel plates, with slots. Diamond sawblade cores are manufactured... scope of the order. Circular steel plates that have a cutting edge of non-diamond material, such as external teeth that protrude from the outer diameter of the plate, whether or not finished, are excluded...
Lightweight device to stimulate and monitor human vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
McStravick, M. Catherine (Inventor); Proctor, David R. (Inventor); Wood, Scott J. (Inventor)
1989-01-01
A helmet formed of a rigid shell is disclosed. The shell is lined with several air filled bladders to contact firmly the head of a user. The shell has a rigid chin bar supporting a bite bar connected fixedly to a mouthpiece bearing against the teeth and hard palate to firmly anchor the helmet without movement. The outer shell surface supports various air pumping bulbs and accelerometers. Separate left and right visor pivot on the side guided in a central tongue and groove track to move optical lens mounts into the user's field of vision. The chin bar is connected to the shell by a pair of releasable clasps. A safety lanyard connects to the clasps to quickly pull pins from the clasps to enable quick release in case of motion sickness.
Cooling of weapons with graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Trammell, Michael P.
Disclosed are examples of an apparatus for cooling a barrel 12 of a firearm 10 and examples of a cooled barrel assembly 32 for installation into an existing firearm 10. When assembled with the barrel 12, a contact surface 16 of a shell 14 is proximate to, and in thermal communication with, the outer surface of the barrel 18. The shell 14 is formed of commercially available or modified graphite foam.
49 CFR 178.358-2 - Materials of construction and other requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... any joint in the shell. (e) Vent holes 5 mm (0.2-inch) diameter must be drilled in the outer shell to... Society Codes B-3.0 and D-1.0 (IBR, see § 171.7 of this subchapter). Body seams and joints for the liner... 14 cm (5.5-inch) minimum thickness of foam must be provided over the entire liner except where: (1...
Inner-shell chemistry under high pressure
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Botana, Jorge; Pravica, Michael; Sneed, Daniel; Park, Changyong
2017-05-01
Chemistry at ambient conditions has implicit boundaries rooted in the atomic shell structure: the inner-shell electrons and the unoccupied outer-shell orbitals do not contribute as the major component to chemical reactions and in chemical bonds. These general rules govern our understanding of chemical structures and reactions. We review the recent progresses in high-pressure chemistry demonstrating that the above rules can be violated under extreme conditions. Using a first principles computation method and crystal structure search algorithm, we demonstrate that stable compounds involving inner shell electrons such as CsF3, CsF5, HgF3, and HgF4 can form under high external pressure and may present exotic properties. We also discuss experimental studies that have sought to confirm these predictions. Employing our recently developed hard X-ray photochemistry methods in a diamond anvil cell, we show promising early results toward realizing inner shell chemistry experimentally.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Dean, William G (Inventor); Owen, James W. (Inventor)
1988-01-01
This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
NASA Astrophysics Data System (ADS)
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-03-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-12-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko
2002-02-01
In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
NASA Astrophysics Data System (ADS)
Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.
Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna; Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolatedmore » C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.« less
EMIC waves covering wide L shells: MMS and Van Allen Probes observations
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei
2017-07-01
During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.
NASA Astrophysics Data System (ADS)
Labonne, Maylis; Hillaire-Marcel, Claude
2000-05-01
Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the diagenetic enrichments in stable isotopes raise concerns about their use for paleoenvironmental reconstructions under such climate conditions.
The asymmetry of avian egg-shape: an adaptation for reproduction on dry land
Mao, Kun-Ming; Murakami, Ayako; Iwasawa, Atsushi; Yoshizaki, Norio
2007-01-01
The present study describes the biological meaning of the asymmetrical shape in avian reproduction using quail. During the incubation of eggs, water was gradually lost and the air chamber which appeared in between the inner and outer shell membranes at the blunt end expanded, so that the angle made by the long egg-axis and the horizontal line increased, presumably because the centre of gravity of the egg contents moved toward the sharp end. The increase in angle occurred in both fertile and infertile eggs, suggesting that this phenomenon occurs irrespective of fertility and is due to the asymmetrical shape. The increase in the volume of the air chamber resulted in an increase in the area of the inner shell membrane at the chamber to satisfy the amount of gas exchange needed by the developing embryo for better hatching. We isolated a 300-kDa protein from the inner shell membrane. It was produced by cells in the luminal epithelium of the oviductal isthmus and was found in the cortex of the fibres of shell membranes and a lining surrounding the air chamber. The lining comprised a medial layer between the inner and outer shell membranes in uterine eggs. The asymmetrical ellipsoid produces the air chamber at the blunt end of the avian egg during its sojourn in the oviductal isthmus, to maintain the blunt end up after oviposition and to raise that end during incubation in a dry environment, leading to high hatchability. PMID:17523938
Damage Tolerance of Large Shell Structures
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Chamis, C. C.
1999-01-01
Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2017-12-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi
2018-02-01
The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.
NASA Astrophysics Data System (ADS)
Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke
2018-03-01
Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.
Bhattarai, Nabraj; Prozorov, Tanya
2015-11-05
Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Nabraj; Prozorov, Tanya
Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less
Anodic Behaviour of High Nitrogen-Bearing Steel in PEMFC Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Turner, J. A.
2008-02-01
High nitrogen-bearing stainless steels, AISI Type 201 and AL219, were investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments to assess the use of these materials in fuel cell bipolar plate applications. Both steels exhibit better corrosion behavior than 316L steel in the same environments. Type 201 steel shows similar but lower interfacial contact resistance (ICR) than 316L, while AL219 steel shows higher ICR than 316L. X-ray photoelectron spectroscopy (XPS) analysis shows that the air-formed films on Type 201 and AL219 are composed of iron oxides, chromium oxide, and manganese oxide. Iron oxides dominate the composition of the air-formedmore » film, specially the outer layer. Chromium oxide dominates passive films. Surface film thicknesses were estimated. The results suggest that high nitrogen-bearing stainless steels are promising materials for PEMFC bipolar plates.« less
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General Requirements for... platform safety, structural reliability, or operating capabilities. Items such as steel brackets, deck...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Yazhuo; Hu Jun; Liu Honglai, E-mail: yazhuoshang@ecust.edu.c
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centeredmore » at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.« less
Shell-corona microgels from double interpenetrating networks.
Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V
2018-04-18
Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
Electric current distribution of a multiwall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less
Ring Beholds a Delicate Flower
2005-02-11
NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
A heat transfer model for incorporating carbon foam fabrics in firefighter's garment
NASA Astrophysics Data System (ADS)
Elgafy, Ahmed; Mishra, Sarthak
2014-04-01
In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.
Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell
NASA Astrophysics Data System (ADS)
Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.
2017-10-01
Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.
NASA Astrophysics Data System (ADS)
Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George
2016-07-01
The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.
Unidirectional Core-Shell Hybrids for Concrete Reinforcement - A preliminary Study
1994-02-01
angle with respect to the rebar longitudinal axis. 14. SUBJECT TERMS 115. WNUMER OF PAGES FRP, rebar , concrete , fibers, carbon fibers, glass fibers...structures. The main cause of deterioration is concrete cracking and corrosion of steel reinforcement exposed to the marine environment and aggressive...agents such as deicing salts for bridges and pavements . To prevent this corrosion , galvanized and epoxy-coated steel reinforcing bars are currently being
49 CFR 179.220-23 - Test of tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must not be in place when the test is made. (b) The inner container must be pressure tested before... container after its installation within outer shell must have their attachment welds thoroughly inspected by...
Accident resistant transport container
Andersen, John A.; Cole, James K.
1980-01-01
The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.
Accident resistant transport container
Anderson, J.A.; Cole, K.K.
The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.
NASA Astrophysics Data System (ADS)
Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo
2017-12-01
Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.
