Science.gov

Sample records for steel reheat furnace

  1. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  2. Interior of shop, showing the reheat furnaces; the vehicle in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  3. 6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. FURNACE SHOWING DURING DEMOLITION. C HOOK USED TO CHANGE ROLLS IS VISIBLE IN FRONT OF FURNACE. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  4. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  5. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  6. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  7. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  8. Blast furnace injection developments in British Steel

    SciTech Connect

    Jukes, M.H.

    1996-12-31

    British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

  9. 20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  10. Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating

    NASA Astrophysics Data System (ADS)

    Roy, S.; Chakrabarti, D.; Dey, G. K.

    2013-02-01

    Austenite-grain growth was investigated in a couple of microalloyed steels, one containing Ti and the other containing Nb, Ti, and V, using different reheating temperatures between 1273 K and 1523 K (1000 °C and 1250 °C). Nature and distribution of microalloy precipitates were quantitatively analyzed before and after reheating. Interdendritic segregation (or microsegregation) during casting can result in an inhomogeneous distribution of microalloy precipitates in the as-cast slabs, which can create austenite grain size variation (even grain size bimodality) after reheating. Ti addition reduced the grain size variation; however, it could not eliminate the grain size bimodality in Nb-containing steel, due to the differential pinning effect of Nb precipitates. A model was proposed for the prediction of austenite grain size variation in reheated steel by combining different models on microsegregation during solidification, thermodynamic stability, and dissolution of microalloy precipitates and austenite grain growth during reheating.

  11. 30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING CREW, 1910. (From the Bethlehem Steel Corporation Colletion, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  12. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    NASA Astrophysics Data System (ADS)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  13. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  14. Blast furnace coal injection at Scunthorpe Works, British Steel plc

    SciTech Connect

    Matheau-Raven, D.

    1996-12-31

    Granulator coal injection has been practiced since 1982 at Scunthorpe Works, British Steel plc. The Works is world famous for its four Queens of Ironmaking, named Victoria, Anne, Bess and Mary. These four blast furnaces are capable of producing 4.1 million tonnes of hot metal per annum. The coal injection system was a joint development venture between British Steel and a local based company call Clyde Pneumatic Conveyors. After 14 years of operation and regulator use, Scunthorpe`s coal injection rates have risen to become among the highest in the world. Total coal injected stands at around 4 million tonnes and coal injection rates of greater than 200 kg/thm have been achieved. The furnace operation has remained smooth throughout and there have been no measurable detrimental effects upon the blast furnace performance. In fact quite the opposite with several benefits. This paper briefly describes the furnaces and the coal injection equipment. Operating results for a full twelve months are given and discussed as are aspects of the blast furnace operating practice enabling these injection rates to be achieved. In financial terms savings totaling around 14 million pounds sterling per annum have been realized through the use of blast furnace coal injection.

  15. Inland Steel's No. 7 blast furnace third reline

    SciTech Connect

    Lowrance, K.F. II ); Johansson, J.; Carter, W.L. )

    1994-09-01

    The background information, investigation and benchmarking that led to a decision by Inland Steel to partially reline No. 7 blast furnace is covered. This approach reduced actual downtime on the furnace and extended the current campaign. This alternative allowed for the rebalancing of the physical plant of No. 7 blast furnace. Areas of scope covered are hearth, stack, stoves, gas cleaning and furnace top. Included are highlights of the execution of the project including schedules, blowdown, salamander tap, quench, dig out/descale, scaffolding used and brick installation. A summary of the actual results of the work is presented along with information on production planned, blow-in and the first 20 days of production.

  16. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  17. Blast furnaces make way for new steel technology

    SciTech Connect

    Ondrey, G.; Parkinson, G.; Moore, S.

    1995-03-01

    Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

  18. The startup of coal injection on Bethlehem Steel`s Burns Harbor blast furnaces

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Durko, D.P.; Dwelly, M.J.

    1996-12-31

    Despite the simplicity of operation and the excellent results from natural gas injection at Bethlehem Steel, there were concerns about future supply and price stability. Furthermore, the maximum projected gas rates still required coke consumption in excess of Burns Harbor`s coke production capacity. Thus in 1990 Bethlehem Steel entered into an agreement to participate in the DOE Clean Coal Technology demonstration project by installing a granular coal injection facility at Burns Harbor. This agreement called for a facility to be constructed which was capable of processing and injecting a wide range of coal types in either granular or pulverized form. Tests were to be conducted to assess the effects of a range of coal properties, coal sizing, and injection rates on a number of key blast furnace parameters. During all the transitioning from natural gas injection to coal injection and subsequent tests it was essential that the blast furnaces maintain their historic operating performance in support of the Burns Harbor Division`s product market requirements. Unlike many coal injection facilities, the Burns Harbor installation is owned by Bethlehem Steel and the operation and maintenance from raw coal unloading through the tuyeres is the responsibility of the Blast Furnace Department. As the authors will discuss, the start-up of this major installation involved significant challenges, the most critical of which was maintaining historically high blast furnace operating standards while commissioning a new facility and adapting the furnace process to coal injection.

  19. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    NASA Astrophysics Data System (ADS)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  20. Characterization of steel mill electric-arc furnace dust.

    PubMed

    Sofilić, Tahir; Rastovcan-Mioc, Alenka; Cerjan-Stefanović, Stefica; Novosel-Radović, Vjera; Jenko, Monika

    2004-06-18

    In order to make a complete characterization of electric-arc furnace (EAF) dust, as hazardous industrial waste, and to solve its permanent disposal and/or recovery, bearing in mind both the volumes formed in the Croatian steel industry and experiences of developed industrial countries, a study of its properties was undertaken. For this purpose, samples of EAF dust, taken from the regular production process in the Zeljezara Sisak Steel Mill between December 2000 and December 2001, were subjected to a series of tests. The chemical composition of EAF dust samples was investigated by means of a several different analytical methods. The results from the chemical analysis show that the approximate order of abundance of major elements in EAF dusts is as follows: Fe, Zn, Mn, Ca, Mg, Si, Pb, S, Cr, Cu, Al, C, Ni, Cd, As and Hg. Granular-metric composition of single samples was determined by applying sieve separation. Scanning electron micro-structural examination of EAF dust microstructure was performed and results indicated that all twelve EAF dusts were composed of solid spherical agglomerates with Fe, Zn, Pb, O, Si and Ca as the principal element. The investigation of grain morphology and the mineralogical composition of EAF dust were taken by combination of high resolution Auger electron spectroscopy (HR AES), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis. The analysis of XPS-spectra determined the presence of zinc in the form of ZnO phase and the presence of lead in the form of PbO phase, i.e. PbSO3/PbSO4 forms. The results of the X-ray diffraction phase analysis show that the basis of the examined EAF dust samples is made of a mixture of metal oxides, silicates and sulphates. The metal concentration, anions, pH value and conductivity in water eluates was determined in order to define the influence of EAF dust on the environment.

  1. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  2. Updating the Mode of Annealing of Tubes from Steel ShKh15 in Chamber Furnaces

    NASA Astrophysics Data System (ADS)

    Yur'ev, B. P.; Gol'tsev, V. A.

    2016-11-01

    A study of commercial tubes from steel ShKh15 produced in a chamber furnace is performed for investigating the active annealing process. The causes of inappropriate heating and cooling of tubes in a charge are determined. The annealing mode is shown to mismatch the required temperature regime, which elevates rejection. Recommendations for eliminating the determined drawbacks, raising the quality of the annealed tubes and the output of the chamber furnaces are developed.

  3. Modern trends in improvement of steel heating technology in continuous furnaces

    NASA Astrophysics Data System (ADS)

    Timoshpolskiy, V. I.; Temlyantsev, M. V.; Trusova, I. A.

    2016-09-01

    The principles and approaches in the development and improvement of steel heating technology in the furnaces of rolling manufacture of various structural design, based on the systematic study of thermal physical and technological processes, including mathematical modeling, industrial experiments, development of rational temperature-thermal modes.

  4. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

    NASA Astrophysics Data System (ADS)

    Wiklund, Carl-Mikael; Pettersson, Frank; Saxén, Henrik

    2013-04-01

    The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

  5. Reheat response and accelerated cooling of a microalloyed steel with an air/water atomizer: Effect on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pejavar, S. R.; Aswath, P. B.

    1994-04-01

    The use of an atomizer for accelerated cooling is discussed. An atomizer is an effective tool for controlling the microstructure and properties of a microalloyed steel because of its flexibility of operation and control of cooling rate over a broad range of temperatures. Some basic issues regarding heat transfer in pool boiling and in spray cooling also are presented. Reheating response studies were conducted in addition to studies of the effect of accelerated cooling on the microstructure and properties of a low- carbon steel microalloyed with niobium and vanadium. This steel produces a tempered martensitic microstructure on quenching and a predominantly bainitic microstructure at slower cooling rates. The yield, tensile, and fracture strengths can be tailored by controlling the cooling rate, which in turn can be controlled by the air/water ratio and flow rates in the atomizer. Impact toughness is a function of cooling rate and reaches a maximum followed by a decrease, probably due to the formation of upper bainite at lower cooling rates. Fractographic studies indicated that tensile fracture occurred by microvoid coalescence, with the dimple size decreasing as the cooling rate decreased. Charpy impact fracture studies indicated that the primary mode of failure was by quasi- cleavage, with the number of secondary cracks also decreasing as the cooling rate decreased.

  6. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  7. Mathematical Model for Decarburization of Ultra-low Carbon Steel in Single Snorkel Refining Furnace

    NASA Astrophysics Data System (ADS)

    You, Zhimin; Cheng, Guoguang; Wang, Xinchao; Qin, Zhe; Tian, Jun; Zhang, Jian

    2014-09-01

    A dynamic model is developed to investigate decarburization behavior of a new type of refining equipment named Single Snorkel Refining Furnace (SSRF) in treating ultra-low carbon steel. Decarburization reactions in SSRF are considered to take place at three sites: Ar bubble surface, the bulk steel, and the bath surface. With the eccentricity of the porous plug (r e/R S) and the ratio of the snorkel diameter to the ladle diameter (D S/D L) of SSRF confirmed, circulation flow rate of molten steel is obtained through combined effects of vacuum pressure and gas flow rate. Besides, variation of the steel temperature is simulated associated with generated reaction heat and heat losses. The variation of C concentration with treatment time is divided into three stages in accordance with decarburization rates and the simulated C concentration is in reasonable agreement with actual production data. In the present study, both decarburization rates at three sites and their contributions to the overall decarburization at each stage are estimated for the first time. Through the present investigation, it is clear that vacuum pressure significantly influences decarburization efficiency of SSRF primarily by affecting the depth of CO nucleation in the bulk steel. Besides, effects of gas flow rate on decarburization rate of different stages are obtained and the opportunity of increasing gas flow rate during the treatment period has been clarified. The present model provides an efficient tool to comprehend the decarburization process in SSRF.

  8. Mathematical Model for Decarburization of Ultra-low Carbon Steel in Single Snorkel Refining Furnace

    NASA Astrophysics Data System (ADS)

    You, Zhimin; Cheng, Guoguang; Wang, Xinchao; Qin, Zhe; Tian, Jun; Zhang, Jian

    2015-02-01

    A dynamic model is developed to investigate decarburization behavior of a new type of refining equipment named Single Snorkel Refining Furnace (SSRF) in treating ultra-low carbon steel. Decarburization reactions in SSRF are considered to take place at three sites: Ar bubble surface, the bulk steel, and the bath surface. With the eccentricity of the porous plug ( r e/ R S) and the ratio of the snorkel diameter to the ladle diameter ( D S/ D L) of SSRF confirmed, circulation flow rate of molten steel is obtained through combined effects of vacuum pressure and gas flow rate. Besides, variation of the steel temperature is simulated associated with generated reaction heat and heat losses. The variation of C concentration with treatment time is divided into three stages in accordance with decarburization rates and the simulated C concentration is in reasonable agreement with actual production data. In the present study, both decarburization rates at three sites and their contributions to the overall decarburization at each stage are estimated for the first time. Through the present investigation, it is clear that vacuum pressure significantly influences decarburization efficiency of SSRF primarily by affecting the depth of CO nucleation in the bulk steel. Besides, effects of gas flow rate on decarburization rate of different stages are obtained and the opportunity of increasing gas flow rate during the treatment period has been clarified. The present model provides an efficient tool to comprehend the decarburization process in SSRF.

  9. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  10. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    NASA Astrophysics Data System (ADS)

    Van Ende, Marie-Aline; Jung, In-Ho

    2017-02-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  11. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.

  12. Process of vacuum hardening of cutting and sharpening tools of high-speed steels in belt furnaces

    NASA Astrophysics Data System (ADS)

    Tarasovi, A. N.

    1996-12-01

    The technical possibilities of vacuum elevator and bell furnaces commonly used for brazing and annealing precision parts in instrument-making and electronics can be widened. Small thin-blade tools of powder steels R6M5-P, 10R6M5-MP and "silver" steels R6M5, R6M5K5 with a minimum tolerance for sizing after hardening at a low cooling rate have high operational properties. The present paper is devoted to the process of heat treatment of special tools of the listed steels used to cut and shape ribbons, rods, and foils of alloys 36NKhTYu, 29NK, BrB2 in vacuum bcil furnaces under conditions of batch and small-batch production in electrical-engineering enterprises.

  13. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces.

    PubMed

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman

    2017-01-01

    Polychlorinated naphthalene (PCN) emissions of scrap iron processing steel plants were explored by measuring concentrations in stack gases of five plants, in the atmosphere (n=11) at a site close to those plants, and in soil at several sites in the region (n=40) in Aliaga, Izmir, Turkey. Observed stack-gas Σ32PCN levels from the plants without scrap preheating (189±157ngNm(-3), average±SD, n=4) showed that they are substantial PCN emitting sources. Stack-gas Σ32PCN level for the plant with scrap preheating was considerably higher (1262ngNm(-3)). Similarly, Σ32PCN emission factor for this plant was substantially higher (11.9mgton(-1)) compared to those without scrap preheating (1.30±0.98mgton(-1)). Results have also suggested that the investigated steel plants emit large quantities of fugitive particle-phase PCNs. Measured soil Σ32PCN concentrations that are considered to be representative of the atmospheric levels were greatly variable in the region, ranging between 0.003 and 10.02μgkg(-1) (dry wt). Their spatial distribution showed that main PCN sources in the region were the iron-steel plants. Ambient air levels (1620±800pgm(-3)) were substantially higher than ones observed around the world and in the study area verifying that the steel plants with electric arc furnaces (EAFs) are important PCN sources. Investigation of possible mechanisms suggested that the combustion processes also contribute to emissions from EAFs in addition to evaporation of PCNs present in the scrap iron.

  14. Electric arc furnaces for steel-making: hot spots for persistent organic pollutants.

    PubMed

    Odabasi, Mustafa; Bayram, Abdurrahman; Elbir, Tolga; Seyfioglu, Remzi; Dumanoglu, Yetkin; Bozlaker, Ayse; Demircioglu, Hulusi; Altiok, Hasan; Yatkin, Sinan; Cetin, Banu

    2009-07-15

    Persistent organic pollutant (POP) concentrations were measured in stack-gases of ferrous scrap processing steel plants with electric arc furnaces (EAFs) (n = 5) in Aliaga, Izmir, Turkey and in air (n = 11) at a site near those plants. Measured stack-gas concentrations for the four plants without scrap preheating (611 +/- 311, 165,000 +/- 285,000, and 33 +/- 3 ng m(-3), average +/- SD for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) indicated that they are significant sources for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). POP emissions from the plant with scrap preheating were significantly higher (13 500, 445 000, and 91 ng m(-3) for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively). It was also shown that the steel plants emit considerable amounts of fugitive POPs in particle-phase. Estimated emissions using the emission factors generated in this study and the production amounts suggested that the steel plants with EAFs may significantly contribute to local and global PAH, PCB, and PBDE emissions. Several other compounds (aromatic and aliphatic hydrocarbons, oxygen, sulfur, nitrogen, and chlorine-containing organic compounds, n = 49) were identified and determined semiquantitatively in the stack-gas and ambient air samples. Ambient air concentrations (62 +/- 35, 320 +/- 134 ng m(-3), 1451 +/- 954 pg m(-3), for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) were significantly higher than those measured previously around the world and in the region, further confirming that the steel plants with EAFs are "hot spots" for POPs.

  15. Reheating Brane Worlds

    NASA Astrophysics Data System (ADS)

    Yi, Piljin

    2005-12-01

    We consider reheating processes at the end of string theory inflation involving unstable D-brane systems. Nucleosynthesis restricts how much of reheating energy may be present in the nonstandard matter sector, such as gravitons and gravitinos, introducing some constraints on reheating process. In string theory setting, these may not be avoided ad hoc by fine-tuning and provide a useful tool in weeding out unrealistic scenarios. In this talk, we how the energy gets deposited into various light degrees of freedom in open and closed strings sectors. We show that a viable reheating is possible in a single throat case of KKLMMT type inflation model. Depending on details of the geometry, however, a potential problem with long-lived KK relic is present. For multi-throat case, this problem of KK relic is typically more severe and generic.

  16. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  17. Strength and structure of furnace-brazed joints between aluminum and stainless steel

    SciTech Connect

    Roulin, M.; Karadeniz, G.; Mortensen, A.; Luster, J.W.

    1999-05-01

    The structure and shear strength of brazed joints of aluminum to stainless steel are studied using a modification of the double lap joint configuration, which allows mechanical testing and joint microstructure examination on the same test piece. It is found that during furnace brazing of such joints at 600 C, using an Al-Si eutectic brazing alloy, the interfacial zone between the aluminum-rich braze and the stainless steel substrate features two intermetallic layers. The first is formed in the initial instants of the process and features an overall composition similar to that of the compound FeSiAl{sub 5}. The second appears after a 10-min hold time at the brazing temperature, and features an overall composition that parallels the FeAl{sub 3} intermetallic. Both layers are, however, more complex in structure than is suggested by these stoichiometric relations. The shear strength of the braze peaks at 21 MPa after a 10-min hold time at the brazing temperature. This peak is associated with nucleation of the second intermetallic layer, which is shown to fragilize the joint significantly. The presence of silicon in the brazing alloy would also seem to be beneficial by retarding formation of this second, more fragile Fe-Al intermetallic layer; however, more work is needed to substantiate this tentative conclusion.

  18. Elements for the modeling of the thermal process in heating furnaces for steel forming

    NASA Astrophysics Data System (ADS)

    Constantinescu, D.; Carlan, A. B.

    2017-02-01

    In the present paper, by “modelling of thermal process” will be understood the thermal techniques modelling, applied to the heating of steel billets in a large scale, in view of processing by forming. These technologies are correlated with the particularities of the thermal aggregates, having as main objective the reducing of energy consumptions and the optimizing of the aggregate design. When heating the steel billets in view of processing by forming, the duration and the quality of heating are influenced by the modality that the billets are receiving the thermal flow. The reception of the thermal flow depends on the heated surface exposed to the thermal radiation in compliance with their position on the hearth of the heating aggregate. The present paper intends to establish some parameters in view of optimizing the heating process. A basic point of the work is also the determination of some components of a mathematical model for the proposed heating technology. The authors have in view the complexity of the technical evolutions of the furnaces.

  19. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.

    PubMed

    Laforest, Guylaine; Duchesne, Josée

    2006-07-31

    Electric arc furnace dust (EAFD) is a toxic waste product made in the remelting of scrap steel. The results of a Toxicity Characteristic Leaching Procedure (TCLP) conducted on a sample of EAFD originating from the remelting of stainless steel scrap showed that the total Cr and Cr (VI) liquor concentrations (9.7 and 6.1 mg/L, respectively) exceeded the Toxicity Characteristic Regulatory Level (TCRL). The EAFD showed a complex heterogeneous mineralogy with spinel minerals group predominance. A sequential extractions method has permitted the determination of the amount of available metals (potentially mobile component) from the EAFD as follows: Cr (3%), Ni (6%), Pb (49%) and Zn (40%). Solubility controls on Cr, Pb, Zn and Ni were identified in the EAFD. This means that the Cr, Pb, Zn and Ni concentrations in solution were controlled by the solubility of some phases from EAFD. The concentrations of Ni and Zn, which are metals not regulated by TCRL were below 0.41 and 1.3 mg/L, respectively. The solubility control on Pb was sufficient to decrease its concentration (<0.24 mg/L) to a level below the TCRL. However, the control on Cr was not sufficient to decrease its concentration (between 117 and 331 mg/L) to below the TCRL.

