Investigation of the antibiofilm capacity of peptide-modified stainless steel
Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing
2018-01-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809
Investigation of the antibiofilm capacity of peptide-modified stainless steel.
Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying
2018-03-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.
Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels
Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.
2010-03-16
An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik
2011-02-01
Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F
2007-03-01
Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon
2010-01-01
Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants. PMID:20936386
NASA Astrophysics Data System (ADS)
Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.
2018-03-01
In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-01-01
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-06-27
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.
Surface modification of steels and magnesium alloy by high current pulsed electron beam
NASA Astrophysics Data System (ADS)
Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng
2005-11-01
High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.
Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Naher, S.; Brabazon, D.
2011-05-01
This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.
Surface modification to prevent oxide scale spallation
Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A
2013-07-16
A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.
Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2011-01-01
This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.
Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd
2017-04-01
Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process
NASA Astrophysics Data System (ADS)
Ghosh, P. K.; Kumar, Ravindra
2015-02-01
Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.
NASA Astrophysics Data System (ADS)
Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.
1992-09-01
The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.
Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki
2011-01-01
To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.
Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang
2015-06-01
We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.
Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon
2012-07-01
Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.
Antibacterial effect of silver nanofilm modified stainless steel surface
NASA Astrophysics Data System (ADS)
Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.
2015-03-01
Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.
NASA Astrophysics Data System (ADS)
Ijiri, Masataka; Yoshimura, Toshihiko
2018-02-01
Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.
Office of Naval Research Overview of Corrosion S&T Program
2010-12-02
a carbon induced passivity for LTCSS treated austenitic stainless steels - Low temp. allows interstitial C diffusion, but not substitutional...paraequilibrium carburization mechanism(s) that lead to the enhanced corrosion resistance seaw ater crevice corrosion on 316 Stainless Steel LTC...Treated 316 untreated LTC process TTT diagram LTCSS Surface Modification: • Carbon concentrations > 12 at. % in 316 stainless steel while maintaining
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Gasparyan, Yu.; Efimov, V.
2017-03-01
In this paper, reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthening (ODS) steels by the addition of Y2O3 particles with different amounts of Cr, namely, (9-16)Cr were exposed to low energy deuterium (D) plasma (~20-200 eV per D) up to a fluence of 2.9 × 1025 D m-2 in the temperature range from 290 K to 700 K. The depth profile of D in steels was measured up to 8 µm depth by nuclear reaction analysis (NRA) and the total retained amount of D in those materials was determined by thermal desorption spectroscopy (TDS). It was found that the D retention in ODS steels is higher compared to Eurofer due to the much higher density of fine dispersoids and finer grain size. This work shows that in addition to the sintering temperature and time, the type, size and concentration of the doping particles have an enormous effect on the increase in the D retention. The D retention in undamaged ODS steels strongly depends on the Cr content: ODS with 12Cr has a minimum and the D retention in the case of ODS with (14-16)Cr is higher compared to (9-12)Cr. The replacing of Ti by Al in ODS-14Cr steels reduces the D retention. The formation of nano-structure surface roughness enriched in W or Ta due to combination of preferential sputtering of light elements and radiation-induced segregation was observed at incident D ion energy of 200 eV for both Eurofer and ODS steels. Both the surface roughness and the eroded layer enhance with increasing the temperature. The surface modifications result in a reduction of the D retention near the surface due to increasing the desorption flux and can reduce the overall D retention.
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
NASA Astrophysics Data System (ADS)
Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna
2017-08-01
Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
Webb, E L; Murray, H V; Holland, G A; Taylor, D F
1983-06-01
Machined steel dies were used to study the effects of three die modifications on seating full coverage castings during cementation. The die modifications consisted of occlusal channels, occlusal surface relief, and axial channels. Fourteen specimens having one or more forms of die modification were compared with two control specimens having no die modifications. Statistical analysis of the data revealed that the addition of four axial channels to the simulated preparation on the steel die produced a significant reduction in the mean marginal discrepancy during cementation. Occlusal modifications alone failed to produce significant reductions in marginal discrepancies when compared with the control specimens. Occlusal modifications in conjunction with axial channels failed to produce further significant reductions in marginal discrepancies when compared with those reductions observed in specimens having only axial channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V.; Khimchenko, L. N.
Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40more » μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.« less
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
Electrochemically induced annealing of stainless-steel surfaces.
Burstein, G T; Hutchings, I M; Sasaki, K
2000-10-19
Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.
NASA Astrophysics Data System (ADS)
Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.
2018-03-01
Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.
NASA Astrophysics Data System (ADS)
Guo, Hao; Yang, Shufeng; Li, Jingshe; Zhao, Mengjing; Chen, Zhengyang; Zhang, Xueliang; Li, Jikang
2018-05-01
An innovative approach involving chemical modification of the surface of MgO nanoparticles (NPs) for steelmaking and application of NPs to carbon structural steel has been investigated. The results show that the inclusions in the test steels were completely converted to MgAl2O4 spinel or MnS complex inclusions. The mean inclusion size decreased with increasing NP content from 0.01% to 0.03%, but increased at 0.05% because of NP aggregation. Addition of NPs increased the amount of intragranular ferrite and prevented polygonal ferrite formation, thereby enhancing the impact toughness. Impact tests showed that the dimple fractures in steel with 0.05% NP content were deeper than those in the other samples because the MgAl2O4 inclusions were larger. The surface-modified MgO NPs had a major effect on the inclusion characteristics and microstructure of carbon structural steel.
NASA Astrophysics Data System (ADS)
Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.
2016-03-01
Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Pintsuk, G.; Gasparyan, Yu.; Efimov, V.
2017-03-01
The reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20-200 eV per D) deuterium (D) plasma up to a fluence of 2.9 × 1025 D m-2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V.
The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.
Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.
Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R
2016-12-01
Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.
NASA Astrophysics Data System (ADS)
Găluşcă, D. G.; Perju, M. C.; Nejneru, C.; Burduhos Nergiş, D. D.; Lăzărescu, I. E.
2018-06-01
The modification of surface properties by duplex treatments, involving the overlapping of two surface treatment techniques, has been established as an intelligent solution to create new applications for the substrate metallic material. There are driveline components operating under very tough wear and corrosion conditions, with high temperature and humidity variations. Such components are usually made of high Cr and Ni stainless steel and for the hardening of surfaces it is recommended a thermo chemical treatment. Since stainless steels, especially austenitic stainless steels, are difficult to nitride, experimental studies focus on increasing the depth of the nitride layer and surface hardness. Achieving the goal involves changing active layer chemical composition by introducing aluminum in the surface layer. In order to find a solution, a new surface treatment technique is produced by combining aluminum thin films by MO-CVD in a fluidized bed using a triisobutylaluminum precursor with a thermo chemical nitriding treatment.
NASA Astrophysics Data System (ADS)
Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah
2018-03-01
This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.
Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Kršková, Jana; Skácelová, Dana; Kováčik, Dušan; Ráhel', Jozef; Pret'o, Jozef; Černák, Mirko
2016-08-01
The surface of carbon-steel plates was modified by non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) in order to improve the adhesive properties to the NR (natural rubber) green rubber compound. The effect of different treatment times as well as different input power and frequency of supplied high voltage was investigated. The samples were characterized using contact angle and surface free energy measurement, measurement of adhesive properties, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical composition was studied by energy-dispersive X-ray spectroscopy (EDX). Significant increase in wettability was observed even after 2 s of plasma exposure. The surface modification was confirmed also by peel test, where the best results were obtained for 6 s of plasma treatment. In addition the ageing effect was studied to investigate the durability of modification, which is crucial for the industrial applications. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi
A general strategy for the ultrafast surface modification of metals.
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-12-07
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.
Surface hardening of 30CrMnSiA steel using continuous electron beam
NASA Astrophysics Data System (ADS)
Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng
2017-11-01
30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.
Laser modification of macroscopic properties of metal surface layer
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
NASA Astrophysics Data System (ADS)
Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei
2014-01-01
This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.
2016-06-01
Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.
A general strategy for the ultrafast surface modification of metals
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-01-01
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909
Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2014-12-07
Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.
1988-09-16
Precipitates in Carbon Steel by Low Dose alpha- particle bombard- mento, .M.M. Ramos. L. Amaral, M. Behar. A Vas- quez, G. Marest and F.C. Zawislak...planted martensitic low carbon steel (C - 0.2 wt%). The characteriza- tion of the precipitates is done via Conversion Electron Mbssbauer technique (CEMS... PHASE TRANSFORMATIONS OF A NITROGEN IMPLANTED AUSTENITIC STAINLESS STEEL (XO CrNITI 189) by R. Leutenecker Fraunhofer-Institut for
Shah, Alok Girish; Shetty, Pradeep Chandra; Ramachandra, C S; Bhat, N Sham; Laxmikanth, S M
2011-11-01
To assess the antiadherent and antibacterial properties of surface modified stainless steel orthodontic brackets with photocatalytic titanium oxide (TiO(2)) against Lactobacillus acidophilus. This study was done on 120 specimens of stainless steel preadjusted edgewise appliance (PEA) orthodontic brackets. The specimens were divided into four test groups. Each group consisted of 30 specimens. Groups containing uncoated brackets acted as a control group for their respective experimental group containing coated brackets. Surface modification of brackets was carried out by the radiofrequency (RF) magnetron sputtering method with photocatalytic TiO(2). Brackets then were subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of photocatalytic TiO(2) coating against L acidophilus. Orthodontic brackets coated with photocatalytic TiO(2) showed an antiadherent effect against L acidophilus compared with uncoated brackets. The bacterial mass that was bound to the TiO(2)-coated brackets was less when compared with the uncoated brackets. Furthermore, TiO(2)-coated brackets had a bactericidal effect on L acidophilus, which causes dental caries. Surface modification of orthodontic brackets with photocatalytic TiO(2) can be used to prevent the accumulation of dental plaque and the development of dental caries during orthodontic treatment.
Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2018-02-01
In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.
Nanosecond laser coloration on stainless steel surface.
Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei
2017-08-02
In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.