Hydrogen Embrittlement in 17-4PH Stainless Steel
1982-08-01
is observed to exhibit microplastic tearing mixed with some quasi- cleavage. When exposed to longer hydrogen charging times, specimens in the higher...Hours, (a) Central Region Illustrating Dimpled Rupture, (b) and 0-) Shell Region Near Edge Exhibiting Microplastic Tearing. 20 NTAC TP 6 3 43 (a) (b) (c...Shell Region Near Edge Exhibiting Microplastic Tearing. 21 ’JWC TP 6343 FIGURE 15. SEM Fractographv Showing Intergranular Fracture (if 17-4PH- in
Deep electromagnetic sounding of the moon with Lunokhod 2 data
NASA Technical Reports Server (NTRS)
Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.
1977-01-01
Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.
Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...
2016-10-19
Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.
Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2010-05-04
To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
NASA Astrophysics Data System (ADS)
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang
2015-03-15
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.
Fast Reacting Nano Composite Energetic Materials: Synthesis and Combustion Characterization
2015-08-24
mg of composite resulting in a loose powder fill estimated to be 7% of the theoretical maximum density. Once prepared, the tube was placed in a steel ...theoretical maximum density. Once prepared, the tube was placed in a steel combustion chamber and the experimental setup is schematically represented... Valery Levitas. "Effect of oxide shell growth on ano- aluminum thermite propagation rates." Combustion and Flame 159 (2012): 3448-3453. I. Liakosa
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhou, Jun; Zhang, Haopeng; Jiang, Tao; Lou, Cibo
2015-03-01
We proposed an efficient spaser based on gold-silver core-shell nanorods (NRs) encapsulated by an outer silica shell doped with a gain medium. The optical characteristics of the spaser were numerically simulated based on the finite element method (FEM). The results showed that the localized surface plasmon resonance (LSPR) amplification characteristics of the spaser strongly depend on the thickness of silver shell, the aspect ratio of the inner gold NRs, and the polarization direction of the incident light. And, the maximum absolute value of optical cross-section of the spaser can reach 21,824 μm2, which is about 1115, 523, and 18 times higher than that of spasers based on the gold NRs, the silver NRs, and the silver-gold core-shell NRs, respectively. The ultra-strong surface plasmon amplification characteristics of the spaser have potential applications in optical information storage, high sensitivity biochemical sensing, and medical engineering.
Development and application of free pretreatment container steel
NASA Astrophysics Data System (ADS)
Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.
2017-12-01
Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.
http://www.nasa.gov/image-feature/goddard/hubble-spots-the-layers-of-ngc-3923
2015-05-15
The glowing object in this Hubble Space Telescope image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centers approach, they initially oscillate about a common center, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image, and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. Credit: ESA/Hubble & NASA
49 CFR 179.220-4 - Insulation.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...
49 CFR 179.220-4 - Insulation.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...
49 CFR 179.220-4 - Insulation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...
Voyagers in the Heliosheath Artist Concept
2011-03-08
This artist concept shows NASA two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. The Voyagers have been in space 33 years.
Evaluation of pile repair splice design.
DOT National Transportation Integrated Search
2015-12-01
The Oregon Department of Transportation (ODOT) Major Bridge Maintenance Engineer has proposed an in-house pile repair scheme for decayed piles. This repair scheme involves removing decayed area within the pile leaving a 2 outer shell, filling it u...
Dutta, Moumita; Prasankumar, Rohit Prativadi; Natarajan, Kamaraju; ...
2017-08-07
Magnetoelastoelectric coupling in an engineered biphasic multiferroic nanocomposite enables a novel magnetic field direction-defined propagation control of terahertz (THz) waves. These core–shell nanoparticles are comprised of a ferromagnetic cobalt ferrite core and a ferroelectric barium titanate shell. Furthermore, an assembly of these nanoparticles, when operated in external magnetic fields, exhibits a controllable amplitude modulation when the magnetic field is applied antiparallel to the THz wave propagation direction; yet the same assembly displays an additional phase modulation when the magnetic field is applied along the propagation direction. And while field-induced magnetostriction of the core leads to amplitude modulation, phase modulation ismore » a result of stress-mediated piezoelectricity of the outer ferroelectric shell.« less
Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers
NASA Technical Reports Server (NTRS)
Malone, G. A.
1975-01-01
Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
NASA Astrophysics Data System (ADS)
Bednaršek, N.; Johnson, J.; Feely, R. A.
2016-05-01
Pteropods have been recognized as one of the most sensitive marine organisms to ocean acidification (OA). Their susceptibility is mostly related to rapid shell dissolution, which is correlated with exposure to waters undersaturated with respect to aragonite (Ωar≤ 1) (e.g., Lischka et al., 2011; Bednaršek et al., 2012a,b, 2014a,b; Busch et al., 2014). Increased dissolution weakens the shell, increases vulnerability to predation and infection, and imposes an energetic cost. The rapidity of shell dissolution is attributed to the combination of metastable aragonitic crystal structure of shells that are among the thinnest known for calcifying organisms, and an extremely thin outer organic layer (i.e. periostracum <1 μm thick), suggesting insufficient protection against shell dissolution at Ωar≤1 (Bednaršek et al., 2014b). The periostracum generally consists of polysaccharide and proteinaceous components (Gaffey and Bronnimann, 1993) but varies significantly in its structure and composition amongst taxa.
IRC +10 216 in 3-D: morphology of a TP-AGB star envelope
Guélin, M.; Patel, N.A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J.P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.
2017-01-01
During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (< 40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r < 0.3″) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s−1, with small turbulent motions. Based on that property, we have reconstructed the 3-D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r < 25″) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 years and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years. ⋆ PMID:29456257
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
30 CFR 250.903 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General... steel brackets, deck stiffeners and secondary braces or beams would not generally be considered primary...
Pressure and Heat Transfer Measurements on Large Indented Nosetips.
1979-06-01
thickness of 0.025 inch were machined from billets of 17 - 4PH stainless steel, following specifications regarding the outer contour of the models...after roughening are shown in Figures 2 through 5, respectively. Roughened samples of 17 - 4PH stainless steel were sectioned and photomicrographs were...temperature = wind tunnel supply temperature The wall thicknesses used in the data reduction should be accurate to +0.001 inch. The density of 17 - 4PH
2010-01-01
Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA). Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis. PMID:21047441
NASA Technical Reports Server (NTRS)
Ferragut, Nelson J.
2005-01-01
A rugged iris mechanism has been designed to satisfy several special requirements, including a wide aperture in the "open" position, full obscuration in the "closed" position, ability to function in a cryogenic or other harsh environment, and minimization of friction through minimization of the number of components. An important element of the low-friction aspect of the design is maximization of the flatness of, and provision of small gaps between, adjacent iris blades. The tolerances of the design can be very loose, accommodating thermal expansions and contractions associated with large temperature excursions. The design is generic in that it is adaptable to a wide range of aperture sizes and can be implemented in a variety of materials to suit the thermal, optical, and mechanical requirements of various applications. The mechanism (see figure) includes an inner flat ring, an outer flat ring, and an even number of iris blades. The iris blades shown in front in the figure are denoted as "upper," and the iris blades shown partly hidden behind the front ones are denoted as "lower." Each iris blade is attached to the inner ring by a pivot assembly and to the outer ring by a roller/slider assembly. The upper and lower rings are co-centered and are kept in sliding contact. The iris is opened or closed by turning the outer ring around the center while holding the inner ring stationary. The mechanism is enclosed in a housing (not shown in the figure) that comprises an upper and a lower housing shell. The housing provides part of the sliding support for the outer ring and keeps the two rings aligned as described above. The aforementioned pivot assemblies at the inner ring also serve as spacers for the housing. The lower housing shell contains part of the lower sliding surface and features for mounting the overall mechanism and housing assembly. The upper housing shell contains part of the upper sliding surface.
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.
Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun
2015-07-01
In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.
NASA Astrophysics Data System (ADS)
Karam, Gebran Nizar
1994-01-01
Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.
Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Au, M.