  20. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium].

    PubMed

    Zhai, Li-hua; He, Lian-sheng; Xi, Bei-dou; Chen, Yue; Meng, Rui; Huo, Shou-liang; Liu, Hong-liang

    2008-12-01

    The long-term phosphorus (P) adsorption and retention capacities of electric arc furnace (EAF) steel slag materials derived from one batch and a 278-d column experiments with a synthetic P solution were compared. The investigations of the regeneration of the P adsorption capacity by water level decrease was conducted. It was revealed column experiment on a long-term basis can determine P saturation of EAF accurately. And the results can be used for realistic estimations of constructed wetland systems (CWS) longevity. EAF slag showed a high afinity for P, reaching a saturation value of 1.65 g/kg. Regeneration experiment of the P adsorbing capacity by this material showed that, after 4 weeks of water level decrease, EAF steel slag was able to increase its initial P adsorption capacity to 2.65 g/kg. A sequential P fractionation experiment was performed to quantify the proportion of P bound to mineral compounds in EAF. From the most loosely bound to the most strongly bound P fraction, P1 was associated with resin extractable (13%), Fe extractable (0.5 mol/L Na2CO3, 39%), Al extractable (0.1 mol/L NaOH, 21%), Ca extractable (1 mol/L HCl, 13%), and Ca in a stable residual pool (concentrated hot HCl, 14%). X-ray fluorescence analyses of EAF steel slag chemical composition revealed that the continuous application of a P solution resulted in 300% and 170% increases in K2O and P2O5, respectively. Al2O3 and FeO increased by 8%, while the portion of CaO remained unchanged. The investigated properties (P retention potential, regeneration of P adsorption, P fractionation) provide useful data about the suitability of slag material as a media for longterm P removal and dry-wet operation can improve P retention capacity of EAF to prolong the longevity of full-scale CWS.

  1. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  2. Constraining curvatonic reheating

    NASA Astrophysics Data System (ADS)

    Hardwick, Robert J.; Vennin, Vincent; Koyama, Kazuya; Wands, David

    2016-08-01

    We derive the first systematic observational constraints on reheating in models of inflation where an additional light scalar field contributes to primordial density perturbations and affects the expansion history during reheating. This encompasses the original curvaton model but also covers a larger class of scenarios. We find that, compared to the single-field case, lower values of the energy density at the end of inflation and of the reheating temperature are preferred when an additional scalar field is introduced. For instance, if inflation is driven by a quartic potential, which is one of the most favoured models when a light scalar field is added, the upper bound Treh < 5 × 104 GeV on the reheating temperature Treh is derived, and the implications of this value on post-inflationary physics are discussed. The information gained about reheating is also quantified and it is found that it remains modest in plateau inflation (though still larger than in the single-field version of the model) but can become substantial in quartic inflation. The role played by the vev of the additional scalar field at the end of inflation is highlighted, and opens interesting possibilities for exploring stochastic inflation effects that could determine its distribution.

  3. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  4. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    PubMed

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo

    2012-01-01

    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  5. Furnace brazing type 304 stainless steel to vanadium alloy (V?5Cr?5Ti)

    NASA Astrophysics Data System (ADS)

    Steward, R. V.; Grossbeck, M. L.; Chin, B. A.; Aglan, H. A.; Gan, Y.

    2000-12-01

    In this investigation, pure copper was joined to type 304 stainless steel and V-5Cr-5Ti by brazing in a high vacuum furnace. Microstructural changes in the brazed region and surrounding substrates were examined as a function of holding time at temperatures of 20°C, 40°C and 60°C above the melting point of copper. Reaction layers, which were extremely brittle, formed between the Cu and V-5Cr-5Ti substrates. The formation of intermetallic phases at the filler metal/substrate interfaces was evaluated. Additionally, precipitates (FeCu 2 and FeCu 18) formed in the Cu rich filler region. For temperatures ⩾60°C above the melting point of Cu, extensive transverse cracking was observed. Hardness tests substantiated the hypothesis that the Cu/V-5Cr-5Ti reaction layer was extremely brittle, since micro-cracks propagated from the tips of the diamond-shaped indentations. Results of mechanical properties tests of the brazed material are also presented.

  6. Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage

    NASA Astrophysics Data System (ADS)

    Bankole, L. K.; Rezan, S. A.; Sharif, N. M.

    2014-03-01

    This study investigates the leaching of hexavalent chromium (Cr (VI)) from electric arc furnace steel slag as Cr (VI) is classified as human carcinogen. Batch leaching tests were performed for 16 days. The lixiviants used were alkaline, de-ionized and rain water. After 16 days, Cr (VI) was found to be highest in alkaline water (0.03 mg/L) and lowest in de-ionized water (0.01 mg/L). Besides the lixiviants used, slag stirring speed and liquid to solid ratio also affect Cr (VI) released. The experimental work was complimented with slag characterization using XRF, XRD and SEM/EDX analysis. The leaching process was also simulated via Factsage software to calculate isothermal pourbaix diagrams. The Cr (VI) released was low and below the threshold of 0.1 mg/L set for public water systems. Recycle the slag as fertilizer should be considered safe as it does not exceed the safety limit set for Cr (VI) dissolution.

  7. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  8. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    PubMed

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm.

  9. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat

    2008-05-30

    The purpose of this study was to determine an appropriate treatment for steel foundry electric arc furnace dust (EAFD) prior to permanent disposal. Lime and Portland cement (PC)-based stabilization was applied to treat the EAFD that contains lead and zinc above the landfilling limits, and is listed by USEPA as hazardous waste designation K061 and by EU as 10 02 07. Three types of paste samples were prepared with EAFD content varying between 0 and 90%. The first type contained the EAFD and Portland cement, the second contained the EAFD, Portland cement, and lime, and the third contained the EAFD and lime. All the samples were subjected to toxicity characteristics leaching procedure (TCLP) after an air-curing period of 28 days. pH changes were monitored and acid neutralization capacity of the samples were examined. Treatment effectiveness was evaluated in terms of reducing the heavy metal leachability to the levels below the USEPA landfilling criteria. An optimum composition for the EAFD stabilization was formulated as 30% EAFD +35% lime +35% Portland cement to achieve the landfilling criteria. The pH interval, where the solubility of the heavy metals in the EAFD was minimized, was found to be between 8.2 and 9.4.

  10. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  11. Reheating-era leptogenesis

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu

    2016-12-01

    We propose a novel leptogenesis scenario at the reheating era. Our setup is minimal in the sense that, in addition to the standard model Lagrangian, we only consider an inflaton and higher dimensional operators. The lepton number asymmetry is produced not by the decay of a heavy particle, but by the scattering between the standard model particles. After the decay of an inflaton, the model is described within the standard model with higher dimensional operators. The Sakharov's three conditions are satisfied by the following way. The violation of the lepton number is realized by the dimension-5 operator. The complex phase comes from the dimension-6 four lepton operator. The universe is out of equilibrium before the reheating is completed. It is found that the successful baryogenesis is realized for the wide range of parameters, the inflaton mass and reheating temperature, depending on the cutoff scale. Since we only rely on the effective Lagrangian, our scenario can be applicable to all mechanisms to generate neutrino Majorana masses.

  12. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  13. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  14. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  15. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  16. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  17. Banking the Furnace: Restructuring of the Steel Industry in Eight Countries.

    ERIC Educational Resources Information Center

    Bain, Trevor

    A study examined how the cross-national differences in the social contract among managers, unions, and government influenced adjustment strategies in steel. The restructuring process in eight major steel-producing countries was studied to determine who bore the costs of restructuring--employers, employees, or government--and which industrial…

  18. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  19. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands.

    PubMed

    Blanco, Ivan; Molle, Pascal; Sáenz de Miera, Luis E; Ansola, Gemma

    2016-02-01

    Basic Oxygen Furnace (BOF) steel slag aggregates from NW Spain were tested in batch and column experiments to evaluate its potential use as a substrate in constructed wetlands (CWs). The objectives of this study were to identify the main P removal mechanisms of BOF steel slag and determine its P removal capacity. Also, the results were used to discuss the suitability of this material as a substrate to be used in CWs. Batch experiments with BOF slag aggregates and increasing initial phosphate concentrations showed phosphate removal efficiencies between 84 and 99% and phosphate removal capacities from 0.12 to 8.78 mg P/g slag. A continuous flow column experiment filled with BOF slag aggregates receiving an influent synthetic solution of 15 mg P/L during 213 days showed a removal efficiency greater than 99% and a phosphate removal capacity of 3.1 mg P/g slag. In both experiments the main P removal mechanism was found to be calcium phosphate precipitation which depends on Ca(2+) and OH(-) release from the BOF steel slag after dissolution of Ca(OH)2 in water. P saturation of slag was reached within the upper sections of the column which showed phosphate removal capacities between 1.7 and 2.5 mg P/g slag. Once Ca(OH)2 was completely dissolved in these column sections, removal efficiencies declined gradually from 99% until reaching stable outlet concentrations with P removal efficiencies around 7% which depended on influent Ca(2+) for limited continuous calcium phosphate precipitation.

  20. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  1. Energy audit of three energy-conserving devices in a steel-industry demonstration program. Task I. Hague forge furnaces. Final report

    SciTech Connect

    Lownie, H.W.; Holden, F.C.

    1982-06-01

    A program to demonstrate to industry the benefits of installing particular types of energy-conserving devices and equipment was carried out. One of these types of equipment and the results obtained under production conditions in commercial plants are described. The equipment under consideration includes improved forge furnaces and associated heat-recovery components. They are used to heat steel to about 2300 F prior to hot forging. The energy-conserving devices include improved insulation, automatic air-fuel ratio control, and a ceramic recuperator that recovers heat from hot combustion gases and delivers preheated air to high-temperature recirculating burners. Twelve Hague furnaces and retrofit packages were purchased and installed by eleven host forge shops that agree to furnish performance data for the purpose of demonstrating the energy and economic savings that can be achieved in comparison with existing equipment. Fuel savings were reported by comparing the specific energy consumption (Btu's per pound of steel heated) for each Hague furnace with that of a comparison furnace. Economic comparisons were made using payback period based on annual after-tax cash flow. Payback periods for the Hague equipment varied from less than two years to five years or more. In several cases, payback times were high only because the units were operated at a small fraction of their available capacity.

  2. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.

  3. Effect of Controlled Hot Rolling Parameters on Microstructure of a Nb-Microalloyed Steel Sheet

    SciTech Connect

    Khaki, Daavood Mirahmadi; Abedi, Amir

    2011-01-17

    The design of controlled rolling process of microalloyed steel sheets is affected by several factors. In this investigation, effect of the reheating, finishing and coiling temperatures of rolling, which are considered as the most effective parameters on microstructure of hot rolled products has been studied. For this purpose, seven different reheating temperatures between 1000 to 1300 deg. C with 50 deg. C increments, three different finishing temperatures of 950, 900 and 850 deg. C below the non-recrystallization temperature and one temperature of 800 deg. C in the inter critical range and four different coiling temperatures of 550, 600, 650 and 700 deg. C were chosen. By soaking the specimens in furnace, the grain coarsening temperature (T{sub gc}) is obtained about 1250 deg. C. Hence, for these kinds of steels, the reheating temperature 1200 to 1250 deg. C is recommended. Moreover, it is observed that decreasing the coiling and finishing temperatures causes more grain refinement of microstructure and the morphology is changed from polygonal ferrite to acicular one. Findings of this research provide a good connection among reheating, finishing and coiling temperatures and microstructural features of Nb-microalloyed steel sheets.

  4. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  5. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  6. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters.

    PubMed

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2012-02-07

    The objective of this study was to develop a phosphorus retention mechanisms model based on precipitation and crystallization in electric arc furnace slag filters. Three slag columns were fed during 30 to 630 days with a reconstituted mining effluent at different void hydraulic retention times. Precipitates formed in columns were characterized by X-ray diffraction and transmission electronic microscopy. The proposed model is expressed in the following steps: (1) the rate limiting dissolution of slag is represented by the dissolution of CaO, (2) a high pH in the slag filter results in phosphorus precipitation and crystal growth, (3) crystal retention takes place by filtration, settling and growth densification, (4) the decrease in available reaction volume is caused by crystal and other particulate matter accumulation (and decrease in available reaction time), and (5) the pH decreases in the filter over time if the reaction time is too low (which results in a reduced removal efficiency). Crystal organization in a slag filter determines its phosphorus retention capacity. Supersaturation and water velocity affect crystal organization. A compact crystal organization enhances the phosphorus retention capacity of the filter. A new approach to define filter performance is proposed: saturation retention capacity is expressed in units of mg P/mL voids.

  7. [Health surveillance in a steel making industry with electric arc furnace: 15 years of experience].

    PubMed

    Corti, P

    2012-01-01

    This paper analyzes the results of health surveillance carried out in an electric steel mill for 15 years. We have analyzed the trend of audiometry, spirometry and main indicators of exposure to chemical risk: serum lead, urinary OH-pyrene, erythrocyte ZPP, and the results of risk assessment of stress work related. The analyses of the trend of audiometry, spirometry and biological monitoring shows an important improving in the working environment due to the progressive automation of production steps in the course of several years, consistent and correct use of DPI, information and training.

  8. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng

    2012-01-01

    Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste).

  9. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  10. Looking southwest at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  11. 3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. 56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. Looking southeast at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  15. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  16. INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  17. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  18. Gas carburizing of steel with furnace atmospheres formed in situ from methane and air and from butane and air

    NASA Astrophysics Data System (ADS)

    Stickels, C. A.; Mack, C. M.; Pieprzak, J. A.

    1992-01-01

    Carburizing experiments were conducted at 927 °C (1700 °F) and 843 °C (1550 °F) using furnace atmospheres formed from methane and air and from butane and air introduced directly into the carburizing furnace. Gas flow rates were low to promote equilibration of the reaction products within the furnace. The air flow rate was held constant while the methane or butane flow was automatically regulated to maintain a constant oxygen potential, as measured by a zirconia oxygen sensor, within the furnace. In comparing the results of these experiments with earlier results obtained using propane and air, several differences were noted: (a) The methane content of the furnace atmosphere, measured by infrared analysis, was about twice as great when methane was the feed gas rather than propane or butane. This was true despite the fact that the mean residence time of the gas within the furnace was greater in the methane experiments. Methane appears to be less effective than propane or butane in reducing the CO2 and H2O contents to the levels required for carburizing. (b) There was a greater tendency for the CO content of the furnace atmosphere to decrease at high carbon potentials when methane is used instead of propane or butane. The decrease in CO content is due to hydrogen dilution caused by sooting in the furnace vestibule. These differences in behavior make propane or butane better suited than methane for in situ generation of carburizing atmospheres. However, there is no difference in the amount of carburizing occurring at a specified carbon potential when methane, propane, or butane are used as the feed gas in this process.

  19. Reheating for closed string inflation

    SciTech Connect

    Cicoli, Michele; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk

    2010-09-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N = 1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation.

  20. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2006-12-13

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  1. Blast furnace injection symposium: Proceedings

    SciTech Connect

    1996-12-31

    These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

  2. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-03-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  3. Release of H and He from TiC, stainless steel and graphite by pulsed electron and furnace heating

    SciTech Connect

    Picraux, S.T.; Wampler, W.R.

    1980-01-01

    The release of implanted D and /sup 3/He from TiC coatings, SS 304 and graphite by pulsed electron beam (e-beam) heating and furnace heating has been investigated. Low fluence implants of D or /sup 3/He and saturation fluence D implants have been studied for 0.5 - 1.5 keV D and 3 keV /sup 3/He. The retained D or /sup 3/He was monitored by ion beam analysis. The 50 ns e-beam pulsing resulted in the release of D in all materials and was compared with release during isochronal annealing in a furnace. A substantial enhancement in the fractional D release was found for D saturated TiC (0.25 D to host atom ratio) compared with low fluence implants. In contrast no enhancement of D release was observed for D saturated graphite and SS 304 compared with low fluence implants. Release of /sup 3/He from TiC was also obtained by e-beam pulsed heating and this release was not affected by the presence of saturation concentrations of D. Comparison to furnace anneals and the calculated time evolution of the temperature profiles suggests a simple model for the D release based on diffusion-limited release in the case of pulsed e-beam treatments and trap-limited release in the case of furnace bulk heating. These processes are closely related to hydrogen recycle in tokamaks and have implications for T inventory control and He ash removal.

  4. Flavour-dependent leptogenesis with reheating

    SciTech Connect

    Antusch, Stefan

    2007-11-20

    Upper bounds on the reheat temperature of the early universe, as they appear for example in classes of supergravity models, impose severe constraints on the thermal leptogenesis mechanism. To analyse these constraints, we extend the flavour-dependent treatment of leptogenesis to include reheating. We solve the flavour-dependent Boltzmann equations to obtain the leptogenesis efficiency as a function of the flavour dependent washout parameter m-tilde{sub 1,{alpha}} and of m{sub N{sub 1}}/T{sub RH}, the ratio of the mass of the lightest right-handed neutrino over the reheat temperature, and calculate the minimal values of the reheat temperature compatible with thermal leptogenesis in type I and type II seesaw scenarios.

  5. Reheating of the Universe as holographic thermalization

    NASA Astrophysics Data System (ADS)

    Kawai, Shinsuke; Nakayama, Yu

    2016-08-01

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  6. 21. Photocopy of ca. 1951 view (when furnaces were still ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of ca. 1951 view (when furnaces were still in blast) looking north at central furnace complex with railroad cars of furnace charging materials in foreground and No. 2 Furnace at left. Photo marked on back 'David W. Corson from A. Devaney, N.Y.' - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  7. GENERAL VIEW OF TURBOBLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TURBO-BLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND HOT BLAST STOVES (RIGHT). - Republic Iron & Steel Company, Youngstown Works, Haselton Blast Furnaces, West of Center Street Viaduct, along Mahoning River, Youngstown, Mahoning County, OH

  8. 1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. 4 FROM CRAWFORD STREET IN THE CITY OF DUQUESNE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. 13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE No. 1, AND HOIST HOUSE No. 1. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE BOILER SHOP IS ON THE RIGHT, IN FRONT OF HOT BLAST STOVES. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  11. Looking east at blast furnace no. 5 between the hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at blast furnace no. 5 between the hot blast stoves (left) and the dustcatcher (right). - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  12. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. 3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  16. 5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. 22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  18. INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. Nameplate reads: "Heroult Electric Furnace, Capacity 6 tons, Built by American Bridge Company, Pencoyd, PA, No. 33") - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  19. 14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. 12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. 13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. 15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. 3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE BATCH FURNACES ON LEFT AND 5 TON CAPACITY CHARGING MACHINE ON RIGHT. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  4. 58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED No. 3 IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. 31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE STOCKING TRESTLE LOOKING EAST. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. 55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX WITH LADLE HOUSE AND IRON DESULPHERIZATION BUILDING ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG RUNNERS & GATES IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  8. VIEW LOOKING NORTHWEST WITH OPENHEARTH TO LEFT WITH BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHWEST WITH OPEN-HEARTH TO LEFT WITH BLAST FURNACE NO. 2 AND CAST HOUSE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  9. 70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE STOCKHOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSEUP, IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSE-UP, IRON NOTCH IN CENTER. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  11. 59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING NORTHEAST. THE LADLE HOUSE IS ON THE RIGHT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES IN THE FOREGROUND ARE PART OF THE TUYERE ASSEMBLY. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  13. Gas carburizing of steel with furnace atmospheres formed In Situ from propane and air: Part II. Analysis of the characteristics of gas flow in a batch-type sealed quench furnace

    NASA Astrophysics Data System (ADS)

    Stickels, C. A.; Mack, C. M.