Mhaske, Arun Rameshwar; Shetty, Pradeep Chandra; Bhat, N Sham; Ramachandra, C S; Laxmikanth, S M; Nagarahalli, Kiran; Tekale, Pawankumar Dnyandeo
2015-01-01
The purpose of the study is to assess the antiadherent and antibacterial properties of surface-modified stainless steel and NiTi orthodontic wires with silver against Lactobacillus acidophilus. This study was done on 80 specimens of stainless steel and NiTi orthodontic wires. The specimens were divided into eight test groups. Each group consisted of 10 specimens. Groups containing uncoated wires acted as a control group for their respective experimental group containing coated wires. Surface modification of wires was carried out by the thermal vacuum evaporation method with silver. Wires were then subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of silver coating against L. acidophilus. Mann-Whitney U test was used to analyze the colony-forming units (CFUs) in control and test groups; and Student's t test (two-tailed, dependent) was used to find the significance of study parameters on a continuous scale within each group. Orthodontic wires coated with silver showed an antiadherent effect against L. acidophilus compared with uncoated wires. Uncoated stainless steel and NiTi wires respectively showed 35.4 and 20.5 % increase in weight which was statistically significant (P < 0.001), whereas surface-modified wires showed only 4.08 and 4.4 % increase in weight (statistically insignificant P > 0.001). The groups containing surface-modified wires showed statistically significant decrease in the survival rate of L. acidophilus expressed as CFU and as log of colony count when compared to groups containing uncoated wires. It was 836.60 ± 48.97 CFU in the case of uncoated stainless steel whereas it was 220.90 ± 30.73 CFU for silver-modified stainless steel, 748.90 ± 35.64 CFU for uncoated NiTi, and 203.20 ± 41.94 CFU for surface-modified NiTi. Surface modification of orthodontic wires with silver can be used to prevent the accumulation of dental plaque and the development of dental caries during orthodontic treatment.
NASA Astrophysics Data System (ADS)
Alimov, V. Kh; Ogorodnikova, O. V.; Hatano, Y.; Gasparyan, YuM.; Efimov, V. S.; Mayer, M.; Zhou, Z.; Oyaizu, M.; Isobe, K.; Nakamura, H.; Hayashi, T.
2018-04-01
Surface topography of and deuterium (D) retention in reduced activation ferritic-martensitic Eurofer'97 and ferritic oxide dispersion strengthening ODS-16Cr steels have been studied after exposure at 600 K to low-energy (70 and 200 eV), high-flux (∼1022 D/m2s) pure D and D-10%He plasmas with D fluence of 2 × 1025 D/m2. The methods used were scanning electron microscopy, energy-scanning D(3He,p)4He nuclear reaction, and thermal desorption spectroscopy. As a result of the plasma exposures, nano-sized structures are formed on the steel surfaces. After exposure to pure D plasmas, a significant fraction of D is accumulated in the bulk, at depths larger than 8 μm. After exposures to D-He plasmas, D is retained mainly in the near-surface layers. In spite of the fact that the He fluence was lower than the D fluence, the He retention in the steels is one order of magnitude higher than the D retention.
Identification of the mechanism that confers superhydrophobicity on 316L stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol
This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved inmore » the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.« less
NASA Astrophysics Data System (ADS)
Janka, Styková; Miloš, Müller; Jan, Hujer
This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.
Ultrasonic impact peening for the surface properties’ management
NASA Astrophysics Data System (ADS)
Mordyuk, Bohdan N.; Prokopenko, Georgiy I.
2007-12-01
It is demonstrated that the ultrasonic impact peening (UIP) technique is a beneficial method for essential increase in the fatigue durability of metallic materials due to the surface nanocrystallization and hardening process provided for severe plastic deformation of surface via multiple impacts of high velocity impact pins. Nano-scale grain structures were obtained in the surface layers of stainless steel, low carbon steel weld and different titanium alloys using developed equipment for the UIP. Both the surface nanostructure and compressive residual stresses are shown to attribute to the essential hardness increase. It is revealed experimentally using profilometry that new modification of the UIP apparatus providing high velocity "sliding" impacts leads to marked diminution of the surface roughness, which is another important factor affecting to the fatigue cracks initiation process. The two-dimensional finite element model is used to simulate the indent formation process during single impaction. The solid steel pin and the Al alloy plate are modeled as a rigid material and an elasto-plastic material, respectively. It is shown that the surface roughness magnitude depends on the correlation of the vertical and lateral load components.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
NASA Astrophysics Data System (ADS)
Mann, B. S.
2013-08-01
This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and titanium alloys, HPDL-treated TWAS SHS 7170 and HP-HVOF coatings, and their micrographs and X-ray diffraction analysis is reported in this article.
Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration
NASA Astrophysics Data System (ADS)
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca
2017-02-01
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.
Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig
NASA Technical Reports Server (NTRS)
Thom, Robert L.
1989-01-01
Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.
Tritium retention in reduced-activation ferritic/martensitic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatano, Y.; Abe, S.; Matsuyama, M.
Reduced-activation ferritic/martensitic (RAFM) steels are structural material candidates for breeding blankets of future fusion reactors. Therefore, tritium (T) retention in RAFM steels is an important problem in assessing the T inventory of blankets. In this study, specimens of RAFM steels were subjected to irradiation of 20 MeV W ions to 0.54 displacements per atom (dpa), exposure to high flux D plasmas at 400 and 600 K and that to pulsed heat loads. The specimens thus prepared were exposed to DT gas at 473 K. Despite severe modification in the surface morphology, heat loads had negligible effects on T retention. Significantmore » increase in T retention at the surface and/or subsurface was observed after D plasma exposure. However, T trapped at the surface/subsurface layer was easily removed by maintaining the specimens in the air at about 300 K. Displacement damage led to increase in T retention in the bulk due to the trapping effects of defects, and T trapped was stable at 300 K. It was therefore concluded that displacement damages had the largest influence on T retention under the present conditions.« less
Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.
Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil
2013-12-01
Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.
Atomic diffusion in laser surface modified AISI H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-07-01
This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Gao, Xiaoyu; Guo, Zhiguang
2018-02-15
A simple way of chemical etching with H 2 SO 4 and H 2 O 2 was employed to prepare a superhydrophobic steel surface with a water contact angle of 163.5° and a sliding angle of about 0°, in addition to modification with 1H,1H,2H,2H-perfluoroalkyltriethoxysilane (FAS-13). On the basis of perfluropolyethers (PFPE) infusion, a slippery liquid-infused porous surface (SLIPS) was fabricated that had a water contact angle of 115.6° and a sliding angle of 2.27°. The prepared sample can still maintain superhydrophobicity after moving 100 cm on 1000 # sandpaper under 100 g loading via an abrasion test, while its corrosion resistance was exhibited via more positive corrosion potentials (E corr ) and lower corrosion current densities (I corr ) in electrochemical corrosion tests with various solutions. Even if superhydrophobic and slippery properties were lost in the process of long-time soaking in salt solution, the superhydrophobic steel could regain its ability and slippery surfaces also exhibited the repairable durability through retreatment. Such stable, corrosion resistant and superhydrophobic bearing steel and repairable slippery surface have potential for application in practical production and life. Copyright © 2017 Elsevier Inc. All rights reserved.
Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment
NASA Astrophysics Data System (ADS)
Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.
1994-09-01
Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.
NASA Astrophysics Data System (ADS)
Razi, Sepehr; Ghasemi, Fatemeh
2018-02-01
Stainless steel grade 316L is a commonly used metal in various industrial applications because of its excellent resistance to corrosion and great welding and biocompatibility characteristics. Here, the laser-induced micro/nanostructures generation on the steel surface is investigated. A femtosecond ultrashort pulsed laser is selected in this regard, and various irradiation circumstances are considered for two groups of specimens possessing different initial roughness. It turns out that regular periodic ripples with spatial periodicities less than the laser wavelength are generated on both groups at irradiation fluences ≤ 2 J/cm2. Furthermore, it figures out that each ripple is composed of the closely created nano dimension structures. Vickers micro-hardness test is also utilized to examine the alterations of the surface hardness features. Moreover, variations of the surface chemistry are studied and discussions related to the most effective factors in surface hardness raise/decrease are presented. Results reveal the potential benefits of the femtosecond laser technique, such as its flexibility and ease of implementation in controlled modification of the surface features. Thus, it might be of interest to manufacturers looking for precise surface morphology, chemistry and hardness alterations.
Surface modifications of AISI 420 stainless steel by low energy Yttrium ions
NASA Astrophysics Data System (ADS)
Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi
2018-01-01
In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.
DOT National Transportation Integrated Search
1986-09-01
Accelerated laboratory atmospheric exposure simulation tests with an acceleration factor of 50 and extending for a maximum of 2200 wet-dry cycles (6-year exposure equivalent) gave corrosion loss data that agreed fairly well with the field data derive...
Investigation of Accelerated Life Prediction Techniques
1975-10-01
26, No. 1, 1974, ;). 13. 116. Krukar, M., et al, STUDDED TIRE PAVEMENT WEAR REDUCTION AND REPAIR, Washington State Dept. of Highways, Highway...167. Okushlma, K., and Kakino, Y., STUD * ON INFLUENCE OF GROOVE WEAR OF A TOOL TO SURFACE ROUGHNESS DURING FINISHING TURNING OF CARBON STEEL, Journal...MODIFICATION OF ASPHALT CEMENTS FOR IMPROVE- MENT OF WEAR RESISTANCE OF PAVEMENT SURFACES, Materials Research «nd Development, Inc., Oakland
Nanoparticle treated stainless steel filters for metal vapor sequestration
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...
2016-12-07
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less
Nanoparticle treated stainless steel filters for metal vapor sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less
NASA Astrophysics Data System (ADS)
Rusinov, P. O.; Blednova, Zh M.; Borovets, O. I.
2017-05-01
The authors studied a complex method of surface modification of steels for materials with shape memory effect (SME) Ti-Ni-Zr with a high-velocity oxygen-fuel spraying (HVOF) of mechanically activated (MA) powder in a protective medium. We assessed the functional properties and X-ray diffraction studies, which showed that the formation of surface layers according to the developed technology ensures the manifestation of the shape memory effect.
Surface martensitization of Carbon steel using Arc Plasma Sintering
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin
2018-03-01
In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.
NASA Astrophysics Data System (ADS)
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
Assessing Hydrogen Assisted Cracking Modes in High Strength Steel Welds
1988-12-01
posed theoretical hydrogen assisted cracking mechanisms. It was found that the microplasticity theory of Beachem can best describe how the stress...precludes an internal pressure gradient as the driv- ing force for crack growth. The adsorption theory of Petch and Stables3 and further modifications4...the adsorption theory. In addition, fracture surfaces indicate rapid void formation and coales- cence at low temperatures where the rate of surface
Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed
2017-06-02
Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.
NASA Astrophysics Data System (ADS)
Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.
2007-04-01
17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.
Surface modification of AISI H13 tool steel by laser cladding with NiTi powder
NASA Astrophysics Data System (ADS)
Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.
2016-04-01
This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.