2003-02-05
Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle modemore » dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.« less
NASA Astrophysics Data System (ADS)
Füllenbach, Christoph S.; Schöne, Bernd R.; Shirai, Kotaro; Takahata, Naoto; Ishida, Akizumi; Sano, Yuji
2017-05-01
It remains a challenging task to reconstruct water temperatures from Sr/Ca ratios of bivalve shells. Although in many aragonitic species, Sr/Ca is negatively correlated to temperature - which is expected based on abiogenic precipitation experiments, the incorporation of Sr into the shell of bivalves is strongly controlled by physiological processes and occurs away from the predicted thermodynamic equilibrium. Strontium-to-calcium ratios of aragonitic shells remain far below that of the ambient water. Moreover, Sr concentrations vary considerably among shell portions consisting of different microstructures and/or organic content. Values observed at annual growth lines and within the intervening shell portions (= annual growth increments) deviate much stronger from each other than expected from a change in temperature or Sr/Cawater. As demonstrated here by ultra-high-resolution chemical analysis (EPMA, NanoSIMS) of a Cerastoderma edule shell, Sr concentrations are also heterogeneously distributed at approximately micrometer resolution. For example, in the outer portion of the outer shell layer, Sr/Ca ratios were statistically significantly (t-, u-tests) higher at circatidal growth lines (irregular simple prismatic structure; arithmetic mean ± 1 standard deviation = 2.86 ± 0.38 mmol/mol; n = 53) than within circatidal increments (nondenticular prismatic structure; 2.42 ± 0.25 mmol/mol; n = 51). S/Cashell, a representative of the concentration of organics, showed the opposite pattern, i.e., significantly higher values in circatidal increments (2.37 ± 0.29 mmol/mol; n = 51) than at circatidal growth lines (2.13 ± 0.47 mmol/mol; n = 53). Overall highest values of Sr/Cashell (3.47 ± 0.65 mmol/mol; n = 3) and S/Cashell (3.98 ± 0.65 mmol/mol; n = 3), however, were typically associated with annual growth lines and larger biomineral units. The intimate link between Sr/Cashell, S/Cashell and shell architecture may indicate that microstructures or the processes controlling their formation exert a strong control over the incorporation of strontium into shells of C. edule. Analytical techniques with lower sampling resolution, e.g., LA-ICP-MS, cannot resolve such fine-scale Sr variations. As a result, the signal-to-noise ratio decreases and the data generated by such techniques may therefore not seem to provide useful paleotemperature data. Future studies should therefore employ a combined analysis of Sr/Cashell and shell microstructures, and interpret Sr/Ca values of shell portions with different microstructures separately.
Multilayer Composite Pressure Vessels
NASA Technical Reports Server (NTRS)
DeLay, Tom
2005-01-01
A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of each end fitting accommodates this layer. Depending on the application, this layer could be, for example, a layer of rubber, a polymer film, or an electrodeposited layer of metal. If the fluid to be contained in the tank is a gas, then the best permeation barrier is electrodeposited metal (typically copper or nickel), which can be effective at a thickness of as little as 0.005 in (.0.13 mm). The electrodeposited metal becomes molecularly bonded to the second step on each metallic end fitting. The permeation-barrier layer is covered with many layers of filament-wound composite material, which could be the same as, or different from, the composite material of the inner shell. Finally, the filament-wound composite material is cured in an ov
2011-11-30
fuze separating from the shell body preventing high order detonations thus saving the lives of the Soldiers. Unit’s SPC Alan Ng with his father Peter...Sensitive If not fully compliant, must show improvement over Baseline explosive Affordable Artillery Cost Drivers = Steel Body Material & Explosive Fill...Mortar Cost Drivers = Steel Body Material, Fuze & Propelling Charges Producible within the National Technology and Industrial Base Infrastructure
Design, Fabrication and Test of a Formation of Two Satellites Connected by a Tether
2007-08-03
Device (PMD), consisting of filters and screens , will be integrated into this tank. The shell is manufactured with Stainless Steel 316L with the...internal filters manufactured with Stainless Steel 304L/316L. The internal screens are of expanded aluminum 901A. Table 4 highlights the specifications of...Final Report Submitted to the Air Force Office of Scientific Research University Nanosat Program August 3, 2007 Dr. Kent Miller AFOSR/NE 4015 Wilson
How Marine Conditions Affect Severity of MIC of Steels
2007-07-11
to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H202 and decreased pH and the production of...various parts of I the world ocean . At least 4000 different species Splash zone 0.1 mmtiy of organisms are recorded as marine fouling "Steeli/ nuisances...limiting dissolved oxygen at the metal surface. A layer of hard- shelled organisms, such as barnacles or mussels, on steel in the splash zone (just above
Ocean acidification alters the material properties of Mytilus edulis shells
Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie
2015-01-01
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244
USSR and Eastern Europe Scientific Abstracts Engineering and Equipment No.29
1977-02-08
Perlite (12CrlMoV and 12Cr2MoVSib), ferrite - martensite (lCrllW2MoV), and austentite (Crl8Nil2Ti) steels are discussed for use in the heat-transfer...620°C. Other austentite steels have been developed, including EI695R, EP184, EP17, 45Crl0Mnl4Al-2 (which has a 20-40% ferrite phase ), 0Crl3Mnl2Ni2NSi2...middle zone of 10 mm and at the corners -- up to 40 mm. The shell was reinforced with a grid having square meshes of low -carbon steel wire, 1 mm in diam
Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants
NASA Astrophysics Data System (ADS)
Wells, P. B.; Nassopoulos, G. P.
The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.
Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes, R. E.; Wyrwas, R. B.
2016-05-01
During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho
2018-02-22
Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.
Multiphysics modeling of the steel continuous casting process
NASA Astrophysics Data System (ADS)
Hibbeler, Lance C.
This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric parameters in the model are calibrated such that the reduced-order model temperatures match a small, periodic subdomain of the mold. These parameters are demonstrated to be insensitive to the calibration conditions. The thermal behavior of the detailed, three-dimensional mold models used in this work can be approximated closely with a few arithmetic calculations after calibrating the reduced-order model of mold heat transfer. The example application of the model includes the effects of the molten steel jet on the solidification front and the ferrostatic pressure. The model is demonstrated to match measurements of mold heat removal and the thickness of a breakout shell all the way around the perimeter of the mold, and gives insight to the cause of breakouts in a beam-blank caster. This multiphysics modeling approach redefines the state of the art of process modeling for continuous casting, and can be~used in future work to explore the formation and prevention of defects and other practical issues. This work also explores the eigen-problem for an arbitrary 3x3 matrix. An explicit, algebraic formula for the eigenvectors is presented.
NASA Astrophysics Data System (ADS)
Tang, Qiang; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Tian, Wu-bian; Sun, Zheng-ming
2017-10-01
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate (SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0°C for the cement mortar board and 1.6°C for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.
NASA Astrophysics Data System (ADS)
Burczynski, Grzegorz; Marcinowski, Jakub
2014-09-01
The paper deals with the numerical modelling of a complex, steel shell structure. The part under analysis is the upper segment of a steel pylon, which consists of several cylindrical shells and one conical segment. Particular parts of the structure are welded together. Geometrical and loading data calculations were performed for the particular material for both an ideally elastic case and an elasto-plastic case. The conclusion that the structural member analysed required strengthening were drawn on the basis of these results. The structural modification was proposed and additional calculations for this modified structure were also performed. Introduced additional shell elements locked the mechanism of plastic flow. The proposed modification can be treated as a possible strengthening concept. The whole analysis was performed by means of the ABAQUS system but some stages of calculations were also verified by the COSMOS/M system. Przedmiotem pracy jest numeryczne modelowanie pewnej bardzo złożonej, stalowej konstrukcji powłokowej. Analizowana szczegółowo czesc jest górnym fragmentem stalowego pylonu, na który składa sie kilka odcinków powłok cylindrycznych oraz jeden segment stożkowy. Te poszczególne fragmenty konstrukcji były ze soba połaczone spawaniem. Dla znanych parametrów materiałowych, geometrycznych i obciażeniowych wykonano obliczenia w zakresie idealnie spreżystym oraz w zakresie spreżystoplastycznym. Na podstawie tych obliczen wyciagnieto wniosek o koniecznosci wzmocnienia tej czesci pylonu. Zaproponowano istotna modyfikacje istniejacej konstrukcji i wykonano dla niej ponownie obliczenia. Wprowadzone dodatkowe elementy powłokowe zablokowały mechanizm plastycznego płyniecia. Zaproponowana modyfikacje można potraktowac jako jedna z możliwych koncepcji wzmocnienia konstrukcji. Wszystkie analizy numeryczne zostały wykonane za pomoca systemu ABAQUS. Pewne wybrane fragmenty obliczen były weryfikowane także z pomoca systemu COSMOS/M.