    1980-09-01

    Gas flow dynamics in a batch-type sealed quench carburizing furnace were studied for operations utilizing low inlet gas flow rates. By analyzing the rate of change of furnace atmosphere composition when a sudden change is made in the inlet gas composition, it is shown that a significant amount of gas circulation occurs between the hot furnace chamber and the unheated vestibule. This circulation has the effect of increasing the mean residence time of gases within the furnace. A long mean residence time is advantageous for carburizing when the inlet gases consist of an airJhydrocarbon blend rather than prereacted endothermic gas.

  14. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  15. Reheating predictions in single field inflation

    SciTech Connect

    Cook, Jessica L.; Dimastrogiovanni, Emanuela; Easson, Damien A.; Krauss, Lawrence M. E-mail: emad@asu.edu E-mail: krauss@asu.edu

    2015-04-01

    Reheating is a transition era after the end of inflation, during which the inflaton is converted into the particles that populate the Universe at later times. No direct cosmological observables are normally traceable to this period of reheating. Indirect bounds can however be derived. One possibility is to consider cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time. Depending upon the model, the duration and final temperature after reheating, as well as its equation of state, may be directly linked to inflationary observables. For single-field inflationary models, if we approximate reheating by a constant equation of state, one can derive relations between the reheating duration (or final temperature), its equation of state parameter, and the scalar power spectrum amplitude and spectral index. While this is a simple approximation, by restricting the equation of state to lie within a broad physically allowed range, one can in turn bracket an allowed range of n{sub s} and r for these models. The added constraints can help break degeneracies between inflation models that otherwise overlap in their predictions for n{sub s} and r.

  16. Reheating the Universe after string theory inflation

    SciTech Connect

    Kofman, Lev; Yi, Piljin

    2005-11-15

    In string theory realizations of inflation, the endpoint of inflation is often brane-antibrane annihilation. We consider the processes of reheating of the standard model universe after brane inflation. We identify the channels of inflaton energy decay, cascading from tachyon annihilation through massive closed string loops, KK modes, and brane displacement moduli to the lighter standard model particles. Cosmological data constrains scenarios by putting stringent limits on the fraction of reheating energy deposited in gravitons and nonstandard sector massive relics. We estimate the energy deposited into various light degrees of freedom in the open and closed string sectors, the timing of reheating, and the reheating temperature. Production of gravitons is significantly suppressed in warped inflation. However, we predict a residual gravitational radiation background at the level {omega}{sub GW}{approx}10{sup -8} of the present cosmological energy density. We also extend our analysis to multiple throat scenarios. A viable reheating would be possible in a single throat or in a certain subclass of multiple throat scenarios of the KKLMMT type inflation model, but overproduction of massive Kaluza-Klein (KK) modes poses a serious problem. The problem is quite severe if some inner manifold comes with approximate isometries (angular KK modes) or if there exists a throat of modest length other than the standard model throat, possibly associated with some hidden sector (low-lying KK modes)

  17. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  18. 1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE CARRIE FURNACES, FROM THE TOP OF WATER TOWER. CARRIE FURNACES No. 6 AND No. 7 ARE ON THE LEFT, AND FURNACES No. 3 AND No. 4 ARE ON THE RIGHT. THE TOWN OF RANKIN IS IN THE BACKGROUND. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  19. Direct measurement of solids: High temperature sensing: Phase 2, Experimental development and testing on furnace-heated steel blocks

    SciTech Connect

    Lemon, D.K.; Daly, D.S.

    1985-12-01

    Using average velocity measurements to estimate average profile temperature shows promise and merits further investigation. The current generation of electromagnetic acoustic transducers (EMATs) can transmit and detect signals in steel below the magnetic transition temperature. Techniques for calibrating ultrasonic velocity to internal temperature need further development. EMATs are inadequate ultrasonic transmitters for these applications. A high-energy, pulsed laser capable of generating more intense ultrasonic signals should be investigated as a transmitter. Recommendations are given for further work.

  20. Raceway control with oxygen, steam and coal for stable blast furnace operation

    SciTech Connect

    Chatterjee, L.M.

    1996-12-31

    Tata Steel operates seven blast furnaces at its Jamshedpur works. Coal injection was introduced in the three larger furnaces starting in 1991, and coal tar injection was commissioned in the A blast furnace in June, 1996. Presently, a coal injection level of 130 kg/thm has been achieved at G blast furnace, which is the newest and the largest among all blast furnaces at Tata Steel. The paper discusses the operational features of the blast furnaces at Tata Steel, practical limits of fuel injection, the philosophy of the control of raceway conditions, and experience with fuel injection at Tata Steel.

  1. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  2. Curvaton reheating in a logamediate inflationary model

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Saavedra, Joel; Campuzano, Cuauhtemoc; Rojas, Efrain

    2009-12-15

    In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters that describe our models. Thus, we give the parameter space in this scenario.

  3. Reheating in Gauss-Bonnet-coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris; Dimopoulos, Konstantinos

    2016-07-01

    We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times, which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio compared to now-disfavored models of standard chaotic inflation, it is important to also understand in what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating nor gravitational particle production would avoid this problem due to the persistence of the inflaton's energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of the model which can permit perturbative reheating and study the consequences of this, including heavily modified dynamics during reheating and predictions of the power spectra.

  4. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    SciTech Connect

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  5. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  6. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  7. VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) SHARING THE SAME CAST HOUSE WITH BLAST FURNACE NO. 1. ORE BRIDGE & BLOWER HOUSE TO RIGHT, HULETT CAR DUMPER IS IN LEFT FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  8. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  9. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  10. EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE NO. 3 (JANE FURNACE)/ORE BRIDGE TO THE RIGHT, WITH SINTERING PLANT CONVEYORS & TRANSFER HOUSE IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  11. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  12. Lessons learned from reheater replacements TVA Gallatin Fossil Plant units 1 and 2

    SciTech Connect

    Chang, P.S.; Stangarone, R.J.

    1996-07-01

    Gallatin Units 1 and 2 have experienced a long history of problems in the reheat front inlet platens and front outlet pendants. Cracks were discovered at lug welds on the reheat inlet platen assemblies after six years of operation. During the next ten years cracking at lugs continued to be a problem in both the inlet platen and front outlet assemblies. Solutions included changing tube material and spacing, and redesigning lugs. None of the solutions were successful. In 1980, a fuel switch to washed coal was made to reduce boiler slagging. Within two years of the fuel change, liquid phase corrosion began to attack the tubes. The corrosion became severe and elements were replaced at seven year intervals. During this time, EPRI sought utilities with boilers experiencing liquid phase corrosion to test new corrosion resistant materials. Gallatin Unit 2 was selected as one of the test units. Probes containing a number of different alloys were inserted into the furnace and subjected to the corrosion attacks. After a five year study, HR3C was selected as the alloy from which to build a complete set of elements for further testing. Reheat assemblies were manufactured from HR3C and installed in Unit 2 and Unit 1 Shortly after Unit 1 returned to service, swages between the front pendant and inlet platen elements failed by brittle fracture due to the cold swaging operation used in fabrication. Cracks were discovered after two years of operation at the tube to lug welds and the new elements were experiencing the same liquid phase corrosion as in the past. The attempt to resolve the liquid phase corrosion problem in Gallatin Units 1 and 2 pendant reheater revealed that past replacements did not address the root cause of the problems. HR3C is a relatively brittle material and manufacturers used traditional methods to design and fabricate the elements. Inadequate fabrication and erection procedures have led to several in-service problems not associated with liquid phase corrosion.

  13. General view of blast furnace "A"; looking southeast; The building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace "A"; looking southeast; The building to the right is the crucible steel building - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  14. Blast furnace repairs, relines and modernizations

    SciTech Connect

    Carpenter, J.A.; Swanson, D.E; Chango, R.F. . Burns Harbor Div.)

    1994-09-01

    Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%/year while fuel rate decreased 1%/year. This presentation summarizes the early repairs, relines and improvements that have sustained and enhanced the furnace's performance. The fourth reline of both furnaces will be discussed in detail. As part of the 1991 reline of D furnace its lines were improved and modern penstocks installed. The bosh, tuyere jacket, hearth jacket and both cast floors were replaced. The furnace now has a larger hearth making it easier to control and, liquid level is no longer a problem when pulling the wind to shut down. The new cast floor with its increased trough length has much improved separation of slag from iron and lowered refractory consumption. Since the cast floors on D furnace were changed, there has been a reduction in accidents and absenteeism. This may be related to the change in work practices on the new cast floors. The 1994 reline of C furnace incorporates those improvements made on D furnace in 1991. In addition, C furnace will have high-density cooling which is expected to double its campaign from 6 to 12 years, without interim repairs.

  15. Investigation of Portland Blast-Furnace Slag Cements. Report 2. Supplementary Data

    DTIC Science & Technology

    significantly less for steel in this concrete than for steel in type II portland cement concrete. Bond-to-steel tests indicated similar relations for both blast-furnace slag and type II portland cements.

  16. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect

    Newby, R. A.; Bachovchin, D. M.; Lippert, T. E.

    2004-04-29

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. This report discusses engineering cycle evaluations on various reheat approaches, using GateCycle and ChemCad software simulations of typical F-class and G-class engines, modified for alternative reheat cycles. The conclusion that vane 1 reheat offers the most advantageous design agrees with the conclusions of the detailed chemical kinetics (Task 2) as verified by high temperature testing (Task 3) and Blade path CFD (Task 1) tasks. The second choice design option (vane 2 reheat after vane 1 reheat) is also validated in all tasks. A conceptual design and next recommended development tasks are presented.

  17. 49. Taken from highline; "McKinley hat" remains on "B" furnace; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Taken from high-line; "McKinley hat" remains on "B" furnace; no longer used, "McKinley hat was open receptacle with bell below. Hat carried charge to furnace top, dumping it to bell; bell locked onto furnace top, dropping charge into furnace. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  18. Bounds on very low reheating scenarios after Planck

    NASA Astrophysics Data System (ADS)

    de Salas, P. F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.

    2015-12-01

    We consider the case of very low reheating scenarios [TRH˜O (MeV ) ] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature TRH>4.1 MeV is obtained from big bang nucleosynthesis, while TRH>4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.

  19. bdGas carburizing of steel with furnace atmospheres formed in situ from methane and air and from butane and air

    NASA Astrophysics Data System (ADS)

    Stickels, C. A.; Mack, C. M.; Pieprzak, J. A.

    1982-12-01

    Carburizing experiments were conducted at 927°C (1700°F) and 843°C (1550°F) using furnace atmospheres formed from methane and air and from butane and air introduced directly into the carburizing furnace. Gas flow rates were low to promote equilibration of the reaction products within the furnace. The air flow rate was held constant while the methane or butane flow was automatically regulated to maintain a constant oxygen potential, as measured by a zirconia oxygen sensor, within the furnace. In comparing the results of these experiments with earlier results obtained using propane and air, several differences were noted: (a) The methane content of the furnace atmosphere, measured by infrared analysis, was about twice as great when methane was the feed gas rather than propane or butane. This was true despite the fact that the mean residence time of the gas within the furnace was greater in the methane experiments. Methane appears to be less effective than propane or butane in reducing the CO2 and H2O contents to the levels required for carburizing. (b) There was a greater tendency for the CO content of the furnace atmosphere to decrease at high carbon potentials when methane is used instead of propane or butane. The decrease in CO content is due to hydrogen dilution caused by sooting in the furnace vestibule. These differences in behavior make propane or butane better suited than methane for in situ generation of carburizing atmospheres. However, there is no difference in the amount of carburizing occurring at a specified carbon potential when methane, propane, or butane are used as the feed gas in this process.

  20. Leptogenesis and reheating in complex hybrid inflation

    SciTech Connect

    Martinez-Prieto, Carlos; Delepine, David; Urena-Lopez, L. Arturo

    2010-02-01

    We study the transformation into a baryon asymmetry of a charge initially stored in a complex (waterfall) scalar field at the end of a hybrid inflation phase as described by Delepine, Martinez, and Urena-Lopez [Phys. Rev. Lett. 98, 161302 (2007)]. The waterfall field is coupled to right-handed neutrinos, and is also responsible for their Majorana masses. The charge is finally transferred to the leptons of the standard model through the decay of the right-handed neutrinos without introducing new CP violating interactions. Other needed processes, like the decay of the inflaton field and the reheating of the Universe, are also discussed in detail.

  1. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  2. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  3. EXTERIOR VIEW LOOKING WEST,BLAST FURNACE TO THE RIGHT, ORE YARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW LOOKING WEST,BLAST FURNACE TO THE RIGHT, ORE YARD TO THE CENTER, HEYL & PATTERSON CAR DUMPER TO THE LEFT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  4. Material and cleaning options for cyclic reheat systems

    SciTech Connect

    Rosenberg, H.S.; Koch, G.H.; Krause, H.H.; Brockway, M.C. ); Keeth, R.J.; Ireland, P.A. . Stearns-Roger Div.)

    1990-03-01

    A cyclic reheat system employing tube-type heat exchangers can be used to transfer heat from the inlet flue gas to the outlet flue gas of a wet flue gas desulfurization (FGD) system. Because of the particularly aggressive environment in the heat extraction zone for plants burning high-sulfur coal, corrosion of the tubes can present a serious problem. An inlet gas heat exchanger (heat extractor) test apparatus was built and installed on a slipstream taken after the precipitator of a high-sulfur coal-fired power plant in order to test various tube materials and cleaning methods. The performance of metal and nonmetallic tubes was evaluated during six separate exposure periods that included two temperatures (175 and 205{degree}F, 79 and 96{degree}C) and two cleaning methods (water washing and steam soot blowing). Water washing was performed at two frequencies (1 min/24 hr and 1 min/ 4 hr) and, during one period, the tubes were not cleaned at all. Steam soot blowing was performed at a frequency of 15 sec/3 hr. The present report summarizes the results obtained from the last three exposure periods. Alloys selected for testing were of the following types: (1) austenitic, ferritic, and duplex stainless steels, and (2) nickel-base alloys. Teflon, graphite, silicon carbide, and Crystar were also tested. 12 refs., 36 figs., 9 tabs.

  5. Low reheating temperatures in monomial and binomial inflationary models

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied phi2 inflationary potential is no longer favored by current CMB data, as well as phip with p>2, a phi1 potential and canonical reheating (0wre=) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, ns, implies an upper bound on the reheating temperature of Trelesssim 6× 1010 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a phi1 potential. We find that as a subdominant phi2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of Tre=4 MeV is excluded by the Planck 2015 68% confidence limit.

  6. Reheating in non-minimal derivative coupling model

    SciTech Connect

    Sadjadi, H. Mohseni; Goodarzi, Parviz E-mail: p_goodarzi@ut.ac.ir

    2013-02-01

    We consider a model with non-minimal derivative coupling of inflaton to gravity. The reheating process during rapid oscillation of the inflaton is studied and the reheating temperature is obtained. Behaviors of the inflaton and produced radiation in this era are discussed.

  7. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect

    Chaubal, P.C.; Ranade, M.G.

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  8. Reheating the D-brane universe via instant preheating

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-05-15

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10{sup 8} GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  9. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  10. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  11. Enhanced humification by carbonated basic oxygen furnace steel slag--II. Process characterization and the role of inorganic components in the formation of humic-like substances.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nishimoto, Ryo; Nie, Yongfeng

    2012-06-01

    Enhanced humification by abiotic catalysts is a potentially promising supplementary composting method for stabilizing organic carbon from biowastes. In this study, the role of steel slag in the transformation of humic precursors was directly characterized by measuring the variance in dissolved organic carbon (DOC), spectroscopic parameters (E(600)), and the concentration and molecular weight change of humic-like substances (HLS) during the process. In addition, a mechanistic study of the process was explored. The results directly showed that steel slag greatly accelerated the formation of HLS. The findings indicate that Fe(III)-and Mn(IV)-oxides in steel slag act as oxidants and substantially enhance the polycondensation of humic precursors. Moreover, the reaction appears to suppress the release of metals from steel slag to a certain extent under acidic conditions. This can be attributed to the cover of HLS on the external surface of steel slag, which is significant for its environmentally sound reuse.

  12. Maintaining vacuum furnaces

    SciTech Connect

    Kowalewski, J.

    2000-04-01

    A preventive maintenance program is essential for safe and consistent vacuum furnace operation. The program should be developed in cooperation with safety, maintenance, and furnace operators, implemented as soon as the furnace is commissioned, and adhered to throughout the life of the furnace. This article serves as an introduction to the topic of vacuum furnace preventive maintenance. Basic information about installing a new vacuum furnace also is provided.

  13. Energy use in the U.S. steel industry: a historical perspective and future opportunities

    SciTech Connect

    Stubbles, John

    2000-09-01

    The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast

  14. Low reheating temperatures in monomial and binomial inflationary models

    SciTech Connect

    Rehagen, Thomas; Gelmini, Graciela B. E-mail: gelmini@physics.ucla.edu

    2015-06-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied φ{sup 2} inflationary potential is no longer favored by current CMB data, as well as φ{sup p} with p>2, a φ{sup 1} potential and canonical reheating (0w{sub re}=) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}∼< 6× 10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a φ{sup 1} potential. We find that as a subdominant φ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.

  15. Low reheating temperatures in monomial and binomial inflationary models

    SciTech Connect

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-23

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.

  16. 44. View looking west down length of No. 2 Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. View looking west down length of No. 2 Furnace casting shed showing overhead traveling crane. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  17. VIEW FACING EAST, VIEW FROM RIVER OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FACING EAST, VIEW FROM RIVER OF BLAST FURNACE NO. 3. DORR THICKENER & ORE BRIDGE AT LEFT, HOT BLAST STOVES & DUST CATCHER CENTER, CAST HOUSE AT RIGHT. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  18. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  19. 39. Detail view of No. 2 Furnace iron runner; rod ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Detail view of No. 2 Furnace iron runner; rod or poker at right was used to unplug iron notch. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  20. 38. Base of No. 2 Furnace showing iron runner to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Base of No. 2 Furnace showing iron runner to ladle car on floor of casting shed. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  1. 15. DETAILED OBLIQUE VIEW SOUTHWEST OF FURNACE 1, SHOWING COUNTERWEIGHTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAILED OBLIQUE VIEW SOUTHWEST OF FURNACE 1, SHOWING COUNTER-WEIGHTED PIVOT ARMS TO RAISE AND LOWER DOORS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  2. 19. DETAILED OBLIQUE VIEW SOUTHSOUTHEAST OF FURNACE 2, SHOWING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAILED OBLIQUE VIEW SOUTH-SOUTHEAST OF FURNACE 2, SHOWING PLATFORM AT UPPER LEFT HOLDING PULLEY SYSTEM AND ELECTRIC MOTOR TO ACTIVATE DOORS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  3. 21. DETAILED FRONTAL VIEW WEST OF FURNACE 2, SHOWING MOUTHS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAILED FRONTAL VIEW WEST OF FURNACE 2, SHOWING MOUTHS WITH ROLLERS FOR MOVING TRAYS IN AND OUT OF THE OVENS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  4. INTERIOR VIEW LOOKING SOUTHWEST, SHOWING HEROULT NO. 2 FURNACE (ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING SOUTHWEST, SHOWING HEROULT NO. 2 FURNACE (ca. 1920) AND DC MOTORS (which raise and lower the bus bars) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  5. INTERIOR VIEW LOOKING SOUTHWEST SHOWING NO. 1 FURNACE. TO RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING SOUTHWEST SHOWING NO. 1 FURNACE. TO RIGHT ARE D.C. MOTORS (which raise and lower the bus bars) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  6. INTERIOR VIEW LOOKING EAST, SHOWING HEROULT NO. 2 FURNACE (ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING EAST, SHOWING HEROULT NO. 2 FURNACE (ca. 1920) AND DETAIL OF CABLES AND BUS BARS (which convey power to electrodes) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  7. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. The upset machine and furnace in bay 24 of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The upset machine and furnace in bay 24 of the main pipe mill building looking north. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  9. The normalizing furnace and transfer table in bay 24 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The normalizing furnace and transfer table in bay 24 of the main pipe mill building looking east. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  10. The normalizing furnace and transfer table in bay 24 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The normalizing furnace and transfer table in bay 24 of the main pipe mill building looking east. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  11. 11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. NOTE DOWNCOMER ON LEFT AND DAMPERS ON CHIMNEYS. CA. 1906. SOURCE: MACINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  12. 15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. SEGMENT GEAR REMNANTS VISIBLE STANDING IN WHEEL PIT IN FOREGROUND. SOURCE: MCINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  13. 17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 LOOKING EAST. THE BUSTLE PIPE IS VISIBLE ACROSS THE CENTER OF THE IMAGE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. 15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. 2 IN LOWER CENTER OF PHOTO AT THE BASE OF HOT BLAST STOVES. HOIST HOUSE No. 2 IS ON THE LEFT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. 5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, AND No. 6, WITH ORE YARD IN THE FOREGROUND. BUILDING ON THE LEFT IS THE CENTRAL BOILER HOUSE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  17. 9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART OF MACHINE SHOP No. 2). TWO FURNACES, WITH THEIR SUPPORT FRAMEWORK, ARE VISIBLE TO THE RIGHT. THE TALL STRUCTURE IN THE CENTER TOWARD THE BACKGROUND IS THE VERTICAL QUENCH TOWER. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  18. Looking east at the basic oxygen furnace building with gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  19. 11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02, 03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS REHEATED AT 85,000 LBS. SHAKER BOX, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  1. Industrial furnace

    SciTech Connect

    Shostak, V.M.; Tolochko, A.I.; Volkov, V.P.; Maradudin, G.I.; Schekin, N.G.; Popov, M.I.; Shepelev, D.N.; Matveev, A.I.; Butnyakov, A.I.; Rzhavichev, A.P.