NASA Astrophysics Data System (ADS)
Varlamova, Olga; Hoefner, Kevin; Ratzke, Markus; Reif, Juergen; Sarker, Debasish
2017-12-01
We investigate the implication of modified surface morphology on wettability of stainless steel (AISI 304) and silicon (100) targets covered by laser-induced periodic surface structures (LIPSS) on extended areas (10 × 10 mm2). Using multiple pulses from a Ti: Sapphire laser (790 nm/100 fs/1 kHz) at a fluence in the range of 0.35-2.1 J/cm2 on a spot of 1.13 × 10- 4 cm2, we scanned the target under the spot to cover a large area. A systematical variation of the irradiation dose by changing the scanning speed and thus dwelling time per spot results in the formation of surface patterns ranging from very regular linear structures with a lateral period of about 500-600 nm to complex patterns of 3D microstructures with several-µm feature size, hierarchically covered by nano-ripples.
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
Comprehensive surface treatment of high-speed steel tool
NASA Astrophysics Data System (ADS)
Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.
2018-03-01
One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.
Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo
2016-12-31
Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts
Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo
2016-01-01
Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower. PMID:28772380
Improving the machinability of leaded free cutting steel through process optimization
NASA Astrophysics Data System (ADS)
Sathyamurthy, P.; Vetrivelmurugan, R.; Sooryaprakash, J.
2018-02-01
Free cutting steel grades are high sulphur grades which can be classified under two categories as Leaded and Non-Leaded. These grades are used for manufacturing components like Nuts, bolts, studs, hydraulic fittings, brake pistons where higher machining is required to get intricate shape. Machinability of these grades are affected by hard oxide inclusions and highly deformed manganese sulphide inclusions. At JSW, machinability of leaded free cutting steel is improved by various process modifications namely deoxidation through carbon and manganese, Tellurium (Rare earth element) addition and maintaining the oxygen level at 80- 120ppm. Former one avoids the formation of hard SiO2 and Al2O3 compounds, Tellurium addition forms PbTe compound at the tail of MnS inclusions which resists the deformation of MnS inclusions and increased oxygen level favours the formation of less deformable oxy- sulphide inclusions. Above process modifications have resulted in achieving the low silicate content, better aspect ratio of MnS inclusions in the final rolled product. They are assessed by the characteristics of chip formation and surface roughness of machined part.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
NASA Astrophysics Data System (ADS)
Popova, Natalya; Bayatanova, Lyayla; Nikonenko, Elena; Skakov, Mazhyn; Kozlov, Eduard
2017-01-01
The paper presents the transmission electron microscopy (TEM) investigation of 0.18C-1Cr-3Mn-1Mo- Fe steel specimens to study phase transitions and modification of fine structure after plasma-electrolytic treatment (carbonitriding at 850°C during 5 min). TEM investigations involve two points: on the specimen surface and at ˜40 µm distance from it. The experiments show that the structure in the original state is a mixture consisting of ferrite and perlite grains. Carbonitriding results in a considerable modification of the quality and quantity of steel structure. Thus, on the surface, α-phase is represented by lamellar martensite, while at ˜40 µm depth - by massive and lamellar martensite tempered at low and high temperatures. Moreover, on the subsurface of the martensite plates' boundaries retained austenite layers are observed, while inside plates the particles of alloyed cementite, carbonitrides of M23(C,N)6, M2C0.61N0.39, M6,2C3,5N0,3, M(C,N)2, Cr12Fe32Mo7Ni7 types, and β-graphite are present. In the specimen at the depth of ˜40 µm, retained austenite layers are observed on the boundaries of martensite laths and plates, while inside plates only the particles of alloyed cementite and M23(C,N)6 carbonitride are formed.
Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel
2016-07-01
Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blaes, Carly
In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.
Corrosion and surface modification on biocompatible metals: A review.
Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R
2017-08-01
Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.
Topographic and chemical surface modifications to metal brackets after a period in the mouth.
Houb-Dine, Afaf; Bahije, Loubna; Oualalou, Youssef; Benyahia, Hicham; Zaoui, Fatima
2017-09-01
In the current state of our knowledge, the effects of corrosion on the performance of orthodontic appliances and on patient health are far from clear. Awareness of these problems has led to a growing demand for nickel-free products. Titanium brackets were recently launched on the market as an alternative to stainless-steel brackets. However, the use of fluorides for caries prevention creates a risk of corrosion of these titanium appliances. The aim of this study is to examine the corrosion of stainless-steel and titanium brackets in clinical orthodontic use, focusing on the impact of fluorine. After approval by the ethics committee and the informed consent of the patients, 30 candidates for multi-bracket treatment were selected on the basis of certain exclusion criteria. The patients were divided into 4 groups: group 1: titanium brackets and fluorine protection; group 2: titanium brackets without fluorine protection; group 3: stainless-steel brackets and fluorine protection; group 4: stainless-steel brackets without fluorine protection. Analysis of the brackets removed after 4months in the mouth, using scanning electron microscopy (SEM) with phase contrast, revealed a difference in the surface topography of the metal brackets and the presence of chromium coating on the surface of the titanium appliances. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
Cho, In-Shik; Lee, Chang-Soon; Amanov, Auezhan; Pyoun, Young-Shik; Park, In-Gyu
2011-01-01
The fact that one of fundamental characteristics of fretting is the very small sliding amplitude dictates the unique feature of wear mechanism. Ultrasonic Nanocrystalline Surface Modification (UNSM) technology was applied in order to investigate its effect on the high-frequency fretting wear behavior of AISI304 steel. Its influence on the fretting wear is also reported in this paper with these treated and untreated samples. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. UNSM creates homogenous nanocrystalline structures as well on the surface. UNSM process is expected to eliminate or significantly retard the formation of fretting wear. Nanocrystalline structure generation after UNSM has been reported to produce its unique structure and to offer a variety of beneficial properties compared to conventionally treated materials. A deformed layer of 220 microm exhibits high dislocation density, where top layer transformed to a nanostructure of the grain size in 23 nm and mechanical twins were observed. Deformation-induced martensite was observed to form at the intersections of mechanical twins, whose volume fraction has increased up to 38.4% and wear loss rate at 800,000 cycles has decreased by 40%. In this paper, experimental results are discussed to elucidate potential mechanism of high-frequency fretting wear.
Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering
NASA Astrophysics Data System (ADS)
Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping
2018-02-01
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.
ICALEO '91 - Laser materials processing; Proceedings of the Meeting, San Jose, CA, Nov. 3-8, 1991
NASA Astrophysics Data System (ADS)
Metzbower, Edward A.; Beyer, Eckhard; Matsunawa, Akira
Consideration is given to new developments in LASERCAV technology, modeling of deep penetration laser welding, the theory of radiative transfer in the plasma of the keyhole in penetration laser welding, a synchronized laser-video camera system study of high power laser material interactions, laser process monitoring with dual wavelength optical sensors, new devices for on-line process diagnostics during laser machining, and the process development for a portable Nd:YAG laser materials processing system. Attention is also given to laser welding of alumina-reinforced 6061 aluminum alloy composite, the new trend of laser materials processing, optimization of the laser cutting process for thin section stainless steels, a new nozzle concept for cutting with high power lasers, rapid solidification effects during laser welding, laser surface modification of a low carbon steel with tungsten carbide and carbon, absorptivity of a polarized beam during laser hardening, and laser surface melting of 440 C tool steel. (No individual items are abstracted in this volume)
Surface modification of hydroturbine steel using friction stir processing
NASA Astrophysics Data System (ADS)
Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.
2013-03-01
Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.
NASA Astrophysics Data System (ADS)
Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.
2018-05-01
In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.
NASA Astrophysics Data System (ADS)
Xu, Zhe; Jiang, Deyi; Wei, Zhibo; Chen, Jie; Jing, Jianfeng
2018-01-01
Stainless steel meshes with superhydrophobic surfaces were successfully fabricated via a facile electrophoretic deposition process. The surface morphology and chemical compositions were characterized by a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and fourier-transform infrared spectrophotometer (FTIR). After stearic acid modification, the obtained nano-aluminum films on stainless steel meshes showed an excellent superhydrophobic properties with a water contact angle of 160° ± 1.2° and a water sliding angle of less than 5°. In addition, on the basis of the superhydrophobic meshes, a simple, continuous oil-water separation apparatus was designed, and the oil-water separation efficiency was up to 95.8% ± 0.9%. Meanwhile, after 20 oil-water separation cycles, the separation efficiency without significant reduction suggested the stable performance of superhydrophobic stainless steel meshes on the oil-water separation. Moreover, the flow rate of oil-water mixture and effective separation length were investigated to determine their effects on the oil-water separation efficiency, respectively. Our work provides a cost-efficient method to prepare stable superhydrophobic nano-Al films on stainless steel meshes, and it has promising practical applications on oil-water separation.
NASA Astrophysics Data System (ADS)
De Giorgi, Chiara; Furlan, Valentina; Demir, Ali Gökhan; Tallarita, Elena; Candiani, Gabriele; Previtali, Barbara
2017-06-01
In this work, laser micropolishing (LμP) was employed to reduce the surface roughness and waviness of cold-rolled AISI 304 stainless steel sheets. A pulsed fibre laser operating in the ns regime was used and the influence of laser parameters in a N2-controlled atmospheres was evaluated. In the optimal conditions, the surface remelting induced by the process allowed to reduce the surface roughness by closing cracks and defects formed during the rolling process. Other conditions that did not improve the surface quality were analysed for defect typology. Moreover, laser treatments allowed the production of more hydrophobic surfaces, and no surface chemistry modification was identified. Surface cleanability was investigated with Escherichia coli (E. coli), evaluating the number of residual bacteria adhering to the substrate after a washing procedure. These results showed that LμP is a suitable way to lower the average surface roughness by about 58% and average surface waviness by approximately 38%. The LμP process proved to be effective on the bacteria cleanability as approximately five times fewer bacteria remained on the surfaces treated with the optimized LμP parameters compared to the untreated surfaces.
Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.
Ojha, Umaprasana; Feng, Dingsong; Chandekar, Amol; Whitten, James E; Faust, Rudolf
2009-06-02
Peptide surface modification of poly[(methyl methacrylate-co-hydroxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-hydroxyethyl methacrylate)] P(MMA-co-HEMA)-b-PIB-b-P(MMA-co-HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished using an efficient synthetic procedure. The triblock copolymers were reacted with 4-fluorobenzenesulfonyl chloride (fosyl chloride) in pyridine to obtain the activated polymers [poly{(methyl methacrylate-co-fosyloxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-fosyloxyethyl methacrylate)}] P(MMA-co-FEMA)-b-PIB-b-P(MMA-co-FEMA), with an activating efficiency of 80-90%. The resulting polymers were soluble in chloroform, and their solutions were used to coat thin uniform films with a predetermined thickness on smooth steel surfaces. The presence of reactive activating groups on the film surface was confirmed by X-ray photoelectron spectroscopy (XPS), dye labeling, and confocal laser scanning microscopic studies. Activation of the triblock copolymer films was also achieved under heterogeneous conditions in polar (acetonitrile) and nonpolar (hexanes) media. The extent of activation was controlled by varying the dipping time and polarity of the medium. Peptide attachment was accomplished by immersing the coated steel strips into aqueous buffer solution of Gly-Gly or GYIGSR. XPS and solubility studies revealed successful attachment of peptides to the polymer surface. Virtually all remaining activating groups were successfully replaced in the subsequent step by a treatment with Tris(hydroxymethyl)amino methane in a buffered methanol/water mixture.