Utility Distribution Systems in Sweden, Finland, Norway and England
1976-11-01
the duct adds to the water protection and sumps, with access for pumping, are provided -at low points. Glass wool or mineral wool insulation is placed...mm thick, is glass, mineral wool or polyurethane foam. The outer pipe is steel, polyurethane or asbestos cement coupled with O-ring seals. Asbestos...decided that asbestos cement should be replaced by less dangerous materials. Some use is made of steel, plastic or copper tubes with mineral wool or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnamian, Yashar, E-mail: behnamia@ualberta.ca
The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) inmore » the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.« less
Double-shell target fabrication workshop-2016 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Oertel, John; Farrell, Michael
On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less
Comfortable, lightweight safety helmet holds radio transmitter, receiver
NASA Technical Reports Server (NTRS)
Atlas, N. D.
1964-01-01
For two-way radio communication where safety gear is required, a lightweight helmet with few protrusions has been designed. The electronics components and power supply are mounted between the inner and outer shells, and resilient padding is used for the lining.
Ultrasonic Device Would Open Pipe Bombs
NASA Technical Reports Server (NTRS)
El-Raheb, Michael S.; Adams, Marc A.; Zwissler, James G.
1991-01-01
Piezoelectric ultrasonic transducer, energized by frequency generator and power supply, vibrates shell of pipe bomb while hardly disturbing explosive inner material. Frequency-control circuitry senses resonance in shell and holds generator at that frequency to induce fatigue cracking in threads of end cap. In addition to disarming bombs, ultrasonically induced fatigue may have other applications. In manufacturing, replaces some machining and cutting operations. In repair of equipment, cleanly and quickly disassembles corroded parts. In demolition of buildings used to dismember steel framework safely and controllably.
Ultra-High Surface Speed for Metal Removal, Artillery Shell
1981-07-01
TECHNICAL LIBRARY "y/a^^cr^ AD-E400 660 CONTRACTOR REPORT ARLCD-CR- 81019 ULTRA-HIGH SURFACE SPEED FOR METAL REMOVAL, ARTILLERY SHELL RICHARD F...Report ARLCD-CR- 81019 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) ULTRA-HIGH SURFACE SPEED FOR METAL...UNIT* tuiPPtO 1 MIL -STD-43CA i, ASTM A-274-64 EF A1SI~1340 SEHI FIN FORGING STEEL 6 RC SQ ■ IP 120093* a LIFTS 38 PCS
Space radiation test model study. Report for 20 May 1985-20 February 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nightingale, R.W.; Chiu, Y.T.; Davidson, G.T.
1986-03-14
Dynamic models of the energetic populations in the outer radiation belts are being developed to better understand the extreme variations of particle flux in response to magnetospheric and solar activity. The study utilizes the SCATHA SC3 high-energy electron data, covering energies from 47 keV to 5 MeV with fine pitch-angle measurements (3 deg field of view) over the L-shell range of 5.3 to 8.7. Butter-fly distributions in the dusk sector signify particle losses due to L shell splitting of the particle-drift orbits and the subsequent scattering of the particles from the orbits by the magnetopause. To model the temporal variationsmore » and diffusion procsses of the particle populations, the data were organized into phase-space distributions, binned according to altitude (L shell), energy, pitch angle, and time. These distributions can then be mapped to the equator and plotted for fixed first and second adiabatic invariants of the inherent particle motion. A new and efficient method for calculating the third adiabatic invariant using a line integral of the relevant magnetic potential at the particle mirror points has been developed and is undergoing testing. This method will provide a useful means of displaying the radial diffusion signatures of the outer radiation belts during the more-active periods when the L shell parameter is not a good concept due to severe drift-shell splitting. The first phase of fitting the energetic-electron phase-space distributions with a combined radial and pitch-angle diffusion formulation is well underway. Bessel functions are being fit to the data in an eigenmode expansion method to determine the diffusion coefficients.« less
Systematic Evaluation of Low-Frequency Hiss and Energetic Electron Injections
Shi, Run; Li, Wen; Ma, Qianli; ...
2017-10-05
Here, the excitation of low-frequency (LF) plasmaspheric hiss, over the frequency range from 20 Hz to 100 Hz, is systematically investigated by comparing the hiss wave properties with electron injections at energies from tens of keV to several hundreds of keV. Both particle and wave data from the Van Allen Probes during the period from September 2012 to June 2016 are used in the present study. Our results demonstrate that the intensity of LF hiss has a clear day-night asymmetry, and increases with increasing geomagnetic activity, similar to the behavior of normal hiss (approximately hundred of hertz to several kilohertz).more » The occurrence rate of LF hiss in association with electron injections is up to 80% in the outer plasmasphere ( L > 4) on the dayside, and the strong correlation extends to lower L shells for more active times. In contrast, at lower L shells ( L < 3.5), LF hiss is seldom associated with electron injections. The LF hiss with Poynting flux directed away from the equator is dominant at higher magnetic latitudes and higher L shells, suggesting a local amplification of LF hiss in the outer plasmasphere. The averaged electron fluxes are larger at higher L shells, where significant LF hiss wave events are observed. Our study suggests the importance of electron injections and their drift trajectories toward the dayside plasmasphere in locally amplifying the LF hiss waves detected by the Van Allen Probes.« less
Systematic Evaluation of Low-Frequency Hiss and Energetic Electron Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Run; Li, Wen; Ma, Qianli
Here, the excitation of low-frequency (LF) plasmaspheric hiss, over the frequency range from 20 Hz to 100 Hz, is systematically investigated by comparing the hiss wave properties with electron injections at energies from tens of keV to several hundreds of keV. Both particle and wave data from the Van Allen Probes during the period from September 2012 to June 2016 are used in the present study. Our results demonstrate that the intensity of LF hiss has a clear day-night asymmetry, and increases with increasing geomagnetic activity, similar to the behavior of normal hiss (approximately hundred of hertz to several kilohertz).more » The occurrence rate of LF hiss in association with electron injections is up to 80% in the outer plasmasphere ( L > 4) on the dayside, and the strong correlation extends to lower L shells for more active times. In contrast, at lower L shells ( L < 3.5), LF hiss is seldom associated with electron injections. The LF hiss with Poynting flux directed away from the equator is dominant at higher magnetic latitudes and higher L shells, suggesting a local amplification of LF hiss in the outer plasmasphere. The averaged electron fluxes are larger at higher L shells, where significant LF hiss wave events are observed. Our study suggests the importance of electron injections and their drift trajectories toward the dayside plasmasphere in locally amplifying the LF hiss waves detected by the Van Allen Probes.« less
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21-72) years, with a mean duration of implantation of 3.8 (range 1-28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal.