    1986-09-02

    An industrial furnace is described which consists of: a bath made of a refractory material for filling with a melt; a direct current source; main current-carrying elements having free ends extending to an operating area of the refractory material of the bath below and above the melt, and the main current-carrying elements extending to the operating area below the melt being connected with opposite terminals of the current source from the main current-carrying elements extending to the operating area above the melt; and additional current-carrying elements having free ends sunk in the refractory material of the bath below and above the melt and the additional current-carrying elements being connected with the terminals of the power source of opposite polarity with respect to the connection of the main current-carrying elements of a corresponding part of the operating area.

  2. 13. Blast furnace plant embraces the east bank of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Blast furnace plant embraces the east bank of the Cuyahoga River. Plant was established in 1881 by the Cleveland Rolling Mill Co. It was absorbed by the American Steel and Wire Co. in 1899 and, two years later, by the U.S. Steel Corp., which closed it in 1978. View looking north. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  3. COM rated a viable substitute for oil in blast furnaces. [Coal/oil slurries

    SciTech Connect

    Schwieger, B.

    1982-08-01

    Three papers presented at a recent US conference indicate that coal-oil mixture may be an economical fuel for blast furnaces. The experience of Republic Steel Corp. who have carried out a full-scale blast furnace trial is recounted. It was found that blast furnace performance was not affected by the change from No. 6 fuel oil to COM.

  4. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  5. Device and Container for Reheating and Sterilization

    NASA Technical Reports Server (NTRS)

    Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh

    2012-01-01

    Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.

  6. Blast furnace supervision and control system

    SciTech Connect

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  7. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    SciTech Connect

    Lu, Wei-Kao; Debski, Paul

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  8. Nonperturbative dynamics of reheating after inflation: A review

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Hertzberg, Mark P.; Kaiser, David I.; Karouby, Johanna

    2015-12-01

    Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries) and their subsequent thermalization, can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study preheating and reheating and discuss potential observational signatures from this fascinating era.

  9. Microstructure and properties of quenched-and-aged plates produced from a copper-bearing HSLA steel

    NASA Astrophysics Data System (ADS)

    Sen, S. K.; Ray, A.; Avtar, R.; Dhua, S. K.; Prasad, M. S.; Jha, P.; Sengupta, P. P.; Jha, S.

    1998-08-01

    For the first time in India, quenched-and-tempered (Q&T) plates of a copper-bearing high-strength lowalloy (HSLA) steel have been commercially developed for naval structural applications. A 50 ton production heat was made through electric arc furnace (EAF)-vacuum arc degassing (VAD) route and continuously cast into 170 mm thick slabs. These slabs were conditioned, reheated in walking-beam furnace and hot rolled in plate mill into plates of 10 to 16 mm thickness. The as-rolled plates were hardened through oil quenching and subsequently tempered (aged) at 630 ‡C to achieve the combination of highstrength and good low-temperature impact toughness. The microstructures of heat treated plates showed fine acicular ferrite with grain sizes ranging between ASTM No. 9 and 10. From the standpoint of tensile properties, Q&T plates of all thicknesses exhibited significantly higher yield strengths than the minimum stipulated value of 552 MPa for HY-80/HSLA-80 steels. The elongation (22.20 to 26.00%) and reduction in area (62.12 to 67.62%) values achieved also exceeded the respective minimum requirements of 20 and 50% stipulated for such steels. The trend in variation of Charpy V-notch (CVN) impact energies at room temperature, -18, and -62 ‡C not only showed significantly higher values than that stipulated for HY-80 and HSLA-100 steels at -18 ‡C, but also indicated that the CVN impact energies achieved (105.15 to 144.25 J) at -62 ‡C were higher than the estimated value of 90 J for HSLA-80/HSLA-100 steels at this temperature.

  10. Dark matter from gravitational particle production at reheating

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m~ 0.1 GeV and ξ ~ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  11. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  12. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  13. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  14. Experiences with computer systems in blast furnace operation control at Rautaruukki

    SciTech Connect

    Inkala, P.; Karppinen, A. . Raahe Steel Works); Seppanen, M. )

    1994-09-01

    Low energy consumption, together with high productivity and stable blast furnace operation, has been achieved at Rautaruukki's Raahe Steel Works as a result of the efficient use of computer technology in process control and improvements in raw materials quality. The blast furnace supervision system is designed to support the decision-making in medium and long-term process control. The information presenting the blast furnace operation phenomena is grouped so that little time is needed to obtain the current state of the process. Due to the complexity of the blast furnace process, an expert system to guide and diagnose the short and medium-term blast furnace operation has been developed.

  15. Electromelt furnace evaluation

    SciTech Connect

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  16. Electromelt furnace evaluation

    NASA Astrophysics Data System (ADS)

    Reimann, G. A.; Welch, J. M.

    1981-09-01

    An electromelt furnace was designed, built and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  17. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  18. Inflation, baryogenesis, and gravitino dark matter at ultralow reheat temperatures

    SciTech Connect

    Kohri, Kazunori; Sahu, Narendra; Mazumdar, Anupam

    2009-11-15

    It is quite possible that the reheat temperature of the Universe is extremely low close to the scale of big bang nucleosynthesis, i.e. T{sub R}{approx}1-10 MeV. At such low reheat temperatures generating matter, antimatter asymmetry and synthesizing dark matter particles are challenging issues which need to be addressed within a framework of beyond the standard model physics. In this paper we point out that a successful cosmology can emerge naturally provided the R-parity violating interactions are responsible for the excess in baryons over antibaryons and at the same time they can explain the longevity of dark matter with the right abundance.

  19. Reheating predictions in gravity theories with derivative coupling

    NASA Astrophysics Data System (ADS)

    Dalianis, Ioannis; Koutsoumbas, George; Ntrekis, Konstantinos; Papantonopoulos, Eleftherios

    2017-02-01

    We investigate the inflationary predictions of a simple Horndeski theory where the inflaton scalar field has a non-minimal derivative coupling (NMDC) to the Einstein tensor. The NMDC is very motivated for the construction of successful models for inflation, nevertheless its inflationary predictions are not observationally distinct. We show that it is possible to probe the effects of the NMDC on the CMB observables by taking into account both the dynamics of the inflationary slow-roll phase and the subsequent reheating. We perform a comparative study between representative inflationary models with canonical fields minimally coupled to gravity and models with NMDC. We find that the inflation models with dominant NMDC generically predict a higher reheating temperature and a different range for the tilt of the scalar perturbation spectrum ns and scalar-to-tensor ratio r, potentially testable by current and future CMB experiments.

  20. Inflaton decay and reheating in nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2016-07-01

    We investigate the inflaton decay and reheating period after the end of inflation in the non-minimal derivative coupling (NDC) model with chaotic potential. In general, this model is known to provide an enhanced slow-roll inflation caused by gravitationally enhanced friction. We find violent oscillations of Hubble parameter which induces oscillations of the sound speed squared, implying the Lagrangian instability of curvature perturbation ζ under the comoving gauge varphi = 0. Also, it is shown that the curvature perturbation blows up at dot phi = 0, leading to the breakdown of the comoving gauge at dot phi = 0. Therefore, we use the Newtonian gauge to perform the perturbation analysis where the Newtonian potential is employed as a physical variable. The curvature perturbation is not considered as a physical variable which describes a relevant perturbation during reheating.

  1. High temp vacuum furnace offers new option

    SciTech Connect

    1995-12-11

    Vacuum furnaces operating up to 2,350 F are commonly used for metallurgical processes such as hardening tool steels, treating super alloys, power metal sintering, and brazing. Traditionally electric, these furnaces are costly to operate and maintain. They are often sensitivity to impurities driven off work pieces in the heating chamber because the vapors condense on the walls of the heating chamber and negatively effect operation. The gas-fired vacuum furnace now in development by Surface Combustion, with support from the Gas Research Institute (GRI) will, however, have none of the drawbacks of the electric models while maintaining or improving on performance. Costly electric operating and demand charges will be avoided through the use of natural gas as a fuel. Its ``hot wall`` furnace design means that impurities driven off the work piece can be pulled out of the chamber before they condense. Because ceramic radiant tubes will be used in conjunction with the hot wall design, temperature uniformity and productivity are expected to equal, or surpass, that of the electric furnaces.

  2. Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future

    SciTech Connect

    Thomas D. Briselden

    2007-10-31

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this

  3. Reheating temperature in non-minimal derivative coupling model

    SciTech Connect

    Sadjadi, H. Mohseni; Goodarzi, Parviz E-mail: p_goodarzi@ut.ac.ir

    2013-07-01

    We consider the inflaton as a scalar field described by a non-minimal derivative coupling model with a power law potential. We study the slow roll inflation, the rapid oscillation phase, the radiation dominated and the recombination eras respectively, and estimate e-folds numbers during these epochs. Using these results and recent astrophysical data we determine the reheating temperature in terms of the spectral index and the amplitude of the power spectrum of scalar perturbations.

  4. Gravitational wave background from reheating after hybrid inflation

    SciTech Connect

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-02-15

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm.

  5. The dark matter annihilation boost from low-temperature reheating

    NASA Astrophysics Data System (ADS)

    Erickcek, Adrienne L.

    2015-11-01

    The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.

  6. Fate of supersymmetric flat directions and their role in reheating

    SciTech Connect

    Olive, Keith A.; Peloso, Marco

    2006-11-15

    We consider the role of supersymmetric flat directions in reheating the Universe after inflation. One or more flat directions can develop large vevs during inflation, which can potentially affect reheating by slowing down scattering processes among inflaton decay products or by coming to dominate the energy density of the Universe. Both effects occur only if flat directions are sufficiently long-lived. The computation of their perturbative decay rate, and a simple estimate of their nonperturbative decay have led to the conclusion that this is indeed the case. In contrast, we show that flat directions can decay quickly through nonperturbative channels in realistic models. The mass matrix for minimal supersymmetric standard model (MSSM) excitations around flat directions has nondiagonal entries, which vary with the phase of the (complex) flat directions. The quasiperiodic motion of the flat directions results in a strong parametric resonance, leading to the rapid depletion of the flat direction within its first few rotations. This may preclude any significant role for the flat directions in reheating the Universe after inflation in models in which the inflaton decays perturbatively.

  7. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  8. Effect of the chemical composition of slag on its foamability in an electric arc furnace

    NASA Astrophysics Data System (ADS)

    Kozhukhov, A. A.

    2015-06-01

    The problems of foaming electric furnace slags are considered. The role of the physicochemical properties of slag during its foaming in electric arc furnaces is studied. The regions of slag foaming in an electric arc furnace are determined. Based on the derived relations between the chemical composition of slag and its foamability, one can choose a rational path of slag formation to ensure good slag foaming in the course of electrosmelting of steel.

  9. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  10. 12. BIRD'SEYE VIEW OF VERTICAL FURNACES ALONG THE NORTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BIRD'S-EYE VIEW OF VERTICAL FURNACES ALONG THE NORTH WALL OF BUILDING. HISTORIAN FOR SCALE. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  11. Calculation of gas release from DC and AC arc furnaces in a foundry

    NASA Astrophysics Data System (ADS)

    Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.

    2016-12-01

    A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.

  12. Air lock mechanism speeds specimen testing in high-temperature vacuum furnaces

    NASA Technical Reports Server (NTRS)

    Whitehead, C.

    1971-01-01

    Mechanism, made of 347 stainless steel, is attached to furnace port by bolted flange. Unit incorporates quick opening, high vacuum valve and associated fittings which provide connections to air lock evacuation and to inert gas supply for quenching specimen after it is withdrawn from furnace into air lock.

  13. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  14. Dynamics of cosmological perturbations and reheating in the anamorphic universe

    NASA Astrophysics Data System (ADS)

    Graef, L. L.; Hipólito-Ricaldi, W. S.; Ferreira, Elisa G. M.; Brandenberger, Robert

    2017-04-01

    We discuss scalar-tensor realizations of the Anamorphic cosmological scenario recently proposed by Ijjas and Steinhardt [1]. Through an analysis of the dynamics of cosmological perturbations we obtain constraints on the parameters of the model. We also study gravitational Parker particle production in the contracting Anamorphic phase and we compute the fraction between the energy density of created particles at the end of the phase and the background energy density. We find that, as in the case of inflation, a new mechanism is required to reheat the universe.

  15. The metallic microstructures and thermal histories of severely reheated chondrites

    NASA Technical Reports Server (NTRS)

    Smith, B. A.; Goldstein, J. I.

    1977-01-01

    The metallographic structures of eight severely reheated chondrites - Farmington, Ramsdorf, Orvinio, Wickenburg, Lubbock, Rose City, Arapahoe, and Tadjera - were studied using optical, SEM and electron microprobe techniques. The following metallographic criteria were used to estimate the post-shock residual temperature of the chondrites: melted metal-troilite appearance, presence of martensite, phosphorus enrichment of metal and averaging of central metal grain compositions. The presence of phosphides and secondary kamacite are due to slow post-shock cooling rates. Ni rim gradients indicate both extensive remelting of metal grains and relatively fast cooling.

  16. Non-conformal evolution of magnetic fields during reheating

    SciTech Connect

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2015-03-01

    We consider the evolution of electromagnetic fields coupled to conduction currents during the reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume that the currents may be described by second order causal hydrodynamics. The resulting theory is not conformally invariant. The expansion of the Universe produces temperature gradients which couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong, it suggests that the unfolding of hydrodynamic instabilities in these models may follow a different pattern than in first order theories, and even than in second order theories on non expanding backgrounds.

  17. 1. Copy of Drawing, 'American Steel & Wire Co., Central ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Copy of Drawing, 'American Steel & Wire Co., Central Furnace Works -- Sketch of Plant Showing Tracks & Buildings, 1913, Revised 3/10/31.' Drawing courtesy United States Steel Corporation, Lorain, Ohio. Credit Berni Rich, Score Photographs, August 1979, for photos 1 through 4 and 7 through 11. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  18. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  19. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  20. Mammoth carbottom furnace programmed to automatically meet work specifications efficiently

    SciTech Connect

    Not Available

    1982-03-01

    Wisconsin Steel Treating and Blasting Co., Milwaukee, Wis., has a large 52 ft x 18 ft x 16 ft carbottom furnace used for stress relieving, normalizing and annealing of castings, forgings, and fabrications ranging from 25 lb to over 200,000 lb each. The 4-zone furnace, which has both nuclear and ASME Boiler Code certification, can develop a 44-million Btu input from 24 boilers to generate a temperature up to 1900/sup 0/F under positive pressure. A sophisticated and comprehensive automatic control system located on a panel adjacent to the carbottom furnace, is built around a microprocessor-based process programmer (LandN 1300) which uses programmable logic in directing the operation of the furnace.

  1. Aspects of reheating in first-order inflation

    NASA Technical Reports Server (NTRS)

    Watkins, Richard; Widrow, Lawrence M.

    1991-01-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  2. Reheating and primordial gravitational waves in generalized Galilean genesis

    SciTech Connect

    Nishi, Sakine; Kobayashi, Tsutomu E-mail: tsutomu@rikkyo.ac.jp

    2016-04-01

    Galilean genesis is an alternative to inflation, in which the universe starts expanding from Minkowski with the stable violation of the null energy condition. In this paper, we discuss how the early universe is reheated through the gravitational particle production at the transition from the genesis phase to the subsequent phase where the kinetic energy of the scalar field is dominant. We then study the consequences of gravitational reheating after Galilean genesis on the spectrum of primordial gravitational waves. The resultant spectrum is strongly blue, and at high frequencies Ω{sub gw}∝ f{sup 3} in terms of the energy density per unit logarithmic frequency. Though this cannot be detected in existing detectors, the amplitude can be as large as Ω{sub gw}∼ 10{sup −12} at f∼ 100 MHz, providing a future test of the genesis scenario. The analysis is performed within the framework of generalized Galilean genesis based on the Horndeski theory, which enables us to derive generic formulas.

  3. VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING SKIP HOIST, DUST CATCHER AND STOCK BINS IN THE FOREGROUND. #2 CASTING SHED IS TO THE LEFT, HOT BLAST MAIN IS ON THE RIGHT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  4. INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND MACHINERY AND ARTIFACTS INCLUDING A STEAM ENGINE HUB MADE AT THE BRIERFIELD ROLLING MILL (INSCRIBED C.C. HUCKABEE AND DATED 1863) AND OTHER STEAM ENGINES. - Iron & Steel Museum of Alabama, 12632 Confederate Pkwy., Bucksville, Tuscaloosa County, AL

  5. CLOSEUP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED CAST HOUSE LIES IN BETWEEN TWO SKIP INCLINES. HIP ROOF AT RIGHT COVERS BLOWING ENGINE HOUSE. VIEW FACING NORTH. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  6. INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE NO.25 IN VICINITY OF MIXERS (MACK HEMP) LADLE #1 DETAIL. - Jones & Laughlin Steel Corporation, Pittsburgh Works, Morgan Billet Mill Engine, 550 feet north of East Carson Street, opposite South Twenty-seventh Street, Pittsburgh, Allegheny County, PA

  7. INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE NO. 25 IN VICINITY OF MIXERS (MACK HEMP) LADLE #2. - Jones & Laughlin Steel Corporation, Pittsburgh Works, Morgan Billet Mill Engine, 550 feet north of East Carson Street, opposite South Twenty-seventh Street, Pittsburgh, Allegheny County, PA

  8. INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF NO. 2 OPEN HEARTH WEST OF FORMER FURNACE NO. 25 IN VICINITY OF MIXERS (MACK HEMP) LADLE DETAIL. - Jones & Laughlin Steel Corporation, Pittsburgh Works, Morgan Billet Mill Engine, 550 feet north of East Carson Street, opposite South Twenty-seventh Street, Pittsburgh, Allegheny County, PA

  9. VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH SKIP HOIST AND DUST CATCHER. STOCK BINS FOR RAW MATERIALS ARE IN THE FOREGROUND, THE #2 CASTING SHED BEYOND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  10. VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH SKIP HOIST, DUST CATCHER AND STOCK BINS FOR RAW MATERIALS IN THE FOREGROUND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  11. GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE IN THE RIGHT; THE CENTRAL COMPLEX WITH STOVES IN THE CENTER. ELECTRICAL POWER HOUSE IS ON THE LEFT BEYOND THE CONVEYOR LIFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  12. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  13. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  14. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  15. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  16. INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING SOUTHEAST, SHOWING BACK OF CONTROL PANEL AND TRANSFORMER (GE, 3000 KUA water cooled, 60 cycles, U.S. patent 1900585. Transformer dates from 1937, control panel GE resistors) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  17. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  18. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  19. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect

    Kakascik, T.F. Jr.