Characterization of films formed by the aluminizing of T91 steel
NASA Astrophysics Data System (ADS)
Sanabria Cala, J. A.; Conde Rodríguez, G. R.; Y Peña Ballesteros, D.; Laverde Cataño, D.; Quintero Rangel, L. S.
2017-12-01
The aluminizing of a T91 martensitic ferritic steel was carried out by a novel modification to the traditional technique of packed cementation, with the objective of producing a diffusion coating of aluminum in a shorter time and operating cost, from a technique that allows the reuse of powder packaging and which the coating of metal parts with complex shapes can be secured. As an aluminum source, commercial foil is used to wrap the piece to be coated, while the powder packaging contains aluminum oxide Al2O3 and an activating salt, ammonium chloride NH4Cl. During the deposition process of the coating, the NH4Cl is decomposed by reacting with foil, and thus, aluminum halides can be transferred to the metallic substrate, which deposit aluminum on the T91 steel surface while Al2O3 can be recycled for subsequent processes. The results of the diffractograms and micrographs indicated the strong influence of temperature, exposure time and ammonium chloride concentration in the formation and growth evolution of a stable coating of iron-aluminum and iron-aluminum-nickel on the T91 steel surface, which was effectively deposited at a temperature of 700°C and an exposure period of 9 hours. The coating formed on the T91 steel surface could play a protective role towards the material by acting as a physical barrier between the alloy and other corrosive species in high temperature operated systems.
Biocompatibility and hemocompatibility of surface-modified NiTi alloys.
Armitage, David A; Parker, Terry L; Grant, David M
2003-07-01
Nickel titanium (NiTi) shape memory alloys have been investigated for several years with regard to biomedical applications. However, little is known about the influences of surface modifications on the biocompatibility of these alloys. The effects of a range of surface treatments were investigated. Cytotoxicity and cytocompatibility studies with both fibroblast and endothelial cells showed no differences in the biocompatibility of any of the NiTi surfaces. The cytotoxicity and cytocompatibility of all surfaces were favorable compared to the controls. The hemolysis caused by a range of NiTi surfaces was no different from that caused by polished 316L stainless steel or polished titanium surfaces. The spreading of platelets has been linked to the thrombogenicity of materials. Platelet studies here showed a significant increase in thrombogenicity on polished NiTi surfaces compared to 316L stainless steel and pure titanium surfaces. Heat treatment of NiTi was found to significantly reduce thrombogenicity, to the level of the control. The XPS results showed a significant decrease in the concentration of surface nickel with heat treatment and changes in the surface nickel itself from a metallic to an oxide state. This correlates with the observed reduction in thrombogenicity. Copyright 2003 Wiley Periodicals, Inc.
An investigation of phase transformation and crystallinity in laser surface modified H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-03-01
This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.
NASA Astrophysics Data System (ADS)
Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.
2018-04-01
Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.
Surface modification of food contact materials for processing and packaging applications
NASA Astrophysics Data System (ADS)
Barish, Jeffrey A.
This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.
NASA Astrophysics Data System (ADS)
Guo, Jing; Cheng, Shu-sen; Guo, Han-jie; Mei, Ya-guang
2018-03-01
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al2O3-based inclusions during secondary refining. The results showed that Al2O3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO-MgO-Al2O3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3wt% and the temperature is higher than 1843 K.
Modification of Alumina and Spinel Inclusions by Calcium in Liquid Steel
NASA Astrophysics Data System (ADS)
Verma, Neerav
2011-12-01
Steel Cleanliness plays a crucial role in determining steel properties such as toughness, ductility, formability, corrosion resistance and surface quality. The production of clean steel often involves the elimination or chemical and morphological modification of oxide and sulfide inclusions. Along with deteriorating the steel properties, solid inclusions can affect steel castability through nozzle clogging. Nozzle clogging occurs when solid inclusions accumulate in the caster pouring system such as the ladle shroud or submerged entry nozzle (SEN). Thus, it is important to understand how to achieve desired inclusion characteristics (shape, size and chemistry) through the steelmaking process. Among the various practices adopted in industries to counteract the effect of solid inclusions, modification of solid inclusions to liquid or partially liquid state through calcium treatment is one of the methods. Calcium can be used because it has a strong ability to form oxides and sulfides. In Al-killed steels, the most common inclusions are alumina (Al2O3) inclusions, which are solid at steelmaking temperatures. On calcium treatment, solid alumina inclusions are converted to calcium aluminates, which have liquidus temperatures lower than steelmaking temperature (1600°C) [14]. It has been found that alumina inclusions may contain some MgO and such inclusions are termed alumina magnesia spinels (Al2O3.xMgO) [18]. These spinels are more stable than alumina and it has been suggested that they might be more difficult to modify [18]. But, some authors have proposed that MgO can actually help in the liquefaction of inclusions, and have demonstrated successful modification of spinels by Ca treatment [20, 21]. In the present research, the mechanism of transformation of alumina and spinel inclusions upon calcium treatment was studied by characterizing transient evolution of inclusions. A vacuum induction was used for melting, making additions (Al, Al-Mg and CaSi2) and sampling. The samples were characterized for inclusion shape, size and chemistry through scanning electron microscopy (SEM). Automated inclusion analysis tools (like ASCAT [59, 91, 92], INCA-GSR [126]; Please refer section 6.4., page number 68) were employed to generate statistical information of the inclusions. Thermodynamic database software FACTSAGE [62] was used to determine thermochemistry of reactions, ternary phase diagrams (Ca-Al-S and Ca-Al-Mg systems). The compositions of the inclusions were tracked before and after calcium treatment to determine the effectiveness of calcium treatment. Extraction of inclusions through dissolution of iron in bromine-methanol solution was employed to reveal 3-D geometry of inclusions and analyze inclusions through EDS (Energy-dispersive X-ray spectroscopy) without any matrix effects. Various industrial samples were also analyzed to confirm the feasibility of various reaction mechanisms deduced through experiments. Successful modification of alumina and spinel inclusions by calcium was demonstrated [85, 86]. It was observed that these modification mechanisms proceed through transient phase (CaO, CaS) formation. In the case of spinels, preferential reduction of MgO part was also observed during calcium modification of spinels. The magnesium after MgO reduction by calcium can enter back into the melt or leave the melt in vapor form. The inclusion area fraction decreased after calcium treatment, but the inclusion concentration (number of inclusions per cm2) increased because inclusions shifted to a smaller size distribution after calcium treatment. Severe matrix effects during EDS analysis of inclusions were observed, due to which inclusion composition analyses can be significantly affected. *Please refer to dissertation for footnotes.
Bone response to a titanium aluminium nitride coating on metallic implants.
Freeman, C O; Brook, I M
2006-05-01
The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.
Tribology of nitrided-coated steel-a review
NASA Astrophysics Data System (ADS)
Bhaskar, Santosh V.; Kudal, Hari N.
2017-01-01
Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.
NASA Astrophysics Data System (ADS)
Ranjan, Prabhat; Balasubramaniam, R.; Jain, V. K.
2018-06-01
A molecular dynamics simulation (MDS) has been carried out to investigate the material removal phenomenon of chemo-mechanical magnetorheological finishing (CMMRF) process. To understand the role of chemical assisted mechanical abrasion in CMMRF process, material removal phenomenon is subdivided into three different stages. In the first stage, new atomic bonds viz. Fe-O-Si is created on the surface of the workpiece (stainless steel). The second stage deals with the rupture of parent bonds like Fe-Fe on the workpiece. In the final stage, removal of material from the surface in the form of dislodged debris (cluster of atoms) takes place. Effects of process parameters like abrasive particles, depth of penetration and initial surface condition on finishing force, potential energy (towards secondary phenomenon such as chemical instability of the finished surface) and material removal at atomic scale have been investigated. It was observed that the type of abrasive particle is one of the important parameters to produce atomically smooth surface. Experiments were also conducted as per the MDS to generate defect-free and sub-nanometre-level finished surface (Ra value better than 0.2 nm). The experimental results reasonably agree well with the simulation results.
NASA Astrophysics Data System (ADS)
Bellanger, G.; Rameau, J. J.
1996-02-01
This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.
Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.
Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D
2018-06-11
Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.
NASA Astrophysics Data System (ADS)
Kamgang, J. O.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L.; Briandet, R.
2009-04-01
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
1984-12-13
Center for Surface and Coatings Research4 LAJ Lehigh University Bethlehem, PA 18015 December 13, 1984 ’rhi do’.1~’ o~ e~ pptC" dltiution is Unlxne... coating on a metal; (c) chemical modification of the surface of a metal; (d) the detection of I water in a coating ; and (e) the transport of species...Svetozar MusiC!, and J. F. McIntyre, Corrosion Science 24, 197-208 (1984). "Corrosion and Coating Delamination Properties of Steel Ion- Implanted with
NASA Astrophysics Data System (ADS)
Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang
2016-04-01
Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.
Haïdopoulos, M; Turgeon, S; Sarra-Bournet, C; Laroche, G; Mantovani, D
2006-07-01
Metallic endovascular stents are used as medical devices to scaffold biological lumen, most often diseased arteries, after balloon angioplasty. They are commonly made of 316L stainless steel or Nitinol, two alloys containing nickel, an element classified as potentially toxic and carcinogenic by the International Agency for Research on Cancer. Although they are largely implanted, the long-term safety of such metallic elements is still controversial, since the corrosion processes may lead to the release of several metallic ions, including nickel ions in diverse oxidation states. To avoid metallic ion release in the body, the strategy behind this work was to develop a process aiming the complete isolation of the stainless steel device from the body fluids by a thin, cohesive and strongly adherent coating of RF-plasma-polymerized fluoropolymer. Nevertheless, prior to the polymer film deposition, an essential aspect was the development of a pre-treatment for the metallic substrate, based on the electrochemical polishing process, aiming the removal of any fragile interlayer, including the native oxide layer and the carbon contaminated layer, in order to obtain a smooth, defect-free surface to optimize the adhesion of the plasma-deposited thin film. In this work, the optimized parameters for electropolishing, such as the duration and the temperature of the electrolysis, and the complementary acid dipping were presented and accurately discussed. Their effects on roughness as well as on the evolution of surface topography were investigated by Atomic Force Microscopy, stylus profilometry and Scanning Electron Microscopy. The modifications induced on the surface atomic concentrations were studied by X-ray Photoelectron Spectroscopy. The improvements in terms of the surface morphology after the pre-treatment were also emphasized, as well as the influence of the original stainless steel surface finish.