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Background Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Methods Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21–72) years, with a mean duration of implantation of 3.8 (range 1–28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Results Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Conclusion Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal. PMID:25114595
NASA Astrophysics Data System (ADS)
Miloshevsky, G. V.; Tolkach, V. I.; Shani, Gad; Rozin, Semion
2002-06-01
Auger electron interaction with matter is gaining importance in particular in medical application of radiation. The production probability and energy spectrum is therefore of great importance. A good source of Auger electrons is the 157Gd(n,γ) 158Gd reaction. The present article describes calculations of electron levels in Gd atoms and provides missing data of outer electron energy levels. The energy of these electron levels missing in published tables, was found to be in the 23-24 and 6-7 eV energy ranges respectively. The probability of Auger emission was calculated as an interaction of wave function of the initial and final electron states. The wave functions were calculated using the Hartree-Fock-Slater approximation with relativistic correction. The equations were solved using a spherical symmetry potential. The error for inner shell level is less than 10%, it is increased to the order of 10-15% for the outer shells. The width of the Auger process changes from 0.1 to 1.2 eV for atomic number Z from 5 to 70. The fluorescence yield width changes five orders of magnitude in this range. Auger electron emission width from the K shell changes from 10 -2 to ˜1 eV with Z changing from 10 to 64, depending on the final state. For the L shell it changes from 0 to 0.25 when it Z changes from 20 to 64.
Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation
NASA Astrophysics Data System (ADS)
Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan
2018-05-01
A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2014-08-15
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less
Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.
NASA Astrophysics Data System (ADS)
Peterson, Gus Gordon
This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.
Apparatus to recover tritium from tritiated molecules
Swansiger, William A.
1988-01-01
An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.
Remanufacturing Aided Added-Value Creation, Innovations Meeting to Deliver Sustainable Manufacturing
NASA Astrophysics Data System (ADS)
Tariq Abullah, Ziyad; Guo, Shun Sheng; Yun, Sheng Bu
2015-05-01
End-of-life scrap steel such as vehicles bulks and bodies, steel wheel and shells are easily land filled at the end-of-life when treated in a developing country with non-industrial infrastructure. Research idea is about composite shape steel remanufacturing to be sheet steel for construction application through nested recovered pieces of scrap steel within new sheet steel base to meet innovation value creation of remanufactured steel and innovation eco-design of steel products to close supply chain through linkage developed and developing countries of non-industrial infrastructure economy. That can be satisfied through comprehensive business- education-training model conduction firstly at the developing countries to reduce costs and change the intensive labour remanufacturing paradigm collaboratively. Sustainable remanufacturing business model can be applied based on infrastructure of educational institutions such as institutes of technology to adopt environmental, economic, and social developments as triple bottom line sustainability. Such innovation value creation is driven by eco-design and eco-innovation enabling where the meet to deliver human development, employment, and education conscious environment and bench mark recommendations of development directions for upgrading to apply business that allows eco-societies to emerge, through cooperative steel scrap processing.
DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.
SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...
2013-08-01
corrosion can be found on tubes , tubesheets, and in steam- drums, most often near the waterline in steam boilers . Oxygen pitting can also occur anywhere...components present in the feedwater onto wetted boiler surfaces including fire- tubes and water- tubes . Since scale is a good insulator, the thicker...steel surfaces of a steam boiler . However, heavier scale accumulates on the lower steel surfaces of the tubes , mud-drum, and boiler shell. SLUDGE
Variable resistance constant tension and lubrication device. [using oil-saturated leather wiper
NASA Technical Reports Server (NTRS)
Smith, H. J. (Inventor)
1974-01-01
A variable resistance device is described which includes a cylindrical housing having elongated resistance wires. A movable arm having a supporting block carried on the outer end is rotatably carried by the cylindrical housing. An arcuate steel spring member is pivotally supported by the movable arm. A leather wiper member is carried adjacent to one end of the spring steel member, and an electrically conductive surface is carried adjacent to the other end. The supporting block maintains the spring steel member in compression so that a constant pressure is applied to the conductive end of the spring steel member and the leather wiper. The leather wiper is saturated with a lubricating oil for maintaining the resistance wire clean as the movable arm is manipulated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... sand, gravel, and shell resources for specified types of public uses. Such specified uses will support... collection of information; (3) ways to enhance the quality, utility, and clarity of the information to be...
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.
Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-12-05
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.
Structure and creep of Russian reactor steels with a BCC structure
NASA Astrophysics Data System (ADS)
Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.
2017-05-01
The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.
Poppe, L.J.; Poag, C.W.; Swift, B.A.
1995-01-01
The Shell 410-1 well is the most downdip (seaward) hydrocarbon exploratory well in the Georges Bank Basin. It was drilled to a total depth of 4745 m RKB, and penetrated a section composed of Middle Jurassic to Quaternary sedimentary rocks. The lithostratigraphy of the section is described. The strata penetrated by the Shell 410-1 well are more marine than rocks at the updip (landward) COST G-1, Exxon 975-1, COST G-2, and Conoco 145-1 well sites. Limestones and calcareous mudstones dominate at the Shell 410-1 site. Dolomite and anhydrite are much more abundant in the Bajocian-Callovian strata of the Shell 410-1 well, which is evidence that the carbonate-bank palaeoenvironments recorded in the Iroquois and Abenaki Formations were more restricted (less marine) here than 47 km to the west-northwest at the Mobil 312-1 well site near the edge of the Jurassic carbonate platform. -from Authors
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
2013-01-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025
Selective molecular transport through the protein shell of a bacterial microcompartment organelle
Chowdhury, Chiranjit; Chun, Sunny; Pang, Allan; ...
2015-02-23
Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. In this paper, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux ofmore » propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Finally and overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.« less
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae
2013-08-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.
Quantum transport through single and multilayer icosahedral fullerenes
NASA Astrophysics Data System (ADS)
Lovey, Daniel A.; Romero, Rodolfo H.
2013-10-01
We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into account the curvature and finite size of the fullerenes layers as well as the strength of the intershell interactions depending on to the number of interacting atom pairs belonging to adjacent shells. Misalignment of the symmetry axes of the concentric iscosahedral shells produces breaking of the level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead of the localized discrete peaks of the individual fullerenes. As a result, the transmission function for non symmetrical onions is rapidly varying functions of the Fermi energy. Furthermore, we found that most of the features of the transmission through the onions are due to the electronic structure of the outer shell with additional Fano-like antiresonances arising from coupling with or between the inner shells.
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Lightweight Tanks for Storing Liquefied Natural Gas
NASA Technical Reports Server (NTRS)
DeLay, Tom
2008-01-01
Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.
Fukui, E; Uemura, K; Kobayashi, M
2000-08-10
Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florinski, V.; Heerikhuisen, J.; Niemiec, J.
2016-08-01
The nearly circular band of energetic neutral atom emission dominating the field of view of the Interplanetary Boundary Explorer ( IBEX ) satellite, is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath and the interstellar space beyond. Several models for the PUI dynamics of this mechanism have been proposed, each requiring either strong or weak scattering of the initial pitch angle. Conventional wisdom states that ring distributions tend to generate waves and scatter onto a shell on timescales too short for charge exchange to occur.more » We performed a careful study of ring and thin shell proton distribution stability using theoretical tools and hybrid plasma simulations. We show that the kinetic behavior of a freshly injected proton ring is a far more complicated process than previously thought. In the presence of a warm Maxwellian core, narrower rings could be more stable than broader toroidal distributions. The scattered rings possess a fine structure that can only be revealed using very large numbers of macroparticles in a simulation. It is demonstrated that a “stability gap” in ring temperature exists where the protons could retain large gyrating anisotropies for years, and the wave activity could remain below the level of the ambient magnetic fluctuations in interstellar space. In the directions away from the ribbon, however, a partial shell distribution is more likely to be unstable, leading to significant scattering into one hemisphere in velocity space. The process is accompanied by turbulence production, which is puzzling given the very low level of magnetic fluctuations measured in the outer heliosheath by Voyager 1 .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. -J.; Li, W.; Thorne, R. M.
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Zhang, X. -J.; Li, W.; Thorne, R. M.; ...
2016-08-13
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Ocean acidification alters the material properties of Mytilus edulis shells.
Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie
2015-02-06
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Dass, Amala
2009-08-26
The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).