    1996-12-31

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  20. Modeling fuzzy state space of reheater system for simulation and analysis

    NASA Astrophysics Data System (ADS)

    Munirah, W. M. Wan; Ahmad, T.; Ashaari, A.; Abdullah, M. Adib

    2014-07-01

    Reheater is one of the important heat exchange components in a high capacity power plant of a boiler system. The aim of this study is to improve heat transfer of a reheater system. The method is to maximize steam production and at the same time, keeping variables within constraints. Fuzzy arithmetic is a powerful tool used to solve engineering problems with uncertain parameters. Therefore, in order to determine heat transfer efficiency, the state space of reheater is simulated using fuzzy arithmetic by taking into account the uncertainties in the reheater system. The uncertain model parameters and the model inputs are represented by fuzzy numbers with their shape derived from quasi-Gaussian function. Finally, this paper discusses how the mathematical model can be manipulated in order to produce maximum heat transfer with least loss of energy. Furthermore, the improvement of the reheater efficiency and the quantification of the heat supplied parameters are presented in this paper.

  1. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  2. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  3. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  4. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  5. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  6. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  7. Strengthen flame stability during the furnace`s load decrease

    SciTech Connect

    Zhang Zhiguo; Sun Xuexin; Li Fujin; Qiu Jihua; Chen Gang

    1996-12-31

    This paper presents the result of the study of the coal combustion characteristic and flame stability during the load decrease of PCFF (corner burner arrangement). Considering the relation between flame stability and furnace load during the furnace load change, some method must be used to strengthen the pulverized coal ignition and combustion for the furnace to maintain the flame stability especially for the furnace which fires low rank anthracite. Experimental results show that when the furnace load decreased, the temperature distribution in furnace decreased and the flame stability in furnace had changed because of the load changing. This paper also introduces a new pulverized coal burner: Bluff-body with cavity burner. According to the result of application of this burner, this kind of pulverized coal burner can improve the coal ignition and combustion efficiency. Especially for low load operation of furnace the bluff-body with cavity burner has demonstrated its ability in strengthening coal ignition and improving the flame stability for furnace operation. Experimental results show that using bluff-body with cavity burner, the lowest load for furnace fired bituminous is 40% MCR and 50% MCr for low rank anthracite (V{sup r} < 12%, A{sup f} > 45%). This burner has simple structure and is very easy to set up for furnace.

  8. On-line ultrasonic system for measuring thickness of the copper stave in the blast furnace

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Woo; Kim, Dohoon

    2012-05-01

    The blast furnace is used make molten iron from sintered ore and the cokes in the steel industry. Recently, the copper stave cooling system placed on inner face of the blast furnace body to protect the steel shell from heat. In the high temperature environment, the wear between the stave and the material makes the cooling stave thinning by the downward movement of the materials in the blast furnace. It was impossible to access the copper stave with the ultrasonic sensor for measuring thickness because the copper stave is covered with the steel shell and there is backing refractory between the stave and the steel shell. The unique ultrasonic sensor which can approach the cooling stave through the cooling line was developed to measure thickness. The thickness can be measured with portable ultrasonic thickness sensor and can be monitored continuously with embedded sensors.

  9. Austenite grain coarsening in microalloyed steels

    NASA Astrophysics Data System (ADS)

    Cuddy, L. J.; Raley, J. C.

    1983-10-01

    A uniform, fine-grain structure is essential in steels, particularly for strip and plate, that are to meet demands for high strength and toughness. To produce such microstructures, every step of the high-temperature processing of the steel must be carefully controlled, beginning with grain coarsening that occurs during reheating for slab rolling. Extremely coarse or nonuniform grain structures in the reheated slab are difficult to refine by subsequent hot working. Accordingly, the grain-coarsening behavior of laboratory heats of C-Mn-Si base steels and of such steels with additions of Al, V, Ti, or Nb was examined to understand the principles governing the behavior of this class of steels. The grain-coarsening temperature (the temperature at which abnormal or discontinuous growth occurs) varies with the type and concentration of the microalloy addition; an approximate relation is presented. Generally the grain-coarsening temperature increases with, but is lower than, the temperature required for complete dissolution of the microalloy carbide or nitride present. Thus, steels containing the very insoluble TiN coarsen at much higher temperatures than steels containing the more soluble VCN. These results agree qualitatively with predictions of models of grain-boundary pinning by precipitate particles.

  10. Effects of Silicon and Furnace Conditions on Hot Shortness

    NASA Astrophysics Data System (ADS)

    Sampson, Erica E.

    Residual Cu in scrap based steel manufactured in the Electric Arc Furnace (EAF) leads to a surface cracking phenomenon known as surface hot shortness. Si is known to provide a potential reduction in hot shortness; however, the mechanisms involved are not fully understood for low Si quantities. This study aims to determine a window of Si contents with a given Ni content needed to counteract the negative effects of Sn and Cu to reduce hot shortness and to determine the mechanism. Thermogravimetric Analysis, SEM-EDS, XRD, and TEM were used to study the hot shortness behavior of a Fe alloy containing 0.2% Cu, 0.05% Ni, 0.01% Sn and with varying Si-content (0.02%, 0.1%, 0.15%, and 0.2% Si). It was found that fayalite formation at the metal/oxide interface resulted in a reduction of oxidation and subsequent Cu-rich liquid formation for all Si contents examined. Under isothermal air oxidation experiments, the range of Si contents between 0.1-0.2 wt% Si exhibited a mechanism that was a combination of fayalite formation impeding oxidation as well as occlusion of the Cu-rich liquid due to internal oxidation. This range was acceptable to alleviate hot shortness under these conditions. Following continuous casting, steel undergoes a cooling process known as secondary cooling where water is sprayed on the surface to promote cooling followed by a radiant cooling stage where the steel is cooled in air to room temperature. The secondary cooling regime leads to oxidation of the alloy in an air + water vapor atmosphere. Experiments were completed to determine the effect of the non-isothermal secondary cooling cycle, the effect of water vapor during secondary cooling, and the effect of the radiant cooling regime down to room temperature. In the case of secondary cooling atmospheres, the non-isothermal cooling cycle resulted in a slight increase in liquid quantity and grain boundary penetration as compared to the isothermal heating cycles due to the higher temperatures experienced in

  11. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  12. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Voigt, Robert C.; Charles, Mariol; Deskevich, Nicholas; Varkey, Vipin; Wollenburg, Angela

    2004-10-15

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  13. On the breakdown of the curvature perturbation ζ during reheating

    SciTech Connect

    Algan, Merve Tarman; Kaya, Ali; Kutluk, Emine Seyma E-mail: ali.kaya@boun.edu.tr

    2015-04-01

    It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0φ-dot =, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0φ=, where φ denotes the inflaton perturbation, breaks down when 0φ-dot =. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation φ in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.

  14. Reheating-volume measure in the string theory landscape

    SciTech Connect

    Winitzki, Sergei

    2008-12-15

    I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.

  15. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  16. Reheating the universe after multi-field inflation

    SciTech Connect

    Braden, Jonathan; Kofman, Lev; Barnaby, Neil E-mail: barnaby@cita.utoronto.ca

    2010-07-01

    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.

  17. Blast Furnace Granulated Coal Injection

    SciTech Connect

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  18. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  19. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  20. Study of hot hardness characteristics of tool steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Hardness measurements of tool steel materials in electric furnace at elevated temperatures and low oxygen environment are discussed. Development of equation to predict short term hardness as function of intial room temperature hardness of steel is reported. Types of steel involved in the process are identified.

  1. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  2. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  3. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  4. Reactivation of granular carbon in an infrared traveling-belt furnace

    SciTech Connect

    Nur, R.; Horvath, R.W.

    1987-07-01

    An all-electrical Shirco carbon regeneration furnace and its air pollution control system were evaluated for cost and process effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The granular activated carbon used for the Shirco Furnace evaluation study was exhausted in three 1.8 m (6 ft) diameter steel carbon adsorption columns connected in series. The columns treated unchlorinated and unfiltered activated sludge effluent from the 0.44 cu m/sec (10 MGD) Ponoma Water Reclamation Plant. The Shirco carbon regeneration system was found to be as effective as the multiple hearth and rotary-kiln furnaces in reactivating the exhausted granular activated carbon. The operation and maintenance cost for the Shirco furnace was, however, found to be higher than those for both the multiple hearth and the rotary-kiln furnaces.

  5. Modulated reheating and large non-gaussianity in string cosmology

    SciTech Connect

    Cicoli, M.; Quevedo, F.; Tasinato, G.; Zavala, I.; Burgess, C.P. E-mail: gianmassimo.tasinato@port.ac.uk E-mail: cburgess@perimeterinstitute.ca

    2012-05-01

    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the 'modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kähler moduli: a fibre divisor plays the rôle of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with f{sub NL} of order 'a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with f{sub NL} ∼ O(20) potentially observable by the Planck satellite.

  6. Blast furnace granular and reclaimed coal injection current practices and possibilities

    SciTech Connect

    Snowdon, B.

    1996-12-31

    Coals of various sizes and types have been successfully injected into blast furnaces for many years. In excess of 4m tonnes of granular coal of 100% less than 5mm have been injected at British Steels Scunthorpe works since 1984. Since late 1994 Bethlehem Steel have also been injecting granular coal into furnace C and D, and more recently US Steels Fairfield works have been using the Clyde design of coal injection system to inject granular coal derived from a fluid bed drier cyclone classifier and shipped to the plant in PD railcars. Each of these sites have one thing in common, a design of pneumatic conveying system which is ideally matched to the growing trend to inject a variety of coal types and other materials into the blast furnace. This paper will describe the system design and discuss the problems associated with some of the materials considered for injection.

  7. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  8. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  9. What can the CMB tell about the microphysics of cosmic reheating?

    SciTech Connect

    Drewes, Marco

    2016-03-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang.

  10. Fuel stoker and furnace

    SciTech Connect

    Schafer, T.L.; Schafer, G.L.; Swett, H.D.

    1984-02-14

    A furnace having a primary heat exchange unit also providing a combustion chamber, a secondary heat exchange unit connected by an upper crossover conduit to the primary heat exchange unit, and a tertiary heat exchange unit connected by a lower V-shaped crossover conduit to the secondary heat exchange unit. A third crossover conduit connects the V-shaped crossover conduit with the primary heat exchange unit. Vibrating means are provided between the secondary and tertiary heat exchange units to vibrate the walls thereof and dislodge clinging fly ash so that it falls into the V-shaped crossover conduit for removal by the screw conveyor. A burner assembly of a furnace includes a combustion air housing carrying a circular, stationary grate with an annular valley for carrying fuel during combustion. A central opening is connected to a fuel conveyor for introduction of fuel to the grate through the lower portion of the housing. Combustion air introduction conduits on the housing are remote from the fuel introduction passages and introduce air under pressure at the lower portion of the grate. An agitator and discharge ring is provided on the grate and is rotated on the grate by a suitable drive sprocket mechanism to agitate the fuel for more complete burning thereof and to remove burned ash. A horizontal burner plate is supported by a plurality of legs connected to the agitator and discharge ring over the grate to promote more complete combustion of the fuel.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  12. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  13. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed

  14. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    SciTech Connect

    Drewes, Marco

    2014-11-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model.

  15. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  16. Inflation and reheating in the Starobinsky model with conformal HiggsField

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. S.; Tokareva, A. A.

    2013-12-01

    This is a talk presented by A.A. Tokareva at Baikal summer school on physics of elementary particles and astrophysics 2012. We studied the reheating after the Starobinsky inflation and have found that the main process is the inflaton decay to SM gauge fields due to the conformal anomaly. The reheating temperature is low leading to the possibility to detect the gravity wave signal from inflation and evaporation of structures formed after inflation in DECIGO and BBO experiments. Also we give predictions for the parameters of scalar perturbation spectrum at the next-to-leading order of slow roll and obtain a bound on the Higgs mass.

  17. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  18. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  19. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  20. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  1. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    PubMed

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-02-23

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney).

  2. Optical emission from a small scale model electric arc furnace in 250-600 nm region

    SciTech Connect

    Maekinen, A.; Tikkala, H.; Aksela, H.; Niskanen, J.

    2013-04-15

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr{sub 2}O{sub 3}, Ni, SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  3. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  4. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    PubMed

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  5. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  6. DEVELOPMENT OF ELECTRONIC VERNEUIL FURNACE

    DTIC Science & Technology

    HIGH TEMPERATURE, *PLASMA JETS, *REFRACTORY MATERIALS, ALTERNATING CURRENT, CELLULOSE ACETATES, CRYSTAL STRUCTURE, CRYSTALS , GAS DISCHARGES, GROWTH ...PHYSIOLOGY), LABORATORY FURNACES, PLASMAS(PHYSICS), RADIOFREQUENCY GENERATORS, RADIOFREQUENCY POWER, SINGLE CRYSTALS , THEORY.

  7. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  8. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    SciTech Connect

    Kuroyanagi, Sachiko; Hiramatsu, Takashi; Yokoyama, Jun'ichi E-mail: hiramatz@yukawa.kyoto-u.ac.jp

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  9. Reheating effects in the matter power spectrum and implications for substructure

    SciTech Connect

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-10-15

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M{sub +} at z{approx_equal}100, compared to a fraction of {approx}10{sup -10} in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  10. Vitrification of electric arc furnace dusts.

    PubMed

    Pelino, M; Karamanov, A; Pisciella, P; Crisucci, S; Zonetti, D

    2002-01-01

    Electric arc furnace baghouse dust (EAFD), a waste by-product of the steelmaking process, contains the elements that are volatilized from the charge during the melting (Cr, Pb, Zn, Cu and Cd). The results of leaching tests show that the concentration of these elements exceeds the regulatory limits. Consequently, EAFD cannot be disposed of in ordinary landfill sites without stabilization of the heavy metals. In this work, the vitrification of EAFD, from both carbon and stainless steel productions, were studied. The vitrification process was selected as the inertizing process because it permits the immobilization of the hazardous elements in the glass network and represents an environmentally acceptable method for the stabilization of this waste. Classes of various compositions were obtained by mixing EAFD with glass cullet and sand. The EAFD and the glass products were characterized by DTA, TG, X-ray analysis and by the TCLP test. The results show that the stability of the product is influenced by the glass structure, which mainly depends on the Si/O ratio. Secondary crystallization heat-treatment were carried out on some samples. The results highlighted the formation of spinel phases, which reduced the chemical durability in acid media. The possibility to recover Zn from carbon steel production EAFD was investigated and about 60-70% of metal recovery was obtained. The resulting glass show higher chemical stability than glasses obtained without metal recovery.

  11. Lip-hung retort furnace

    SciTech Connect

    Mackenzie, P.B.

    1986-08-05

    A fluidized bed furnace is described which consists of: a furnace housing including an outer shell; a furnace base and an outer top plate secured to the respective lower and upper ends of the furnace housing; a vertical retort having an opened upper end and an opened lower end, the retort being disposed in an opening formed in the outer top plate and extending downwardly into the center of the furnace housing; heat insulating material disposed between the outer shell and the vertical retort; a retort base assembly being adapted for closing the lower end of the vertical retort; upper support means for supporting the upper end of the vertical retort on top of the outer top plate so as to permit downward growth only during thermal expansion; the upper support means including an annular flange formed integrally with the sidewalls of the retort at the upper end thereof and being adapted to be fixedly mounted to the outer surface of the outer top plate; lower support means interposed between the lower surface of the retort base assembly and the upper surface of the furnace base for supporting substantially all the weight of the retort, the weight of the load of a fluidizable media, and the weight of a load of material to be heat treated.

  12. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  13. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  14. Blast furnace granular coal injection project. Annual report, January--December 1993

    SciTech Connect

    Not Available

    1994-06-01

    This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

  15. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  16. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect

    Unknown

    1999-10-01

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  17. Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces

    SciTech Connect

    Boone, A.G.; Jimenez, G.; Castillo, J.

    1997-12-31

    Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

  18. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Wood burning furnace

    SciTech Connect

    Lillo, A.D.

    1986-03-25

    An improved furnace for burning wood is described which is resistant to creosote deposits from smoke. It consists of: an upright frame; a fire box carried by the frame and having a door for the insertion of the wood; a heat exchanger carried on the fire box and having an interior chamber with a top and bottom; means connecting the fire box and the heat exchanger and directing smoke from the fire box into the exchanger chamber; a chimney stack fixed to and extending upwardly from the exchanger to discharge smoke, the stack also extending substantially downwardly within the exchanger chamber to receive smoke from adjacent the bottom of the chamber to thereby retain hot smoke adjacent the top of the exchanger for an increased time interval to allow additional heat transfer from the smoke to the exchanger; an insulative housing carried on the frame to define an air plenum within the housing and about the fire box and exchanger to permit air in the plenum to be heated by contact with the fire box and the exchanger; and an air inlet for cold air to enter the plenum and an air outlet by which heated air may leave the plenum.

  20. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  1. Thermal Spray Coatings for Blast Furnace Tuyere Application

    NASA Astrophysics Data System (ADS)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  2. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  3. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  4. Calculation and Analysis of Heat Transfer Coefficients in a Circulating Fluidized Bed Boiler Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Yang, Jianhua; Li, Qinghai

    A new way for the circulating fluidized bed (CFB) boiler research is proposed by the supervisory information system (SIS) in power plant level. The heat transfer coefficient in CFB boiler furnace is calculated and analyzed by the SIS calculation analysis in a commercial CFB boiler, the way how to calculate the heat transfer coefficient in SIS is introduced, and the heat transfer coefficient is accurately received by calculating a large amount of data from database. The relation about the heat transfer coefficient to unit load, bed temperature, bed velocity, and suspension density is analyzed; the linear relation could be accepted for the commercial CFB design. A new calculating and simple way for the heat transfer coefficient of CFB boiler is proposed for CFB boiler design. Using this research result, the reheat spray water flux larger than the design value in lots of commercial CFB boilers is analyzed; the main reason is the designed heat transfer coefficient smaller than the actual value.

  5. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-03

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment.

  6. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  7. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    SciTech Connect

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  8. Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs

    SciTech Connect

    Ellis, John; He, Hong-Jian; Xianyu, Zhong-Zhi

    2016-08-30

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.

  9. THERMODYNAMIC ANALYSIS OF OPEN-CYCLE MULTISHAFT POWER SYSTEM WITH MULTIPLE REHEAT AND INTERCOOL

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program computes the specific power output, specific fuel consumption, and cycle efficiency functions of turbine-inlet temperature, compressor pressure ratio, and component performance factors for power systems having any number of shafts up to a maximum of five. On each shaft there can be any number of compressors and turbines up to a maximum of five each, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included in the system and turbine coolant flow can be accounted for. The combustion-gas thermodynamic properties are valid for any fuel consisting of hydrogen and/or carbon only. The program should be used with maximum temperatures no higher than about 2000 K (3140 degrees Fahrenheit) because molecular dissociation is not included in the stoichiometry. Improvements in cycle performance resulting from the use of intercooling, reheating, and recuperation can also be determined. This program has been implemented on the IBM 7094.

  10. Calculations of inflaton decays and reheating: with applications to no-scale inflation models

    SciTech Connect

    Ellis, John; Garcia, Marcos A.G.; Olive, Keith A.; Nanopoulos, Dimitri V. E-mail: garciagarcia@physics.umn.edu E-mail: olive@physics.umn.edu

    2015-07-01

    We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, w, during the epoch of inflaton decay, the reheating temperature, T{sub reh}, and the number of inflationary e-folds, N{sub *}, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index n{sub s} and the tensor-to-scalar perturbation ratio r, converting them into constraints on N{sub *}, the inflaton decay rate and other parameters of specific no-scale inflationary models.