NASA Astrophysics Data System (ADS)
Pawel, S. J.; Manneschmidt, E. T.
2003-05-01
Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.
Nitride alloy layer formation of duplex stainless steel using nitriding process
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.
2018-01-01
Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.
NASA Astrophysics Data System (ADS)
Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi
2018-02-01
A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.
NASA Astrophysics Data System (ADS)
Lychagina, T.; Nikolayev, D.; Sanin, A.; Tatarko, J.; Ullemeyer, K.
2015-04-01
In this work crystallographic texture for a set of rail wheel steel samples with different regimes of thermo-mechanical treatment and with and without modification by system Al-Mg-Si- Fe-C-Ca-Ti-Ce was measured by neutron diffraction. The texture measurements were carried out by using time-of-flight technique at SKAT diffractometer situated at IBR-2 reactor (Dubna, JINR, Russia). The three complete pole figures (110), (200), (211) of α-Fe phase in 5°×5°grid were extracted from a set of 1368 spectra measured for each sample. The samples were cut from rail wheel rim and from transitional zone (between rail wheel hub and wheel disk). It was concluded that the steel modification and some changes in the heat treatment modes of the rail wheels from the experimental (modified) and the conventional (non-modified) steel lead to reorientation of texture component.
NASA Astrophysics Data System (ADS)
Rau, Kaustubh R.
Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for ablation was developed for the 248 nm laser irradiation of silicone. The model demonstrated a good fit to the experimental data and showed that silicone underwent ablation by a thermal mechanism. In addition to PLAD studies, functionalization of stainless steel was carried out by a combined plasma/gamma method involving deposition of a hexane plasma polymer by RF plasma polymerization, followed by gamma radiation graft polymerization of methacrylic acid. The hydrograft modified surfaces were further modified by chemisorption reactions with poly(ethylene imine) to produce amine-rich surfaces. Bovine serum albumin was then bound via amino groups using glutaraldehyde coupling. A streaming potential cell was also built and used to measure the zeta potential of these ionic surfaces.
Melting of SiC powders preplaced duplex stainless steel using TIG welding
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Afiq, M.
2018-01-01
TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.
NASA Astrophysics Data System (ADS)
Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.
2016-03-01
Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.
NASA Astrophysics Data System (ADS)
Zhao, Yichao; Xiao, Xinyan; Ye, Zhihao; Ji, Qiang; Xie, Wei
2018-02-01
A mechanical durable superhydrophobic copper-plated stainless steel mesh was successfully fabricated by an electrodeposition process and 1-octadecanethiol modification. The as-prepared superhydrophobic mesh displays water contact angle of 153° and shows excellent anti-corrosion and water-oil separation properties in the condition of 0.1 A/cm2 current density for 35 s. In comparison with bare stainless steel mesh, the corrosion current of the as-prepared superhydrophobic mesh is close to 1/6 of the former. Meanwhile, the as-prepared superhydrophobic mesh could continuously separate oil from oil-water mixtures. The separation efficiency of continuous separation is as high as 96% and shows less than 1% decrease after ten cycles.
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2007-01-01
Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes identified herein are for polyurethane, epoxy and other paint systems applied by conventional wet-spray processes. A table summarizes the target hazardous materials, processes and materials, applications, affected programs, and candidate substrates.
Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate
NASA Astrophysics Data System (ADS)
Amanov, Auezhan; Pyun, Young-Sik
2016-07-01
In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.
Outbursts formation on low carbon and trip steel grades during hot-dip galvanisation
NASA Astrophysics Data System (ADS)
Petit, E. J.; Lamm, L.; Gilles, M.
2004-12-01
Low carbon and TRIP grade steels have been hot dip galvanised in order to study outbursts formation. Microstructure and texture of intermetallic phases have been observed after selective electrochemical etching by scanning electron microscopy. Potential versus time (chronopotentiometric) characteristics were recorded in order to monitor surface modifications. This combination of techniques enable to quantify and observe intermetallic phase one by one. The overall thickness of coating on both substrates are similar. However, microstructures of Fe-Zn intermetallic phases are very different on both grades. In particular, the V phase is dense on standard steel but develops a highly branched filament structure on TRIP steel. The transformation of V phase to d and G1 are limited on TRIP steel. Differences of texture provide clues for understanding mechanisms of formation of outbursts. They can account for the differences of mechanical properties and corrosion resistance. Silicon from the substrate influences the reactivity of TRIP steels due to capping and local reactions. La formation des outbursts a été étudiée sur un acier bas carbone et sur un acier TRIP galvanisés. Les épaisseurs des revêtements sont similaires. Néanmoins, les observations microscopiques et les érosions électrochimiques montrent que la répartition des phases intermétalliques et leurs microstructures diffèrent sensiblement en fonction de la nature du substrat. Ces différences expliquent les propriétés mécaniques et anticorrosions. L’encapsulation de la surface par les oxydes de silicium freine la transformation de la phase dzêta en delta et gamma sur l’acier TRIP.
Plasma-Based Surface Modification and Corrosion in High Temperature Environments
2009-02-05
supercritical water, molten salts, supercritical carbon dioxide (KAPL), and helium have been designed and built Room temperature corrosion tests for...coatings such as diamond-like carbon (DLC) and Si-DLC, performed at < 5kV) 4 Energetic ion mixing of thin nano-multilayers Enhancing coating-substrate...Nitrogen ion implantation of 17-7PH stainless steel (with Alison Gas Turbines ) Also a 11% decrease in erosion rate for the N+ implanted sample
NASA Astrophysics Data System (ADS)
Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc
2016-01-01
Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.
Effects of compositional modifications on the sensitization behavior of FeCrMn steels
NASA Astrophysics Data System (ADS)
Edgemon, G. L.; Tortorelli, P. F.; Bell, G. E. C.
1992-09-01
FeCrMn may possibly be used in conjunction with aqueous blankets or cooants in a fusion device. Therefore, standard chemical immersion (modified Strauss) tests were conducted to characterize the effects of compositional modifications on the thermal sensitization behavior of these steels. A good correlation among weight losses, intergranular corrosion, and cracking was found. The most effective means of decreasing their susceptibility was through reduction of the carbon concentration of these steels to 0.1%, but the sensitization resistance of FeCrMn0.1 C compositions was still inferior to type 304L and other similar stainless steels. Alloying additions that form stable carbides did not have a very significant influence on the sensitization behavior.
Research of Influence Modification of Natural Concentrate on Quality Metal
NASA Astrophysics Data System (ADS)
Fedoseev, S. N.; Gizatulin, R. A.; Korotkova, E. A.
2016-08-01
Questions of increase of mechanical, technological and service properties of metal at minimum cost to produce it are relevant for the metallurgical enterprises. Modification of complex steel alloys containing reactive elements is one of the effective ways to improve the quality of steel. At the same time the direct costs for the use of modifiers are 0.2-0.3%, which little effect on the cost of production. The paper presents the results of the application of natural concentrates as a modifier steel. The effects on the metal quality changes due to the impact of the modification concentrates demonstrate the effectiveness of their application. As a result of modification decreased the content of nonmetallic inclusions and grain size. Reduction of impurity modified metal of was the cause more high plastic properties, especially, impact strength at ordinary and low temperatures of tests. Based on the experimental data evaluated hardening mechanisms that lead to a significant improvement of physic-mechanical properties of the metal workpiece after administration modifier.
Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M
2012-02-01
Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.
Materials and processes for aircraft environmental controls in the 1990's
NASA Astrophysics Data System (ADS)
Delgrosso, E. J.; Zajac, T.; Tseka, J.
1980-10-01
Changes in materials and processes expected to be used in aircraft environmental control systems (ECS) in the 1990s are analyzed, and a forecast is presented. Results of the study show that the most advanced development would be in the use of a cast high strength alloy steel, i.e., a steel with below 8% alloy content, and a 225 KSI annealed tensile strength. To assure complete densification and enhancement of properties, the casting would be HIP, and modification of its surface chemistry could be achieved through ion implantation. As candidate methods for imparting surface protection, laser glazing and chemical vapor deposition are mentioned. The anticipated changes in the materials and techniques used for construction of ECS components are: the development of rapid solidification rate powders for the production of some alloy systems such as Al-Mg-Li, bearing alloy CRB-7, and titanium alloys, 'near-net-shape' processing, and the use of advanced fiber-reinforced plastics.
NASA Astrophysics Data System (ADS)
García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.
2017-02-01
The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.
NASA Astrophysics Data System (ADS)
Gârnet, I. A.; Stanciu, S.; Hopulele, I.; Zaharia, M. G.; Cimpoesu, N.; Chicet, D. L.; Crăciun, R. C.
2017-06-01
An experimental equipment, type torsion pendulum was made in laboratory in order to analyze the damping capacity of metallic materials. The scheme of the equipment is presented, 2D and 3D visions at real scale. The equipment functioning (mechanical and electrical part) and principles are presented. In this article we present some preliminary experimental results obtained on different materials (aluminium, steel etc.) using two different methods for registration the outputs (one based on optoelectronic device with Arduino acquisition board and second on video analyze (cinematic review: video to jpeg) of the damped motion of the lead pendulum). Steel materials were with shoot penning surface modification with and without heat treatment in order to establish the heat treatment influence on the damping capacity property.
Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals
NASA Astrophysics Data System (ADS)
Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto
2014-08-01
Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.
Nicholas, R; Dunton, P; Tatham, A; Fielding, L
2013-08-01
The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.
Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng
2015-09-02
Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modification of the surface of metal products with carbide coatings by electrospark alloying
NASA Astrophysics Data System (ADS)
Koshuro, Vladimir A.; Fomina, Marina A.; Fomin, Aleksandr A.
2018-04-01
Electrospark alloying (ESA) technology has existed for a long time (since the middle of the 20th century) but its potential has not been exhausted yet. In the present paper it is proposed to increase the mechanical properties of steel and titanium products by doping with a hard carbide alloy based on "WC-TiC-Co" system. As a result, the hardness of coatings obtained by ESA reaches at least 18-22 GPa with a layer thickness of up to 0.5 mm. The proposed solution can improve the functional qualities of various friction surfaces that are used in engineering, as well as in friction elements.