NASA Astrophysics Data System (ADS)
Tian, Fei; Niu, Libo; Chen, Bo; Gao, Xuejia; Lan, Xingwang; Huo, Li; Bai, Guoyi
2017-10-01
A novel magnetic core-shell nanocomposite Fe3O4@Chitosan@ZnO was successfully prepared by in situ chemical precipitation method. It has a clear core-shell structure with magnetic Fe3O4 (about 160 nm in diameter) as core, chitosan as the inner shell, and ZnO as the outer shell, as demonstrated by the transmission electron microscopy and the related elemental mapping. Moreover, this nanocomposite has high magnetization (43.6 emu g-1) so that it can be easily separated from the reaction mixture within 4 s by an external magnetic field. The introduction of the natural chitosan shell, instead of the conventional SiO2 shell, and its combination with the active ZnO ensures this novel nanocomposite green character and good catalytic performance in the synthesis of 2-benzimidazoles with moderate to excellent isolated yields at room temperature. Notably, it can be recycled seven times without appreciable loss of its initial catalytic activity, demonstrating its good stability and making it an attractive candidate for the green synthesis of 2-benzimidazoles. [Figure not available: see fulltext.
A rigid and weathered ice shell on Titan.
Hemingway, D; Nimmo, F; Zebker, H; Iess, L
2013-08-29
Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought.
Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali
2018-07-15
Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Owen, James W. (Inventor); Dean, William G. (Inventor)
1989-01-01
Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.
Kinetic Energy Transfer Process in a Double Shell Leading to Robust Burn
NASA Astrophysics Data System (ADS)
Montgomery, D. S.; Daughton, W. S.; Albright, B. J.; Wilson, D. C.; Loomis, E. N.; Merritt, E. C.; Dodd, E. S.; Kirkpatrick, R. C.; Watt, R. G.; Rosen, M. D.
2017-10-01
A goal of double shell capsule implosions is to impart sufficient internal energy to the D-T fuel at stagnation in order to obtain robust α-heating and burn with low hot spot convergence, C.R. < 10. A simple description of the kinetic energy transfer from the outer shell to the inner shell is found using shock physics and adiabatic compression, and compares well with 1D modeling. An isobaric model for the stagnation phase of the inner shell is used to determine the ideal partition of internal energy in the D-T fuel. Robust burn of the fuel requires, at minimum, that α-heating exceeds the rate of cooling by expansion of the hot spot so that the yield occurs before the hot spot disassembles, which is then used to define a minimum requirement for robust burn. One potential advantage of a double shell capsule compared to single shell capsules is the use of a heavy metal pusher, which may lead to a longer hot spot disassembly time. We present these analytic results and compare them to 1D and 2D radiation-hydrodynamic simulations. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.
Ring Beholds a Delicate Flower
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers. The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star. Download the QuickTime movie for the animated version of this Ring Nebula image.Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
NASA Technical Reports Server (NTRS)
Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)
2009-01-01
Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves
Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; ...
2017-08-31
How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less
INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN ...
INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN STEEL IS POURED FROM LADLE THROUGH SHROUD TO TUNDISH. FROM TUNDISH STEEL ENTERS MOLD THROUGH SHROUD AND FORMATION OF SLAB SHELL BEGINS. AS SLAB PROGRESSES THROUGH CONTAINMENT SECTION IT IS COOLED WITH AIR MIST SPRAYS AND CONTINUES SOLIDIFICATION. UPON EXITING THE MACHINE THE SLABS ARE CUT TO DESIRED LENGTH AND IDENTIFIED. THE SLABS ARE STACKED, REMOVED FROM MACHINE AND PREPARED FOR SHIPMENT TO HOT STRIP MILL. CASTER HAS ABILITY TO PRODUCE SINGLE OR TWIN CASTS. SINGLE SLABS PRODUCED MAY BE UP TO 102 INCHES; DOUBLE SLABS UP TO 49 INCHES. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL
Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading
NASA Astrophysics Data System (ADS)
Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.
2018-03-01
SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.
H I in the Shell Elliptical Galaxy NGC 3656
NASA Astrophysics Data System (ADS)
Balcells, Marc; van Gorkom, J. H.; Sancisi, Renzo; del Burgo, Carlos
2001-10-01
Very Large Array7 neutral hydrogen observations of the shell elliptical galaxy NGC 3656 reveal an edge-on, warped minor-axis gaseous disk (MHI~2×109 Msolar) extending 7 kpc. H I is also found outside the optical image, on two complexes to the northeast and northwest that seem to trace one or two tidal tails, or possibly an outer broken H I disk or ring. These complexes link with the outer edges of the inner disk and appear displaced with respect to the two optical tails in the galaxy. The disk kinematics is strongly lopsided, suggesting recent or ongoing accretion. Integral-field optical fiber spectroscopy at the region of the bright southern shell of NGC 3656 has provided a determination of the stellar velocities of the shell. The shell, at 9 kpc from the center, has traces of H I with velocities bracketing the stellar velocities, providing evidence for a dynamical association of H I and stars at the shell. Within the errors the stars have systemic velocity, suggesting a possible phase-wrapping origin for the shell. We probed a region of 40'×40' (480 kpc×480 kpc)×1160 km s-1 down to an H I mass sensitivity (6 σ) of 3×107 Msolar and detect five dwarf galaxies with H I masses ranging from 2×108 to 2×109 Msolar, all within 180 kpc of NGC 3656 and all within the velocity range (450 km s-1) of the H I of NGC 3656. The dwarfs had been previously cataloged, but none had a known redshift. For the NGC 3656 group to be bound requires a total mass of (3-7.4)×1012 Msolar, yielding a mass-to-light ratio from 125 to 300. The overall H I picture presented by NGC 3656 supports the hypothesis of a disk-disk merger origin or possibly an ongoing process of multiple mergers with nearby dwarfs. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Acetabular shell deformation as a function of shell stiffness and bone strength.
Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David
2016-04-01
Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. © IMechE 2016.
NASA Astrophysics Data System (ADS)
Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan
2017-04-01
Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.
HI emission from the red giant Y CVn with the VLA and FAST
NASA Astrophysics Data System (ADS)
Hoai, Do T.; Nhung, Pham T.; Matthews, Lynn D.; Gérard, Eric; Le Bertre, Thibaut
2017-07-01
Imaging studies with the Very Large Array (VLA) have revealed HI emission associated with the extended circumstellar shells of red giants. We analyze the spectral map obtained on Y CVn, a J-type carbon star on the Asymptotic Giant Branch. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star’s motion in space. We then use this fitting to simulate observations expected from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and discuss its potential for improving our description of the outer regions of circumstellar shells.
The ultrastructure of shelled and unshelled cashew nuts.
Muniz, Celli R; Freire, Francisco C O; Soares, Arlete Aparecida; Cooke, Peter H; Guedes, Maria I F
2013-01-01
Cashew nuts have many attributes, including sensory, nutritional and health appeal, which contribute to their worldwide acceptance. We demonstrate details of the microstructure of shelled and unshelled cashew kernels with regard to pericarp and cotyledon organization. This study also provides evidence of the colonization of these kernels by filamentous fungi. Nuts were examined by scanning electron and confocal scanning laser microscopy. Staining with acridine orange was performed. A tight lignified palisade layer adjacent to the exocarp surface explains the hardness of the shell's pericarp. The mesocarp contains large secretory cavities that confer a spongy property to this tissue. Papillose cells, which are responsible for secreting CNSL (cashew nutshell liquid), were observed to cover the inner wall of these cavities. Lipid components are readily released from the parenchyma and appear as oil droplets. The outer surface of the shelled samples exhibited a dense Aspergillus infestation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthesis of Various Metal/TiO2 Core/shell Nanorod Arrays
NASA Astrophysics Data System (ADS)
Zhu, Wei; Wang, Guan-zhong; Hong, Xun; Shen, Xiao-shuang
2011-02-01
We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by two-step electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.
77 FR 3771 - Notice of Issuance of Final Outer Continental Shelf Air Permit for Shell Offshore, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... drilling vessels (the Transocean Deepwater Nautilus, the Noble Bully I or the Noble Bully II) and support vessels to conduct exploratory drilling for up to 150 days per year over five to ten years in multiple...