  11. Inflation and reheating in scale-invariant scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Tambalo, Giovanni; Rinaldi, Massimiliano

    2017-04-01

    We consider the scale-invariant inflationary model studied in Rinaldi and Vanzo (Phys Rev D 94: 024009, 2016). The Lagrangian includes all the scale-invariant operators that can be built with combinations of R, R2 and one scalar field. The equations of motion show that the symmetry is spontaneously broken after an arbitrarily long inflationary period and a fundamental mass scale is generated. Upon symmetry breaking, and in the Jordan frame, both Hubble function and the scalar field undergo damped oscillations that can eventually amplify Standard Model fields and reheat the Universe. In the present work, we study in detail inflation and the reheating mechanism of this model in the Einstein frame and we compare some of the results with the latest observational data.

  12. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  13. Testing of heat exchanger systems for reheating flue gases from wet scrubbing desulfurization plants

    NASA Astrophysics Data System (ADS)

    Than, K.

    1982-09-01

    Two heat exchanger systems: the cyclic process of GEA and, the plate heat exchanger of Kablitz/Thyssen, for reheating flue gases, which have been cooled to about 50 to 55 C due to wet scrubbing, to the required temperature at the outlet of the stack by extracting the sensible heat of the hot flue gases were tested. The problem of building materials and on keeping clean the heat exchanger surface are emphasized.

  14. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  15. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  16. Hopewell Furnace National Historic Site. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This teacher's guide contains activities to use in conjunction with a site visit to the Hopewell Furnace National Historic Site (Elverson, Pennsylvania). The guide provides diagrams of the furnace, a cold-blast smelting operation, and the furnace operation. It presents a timeline of iron production from ancient times through contemporary times.…

  17. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  18. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  19. Comparison of CO2 emission between COREX and blast furnace iron-making system.

    PubMed

    Hu, Changqing; Han, Xiaowei; Li, Zhihong; Zhang, Chunxia

    2009-01-01

    Steel works faced increasing demand to minimize the emission of GHGs. The CO2 emissions of COREX and blast furnace iron-making system were compared. It is point out that COREX contribute little to CO2 emission reduction. Comparing to conventional blast furnace iron-making system, direct CO2 emissions of COREX is higher. Considering the credits of export gases for power generation, the total CO2 emission of COREX have advantages only when the COREX is joined with high-efficiency generating units which efficiency is greater than 45% and CO2 emission factor of the grid is higher than 0.9 kgCO2/kWh.

  20. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  1. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  2. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation.

    PubMed

    Sharma, Hemant; Wattjes, Alix C; Amirthalingam, Murugaiyan; Zuidwijk, Thim; Geerlofs, Nico; Offerman, S Erik

    2009-12-01

    We report a multipurpose furnace designed for studies using synchrotron radiation on polycrystalline materials, namely, metals, ceramics, and (semi)crystalline polymers. The furnace has been designed to carry out three-dimensional (3D) x-ray diffraction measurements but can also be used for other types of synchrotron radiation research. The furnace has a very low thermal gradient across the specimen (<0.2 degrees C/mm). Accurate determination of the temperature can be carried out by welding a thermocouple to the specimen. The furnace can be rotated over an angle of 90 degrees in order to determine the crystallographic orientation of each individual grain. It is possible to follow growth kinetics of all grains in the illuminated volume of the specimen. The specimen environment can be controlled varying from vacuum (up to 10(-5) mbar) to gas or air filled. The maximum temperature of operation is 1500 degrees C, with the possibility of achieving high heating (up to 20 degrees C/s) and cooling rates (up to 30 degrees C/s without quenching gas). 3D maps of the microstructure of the specimen can be generated at elevated temperatures by bringing the high-resolution detector close to the specimen. We show an example of a simulation of the heat affected zone during the thermal cycle of a weld in a transformation-induced plasticity steel carried out using the furnace. The unique characteristics of the furnace open possibility of new fields in materials research using synchrotron radiation.

  3. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  4. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    DTIC Science & Technology

    1981-11-30

    and Cracking due to Stress Relieving Heat Treatment of HY80 Steel ", Welding in the World, 10 (1/2), 1972. -114- elastic-plastic and creep analysis...900°F (500C) is adequate. In these steels stress relief treatments are beneficial for the prevention of stress corrosion and reheat cracking . For...of * Contract NOO014-75-C-0469 (M.I.T. OSP #82558) STUDY OF RESIDUAL STRESSES AND DISTORTION IN - . -- ISTRUCTURAL WELT*IENTS IN HIGH-STRENGTH STEELS

  5. Direct Alloying of Steel with Nickel Concentrate

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Proshunin, I. E.

    2016-08-01

    A technology of alloying steel with nickel reduced from nickel concentrate is analysed and developed. Limits of reduction concentration areas are defined. An optimal composition of nickel concentrate pellets and a method of feeding them into the furnace are deduced from experiments. It is proved that when pellets made of nickel concentrate and coke are added into the charge during steel smelting by the technology of alloyed scrap remelting, nickel recovery achieves 92-95%. The technology was tested by smelting DSP-40 steel.

  6. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  7. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-26

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant.

  8. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  9. On the Use of Pre-reduced Feed in the Blast Furnace Process

    NASA Astrophysics Data System (ADS)

    Gibson, Jorge L.

    In the iron and steel industry, the partial replacement of coke with natural gas as a fuel for blast furnace ironmaking provides opportunities to blast furnace operators, in a context where natural gas is relatively cheap, to reduce greenhouse gas emissions and production costs. Direct injection of natural gas through the blast furnace tuyeres is limited by thermal constraints, seen by changes in the temperature of the top gas and the raceway adiabatic flame temperature parameter. Metallic iron has been used as burden material in the blast furnace process as a means to lower coke rate and increase productivity. The main "direct reduction processes" produce metallic iron by gaseous reduction using natural gas as feedstock. It is possible to partially circumvent the limitations of tuyere injection by pre-reducing part of the iron ore burden through one of these processes. This work focuses on the advantages and limitations of introducing direct reduced iron (DRI) of varying levels of metallization into the blast furnace to increase the use of natural gas in ironmaking. Process modeling has been used to evaluate this; parameters for the models and process constraints are analyzed through laboratory testing of the properties of reduced blast furnace feed materials. Experiments were performed to obtain kinetics for the gaseous reduction of iron ores and for the water-gas shift reaction at the relevant temperatures for the shaft furnace process. The re-oxidation kinetics of DRI in the upper shaft of the blast furnace by water vapor, and the strength of partially reduced iron ore pellets, were also analyzed. Results from the shaft furnace model show that there is no clear benefit to producing DRI of low metallization in this process, because of the existence of a chemical reserve zone, where the gases are at equilibrium with the solid iron oxide. Blast furnace modeling shows that metallic iron in the burden produces some thermal constraints in the blast furnace, and

  10. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  11. Impact of Cooking, Storage, and Reheating Conditions on the Formation of Cholesterol Oxidation Products in Pork Loin

    PubMed Central

    Min, Joong-Seok; Khan, Muhammad I.; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk Hwan; Lee, Mooha; Jo, Cheorun

    2016-01-01

    This study investigates the effect of cooking, storage, and reheating conditions on the formation of cholesterol oxidation products (COPs) in pork loin. Samples of pork loin procured 24 h postmortem were initially processed and assessed for total fat and cholesterol content. The cooking methods evaluated were pan roasting, steaming, oven grilling, and microwaving. Cooked pork loin samples were stored at 4℃ and reheated after 3 and 6 d of storage using the original method of preparation or alternately, microwaving. Fat content increased significantly with cooking as a result of the loss in moisture but cholesterol content remained unchanged. Pan roasting and microwave cooking caused a significantly higher production of COPs, as with the process of reheating using microwave, pan roasting, and oven grilling methods. The major COPs found in pork loin were cholestanetriol, 20-hydroxycholesterol, and 25-hydroxycholesterol, whose concentrations varied according to the different cooking and reheating methods used. Moreover, the aerobic storage of cooked pork loin under a refrigerated condition also increased the formation of cholesterol oxides on reheating. PMID:27499660

  12. Automated information system for analysis and prediction of production situations in blast furnace plant

    NASA Astrophysics Data System (ADS)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  13. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  14. Computer program for thermodynamic analysis of open cycle multishaft power system with multiple reheat and intercool

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1974-01-01

    A computer program to analyze power systems having any number of shafts up to a maximum of five is presented. On each shaft there can be as many as five compressors and five turbines, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included. Turbine coolant flow can be accounted for. Any fuel consisting entirely of hydrogen and/or carbon can be used. The program is valid for maximum temperatures up to about 2000 K (3600 R). The system description, the analysis method, a detailed explanation of program input and output including an illustrative example, a dictionary of program variables, and the program listing are explained.

  15. Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Cohen, Timothy; D'Agnolo, Raffaele Tito; Hook, Anson; Kim, Hyung Do; Pinner, David

    2016-12-01

    We present a new solution to the electroweak hierarchy problem. We introduce N copies of the standard model with varying values of the Higgs mass parameter. This generically yields a sector whose weak scale is parametrically removed from the cutoff by a factor of 1 /√{N }. Ensuring that reheating deposits a majority of the total energy density into this lightest sector requires a modification of the standard cosmological history, providing a powerful probe of the mechanism. Current and near-future experiments can explore much of the natural parameter space. Furthermore, supersymmetric completions that preserve grand unification predict superpartners with mass below mWMpl/MGUT˜10 TeV .

  16. The changing face of radioactivity in steel

    SciTech Connect

    LaMastra, A.

    1995-07-01

    The question of radioactivity in iron and steel is a matter of definition and limits of detectability. A broad statement could be made that all steel that started with blast furnace iron is radioactive. This statement is not due to the practice of using wear-indication sources in the refractory of blast furnaces. Rather, it is because of the nature of the blast furnace process. Air contains radioactivity. Blowing copious quantities of air through a blast furnace introduces a very low level of radioactivity into the process. Some of the radioactivity will be tied up in the slag or become oxidized, but a small portion will become incorporated in the hot metal. Normally, this trivial level of contamination is not of concern because it carries no consequence and is detectable only by the most sensitive laboratory detection systems. For nearly 40 years, few people paid any attention to the topic of radioactivity in steel. However, that changed in Feb. 1983, when Auburn Steel had the unfortunate occasion to melt a radioactive source in their electric furnace. Since that time, there has been a total of 18 confirmed meltings at metal smelters within the US. The problem of melting radioactive sources in metal smelting plants appears to be increasing. It is not known if a trend is developing or if 1992/1993 are random anomalies. Based on past incidents, the difficulty of finding heavily shielded sources in scrap and the likelihood of more gaging devices being lost, steelmaking management must evaluate the importance of achieving high sensitivity. At the same time, management must also realize that the systems will be detecting more commodities and scrap loads that were heretofore not radioactive. That will have an impact on available manpower, traffic control and the timeliness of scrap deliveries.

  17. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect

    1995-03-01

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  18. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  19. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  20. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  1. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  2. Bethlehem Steel Corporation Blast Furnace Granulated Coal Injection Demonstration Project

    SciTech Connect

    Not Available

    1993-05-01

    Construction of the proposed BFGCI system is not expected to have significant impacts on air quality, noise, and land use at the Burns Harbor Plant area. Operation of the proposed BFGCI system is not expected to have significant impacts on the environment at the Burns Harbor Plant area. An increase of approximately 30 tons/yr for NO{sub x} and approximately 13 tons/yr for particulate matter (from the coal storage area) is expected. These emissions are within the currently permitted levels. Carbon dioxide emissions, which are unregulated, would increase by about 220,000 tons/yr at the Burns Harbor Plant. Water withdrawn and returned to Lake Michigan would increase by 1.3 million gal/d (0.4 percent of existing permitted discharge) for non-contact cooling water. No protected species, floodplains, wetlands, or cultural resources would be affected by operation of the proposed facility. Small economic benefits would occur from the creation of 5 or 6 permanent new jobs during the operation of the proposed demonstration project and subsequent commercial operation. Under the No Action Alternative, the proposed project would not receive cost-shared funding support from DOE.

  3. Use of carbon-bearing materials in two-bath furnaces

    SciTech Connect

    Omes', N.M.; Pisarenko, V.G.; Porkhun, V.G.; Shalimov, V.D.; Isaenko, V.F.

    1988-01-01

    The Krivorozhstal combine developed a technology for using anthracite in the cold charge on two-bath furnaces in order to conserve pig iron. A feature of this technology is the order of the cold-charging of scrap, anthracite, and lime or limestone. The new technology was compared with conventional techniques to determine its efficiency. The saving in pig iron was 10-11 kg/ton steel. This technology was found to be effective for making ordinary-grade steels. Anthracite characteristics and technology parameters are given.

  4. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  5. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  6. Constraining scalar-Gauss-Bonnet inflation by reheating, unitarity, and Planck data

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Srijit; Maity, Debaprasad; Mukherjee, Rupak

    2017-01-01

    We revisit the inflationary dynamics in detail for theories with Gauss-Bonnet gravity coupled to scalar functions, in light of the Planck data. Considering the chaotic inflationary scenario, we constrain the parameters of two models involving inflaton-Gauss-Bonnet coupling by current Planck data. For nonzero inflaton-Gauss-Bonnet coupling β , an inflationary analysis provides us a big cosmologically viable region in the space of (m , β ), where m is the mass of the inflaton. However, we study further on constraining β arising from reheating considerations and unitarity of tree-level amplitude involving 2-graviton →2 -graviton (h h →h h ) scattering. Our analysis, particularly on reheating significantly reduces the parameter space of (m , β ) for all models. The quadratic Gauss-Bonnet coupling parameter turns out to be more strongly constrained than that of the linear coupling. For the linear Gauss-Bonnet coupling function, we obtain β ≲1 03, with the condition β (m /MP)2≃10-4. However, the study of the Higgs inflation scenario in the presence of a Gauss-Bonnet term turns out to be completely disfavored.

  7. Effect of Reheat Treatment on Microstructural Refurbishment and Hardness of the As-cast Inconel 738

    NASA Astrophysics Data System (ADS)

    Wongbunyakul, Piyanut; Visuttipitukkul, Patama; Wangyao, Panyawat; Lothongkum, Gobboon; Sricharoenchai, Prasonk

    2014-09-01

    This work investigates the effect of rejuvenation heat treatment conditions for refurbishment of the long-term serviced gas turbine blades, which were made of as-cast nickel base superalloy grade, Inconel 738. The reheat treatment conditions consist of solutionizing treatments at temperatures of 1,438, 1,458 and 1,478 K for 14.4 ks and aging treatments at temperatures of 1,133, 1,148 and 1,163 K for 43.2, 86.4, 129.6 and 172.8 ks. The results show that increase in aging times results in continuous increase of size and area fraction of gamma prime (γ') particles. The higher solutionizing temperature leads to the lower area fraction and smaller size of gamma prime particles. Regarding the microstructure characteristics, the most proper reheat treatment condition should be solutionizing at temperature of 1,438 K for 14.4 ks and aging at temperature of 1,133 K for 172.8 ks, which provides the highest area fraction of gamma prime particles in proper size.

  8. Calculations of inflaton decays and reheating: with applications to no-scale inflation models

    SciTech Connect

    Ellis, John; Garcia, Marcos A.G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2015-07-30

    We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, w, during the epoch of inflaton decay, the reheating temperature, T{sub reh}, and the number of inflationary e-folds, N{sub ∗}, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index n{sub s} and the tensor-to-scalar perturbation ratio r, converting them into constraints on N{sub ∗}, the inflaton decay rate and other parameters of specific no-scale inflationary models.

  9. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect

    Katırcı, Nihan; Kaya, Ali; Tarman, Merve

    2014-06-11

    We consider the single field chaotic m{sup 2}ϕ{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field χ in the parametric resonance regime. In a recent work, one of us has shown that the χ modes circulating in the loops during preheating notably modify the <ζζ> correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ζ modes are affected by the loops in preheating. Further, we examine how χ loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two χ fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more χ fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  10. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  11. INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A FLOOR INDICATING FOURCAULT DRAWING MACHINE AND FURNACE. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  12. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  13. [Study on quantificational analysis method for the non-crystalline content in blast furnace slag].

    PubMed

    Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian

    2008-02-01

    quantificational analysis method for blast furnace slag can be applied to various kinds of blast furnace slag from different steel plants.

  14. Refractories for lining blast furnaces

    SciTech Connect

    Fedoruk, R.M.; Baksheeva, V.S.; Karyakina, E.L.; Khmelenko, T.P.; Pitak, N.V.

    1986-01-01

    The authors develop and introduce a technology for the production of chamotte kaolin refractories with a porosity of not more than 12% and a mass proportion of not less than 42% A1/sub 2/O/sub 3/ on the basis of chamotte from high-grade Polozhe kaolin, and also additions to the batch of finely milled mullite-corundum chamotte. Using the new technology, a batch of goods designated ShPD-42 was produced for lining the shafts, bosh, and upper parts of blast furnaces of large capacity.

  15. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  16. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B. )

    1991-01-01

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  17. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B.

    1991-12-31

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  18. Trace metals related to historical iron smelting at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.

  19. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  20. SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN FOREGROUND, LOOKING NORTH-NORTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  1. GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS THE CREEK, LOOKING SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  2. WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE AND TRESSLE, LOOKING SOUTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  3. Energy Saving Devices on Gas Furnaces.

    DTIC Science & Technology

    1980-03-01

    AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER

  4. Existing and prospective blast-furnace conditions

    SciTech Connect

    I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk

    2009-07-15

    Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

  5. Developmental testing of a programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Larson, D. J., Jr.

    1986-01-01

    A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained.

  6. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  7. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  8. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Regularities of heat transfer in the gas layers of a steam boiler furnace flame. Part II. Gas layer radiation laws and the procedure for calculating heat transfer in furnaces, fire boxes, and combustion chambers developed on the basis of these laws

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-10-01

    The article presents the results stemming from the scientific discovery of laws relating to radiation from the gas layers generated during flame combustion of fuel and when electric arc burns in electric-arc steel-melting furnaces. The procedure for calculating heat transfer in electric-arc and torch furnaces, fire-boxes, and combustion chambers elaborated on the basis of this discovery is described.

  10. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  11. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  12. A multi-zone muffle furnace design

    NASA Technical Reports Server (NTRS)

    Rowe, Neil D.; Kisel, Martin

    1993-01-01

    A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.

  13. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air.

  14. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  15. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  16. Mathematical model of layered metallurgical furnaces and units

    NASA Astrophysics Data System (ADS)

    Shvydkiy, V. S.; Spirin, N. A.; Lavrov, V. V.

    2016-09-01

    The basic approaches to mathematical modeling of the layered steel furnaces and units are considered. It is noted that the particular importance have the knowledge about the mechanisms and physical nature of processes of the charge column movement and the gas flow in the moving layer, as well as regularities of development of heat- and mass-transfer in them. The statement and mathematical description of the problem solution targeting the potential gas flow in the layered unit of an arbitrary profile are presented. On the basis of the proposed mathematical model the software implementation of information-modeling system of BF gas dynamics is carried out. The results of the computer modeling of BF non-isothermal gas dynamics with regard to the cohesion zone, gas dynamics of the combustion zone and calculation of hot-blast stoves are provided

  17. Greener durable concretes through geopolymerisation of blast furnace slag

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  18. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih

    2016-03-01

    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  19. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  20. New Gas Carburizing Method for Minimizing CO2 Emission by Saving Resources and Selective Removal of H2 in Furnace

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Tomoyuki; Yokoyama, Yujiro; Hoshino, Hideaki; Ishigami, Itsuo; Usui, Tateo

    An attempt has been made to develop a new gas carburizing furnace with the system that discharges H2 gas selectively from the atmosphere in the furnace. Polyimide hollow-fiber membrane filter on the market was selected as a filter that was expected to have good H2 gas permeability and selectivity. The results of the various gas permeability measurements of this filter showed that it had superior H2 gas permeability and selectivity. Using this gas filter module, a new industrial gas carburizing furnace that had ‘H2 gas selective discharging system’ was produced as a trial. Use of this furnace made possible to stabilize the gas carburizing atmosphere in the furnace under the lower carrier gas flow rate condition (below 25% of standard condition). It was confirmed that the carbon concentration profile of the steel carburized with the new carburizing furnace under lower carrier gas flow rate condition was comparable to that of the specimen carburized under standard carrier gas flow rate condition.