Laser-shock damage of iron-based materials
NASA Astrophysics Data System (ADS)
Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.
1993-05-01
The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.
Long-range effect of ion implantation of Raex and Hardox steels
NASA Astrophysics Data System (ADS)
Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.
2016-09-01
Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.
NASA Astrophysics Data System (ADS)
Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli
2017-10-01
The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.
NASA Astrophysics Data System (ADS)
Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana
2018-01-01
Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.
Hardfacing of duplex stainless steel using melting and diffusion processes
NASA Astrophysics Data System (ADS)
Lailatul, H.; Maleque, M. A.
2017-03-01
Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.
NASA Astrophysics Data System (ADS)
Gentil, Johannes
Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance, which is not impaired upon carburization. The passive film as analyzed by XPS is fully intact. Carbon concentration levels in PH13-8Mo reach 10 at.% and correlate with a surface hardness of up to 14GPa. Indication for the transformation from martensite to austenite during the process are observed. In this context, the shape of the carbon concentration-depth profile can be explained. Also the absence of carbides, as analyzed by TEM, can be rationalized. Upon cooling to room temperature, most of the austenite backtransforms into martensite and the surface regains its ferromagnetic properties. Compressive biaxial residual stresses in carburized PH13-8Mo are measured around (2--2.5)GPa. The applied low-temperature carburization process gives rise to a substantial loss in corrosion resistance of PH13-8Mo. Possible reasons including the observed formation of internal and external oxides as well as the change in alloy composition are discussed. Due to the penetration depth of X-rays into the probed specimen surface, a carbon concentration gradient may cause detectable asymmetry of diffraction peaks for certain alloys and under certain conditions. For the first time, this effect is rationalized, explained, and demonstrated on the basis of measured data.
Tribological Properties of CrN Coating Under Lubrication Conditions
NASA Astrophysics Data System (ADS)
Lubas, Janusz
2012-08-01
The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.
Design and Fabrication of the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid
2006-10-01
The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.
NASA Astrophysics Data System (ADS)
Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.
2002-11-01
Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.
NASA Astrophysics Data System (ADS)
Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac
2018-06-01
The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.
NASA Astrophysics Data System (ADS)
Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.
2006-11-01
In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).
Online aptitude automatic surface quality inspection system for hot rolled strips steel
NASA Astrophysics Data System (ADS)
Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan
2005-12-01
Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.
Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation
NASA Astrophysics Data System (ADS)
Martukanitz, R. P.; Babu, S. S.
2004-06-01
A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.
NASA Astrophysics Data System (ADS)
Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii
2014-08-01
The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.
Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin
2017-11-01
In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
Functional Coatings or Films for Hard-Tissue Applications
Wang, Guocheng; Zreiqat, Hala
2010-01-01
Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity. PMID:28883319
Using Composite Materials in a Cryogenic Pump
NASA Technical Reports Server (NTRS)
Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.
2008-01-01
Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.
Floroian, L; Samoila, C; Badea, M; Munteanu, D; Ristoscu, C; Sima, F; Negut, I; Chifiriuc, M C; Mihailescu, I N
2015-06-01
A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys.
Cloke, Jonathan; Arizanova, Julia; Crabtree, David; Simpson, Helen; Evans, Katharine; Vaahtoranta, Laura; Palomäki, Jukka-Pekka; Artimo, Paulus; Huang, Feng; Liikanen, Maria; Koskela, Suvi; Chen, Yi
2016-01-01
The Thermo Scientific™ SureTect™ Listeria species Real-Time PCR Assay was certified during 2013 by the AOAC Research Institute (RI) Performance Tested Methods(SM) program as a rapid method for the detection of Listeria species from a wide range of food matrixes and surface samples. A method modification study was conducted in 2015 to extend the matrix claims of the product to a wider range of food matrixes. This report details the method modification study undertaken to extend the use of this PCR kit to the Applied Biosystems™ 7500 Fast PCR Instrument and Applied Biosystems RapidFinder™ Express 2.0 software allowing use of the assay on a 96-well format PCR cycler in addition to the current workflow, using the 24-well Thermo Scientific PikoReal™ PCR Instrument and Thermo Scientific SureTect software. The method modification study presented in this report was assessed by the AOAC-RI as being a level 2 method modification study, necessitating a method developer study on a representative range of food matrixes covering raw ground turkey, 2% fat pasteurized milk, and bagged lettuce as well as stainless steel surface samples. All testing was conducted in comparison to the reference method detailed in International Organization for Standardization (ISO) 6579:2002. No significant difference by probability of detection statistical analysis was found between the SureTect Listeria species PCR Assay or the ISO reference method methods for any of the three food matrixes and the surface samples analyzed during the study.
NASA Astrophysics Data System (ADS)
Ballinger, Jared
Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase. Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels to promote diamond film surface modification. The future direction for continued research of nanostructured diamond coatings on microwave plasma CVD borided stainless steel should further investigate the adhesion of both borided interlayers and subsequent NSD films in addition to short, interrupted diamond depositions to study the interlayer/diamond film interface.
Tomasino, Stephen F; Hamilton, Martin A
2006-01-01
In an effort to improve AOAC Method 966.04, the Sporicidal Activity of Disinfectants Test, selected modifications to the procedure were evaluated in a collaborative study. Method 966.04 is used to generate efficacy data to support the product registration of sporicides and sterilants. The method is a carrier-based test that provides a qualitative measure of product efficacy against spores of Bacillus subtilis and Clostridium sporogenes. The use of garden soil extract and the lack of standard procedures for the enumeration of spores and neutralization of the test chemicals have been considered problematic for many years. The proposed modifications were limited to the B. subtilis and hard surface carrier (porcelain penicylinder) components of the method. The study included the evaluation of a replacement for soil extract nutrient broth and an establishment of a minimum spore titer per carrier, both considered crucial for the improvement and utilization of the method. Additionally, an alternative hard surface material and a neutralization confirmation procedure were evaluated. To determine the equivalence of the proposed alternatives to the standard method, 3 medium/carrier combinations, (1) soil extract nutrient broth/porcelain carrier (current method), (2) nutrient agar amended with 5 microg/mL manganese sulfate/porcelain carrier, and (3) nutrient agar amended with 5 microg/mL manganese sulfate/stainless steel carrier were analyzed for carrier counts, HCI resistance, efficacy, quantitative efficacy, and spore wash-off. The test chemicals used in the study represent 3 chemical classes and are commercially available antimicrobial liquid products: sodium hypochlorite (bleach), glutaraldehyde, and a combination of peracetic acid and hydrogen peroxide. Four laboratories participated in the study. The results of the spore titer per carrier, HCI resistance, efficacy, and wash-off studies demonstrate that amended nutrient agar in conjunction with the porcelain is comparable to the current method, soil extract nutrient broth/porcelain. The nutrient agar method is simple, inexpensive, reproducible, and provides an ample supply of high quality spores. Due to the current use of porcelain carriers for testing C. sporogenes, it is advisable to retain the use of porcelain carriers until stainless steel can be evaluated as a replacement carrier material for Clostridium. The evaluation of stainless steel for Clostridium has been initiated by the Study Director. Study Director recommendations for First Action revisions are provided in a modified method.
Selective oxidation of dual phase steel after annealing at different dew points
NASA Astrophysics Data System (ADS)
Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo
2011-04-01
Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.
NASA Astrophysics Data System (ADS)
Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.
2010-09-01
Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.
Changing the surface properties on naval steel as result of non-thermal plasma treatment
NASA Astrophysics Data System (ADS)
Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.
2016-08-01
The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects the surface properties of the treated naval steel.
NASA Astrophysics Data System (ADS)
Behrani, Vikas
Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.
Modification of Grange-Kiefer Approach for Determination of Hardenability in Eutectoid Steel
NASA Astrophysics Data System (ADS)
Sushanthi, Neethi; Maity, Joydeep
2014-12-01
In this research work, an independent mathematical modeling approach has been adopted for determination of the hardenability of steels. In this model, at first, cooling curves were generated by solving transient heat transfer equation through discretization with pure explicit finite difference scheme coupled with MATLAB-based programming considering variable thermo-physical properties of 1080 steel. Thereafter, a new fundamental approach is proposed for obtaining CCT noses as a function of volume fraction transformed through modification of Grange-Kiefer approach. The cooling curves were solved against 50 pct transformation nose of CCT diagram in order to predict hardening behavior of 1080 steel in terms of hardenability parameters (Grossmann critical diameter, D C; and ideal critical diameter, D I) and the variation of the unhardened core diameter ( D u) to diameter of steel bar ( D) ratio with diameter of the steel bar ( D). The experiments were also performed to ascertain actual D C value of 1080 steel for still water quenching. The D C value obtained by the developed model was found to match the experimental D C value with only 3 pct deviation. Therefore, the model developed in the present work can be used for direct determination of D I, D C and D u without resorting to any rigorous experimentation.
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.
Zhang, Kun; Bai, Yuxin; Wang, Xiaofeng; Li, Qian; Guan, Fangxia; Li, Jingan
2017-08-01
Esophageal cancer is difficult to cure globally and possesses high mortality rate, and it is generally accepted that palliative care such as stent implantation is the main therapy method for esophageal cancer in later period. However, the restenosis caused by tumor cells and inflammatory cells seriously interferes the stent clinical application and limits its long-term services. To solve this problem, series of drug delivery stents were developed and proven rather effective in the early stage of implantation, but more serious restenosis occurred after the drug delivery was over, which endangered the patients' life. Therefore, endowing the esophageal stent continuous anti-cancer function become an ideal strategy for inhibiting the restenosis. In this contribution, the functional layer composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4 Da) were fabricated onto the esophageal stent material 317L stainless steel (317L SS) surface. The surface characterization including amine quantitative, atomic force microscopy (AFM) and water contact angle measurement indicated successful preparation of the PDA/PEI layer. The Eca109 cells culture results proved that the PDA/PEI layers significantly improve Eca109 cells apoptosis and necrosis, suggesting excellent anti-cancer function. In addition, we also found that the anti-cancer function of the PDA/PEI layers was positively correlated to the immobilized PEIs' MW. All the results demonstrated the potential application of the PDA/PEI layers on the surface modification of esophageal stent for continuous anti-cancer function. It is generally accepted that the restenosis caused by tumor cells seriously interferes the esophageal stent clinical application. Thus, endowing the esophageal stent continuous anti-cancer function is the ideal strategy for inhibiting the restenosis. In this work, we fabricated functional layers composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4 Da) onto the esophageal stent material 317L stainless steel (317L SS) surface to inhibit the tumor cells growth, and this function was related to the PEIs' molecular weights. The functional PDA/PEI layers were expected potentially applied for surface modification of esophageal stent materials.