Small cell foams and blends and a process for their preparation
Hedstrand, D.M.; Tomalia, D.A.
1995-02-07
Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.
49 CFR 179.220-26 - Stenciling.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...
49 CFR 179.220-26 - Stenciling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...
Small cell foams and blends and a process for their preparation
Hedstrand, David M.; Tomalia, Donald A.
1995-01-01
Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.
Dual shell pressure balanced vessel
Fassbender, Alexander G.
1992-01-01
A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.
Hyung, S; Aller, L H
1993-01-01
Observations of two dense compact planetary nebulae secured with the Hamilton Echelle spectrograph at Lick Observatory combined with previously published UV spectra secured with the International Ultraviolet Explorer enable us to probe the electron densities and temperatures (plasma diagnostics) and ionic concentrations in these objects. The diagnostic diagrams show that no homogenous model will work for these nebulae. NGC 6572 may consist of an inner torordal ring of density 25,000 atoms/cm3 and an outer conical shell of density 10,000 atoms/cm3. The simplest model of IC 4997 suggests a thick inner shell with a density of about 107 atoms/cm3 and an outer envelope of density 10,000 atoms/cm3. The abundances of all elements heavier than He appear to be less than the solar values in NGC 6572, whereas He, C, N, and O may be more abundant in IC 4997 than in the sun. IC 4997 presents puzzling problems. PMID:11607347
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
Real-time combustion controls and diagnostics sensors (CCADS)
Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas
2005-05-03
The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
Jung, Soo-Jin; Park, Shin Young; Kim, Seh Eun; Kang, Ike; Park, Jiyong; Lee, Jungwon; Kim, Chang-Min; Chung, Myung-Sub; Ha, Sang-Do
2017-07-01
The aim of this study was to evaluate the bactericidal effect of calcium oxide (CaO) against Pseudomonas aeruginosa biofilms on quail eggshells and major egg contacting surfaces (stainless steel, plastic, and rubber). The samples were subjected to CaO treatments (0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%) for 1 min. All the CaO treatments significantly reduced P. aeruginosa biofilms on all tested surfaces as compared to controls. In comparison of biofilm stability, the strongest and most resistant biofilm was formed on eggshell against the CaO treatment, followed by rubber, stainless steel, and plastic. In evaluation of bactericidal effect, the largest reduction (3.16 log CFU) was observed in plastic even at the lowest concentration of CaO (0.01%), whereas the least reduction was found in eggshells, regardless of CaO concentration. In addition, stainless steel showed a significant reduction in biofilm formation at all concentrations except 0.10% to 0.15% CaO. At 0.30% CaO, the reduction of P. aeruginosa in biofilms on stainless steel, plastic, rubber, and eggshell were 5.48, 6.37, 4.87, and 3.14 log CFU/cm 2 (CFU/egg), respectively. Biofilm reduction after CaO treatment was also observed by field emission scanning electron microscopy (FE-SEM). Based on the FE-SEM images, we observed that P. aeruginosa biofilms formed compact aggregations on eggshell surfaces with CaO treatments up to 0.30%. More specifically, a 0.20% CaO treatment resulted in the reductions of 3 to 6 log CFU in all materials. © 2017 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.
The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until themore » 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m 3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.« less
Vaidyanathan, Swaminathan; Adamson, Martyn G.
1986-01-01
An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.
NASA Technical Reports Server (NTRS)
Ciurlionis, B.
1967-01-01
Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.
Testing and recommended practices to improve nurse tank safety, phase I : [research brief].
DOT National Transportation Integrated Search
2013-10-01
This study focuses on determining causes and possible inspection remediation strategies to reduce the occurrence of anhydrous ammonia (NH3) nurse tank failures. Nurse tanks are cylindrical steel tank shells with hemispherical or elliptical end caps r...
NASA Astrophysics Data System (ADS)
Hatzoglou, C.; Radiguet, B.; Pareige, P.
2017-08-01
Oxide Dispersion Strengthened (ODS) steels are promising candidates for future nuclear reactors, partly due to the fine dispersion of the nanoparticles they contain. Until now, there was no consensus as to the nature of the nanoparticles because their analysis pushed the techniques to their limits and in consequence, introduced some artefacts. In this study, the artefacts that occur during atom probe tomography analysis are quantified. The artefacts quantification reveals that the particles morphology, chemical composition and atomic density are biased. A model is suggested to correct these artefacts in order to obtain a fine and accurate characterization of the nanoparticles. This model is based on volume fraction calculation and an analytical expression of the atomic density. Then, the studied ODS steel reveals nanoparticles, pure in Y, Ti and O, with a core/shell structure. The shell is rich in Cr. The Cr content of the shell is dependent on that of the matrix by a factor of 1.5. This study also shows that 15% of the atoms that were initially in the particles are not detected during the analysis. This only affects O atoms. The particle stoichiometry evolves from YTiO2 for the smallest observed (<2 nm) to Y2TiO5 for the biggest (>8 nm).
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
ERIC Educational Resources Information Center
Woolf, Harry
This collection of four essays brings together the outer, external public aspect of scientific activities, and the internal, private world of scientific thought. Originally delivered as lectures at Johns Hopkins University for the Shell Companies Foundation Lectures on Science, Technology, and Society, these essays touch upon the broader aspects…
IODIDE AEROSOL SORBENTS FOR MERCURY CAPTURE IN COMBUSTION EXHAUSTS
Several sorbent processes are being studied for their feasibility for mercury capture. Mercury is different from the other heavy metals as it is not as chemically reactive (due to a filled outer electronic shell), thus making it difficult for sorbents to chemically trap it (a). ...
Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle
Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; ...
2015-10-05
Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O 2 gas and H 2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometricmore » phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.« less
Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle
Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei
2015-01-01
Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-11-01
This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu
Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less
Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.
2015-01-01
The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates. This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478
NASA Technical Reports Server (NTRS)
Moore, W.; Schubert, Gerald; Sandwell, David T.
1992-01-01
Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
NASA Astrophysics Data System (ADS)
Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite
2009-05-01
A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.
Conceptual design of divertor and first wall for DEMO-FNS
NASA Astrophysics Data System (ADS)
Sergeev, V. Yu.; Kuteev, B. V.; Bykov, A. S.; Gervash, A. A.; Glazunov, D. A.; Goncharov, P. R.; Dnestrovskij, A. Yu.; Khayrutdinov, R. R.; Klishchenko, A. V.; Lukash, V. E.; Mazul, I. V.; Molchanov, P. A.; Petrov, V. S.; Rozhansky, V. A.; Shpanskiy, Yu. S.; Sivak, A. B.; Skokov, V. G.; Spitsyn, A. V.
2015-11-01
Key issues of design of the divertor and the first wall of DEMO-FNS are presented. A double null closed magnetic configuration was chosen with long external legs and V-shaped corners. The divertor employs a cassette design similar to that of ITER. Water-cooled first wall of the tokamak is made of Be tiles and CuCrZr-stainless steel shells. Lithium injection and circulation technologies are foreseen for protection of plasma facing components. Simulations of thermal loads onto the first wall and divertor plates suggest a possibility to distribute heat loads making them less than 10 MW m-2. Evaluations of sputtering and evaporation of plasma-facing materials suggest that lithium may protect the first wall. To prevent Be erosion at the outer divertor plates either the full detached divertor operation or arrangement of the renewal lithium flow on targets should be implemented. Test bed experiments on the Tsefey-M facility with the first wall mockup coated by Ве tiles and cooled by water are presented. The temperature of the surface of tiles reached 280-300 °С at 5 MW m-2 and 600-650 °С at 10.5 MW m-2. The mockup successfully withstood 1000 cycles with the lower thermal loading and 100 cycles with higher thermal loading.
Canned pump having a high inertia flywheel
Veronesi, Luciano; Raimondi, ALbert A.
1989-01-01
A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.
Canned pump having a high inertia flywheel
Veronesi, L.; Raimondi, A.A.