  1. Hypercharged dark matter and direct detection as a probe of reheating.

    PubMed

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  2. Antilisterial properties of marinades during refrigerated storage and microwave oven reheating against post-cooking inoculated chicken breast meat.

    PubMed

    Fouladkhah, Aliyar; Geornaras, Ifigenia; Nychas, George-John; Sofos, John N

    2013-02-01

    This study evaluated growth of Listeria monocytogenes inoculated on cooked chicken meat with different marinades and survival of the pathogen as affected by microwave oven reheating. During aerobic storage at 7 °C, on days 0, 1, 2, 4, and 7, samples were reheated by microwave oven (1100 W) for 45 or 90 s and analyzed microbiologically. L. monocytogenes counts on nonmarinated (control) samples increased (P < 0.05) from 2.7 ± 0.1 (day-0) to 6.9 ± 0.1 (day-7) log CFU/g during storage. Initial (day-0) pathogen counts of marinated samples were <0.5 log CFU/g lower than those of the control, irrespective of marinating treatment. At 7 d of storage, pathogen levels on samples marinated with tomato juice were not different (P ≥ 0.05; 6.9 ± 0.1 log CFU/g) from those of the control, whereas for samples treated with the remaining marinades, pathogen counts were 0.7 (soy sauce) to 2.0 (lemon juice) log CFU/g lower (P < 0.05) than those of the control. Microwave oven reheating reduced L. monocytogenes counts by 1.9 to 4.1 (45 s) and >2.4 to 5.0 (90 s) log CFU/g. With similar trends across different marinates, the high levels of L. monocytogenes survivors found after microwave reheating, especially after storage for more than 2 d, indicate that length of storage and reheating time need to be considered for safe consumption of leftover cooked chicken.

  3. Acoustic characteristics of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  4. TiC reinforced cast chromium steels

    SciTech Connect

    Dogan, Omer N.; Rawers, James C.; Hawk, Jeffrey A.; Schrems, Karol K.

    2003-11-01

    A series of new titanium carbide reinforced cast chromium steels were developed for wear applications. Objective of the program was to enhance wear resistant alloys and, if possible, improve mechanical properties. The new steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Alloying with Ti changed the precipitate microstructure from Cr carbide to TiC dispersed in a martensitic matrix. Yield strength and impact resistance improved with Ti alloying. Wear rates of the cast Cr/TiC steels, (determined from high- and low-stress abrasion tests, erosion test, and scratch tests) were generally lower than both the as-cast and heat-treated AISI type 440°C steel and were often further reduced by increasing the Ti alloy concentration. The exceptions were the erosion test for which all materials had similar wear rate.

  5. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  6. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  7. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation

    SciTech Connect

    Sharma, Hemant; Zuidwijk, Thim; Geerlofs, Nico; Offerman, S. Erik; Wattjes, Alix C.; Amirthalingam, Murugaiyan

    2009-12-15

    We report a multipurpose furnace designed for studies using synchrotron radiation on polycrystalline materials, namely, metals, ceramics, and (semi)crystalline polymers. The furnace has been designed to carry out three-dimensional (3D) x-ray diffraction measurements but can also be used for other types of synchrotron radiation research. The furnace has a very low thermal gradient across the specimen (<0.2 degree sign C/mm). Accurate determination of the temperature can be carried out by welding a thermocouple to the specimen. The furnace can be rotated over an angle of 90 degree sign in order to determine the crystallographic orientation of each individual grain. It is possible to follow growth kinetics of all grains in the illuminated volume of the specimen. The specimen environment can be controlled varying from vacuum (up to 10{sup -5} mbar) to gas or air filled. The maximum temperature of operation is 1500 degree sign C, with the possibility of achieving high heating (up to 20 deg. C/s) and cooling rates (up to 30 deg. C/s without quenching gas). 3D maps of the microstructure of the specimen can be generated at elevated temperatures by bringing the high-resolution detector close to the specimen. We show an example of a simulation of the heat affected zone during the thermal cycle of a weld in a transformation-induced plasticity steel carried out using the furnace. The unique characteristics of the furnace open possibility of new fields in materials research using synchrotron radiation.

  8. Single-Heater, Three-Zone Furnace

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shauback, Robert M.

    1993-01-01

    Temperature profile shaped with help of thermal barriers. Proposed furnace for use in experiments on growth of crystals of highly pure material in ampoule provides three temperature zones, yet contains only one heat-pipe liner and one heater and operates with only one controller. Three temperature zones established as thermal resistances of wicks and noncondensible gas reduces flows of heat into channel containing ampoule. Motion of ampoule along channel causes gradients of temperature to move along specimen in ampoule. Variety of three-zone temperature profiles in furnace created by changing thermal resistances of zones and injecting noncondensible gas at appropriate point. Furnace used for variety of experiments.

  9. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  10. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  11. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  12. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  13. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  14. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  15. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  16. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  17. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  18. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  19. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  20. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  1. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  2. Galileogenesis: A new cosmophenomenological zip code for reheating through R-parity violating coupling

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Dasgupta, Arnab

    2014-05-01

    In this paper we introduce an idea of leptogenesis scenario in higher derivative gravity induced DBI Galileon framework aka Galileogenesis in presence of one-loop R-parity violating couplings in the background of a low energy effective supergravity setup derived from higher dimensional string theory framework. We have studied extensively the detailed feature of reheating constraints and the cosmophenomenological consequences of thermal gravitino dark matter in light of PLANCK and PDG data. Finally, we have also established a direct cosmophenomenological connection among dark matter relic abundance, reheating temperature and tensor-to-scalar ratio in the context of DBI Galileon inflation. Higher order correction terms in the gravity sector are introduced in the effective action as a perturbative correction to the Einstein-Hilbert counterpart coming from the computation of Conformal Field Theory disk amplitude at the two loop level [34-36]. The matter sector encounters the effect of N=1, D=4 supergravity motivated DBI Galileon interaction which is embedded in the D3 brane. Additionally, we have considered the effect of R-parity violating interactions [37-40] in the matter sector which provide a convenient framework for quantifying quark and lepton-flavor violating effects. The low energy UV protective effective action for the proposed cosmophenomenological model is described by [31,32]: S=∫d4x √{-g}[K(Φ,X)-G(Φ,X)□Φ+B1R+(B2RRαβγδ-4B3RRαβ+B4R2)+B5] where the model dependent characteristic functions K(Φ,X) and G(Φ,X) are the implicit functions of Galileon and its kinetic counterpart is X=-1/2 >g∂μΦ∂νΦ. Additionally, Bi∀i are the self-coupling constants of graviton degrees of freedom appearing via dimensional reduction from higher dimensional string theory. Specifically B5 be the effective four dimensional cosmological constant. In general, B2≠B3≠B4 which implies that the quadratic curvature terms originated from two loop correction to the

  3. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  4. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  5. Distribution of radionuclides during melting of carbon steel

    SciTech Connect

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  6. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  7. Blast Furnace Granular Coal Injection Projection. Annual Report, Jan 1 - Dec 31, 1997

    SciTech Connect

    1998-04-01

    This 1997 annual report describes the Blast Furnace Granular Coal Injection project being implemented at the Burns Harbor Plant of Bethlehem Steel Corporation. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. This installation is the first in the United States to use British Steel technology1*2 that uses granular coal to provide a portion of the fuel requirements of blast furnaces. The project will demonstrate/assess a broad range of technical and economic issues associated with the use of coal for injection into blast furnaces. To achieve the progmm objectives, the demonstration project is divided into the following three Phases: Phase I - Design Phase II - Construction Phase III - Operation Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at the Burns Harbor Plant (Phase II) began in August 1993 and was completed at the end of 1994. The demonstration test program (Phase III) started in the fourth quarter of 1995.

  8. Simultaneous Measurements of Temperature and Iron-Slag Ratio at Taphole of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Shinotake, A.; Nakashima, M.; Omoto, N.

    2014-07-01

    As the initial process in an integrated steel-making plant, molten iron is produced in a blast furnace. The molten iron has a temperature between 1700 K and 1900 K. The outflow stream discharged from a taphole comprises the molten iron and slag (which is a mixture of molten oxides). Monitoring of the stream temperature is important because it has information on the thermal condition inside the blast furnace. A newly developed simultaneous measurement technique for temperature and iron-slag ratio is reported. A monochromatic CCD camera with a short exposure time is used to obtain a thermal image of the rapidly moving stream. The thermal image has a marble-like pattern caused by the physical separation of the iron and slag and their different optical properties. Iron thermometry is realized by automatically detecting the peak of the iron gray-level distribution on a histogram. Meanwhile, the thermal radiance of the semitransparent slag varies as a function of the thickness. The slag temperature is calculated from the maximum gray level, presuming that the emissivity of the slag is constant at a thick slag part. The slag ratio is measured by counting the number of pixels on the histogram. A field test was carried out at an operating blast furnace. The iron temperature, slag temperature, and slag ratio were successfully measured. This multiple image measurement is expected to be the new information source for stable blast furnace operation.

  9. The UMass wind furnace blade design

    NASA Technical Reports Server (NTRS)

    Cromack, D. E.

    1978-01-01

    A brief description of the wind furnace concept is presented along with some preliminary performance data. Particular emphasis is placed on the design, construction, and manufacturing procedure for the 32.5 foot diameter GRP blades.

  10. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  11. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  12. Removable preheater elements improve oxide induction furnace

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1964-01-01

    Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.

  13. Chamberless residential warm air furnace design

    SciTech Connect

    Godfree, J.

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  14. Wear of Cast Chromium Steels With TiC Reinforcement

    SciTech Connect

    Dogan,O.N.; Hawk, J.A.; Tylczak, J.H.

    2001-10-01

    Wear resistance of a series of new titanium carbide reinforced cast chromium steels was investigated under various wear conditions. The steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Microstructure of these materials was characterized using scanning electron microscopy, light optical microscopy, and X-ray diffraction. Microstructure of steels consisted of TiC phase dispersed in a martensitic matrix. High-stress and low-stress abrasion tests, and an erosion test, were utilized to understand the wear behavior of these materials under different environments. The steels were tested in as-cast and heat treated conditions. Wear rates of the cast Cr/TiC steels were compared to those of an AISI type 440C steel and P/M composites reinforced with TiC.

  15. [Measurement of chemical agents in metallurgy field: electric steel plant].

    PubMed

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  16. Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids

    NASA Astrophysics Data System (ADS)

    Yang, J.; Goldstein, J. I.; Scott, E. R. D.; Michael, J. R.; Kotula, P. G.; Pham, T.; McCoy, T. J.

    2011-09-01

    Abstract- The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron-probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700-750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600-700 °C and recrystallized to form 10-20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close-packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5-10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer-scale M-shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100-10,000 yr. Un-decomposed high-Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M-shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock-hatched kamacite, recrystallization, microprecipitates of taenite, and shock-melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main

  17. Translating Furnace For Fast Melting And Freezing

    NASA Technical Reports Server (NTRS)

    Workman, F.; Suggs, R. J.; Curreri, P. A.; Ethridge, E. C.; Perkinson, D. T.; Tucker, S.; Smith, G. A.

    1988-01-01

    Developmental translating-furnace apparatus used to make ceramic/metal composite materials during parabolic trajectories of KC-135 airplane simulating low gravity. Mathematical modeling shows apparatus able both to melt metal alloys and to solidify resulting composite specimens during 22-to-30-second low-gravity intervals. Furnace assembly moves along crucible in programmed manner to preheat, melt, and solidfy specimen during interval to less than 22 second.

  18. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  19. Elastic limit and microplastic response of hardened steels

    SciTech Connect

    Zaccone, M.A. ); Krauss, G. . Dept. of Metallurgical and Materials Engineering)

    1993-10-01

    Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.

  20. Quality of coal for blast furnace injection

    SciTech Connect

    Hutny, W.P.; Giroux, L.; MacPhee, J.A.; Price, J.T.

    1996-12-31

    CANMET Energy Technology Centre (CETC) has been involved in a research program to evaluate the suitability of various coals for blast furnace injection. The primary objectives of this program are to provide essential information on coal combustion in the blast furnace and to establish proper criteria for evaluating and selecting coals for blast furnace injection. The program comprises three parts. Parts one and two have been completed. To date, the program has encompassed both a theoretical assessment of cooling and coke replacement characteristics of coals using CETC`s computer model and an experimental determination of the combustibility of coals of different ranks and particle sizes as well as the influence of oxygen enrichment on burnout. The experimental part was conducted in CETC`s pilot-scale injection unit that simulates blast furnace blowpipe-tuyere conditions. Part three now being developed will incorporate results of experimental trials into a blast furnace raceway model in order to predict total combustibility of coals at different blast furnace operating conditions. This paper describes CETC`s facility and methodology of work, and presents and discusses results.

  1. Firing temperature accuracy of four dental furnaces.

    PubMed

    Haag, Per; Ciber, Edina; Dérand, Tore

    2011-01-01

    In spite of using recommended firing and displayed temperatures, low-fired dental porcelain more often demonstrates unsatisfactory results after firing than porcelain fired at higher temperatures. It could therefore be anticipated that temperatures shown on the display are incorrect, implying that the furnace does not render correct firing programs for low-fired porcelain. The purpose of this study is to investigate deviations from the real temperature during the firing process and also to illustrate the service and maintenance discipline of furnaces at dental laboratories. Totally 20 units of four different types of dental furnaces were selected for testing of temperature accuracy with usage of a digital temperature measurement apparatus, Therma 1. In addition,the staffs at 68 dental laboratories in Sweden were contacted for a telephone interview on furnace brand and on service and maintenance program performed at their laboratories. None of the 20 different dental furnaces in the study could generate the firing temperatures shown on the display, indicating that the hypothesis was correct. Multimat MCII had the least deviation of temperature compared with displayfigures. 62 out of 68 invited dental laboratories chose to participate in the interviews and the result was that very few laboratories had a service and maintenance program living up to quality standards. There is room for improving the precision of dental porcelain furnaces as there are deviations between displayed and read temperatures during the different steps of the firing process.

  2. Solar Convective Furnace for Metals Processing

    NASA Astrophysics Data System (ADS)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  3. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  4. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  5. [Dust and silica exposure on metallurgical furnace maintenance using refractory materials].

    PubMed

    Garattini, S; Barbieri, P G; Bottone, F; Brunelli, E; Carminati, F; Chiari, R; Sarnico, M

    2012-01-01

    In the metallurgical industries the silica risk has long been known, particularly for the refractoryes maintenance workers. The maintenance of furnaces, ladles and tundisches refractory linings, on the current organization of production, is provided by companies under contract. The information available about the characterization of risk for this group of workers are at present inadequate. The study investigates the exposure to dust, also containing free crystalline silica (SLC), through the analysis of samples of commercial products used in the reconstruction of refractory linings of furnaces, ladles and tundisches, materials from the demolition of refractory articles and dust from work areas. It also presents the results of an environmental investigation conducted during the demolition and reconstruction of the refractory in three steel mills. The Authors, by the numerous inspections and the systematic survey of working conditions, have formulated a SLC risk profile and some proposals for prevention.

  6. Apparatus for inserting and removing specimens from high temperature vacuum furnaces

    NASA Technical Reports Server (NTRS)

    Whitehead, C. W. (Inventor)

    1974-01-01

    The apparatus comprises a high speed gate valve for isolating the interior of the furnance from an air lock chamber on the opposite side of the gate valve. The air lock chamber is provided with valve ports connected to a vacuum source, a source of inert quenching gas, and the atmosphere, respectively. Attached to the end of the air lock chamber away from the furnace is a cylindrical tube having disposed within it a rod carrying specimen pan at the end towards the furnace and having mounted at its top end an annular magnet having a diameter slightly less than the interior diameter of the tube. The top end of the tube is closed by a removeable cap. Encircling the tube in the vicinity of the magnet is a carbon steel ring which when axially moved along the tube causes the magnet to follow it and thereby controls the position of the rod and specimen pan within the tube.

  7. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  8. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  9. Reheated Palm Oil Consumption and Risk of Atherosclerosis: Evidence at Ultrastructural Level

    PubMed Central

    Xian, Tan Kai; Omar, Noor Azzizah; Ying, Low Wen; Hamzah, Aniza; Raj, Santhana; Jaarin, Kamsiah; Othman, Faizah; Hussan, Farida

    2012-01-01

    Background. Palm oil is commonly consumed in Asia. Repeatedly heating the oil is very common during food processing. Aim. This study is aimed to report on the risk of atherosclerosis due to the reheated oil consumption. Material and Methods. Twenty four male Sprague Dawley rats were divided into control, fresh-oil, 5 times heated-oil and 10 times heated-oil feeding groups. Heated palm oil was prepared by frying sweet potato at 180°C for 10 minutes. The ground standard rat chows were fortified with the heated oils and fed it to the rats for six months. Results. Tunica intima thickness in aorta was significantly increased in 10 times heated-oil feeding group (P < 0.05), revealing a huge atherosclerotic plaque with central necrosis projecting into the vessel lumen. Repeatedly heated oil feeding groups also revealed atherosclerotic changes including mononuclear cells infiltration, thickened subendothelial layer, disrupted internal elastic lamina and smooth muscle cells fragmentation in tunica media of the aorta. Conclusion. The usage of repeated heated oil is the predisposing factor of atherosclerosis leading to cardiovascular diseases. It is advisable to avoid the consumption of repeatedly heated palm oil. PMID:23320039

  10. The charged inflaton and its gauge fields: preheating and initial conditions for reheating

    SciTech Connect

    Lozanov, Kaloian D.; Amin, Mustafa A.

    2016-06-14

    We calculate particle production during inflation and in the early stages of reheating after inflation in models with a charged scalar field coupled to Abelian and non-Abelian gauge fields. A detailed analysis of the power spectra of primordial electric fields, magnetic fields and charge fluctuations at the end of inflation and preheating is provided. We carefully account for the Gauss constraints during inflation and preheating, and clarify the role of the longitudinal components of the electric field. We calculate the timescale for the back-reaction of the produced gauge fields on the inflaton condensate, marking the onset of non-linear evolution of the fields. We provide a prescription for initial conditions for lattice simulations necessary to capture the subsequent nonlinear dynamics. On the observational side, we find that the primordial magnetic fields generated are too small to explain the origin of magnetic fields on galactic scales and the charge fluctuations are well within observational bounds for the models considered in this paper.

  11. Dark radiation and dark matter in supersymmetric axion models with high reheating temperature

    SciTech Connect

    Graf, Peter; Steffen, Frank Daniel E-mail: steffen@mpp.mpg.de

    2013-12-01

    Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.

  12. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

  13. Computational simulations and experimental validation of a furnace brazing process

    SciTech Connect

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  14. 94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND FLOOR OF THE POWER HOUSE AT SAULT STE. MARIE. THE ROWS OF ROTARY FURNACES SHOWN HERE WERE REPLACED C. 1915-1920 BY 10,000 TO 20,000 H.P. TAPPING FURNACES. ONE TAPPING FURNACE WAS LOCATED TO THE WEST OF THE ROW OF HORRY FURNACES, THE OTHER WAS LOCATED IN A SEPARATE FURNACE HOUSE BUILT ON THE EAST OF THE POWER HOUSE. (E) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  15. Standard operating procedure: Gas atmosphere MELCO brazing furnace

    SciTech Connect

    Waller, C.R.

    1988-08-01

    A hydrogen and argon gas atmosphere furnace facility using electric furnaces is located at the Clinton P. Anderson Meson Physics Facility (LAMPF). This furnace system was acquired to handle smaller jobs with a more rapid response time than was possible with the larger furnaces. Accelerator- and experimental-related components best assembled by atmosphere brazing techniques are routinely processed by this facility in addition to special heat treatment and bakeout heats. The detailed operation sequence and description of the MELCO furnace system are covered by this report. This document is to augment LA-10231-SOP, which describes the operation of the large furnace systems. 6 figs.

  16. Carbon monoxide exposure in blast furnace workers.

    PubMed

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  17. Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units

    NASA Astrophysics Data System (ADS)

    Legkostupova, V. V.; Sudakov, A. V.

    2015-03-01

    The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the

  18. Magnetic Resonance Imaging Cooling-Reheating Protocol Indicates Decreased Fat Fraction via Lipid Consumption in Suspected Brown Adipose Tissue

    PubMed Central

    Lundström, Elin; Strand, Robin; Johansson, Lars; Bergsten, Peter; Ahlström, Håkan; Kullberg, Joel

    2015-01-01

    Objectives To evaluate whether a water-fat magnetic resonance imaging (MRI) cooling-reheating protocol could be used to detect changes in lipid content and perfusion in the main human brown adipose tissue (BAT) depot after a three-hour long mild cold exposure. Materials and Methods Nine volunteers were investigated with chemical-shift-encoded water-fat MRI at baseline, after a three-hour long cold exposure and after subsequent short reheating. Changes in fat fraction (FF) and R2*, related to ambient temperature, were quantified within cervical-supraclavicular adipose tissue (considered as suspected BAT, denoted sBAT) after semi-automatic segmentation. In addition, FF and R2* were quantified fully automatically in subcutaneous adipose tissue (not considered as suspected BAT, denoted SAT) for comparison. By assuming different time scales for the regulation of lipid turnover and perfusion in BAT, the changes were determined as resulting from either altered absolute fat content (lipid-related) or altered absolute water content (perfusion-related). Results sBAT-FF decreased after cold exposure (mean change in percentage points = -1.94 pp, P = 0.021) whereas no change was observed in SAT-FF (mean = 0.23 pp, P = 0.314). sBAT-R2* tended to increase (mean = 0.65 s-1, P = 0.051) and SAT-R2* increased (mean = 0.40 s-1, P = 0.038) after cold exposure. sBAT-FF remained decreased after reheating (mean = -1.92 pp, P = 0.008, compared to baseline) whereas SAT-FF decreased (mean = -0.79 pp, P = 0.008, compared to after cold exposure). Conclusions The sustained low sBAT-FF after reheating suggests lipid consumption, rather than altered perfusion, as the main cause to the decreased sBAT-FF. The results obtained demonstrate the use of the cooling-reheating protocol for detecting changes in the cervical-supraclavicular fat depot, being the main human brown adipose tissue depot, in terms of lipid content and perfusion. PMID:25928226

  19. In Situ Measurement and Prediction of Stresses and Strains During Casting of Steel

    NASA Astrophysics Data System (ADS)

    Galles, Daniel; Beckermann, Christoph

    2016-02-01

    Modeling the thermo-mechanical behavior of steel during casting is of great importance for the prediction of distortions and cracks. In this study, an elasto-visco-plastic constitutive law is calibrated with mechanical measurements from casting experiments. A steel bar is solidified in a sand mold and strained by applying a force to bolts that are embedded in the two ends of the bar. The temporal evolutions of the restraint force and the bar's length change are measured in situ. The experiments are simulated by inputting calculated transient temperature fields into a finite element stress analysis that employs the measured forces as boundary conditions. The thermal strain predictions are validated using data from experiments without a restraint. Initial estimates of the constitutive model parameters are obtained from available mechanical test data involving reheated steel specimens. The temperature dependence of the strain rate sensitivity exponent is then adjusted until the measured and predicted length changes of the strained bars agree. The resulting calibrated mechanical property dataset is valid for the high-temperature austenite phase of steel. The data reveal a significantly different mechanical behavior during casting compared to what the stress-strain data from reheated specimens show.

  20. Cogeneration from glass furnace waste heat recovery

    SciTech Connect

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  1. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  2. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential.

  3. SOUTHERN DUCTILE CASTING COMPANY, BACK SIDE OF FURNACE AND MOLDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHERN DUCTILE CASTING COMPANY, BACK SIDE OF FURNACE AND MOLDING BUILDINGS SHOWING CONNECTIONS TO LOCAL POWER GRID, PRIMARILY FOR ELECTRIC FURNACES. - Southern Ductile Casting Company, Bessemer Foundry, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  4. 33. BOILER HOUSE FURNACE AND BOILER Close view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BOILER HOUSE - FURNACE AND BOILER Close view of the Dorward Engineering Company furnace and boiler which provided steam to the cooking retorts in the adjacent room. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  5. 6. Photocopy of a drawing of the lead blast furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  6. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  7. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  8. Prototype Furnace for Automatic Production of Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1985-01-01

    Single-crystal material grown under precise control. New furnace permits sustained growth of single-crystal silicon ribbon by dendritic-web growth process. Furnace brings together mechanisms necessary for continuous automatic operation.

  9. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  12. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  13. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1991-01-01

    A two dimensional conduction/radiation problem for an alumina crucible in a zirconia heater/muffle tube enclosing a liquid iron sample was solved numerically. Variations in the crucible wall thickness were numerically examined. The results showed that the temperature profiles within the liquid iron sample were significantly affected by the crucible wall thicknesses. New zirconia heating elements are under development that will permit continued experimental investigations of the zirconia furnace. These elements have been designed to work with the existing furnace and have been shown to have longer lifetimes than commercially available zirconia heating elements. The first element has been constructed and tested successfully.

  14. Gravitino or axino dark matter with reheat temperature as high as 1016 GeV

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.

    2017-03-01

    A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, a, and a high reheat temperature after inflation, T R . A large overproduction of axinos ( ã) and gravitinos (\\tilde{G}) from scattering at T R , and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are ã, with mass of order the TeV scale, and \\tilde{G} with mass m 3/2 anywhere between the keV and TeV scales, depending on the mediation scale of supersymmetry breaking. Dark matter contains both warm and cold components: for \\tilde{G} LSP the warm component arises from \\tilde{a}\\to \\tilde{G}a , while for ã LSP the warm component arises from \\tilde{G}\\to \\tilde{a}a . The free-streaming scale for the warm component is predicted to be of order 1 Mpc (and independent of m 3/2 in the case of \\tilde{G} LSP). T R can be as high as 1016 GeV, for any value of m 3/2, solving the gravitino problem. The PQ symmetry breaking scale V PQ depends on T R and m 3/2 and can be anywhere in the range (1010 - 1016) GeV. Detailed predictions are made for the lifetime of the neutralino LOSP decaying to ã+ h/Z and \\tilde{G}+h/Z/γ , which is in the range of (10-1 -106)m over much of parameter space. For an axion misalignment angle of order unity, the axion contribution to dark matter is sub-dominant, except when V PQ approaches 1016 GeV.

  15. Mechanisms of objectionable textural changes by microwave reheating of foods: a review.

    PubMed

    Mizrahi, Shimon

    2012-01-01

    Microwave reheating, compared to a conventional method, is notorious for lack of crust formation and severe toughening of flour and starch-based products. This review discusses how the typical thermal characteristics of microwave heating are involved in affecting the texture as well as the possible role of non-thermal effects. While low surface temperature is the well known mechanism why microwave heating is incapable of crust formation, the most severe toughening problems are caused by internal boiling. Beside moisture loss, the internally generated steam causes 2 main textural effects when it is vented out. The first is the replacing of non-condensable gases (air) in the product voids with a condensable one (steam). When the latter is condensed by cooling, a vacuum may be created in the voids causing their collapse and a formation of a more compact and tougher structure. The second textural effect involves amylose extraction from starch granules and its redistribution to eventually form a rich layer on the walls of the structural foam cells of the baked goods. Relatively fast crystallization of the amylose seems to be the main cause of toughening a short while after microwave heating. This mechanism is relevant mainly to products where starch is an important structural element. Structural disruptions by localize excessive steam pressure at hot-spots are also discussed in this review as well as methods of preventing or alleviating the most objectionable textural changes. The most effective ways of preventing these undesirable changes are by avoiding internal boiling and/or by manipulating the starch content and properties.

  16. Analysis of heat transfer in the furnace of the P-67 boiler P-67 furnace and improvement of its design

    NASA Astrophysics Data System (ADS)

    Shishkanov, O. G.; Kovalev, Yu. V.; Sryvkov, S. V.

    1993-03-01

    The results of experimental study of heat transfer in the furnace of the P-67 boiler (under the Russian trademark) burning Kansk-Achinsk coal are presented. Means of improving the design of the furnace device are proposed.

  17. 8. Copy of a photograph taken c. 1912 of Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Copy of a photograph taken c. 1912 of Furnace 'D' blown-in 17 July 1911, the fourth experimental 'thin-lined furnace' to be built in the United States. Photo courtesy Ralph A. Dise, Cleveland Heights, Ohio. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  18. 18. Furnace D, looking north. At far left is the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Furnace D, looking north. At far left is the 'tripper' car, which distributed ore and limestone into trestle bins below. The 'larryman' then weighed and discharged these materials into skip cars, which carried them to the top of the furnace. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  19. 29. Blast furnace plant, looking southeast. The Machine Shop and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  20. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  1. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  2. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  3. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  4. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  5. Recycling galvanized steel: Operating experience and benefits

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1993-08-01

    In response to the increase in consumption of galvanized steel for automobiles in the last decade and the problems associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant to continuously treat loose scrap, with a design capacity of 48,000 tonnes annually, has been in operation in East Chicago, Indiana since early in 1993. The first 450 t of scrap degalvanized in the pilot plant have residual zinc below 0.01% and sodium dragout below 0.01%. Use of degalvanized steel scrap decreases raw materials, environmental compliance, and opportunity costs to steel- and iron-makers. Availability of clean degalvanized scrap may enable integrated steel producers to recycle furnace dusts to the sinter plant and EAF shops to produce flat products without use of high quality scrap alternatives such as DRI, pig iron, or iron carbide. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap. The quantities of zinc available by the year 2000 from prompt and obsolete automotive scrap win approach 25% of zinc consumed in the major automotive production centers of the world. Zinc recycling from galvanized steel scrap, either before or after scrap melting, will have to be implemented.

  6. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  7. ESR Steels for Defence - State of the Art. MRL Seminar, held December 14, 1982,

    DTIC Science & Technology

    1983-05-01

    specially shaped moulds. PROPERTIES OF ESR STEELS Consideration is given to the high-strength, quenched and tempered steels of the En 25/AISI 4340 type...furnace and ESR samples of AISI 4340 and En25 steers with sulphur contents ranging from 0.002-0.025 wt.%. Corrosion of rotating discs of all steels in...AD-A132 993 ESR STEELS FOR DEFENCE -STATE OF THE ART URL SEMINAR 1/1 HELD DECEMBER 14 19821U) MATERIALS RESEARCH LAOS ASCOT YALE (AUSTRALIA) R .J 0

  8. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  9. Protecting brazing furnaces from air leaks

    NASA Technical Reports Server (NTRS)

    Armenoff, C. T.; Mckown, R. D.

    1980-01-01

    Inexpensive inert-atmosphere shielding protects vacuum brazing-furnace components that are likely to spring leak. Pipefittings, gages, and valves are encased in transparent plastic shroud inflated with argon. If leak develops, harmless argon will enter vacuum chamber, making it possible to finish ongoing brazing or heat treatment before shutting down for repair.

  10. A Solar Furnace for Your School

    ERIC Educational Resources Information Center

    Meyer, Edwin C.

    1978-01-01

    Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)

  11. Laser Vacuum Furnace for Zone Refining

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zurburg, F. W.; Penn, W. M.

    1986-01-01

    Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.

  12. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  13. Tube-Furnace Production of Silicon

    NASA Technical Reports Server (NTRS)

    Farrier, E. G.; Rexer, J.; Timmel, P. J.

    1982-01-01

    Packed-bed reactor produces silicon by decomposing ultrapure silane gas in temperature gradient. Based on previous experiments with relatively low decomposition temperatures and with temperature gradients, heterogeneous decomposition will produce few fines. Fines produced are screened out and reinserted into furnace.

  14. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  15. Development of oxide based diffusion barrier coatings for CFC components applied in modern furnaces

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Schlaefer, Thomas; Warda, Thomas

    2011-12-01

    Carbon fibre reinforced carbon (CFC) materials show a high potential for usage in furnaces as sample carriers for example, which is due to their excellent thermal stability compared to steel carriers. Only their tendency to react with different metals at high temperatures by Cdiffusion is a disadvantage, which can be solved by application of diffusion barriers. In order to enable the utilization of CFC-carriers for e.g. brazing furnaces, within the frame of this study thermally sprayed diffusion barrier coatings were developed. Coatings of mullite and ZrO2-7% Y2O3 (YSZ) were prepared by air plasma spraying (APS). The coatings were investigated in terms of their microstructure and thermal shock behaviour. In order to prove the suitability of the coatings for the application in brazing furnaces, the wettability of the coating surfaces by a Ni-based brazing alloy was investigated. The results showed that both mullite and YSZ could be deposited on CFC substrates with a bond coat of W or SiC. Both coatings exhibited good thermal shock behaviour and an excellent non-wetting behaviour against the used Ni-based braze alloy.

  16. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  17. 6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  18. A preliminary study of the use of intercooling and reheat in conjunction with regeneration for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1977-01-01

    The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio.

  19. Sterile neutrino dark matter with gauged U(1){sub B-L} and a low reheating temperature

    SciTech Connect

    Khalil, Shaaban; Seto, Osamu

    2009-04-17

    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1){sub B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino can be produced via a novel manner, namely scattering through Z' gauge boson, and becomes an interesting dark matter candidate. In addition, we show that if the neutrino mass is of the order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.

  20. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect

    Crelling, J.C.

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  1. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.

    PubMed

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-01

    Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  2. Mineral phases of weathered and recent electric arc furnace dust.

    PubMed

    Martins, Fernanda Machado; dos Reis Neto, José Manoel; da Cunha, Carlos Jorge

    2008-06-15

    A weathered and a recent sample of electric arc furnace dust (EAFD), generated in a southern Brazilian steel industry, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) probe and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. One sample, in the form of a wet paste, was collected from the lowest part of a landfill and corresponds to a weathered material whereas the other sample was collected from the top portion of the landfill and corresponds to a recently produced material. The dominant cations present in both samples are iron, zinc and lead with minor amounts of manganese, calcium and silicon. The dominant mineralogical phases identified in both materials are Magnetite, Franklinite and Zincite. The recent sample has Laurionite whereas the weathered sample has Hydrocerussite and Hydrozincite.

  3. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  4. Process control techniques for the Sidmar blast furnaces

    SciTech Connect

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  5. Weldability Evaluation of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    BlastAlloy160 (BA-160) steel, with a nominal composition of Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct), is strengthened by Cu-rich precipitates and M2C carbides. This alloy was subjected to several weldability tests to assess its susceptibility to certain weld cracking mechanisms. Hot ductility testing revealed a liquation cracking temperature range (LCTR) of 148 K (-125 °C), which suggested moderate susceptibility to heat-affected zone (HAZ) liquation cracking. The enrichment of Ni and Cu was measured along the prior austenite grain boundaries in the simulated partially melted zone (PMZ) and was consistent with similar enrichment at interdendritic boundaries of the simulated fusion zone (FZ). Good wetting and penetration of liquid films along the austenite grain boundaries of the PMZ was also observed. Associated with that finding were thermodynamic calculations indicating a completely austenitic (face-centered cubic) microstructure at elevated temperatures. In testing to determine reheat cracking susceptibility, ductility values of 41 to 78 pct RA were established for the 723 K to 973 K (450 °C to 700 °C) temperature range. The good ductility values precluded susceptibility to reheat cracking according to the test criterion. Dilatometric measurements and thermodynamic calculations revealed the formation of austenite in the reheat cracking temperature range, which was attributed to the high Ni content of the BA-160 alloy.

  6. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  7. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and

  8. Study of materials to resist corrosion in condensing gas fired furnaces. Annual report Oct 79-Oct 80

    SciTech Connect

    Lahtvee, T.; Khoo, S.W.; Schaus, O.O.

    1981-02-01

    Based on a thorough review of background information on the performance of materials in condensing gas-fired furnace heat exchangers and in similar corrosive environments, candidate materials were selected and tested on one of two identical test rigs built to provide the varying corrosive conditions encountered in an actual gas-fired condensing system heat exchanger. The 32 different materials tested in a one month screening test included: mild, low alloy, galvanized, solder coated and CaCO3 dipped galvanized steel, porcelain, epoxy, teflon and nylon coated and alonized mild steel; austenitic, ferritic, low interstitial Ti stabilized ferritic, and high alloy stainless steels; aluminum alloy anodized and porcelain coated aluminum; copper and cupronickel alloys, solder coated copper; and titanium.

  9. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  10. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  11. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  12. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  13. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  14. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  15. Diagnostics Adapted for Heat-Treating Furnace Environment

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Diagnostics developed for the in situ monitoring of rocket combustion environments were adapted for use in heat-treating furnaces. Simultaneous, in situ monitoring of the carbon monoxide, carbon dioxide, methane, water, and hydrogen concentrations in the endothermic gas of a heat-treating furnace were demonstrated under a Space Act Agreement between the NASA Lewis Research Center, the Heat Treating Network, and Akron Steel Treating Company. This endothermic gas, or "endogas," is produced in a catalytic process, where natural gas is "cracked" in the presence of air. Variations in the composition of the natural gas supplied lead to variations in the composition of the endothermic gas. These variations could lead to an unacceptable quality of steel products that are hardened through the carborization process that uses this gas. Conventional methods of monitoring the endogas include measuring the dew point of the gas and the oxygen concentration. From these data, the carbon monoxide content of the gas can be calculated. This carbon monoxide concentration creates the carbon potential needed for carburization. Several weak links are present in this approach. The oxygen monitor deteriorates over time, and the measurement might be inaccurate by 50 percent. Also, the chemistry equations, which are based on several assumptions, such as secondary species concentrations, provide only an approximate estimate of the carbon monoxide concentration. To address these weaknesses, we investigated a new method based on ordinary Raman spectroscopy, in which the carbon monoxide concentration is measured directly and in situ. This method measures the laser light scattered from the molecules. Each species interacts with the light and scatters the light at a different frequency. Spectral monitoring of the scattered light intensity at each molecular frequency of interest provides the species concentrations. One advantage over the conventional method is that several species can be monitored

  16. Control method for a reclamation furnace

    SciTech Connect

    Kelly, S.B.

    1981-06-02

    A method is presented for preventing fires and explosions and thus controlling excess temperature within a burn-off or reclamation furnace including a water injection nozzle within the furnace, an automatic valve assembly connected to a source of water under pressure to turn the water on and off, an input burner to heat contaminate materials, an afterburner to burn volatile gases given off by the contaminate materials as they are heated, a temperature sensor located in the discharge from the afterburner to actuate the automatic valve assembly open and closed responsive to the temperature of the discharge. The temperature of the discharge depends on the rate of emission of volatile gases from the contaminate material so that if a high emission rate causes a predetermined temperature to be exceeded the valve assembly opens and the water injection nozzle sprays water on the contaminate materials to cool them and decrease the emission rate until the valve assembly closes.

  17. Glass furnace with heat sensing means

    SciTech Connect

    Canfield, D.M.

    1986-07-22

    A furnace is described for the heat treatment of glass including, annealing, heat-strengthening, tempering and bending of glass which comprises: a housing defining an elongated furnace chamber having an inlet and an outlet; a roller conveyor between the inlet and the outlet and including a row of stub rollers disposed along each side of the housing flanking a path between the inlet and the outlet, a drive conveyor belt extending over and under alternate stub rollers on one side of the conveyor, and fused silica support rollers spanning the conveyor with each support roller resting upon two stub rollers overshot by the belt; means for driving the belt to oscillate glass articles carried by the support rollers back and forth in the housing; an array of infrared heaters mounted in the housing above the conveyor; and a computer for displaying parameters for the operation of the heaters in a pattern on a screen corresponding to the array.

  18. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  19. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  20. Ultra-high vacuum compatible image furnace.

    PubMed

    Neubauer, A; Boeuf, J; Bauer, A; Russ, B; Löhneysen, H v; Pfleiderer, C

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu(2)MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn(3)Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.