1989-12-12
A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
State-of-the-art survey of joinability of materials for OTEC heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, R. J.
1978-12-01
Literature and industrial sources were surveyed to assess, on the basis of apparent economics and reliability, the joinability of both shell-and-tube and compact ocean thermal energy conversion (OTEC) heat exchangers. A no-leak requirement is mandatory to prevent mixing seawater and the ammonia working fluid. The operating temperature range considered is 7 to 28/sup 0/C (45 to 82/sup 0/F). Materials evaluated were aluminum, titanium, copper--nickel, AL-6X austenitic stainless steel, singly and in combination with steel and concrete. Many types of welding and brazing processes, roller expansion, magnaforming, O-ring sealing, and adhesive bonding were considered. The automatic gas tungsten-arc welding process andmore » explosion welding processes are the only two joining processes that now appear to offer the high reliability required of no-leak shell-and-tube heat exchangers. Of these two processes, the gas tungsten-arc welding process appears to be the more economically attractive.« less
NASA Astrophysics Data System (ADS)
Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara
2017-04-01
The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced concrete; it ensures also an optimal transmission and distribution of the adhesion forces in the pillar. Acknowledgement This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection
Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-01-01
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154
Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis
2013-08-01
This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.
NEUTRONIC REACTOR FUEL ELEMENT
Shackleford, M.H.
1958-12-16
A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.
Earth boring apparatus with multiple welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, J.B.; Crews, S.T.
1981-06-16
A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Key to the integral heating system's efficiency is the "dish-oven", which doubles as a heating unit and serving plate. The dish-oven consists of a sealing frame (top) a plastic outer shell (center) and the ceramic inner dish. A special coating on the bottom of the inner dish transforms electrical impulses into heat
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
46 CFR 69.65 - Calculation of volumes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accepted naval architectural practices for the spaces concerned. (b) The volume of the hull below the upper... boundary plating, in vessels constructed of metal; and (2) To the outer surface of the shell or to the... cargo space, measurements must be taken without consideration for insulation, sparring, or ceiling...
Seabed Geoacoustic Planning Support for the QPE Uncertainty DRI
2007-09-30
40% CaCO3 from planktonic foraminfera and pteropod shells associated with upwelling. • Rock fragments are common and abundant constituents of...variable over seasonal time scales. • On outer shelf and slope, presence of deep thermogenic methane leads to mud volcanoes (5-40 m in height; radii ~20
Detail of interior of compressed air chamber showing top of ...
Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
...), Interior. ACTION: Notice of the availability of Environmental Assessment (EA) and Finding of No Significant... that implement the National Environmental Policy Act (NEPA), announces the availability of two... 2010 open-water period. Shell's proposal includes suspending all operations and removal of the drill...
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...
Computer Series, 65. Bits and Pieces, 26.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1985-01-01
Describes: (l) a microcomputer-based system for filing test questions and assembling examinations; (2) microcomputer use in practical and simulated experiments of gamma rays scattering by outer shell electrons; (3) an interactive, screen-oriented, general linear regression program; and (4) graphics drill and game programs for benzene synthesis.…
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
Supernova Remnant Evolving in Wind-Blown Bubbles: A Case Study of Kes 27
NASA Astrophysics Data System (ADS)
Li, Jiangtao
2013-10-01
Mixed-morphology (MM) SNRs represent SN explosion in wind-blown bubbles. They are thus good places to study the interaction between massive stellar winds, SNRs, and the surrounding ISM. We propose a 50ks XMM-Newton observation of a peculiar MM SNR, Kes 27. We will map out the spectral parameters in tessellated meshes and construct EW maps of some emission lines with our newly developed spatially-resolved spectroscopy method. These analyses will help us to understand the unusual properties of this MM SNR, such as the X-ray bright outer shell, shell-like interior, and strong NE-SW asymmetry in morphology. We will also search for evidence of over-ionization state plasma and coherent X-ray features associated with the shell of the HI cavity.
Performance of ferritic stainless steels for automobile muffler corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarutani, Y.; Hashizume, T.
1995-11-01
Corrosion behavior of ferritic stainless steels was studied in artificial exhaust gas condensates containing corrosive ions such as Cl{sup {minus}} and SO{sub 3}{sup 2{minus}}. Continuous immersion tests in flasks and Dip and Dry tests by using the alternate corrosion tester with a heating system clarified the effects of chromium and molybdenum additions on the corrosion resistance of a ferritic stainless steel in the artificial exhaust gas condensates. Effects of surface oxidation on the corrosion behavior were investigated in a temperature range of 573K to 673K. Oxidation of 673K reduced the corrosion resistance of the ferritic stainless steels in the artificialmore » environment of the automobile muffler. Particulate matter deposited on the muffler inner shell from the automobile exhaust gas was also examined. Deposited particulate matter increased the corrosion rate of the ferritic stainless steel. Finally, the authors also investigated the corrosion of the automobile mufflers made of Type 436L ferritic stainless steel with 18% chromium-1.2% molybdenum after 24 months, in Japan. The sets of results clarified that Type 436L ferritic stainless steel as the material for the automobile muffler exhibited acceptable corrosion resistance.« less
Current forgings and their properties for steam generator of nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio
1997-12-31
Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less
NASA Astrophysics Data System (ADS)
Fathy, Naglaa; Ramadan, Mohamed
2018-05-01
The influence of volume ratio of liquid to Solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite was evaluated for static casting technique. At low pouring temperature of 380 °C, Babbitt microstructures are improved to be finer and more globular. On the other side pouring the Babbitt at low pouring temperature of 380 °C increases the chance of present higher unbonded area percent. Increasing the volume ratio of liquid to solid decreases the Sn-Pb interface thicknesses and increases the bonded interface area. In order to optimize the production of Babbitt-steel bimetal composite at low pouring temperature, the volume ratio of liquid Babbitt to solid steel shell should be higher value that could be more than 5 depending on the extrapolation of current data presented.
Computational studies of the 2D self-assembly of bacterial microcompartment shell proteins
NASA Astrophysics Data System (ADS)
Mahalik, Jyoti; Brown, Kirsten; Cheng, Xiaolin; Fuentes-Cabrera, Miguel
Bacterial microcomartments (BMCs) are subcellular organelles that exist within wide variety of bacteria and function like nano-reactors. Among the different types of BMCs known, the carboxysome has been studied the most. The carboxysomes plays an important role in the transport of metabolites across its outer proteinaceous shell. Plenty of studies have investigated the structure of this shell, yet little is known about its self-assembly . Understanding the self-assembly process of BMCs' shell might allow disrupting their functioning and designing new synthetic nano-reactors. We have investigated the self-assembly process of a major protein component of the carboxysome's shell using a Monte Carlo technique that employed a coarse-grained protein model that was calibrated with the all-atomistic potential of mean force. The simulations reveal that this protein self-assembles into clusters that resemble what were seen experimentally in 2D layers. Further analysis of the simulation results suggests that the 2D self-assembly of carboxysome's facets is driven by nucleation-growth process, which in turn could play an important role in the hierarchical self-assembly of BMCs' shell in general. 1. Science Undergraduate Laboratory Internships, ORNL 2. Oak Ridge Leadership Computing Facility, ORNL.
Molecular environment and an X-ray study of the double-shell supernova remnant Kes 79
NASA Astrophysics Data System (ADS)
Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Ming, Sun
Kes 79 is a remarkable middle-age supernova remnant (SNR) with double shells in radio band and many structures in X-rays, harbouring a CCO and with a transient magnetar to the south. We have performed new 12CO J=1-0, 13CO J=1-0, 12CO J=2-1 observations towards this remnant to investigate its molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-115 km/s, which deformed the SNR's shell in the east. The inner radio shell appears to be well confined by a molecular shell at V_{LSR}˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveal many bright filamentary structures well coincident with infrared features and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also studied the spatial distribution of the overabundant metal species that may be related to the asymmetric ejecta. Finally, we will discuss the evolution of Kes 79 combining the molecular line and X-ray properties.