Surface modification of SS-316L steel using microwave processed Ni/WC based composite clads
NASA Astrophysics Data System (ADS)
Kaushal, Sarbjeet; Singh, Dilkaran; Gupta, Dheeraj; Jain, Vivek; Bhowmick, Hiralal
2018-04-01
In the present investigation, the claddings of Ni/WC based composite powder were developed on SS-316L steel through microwave hybrid heating method. The experimental trials were carried out inside a domestic microwave oven working at 2.45 GHz and 900 W. The so developed composite clads were characterized using XRD, Vicker's microhardness measurement, and SEM/EDS. The presence of different phases like Co3W3C, NiW, FeNi3, NiSi was confirmed by XRD analysis. Microstructural analysis revealed that the clad of approximately 0.6 mm thickness was developed with no interfacial cracks and negligible porosity. The WC particles were uniformly distributed in the form of cellular structure inside Ni matrix. The average Vicker's microhardness value of the clad section was observed as 925±50 HV, which is three times that of the SS-316L substrate.
Liquid infused porous surfaces for mineral fouling mitigation.
Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard
2015-04-15
Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling. Copyright © 2014 Elsevier Inc. All rights reserved.
Biotribological properties at the stem-cement interface lubricated with different media.
Zhang, H Y; Luo, J B; Zhou, M; Zhang, Y; Huang, Y L
2013-04-01
Debonding of the stem-cement interface occurs inevitably in-vivo under physiological loading, and pseudo-synovial fluid is subsequently pumped into this interface, serving as the lubricant. However, the influence of protein adsorption onto the femoral stem surface has not been well taken into consideration in previous in vitro studies. The biotribological properties at the stem-cement interface were investigated through a series of fretting frictional tests using polished stainless steel 316L stem and smooth bone cement, lubricated by three different media at body temperature, i.e. 100% calf serum, 25% calf serum, and 0.9% saline solution. The surface characterization of the femoral stem was evaluated sequentially using optical microscope, optical interferometer, scanning electron microscope, and Raman spectroscopy. The friction coefficient generally kept stable during the test, and the minimum value (0.254) was obtained when 100% calf serum was used as the lubricant. Slight scratches were detected within the contact area for the stainless steel 316L stems lubricated by 100% calf serum and 25% calf serum, which was further surrounded by the adsorbed protein film with alveolate feature. Additionally, a wear scar was present within the contact area when 0.9% saline solution was used as the lubricant. Protein adsorption onto the stainless steel 316L stem surface affected the biotribological properties at the stem-cement interface under oscillatory fretting mechanism. Generation of wear debris at the stem-cement interface may be postponed by modification of physicochemical properties of the femoral stem to promote protein adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
Caractérisation de l'état de surface et des contraintes résiduelles engendrées par meulage
NASA Astrophysics Data System (ADS)
Gognau, D.; Blehaut, H.; Dürr, J.; Hariri, S.; Khouchaf, L.; Flahaut, P.
2002-07-01
grinding operations are generally used to prepare surfaces or improve surface state before or after welding. These operations, when carried out manually with portable machines, induce superficial work hardening, modification of the structure of material and residual stresses. An experimental study about the influence of grinding has been carried out on two metallic materials, a low carbon steel (A42-CP) and an austenitic stainless steel (316L), in order to characterise the grinding effects. Manual grinding being difficult to control (no repeatable effects), a test rig using a portable machine has been made. This test rig enables to control the grinding parameters in order to obtain repeatable grinding operations. Characterisation of the ground surfaces was made by 2D profilometry and measurements of residual stresses have been carried out with a Set-X Elphyse apparatus. The profiles of residual stresses obtained show, on the one hand, that on each material, identical grindings generate identical states of stresses and on the other hand, that materials have not the same behaviour, From a metallurgical point of view, we also observe that the grinding effects are different for both materials. The grinding of the A42 steel highlights a crushing of the grain near the surface while the 316L stainless steel grinding reveals sliding bands. Des opérations de meulage sont régulièrement effectuées sur des matériaux métalliques pour préparer les surfaces ou pour améliorer l'état de ces surfaces après soudage. Ces opérations réalisées manuellement engendrent un écrouissage superficiel, une modification de la structure du matériau et par conséquent des contraintes résiduelles. Une étude expérimentale a été menée sur un acier à bas carbone (A42-CP) et un acier inoxydable austénitique (316L) afin de caractériser les effets du meulage. Le meulage manuel étant difficile à maîtriser (effets non reproductibles), un banc d'essai utilisant une machine portative a été réalisé afin de contrôler les différents paramètres caractéristiques des opérations de meulage. Ensuite, la détermination de la rugosité des surfaces meulées s'est faite par profilornétrie 2D et les contraintes résiduelles ont été mesurées sur un appareil Set-X Elphyse. Les profils de contraintes obtenus montrent d'une part que sur un même matériau, des meulages réalisés dans les mêmes conditions aboutissent à des résultats semblables et d'autre part, que les deux matériaux utilises se comportent différemment. Ainsi, d'un point de vue métallurgique, on observe que le meulage de l'acier A42 favorise un écrasement des grains proches de la surface alors que le meulage de l'acier inoxydable 316L fait apparaître de nombreuses bandes de glissement.
Modification of the Gurney Equation for Explosive Bonding by Slanted Elevation Angle
2014-04-01
researching high temperature fatigue behaviour and modelling of ferritic pressure vessel steel , for which he was awarded the degree at the University of...weld metal solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high... steel (2.0) 15 2.4 16 300 x300 1: S defines ‘Superaustenitic’. The flyer plate was placed on the top of the bottom plate for each test with
Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J
2015-12-01
Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram-positive bacteria (S. aureus and S. epidermidis) decreased with increasing nanoscale surface roughness, and was not affected by grain refinement. Ultimately, this study demonstrated the advantages of the proposed shot peening treatment to produce multifunctional 316L stainless steel materials for improved implant functions without necessitating the use of drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo
2013-10-01
This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.
Surface modification of investment cast-316L implants: microstructure effects.
El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel
2015-03-01
Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. Copyright © 2014 Elsevier B.V. All rights reserved.
CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF STEEL COLUMN AND ...
CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF STEEL COLUMN AND BEAM ALTERATION, LOOKING SOUTH. MODIFICATION WAS DONE TO ACCOMMODATE MACHINERY DURING THE BUILDING'S USE AS A WHEEL SHOP. - Southern Pacific, Sacramento Shops, Car Machine Shop, 111 I Street, Sacramento, Sacramento County, CA
Present and future trends of laser materials processing in Japan
NASA Astrophysics Data System (ADS)
Matsunawa, Akira
1991-10-01
Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.
Friction and Surface Damage of Several Corrosion-resistant Materials
NASA Technical Reports Server (NTRS)
Peterson, Marshall B; Johnson, Robert L
1952-01-01
Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.
Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions
NASA Astrophysics Data System (ADS)
Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih
2018-02-01
Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.
NASA Astrophysics Data System (ADS)
Alhamarneh, Ibrahim; Pedrow, Patrick
2011-10-01
Bacterial adhesion initiates biofouling of biomedical material but the processes can be reduced by adjusting the material's surface energy. The surface of surgical-grade 316L stainless steel (316L SS) had its hydrophilic property enhanced by processing in a corona streamer plasma reactor using atmospheric pressure Ar mixed with O2. Reactor excitation was 60 Hz ac high-voltage (<= 10 kV RMS) applied to a multi-needle-to-grounded-torus electrode configuration. Applied voltage and streamer current pulses were monitored with a broadband sensor system. When Ar/O2 plasma was used, the surface energy was enhanced more than with Ar plasma alone. Composition of the surface before and after plasma treatment was characterized by XPS. As the hydrophilicity of the treated surface increased so did percent of oxygen on the surface thus we concluded that reduction in contact angle was mainly due to new oxygen-containing functionalities. FTIR was used to identify oxygen containing groups on the surface. The aging effect that accompanies surface free energy adjustments was also observed.
Surface Conditioning of Cardiovascular 316L Stainless Steel Stents: a Review
NASA Astrophysics Data System (ADS)
Navarro, Lucila; Luna, Julio; Rintoul, Ignacio
2017-07-01
Cardiovascular disease is the leading cause of death worldwide and 90% of coronary interventions consists in stenting procedures. Most of the implanted stents are made of AISI 316L stainless steel (SS). Excellent mechanical properties, biocompatibility, corrosion resistance, workability and statistically demonstrated medical efficiency are the reasons for the preference of 316L SS over any other material for stent manufacture. However, patients receiving 316L SS bare stents are reported with 15-20% of restenosis probability. The decrease of the restenosis probability is the driving force for a number of strategies for surface conditioning of 316L SS stents. This review reports the latest advances in coating, passivation and the generation of controlled topographies as strategies for increasing the corrosion resistance and reducing the ion release and restenosis probability on 316L SS stents. Undoubtedly, the future of technique is related to the elimination of interfaces with abrupt change of properties, the elimination of molecules and any other phase somehow linked to the metal substrate. And leaving the physical, chemical and topographical smart modification of the outer part of the 316L SS stent for enhancing the biocompatiblization with endothelial tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panin, S. V., E-mail: svp@ispms.tsc.ru; Vlasov, I. V., E-mail: good0@yandex.ru; Sergeev, V. P., E-mail: retc@ispms.tsc.ru
2015-10-27
Features of the structure and properties modification of 12Cr1MoV steel subjected to irradiation by zirconium ion beam have been investigated with the use of optical and electron microscopy as well as microhardness measurement. It has been shown that upon treatment the structure modification occurred across the entire cross-section of specimens with the thickness of 1 mm. Changes in the mechanical properties of these specimens under static, cyclic and impact loading are interpreted in terms of identified structure changes.
Li, Lester; Breedveld, Victor; Hess, Dennis W
2012-09-26
In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Zhuqing, Wang; Tongxiang, Liang; Ken, Suzuki; Hideo, Miura
Surface molybdenum enrichment on 2205 duplex stainless steel was obtained by the ball milling technique. The electrochemical results showed molybdenum enrichment on the surface of 2205 duplex stainless steel improved its corrosion resistance in a typical proton exchange membrane fuel cell environment. This was mainly attributed to higher molybdenum content in the passive film formed on 2205 duplex stainless steel after ball milling. The decreased donor and acceptor concentrations improved significantly the corrosion resistance of surface molybdenum-enriched 2205 duplex stainless steel bipolar plates in the simulated cathodic proton exchange membrane fuel cells environment. In addition, the interfacial contact resistance of the 2205 duplex stainless steel bipolar plates slightly decreased due to surface molybdenum enrichment.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.
Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-12-05
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.
Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.
Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu
2009-06-15
In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.
Dynamic, Hot Surface Ignition of Aircraft Fuels and Hydraulic Fluids
1980-10-01
fuels on a heated stainless steel surface. Higher local surface air speeds necessitated higher surface temperatures for ignition of an applied fluid._-7...Aircraft Fuels ( stainless steel surface) 8. Air Speed and Surface Material Effects on Hot Surface 21 Ignition Temperature of Aircraft Fuels (Titanium...Material Effects on Hot Surface 26 Ignition Temperature of Aircraft Hydraulic Fluids ( Stainless steel surface) 11. Air Speed and Surface Material
NASA Astrophysics Data System (ADS)
de Oliveira, Willian R.; Kurelo, Bruna C. E. S.; Ditzel, Dair G.; Serbena, Francisco C.; Foerster, Carlos E.; de Souza, Gelson B.
2018-03-01
The different physical responses of austenite (γ) and ferrite (α) iron structures upon nitriding result in technical challenges to the uniform modification of α-γ materials, as the super duplex stainless steel (SDSS). The effects of voltage (7-10 kV), frequency and pulse width on the nitrogen plasma immersion ion implantation of SDSS (α ∼ 56%, γ ∼ 44%) were investigated, correlated with structural, morphological and mechanical analyses. By controlling the treatment power, temperatures ranged from 292 °C to 401 °C. Despite the overall increase in hardness for any of the employed parameters (from ∼6 GPa to ∼15 GPa), the structure of individual grains was strikingly dissimilar at the same temperatures, depending on the energetic conditions of implantation. Modified-α grains containing iron nitrides (ε-Fe2-3N, γ‧ -Fe4N) presented intense brittleness, whereas the expanded phase γN (S-phase) laid principally in modified-γ grains, exhibiting ductile-like deformation features and thicker layers. The γN was the dominant phase in both α-γ grains at ∼401 °C, providing them with balanced structure and mechanical behavior. These phenomena corroborate with γN as mediator of the process, through a mechanism involving the nitrogen-promoted ferrite to austenite conversion and nitrides dissolution at high temperatures. An approximately linear correlation of the γN content with respect to the ion energy per pulse was demonstrated, which properly embodies limiting effects to the treatment. This can be a parameter for the α-γ steel surface modification, consisting in a better adjustment to obtain more precise control along with temperature.
The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.
Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran
2015-02-16
Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
NASA Astrophysics Data System (ADS)
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163
Finite element simulation for damage detection of surface rust in steel rebars using elastic waves
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Yu, Tzuyang
2016-04-01
Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.
Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.
Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei
2016-11-25
In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.
Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels
Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei
2016-01-01
In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel. PMID:28774081
2013-05-10
Performance of Interstitially Surface Hardened Stainless Steel 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jones, Jennifer Lynn...interstitial carbon atoms into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or...the corrosion resistance of the stainless steel is retained, rather than degraded, is of particular interest for marine applications. This project
Low friction and high strength of 316L stainless steel tubing for biomedical applications.
Amanov, Auezhan; Lee, Soo-Wohn; Pyun, Young-Sik
2017-02-01
We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6mm and an inner diameter (ID) of 1.2mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. Copyright © 2016 Elsevier B.V. All rights reserved.
Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik
2015-05-07
Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.
Chang, Seky; Pyun, Young-Sik; Amanov, Auezhan
2017-02-16
In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the wheel-rail interaction. The hardness and compressive residual stress values of the untreated and UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique, respectively. It was found, according to the measurement results, that the hardness was increased by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62% for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in comparison with those of the untreated rails. Also, the wear amount of the rails was increased with increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on microscopic images of the worn out surfaces.
Chang, Seky; Pyun, Young-Sik; Amanov, Auezhan
2017-01-01
In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the wheel-rail interaction. The hardness and compressive residual stress values of the untreated and UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique, respectively. It was found, according to the measurement results, that the hardness was increased by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62% for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in comparison with those of the untreated rails. Also, the wear amount of the rails was increased with increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on microscopic images of the worn out surfaces. PMID:28772549
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection
Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-01-01
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154
Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L
2000-09-15
Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed.
75 FR 39189 - Airworthiness Directives; The Boeing Company Model 747 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... cracking in the body skin and the skin splice plate; for certain airplanes, an inspection for steel cross... inspections for cracking of the bulkhead frame web and body skin; and corrective actions if necessary. This... modification doublers; and, for certain airplanes, and a one-time external general visual inspection for steel...
Structural-phase states and wear resistance of surface formed on steel by surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.
2014-11-14
Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Ying, Guobing; Dong, Chaofang; Li, Xiaogang
2017-12-01
The effect of cold deformation on the microstructure and electrochemical corrosion behaviour of 304L stainless steel in contaminated sulfuric acid solutions (simulated proton exchange membrane fuel cells environments) were evaluated using electron backscatter diffraction analyses, electrochemical measurements, and surface analyses. The internal microstructure,including the grain sizes, angles of the grain boundaries, low coincidence site lattice boundaries, and phase transformations, was changed due to the cold deformation. No noticeable modifications of the pitting corrosion potential were observed during the various deformations, except for a slight enhancement in the passive current density with an increase in the deformation. The CrO3 and metal Ni species in the passive film were investigated after deformation. After heavy deformation (greater than 60%), nickel oxides were detected. Moreover, the Cr/Fe and O2-/OH- ratios in the passive film were higher before deformation, and they decreased with an increase in the deformation level.
Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes.
Erable, B; Lacroix, R; Etcheverry, L; Féron, D; Delia, M L; Bergel, A
2013-08-01
Here is presented a new design of a floating marine MFC in which the inter-electrode space is constant. This design allows the generation of stable current for applications in environments where the water column is large or subject to fluctuations such as tidal effects. The operation of the first prototype was validated by running a continuous test campaign for 6months. Performance in terms of electricity generation was already equivalent to what is conventionally reported in the literature with basic benthic MFCs despite the identification of a large internal resistance in the proposed design of the floating system. This high internal resistance is mainly explained by poor positioning of the membrane separating the anode compartment from the open seawater. The future objectives are to achieve more consistent performance and a second-generation prototype is now being developed, mainly incorporating a modification of the separator position and a stainless steel biocathode with a large bioavailable surface. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
The Effect of Different Non-Metallic Inclusions on the Machinability of Steels
Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran
2015-01-01
Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades. PMID:28787969
Influence of shot peening on surface quality of austenitic and duplex stainless steel
NASA Astrophysics Data System (ADS)
Vinoth Jebaraj, A.; Sampath Kumar, T.; Ajay Kumar, L.; Deepak, C. R.
2017-11-01
In the present investigation, an attempt has been made to enhance the surface quality of austenitic stainless steel 316L and duplex stainless steel 2205 through shot peening process. The study mainly focuses the surface morphology, microstructural changes, surface roughness and microhardness of the peened layers. Metallography analysis was carried out and compared with the unpeened surface characteristics. As result of peening process, surface recrystallization was achieved on the layers of the peened samples. It was found that shot peening plays significant role in enhancing the surface properties of 316L and 2205. Particularly it has greater influence on the work hardening of austenitic stainless steel than the duplex stainless steel due to its more ductility nature under the investigated shot peening parameters. The findings of the present study will be useful with regard to the enhancement of surface texture achieved through peening.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Method for reducing formation of electrically resistive layer on ferritic stainless steels
Rakowski, James M.
2013-09-10
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Malet, L.; Gao, H.; Hermans, M. J. M.; Godet, S.; Richardson, I. M.
2015-02-01
Surface modification by the generation of a nanostructured surface layer induced via ultrasonic impact treatment was performed at the weld toe of a welded high-strength quenched and tempered structural steel, S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt pct)). Such high-frequency peening techniques are known to improve the fatigue life of welded components. The nanocrystallized structure as a function of depth from the top-treated surface was characterized via a recently developed automated crystal orientation mapping in transmission electron microscopy. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation during the ultrasonic impact treatment is proposed. It involves the formation of low-angle misoriented lamellae displaying a high density of dislocations followed by the subdivision of microbands into blocks and the resulting formation of polygonal submicronic grains. These submicronic grains further breakdown into nano grains. The results show the presence of retained austenite even after severe surface plastic deformation. The average grain size of the retained austenite and martensite is 17 and 35 nm, respectively. The in-grain deformation mechanisms are different in larger and smaller grains. Larger grains show long-range lattice rotations, while smaller grains show plastic deformation through grain rotation. Also the smaller nano grains exhibit the presence of short-range disorder. Surface nanocrystallization also leads to an increased fraction of low angle and low energy coincident site lattice boundaries especially in the smaller grains ( nm).
Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2016-06-01
Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.
Bactericidal behavior of Cu-containing stainless steel surfaces
NASA Astrophysics Data System (ADS)
Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin
2012-10-01
Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.
Distribution of nickel after modified nitinol stent implantation in animals
NASA Astrophysics Data System (ADS)
Chepeleva, E.; Sergeevichev, D.; Lotkov, A.; Kashin, O.; Korobeynikov, A.; Kozyr, K.; Baystrukov, V.; Zubarev, D.; Kretov, E.; Pokushalov, E.
2017-09-01
Intravascular stenting of arteries in atherosclerotic lesions is one of the most frequently performed procedures in cardiovascular surgery today. Most stents are made of various stainless-steel alloys and other metals (such as nitinol). Nitinol is a biocompatible, superplastic and corrosion resistant material with an important feature of shape memory. However, the composition of this alloy includes nickel, which shows toxicity to the kidneys, liver, lungs, heart and other organs when it accumulates in the organism. In this research we investigated the nickel content in serum, urine and hair of the laboratory animals after implantation of nitinol stents treated with plasma ionic surface modification by silicon.
Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior
NASA Astrophysics Data System (ADS)
Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping
2016-02-01
0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.
Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique
NASA Astrophysics Data System (ADS)
Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.
2014-03-01
Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.
NASA Astrophysics Data System (ADS)
Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang
2015-08-01
This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.
Frictional and structural characterization of ion-nitrided low and high chromium steels
NASA Technical Reports Server (NTRS)
Spalvins, T.
1985-01-01
Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.
NASA Astrophysics Data System (ADS)
Hu, Yang; Chen, Weiqing; Wan, Changjie; Wang, Fangjun; Han, Huaibin
2018-04-01
55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as √ {{{area}_{inclusion} }/{(1 - {CC)}}} , where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width b inclusion or diameter d inclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.
Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming
2015-03-09
Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling.
Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee
2016-01-13
For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.
Enhancing steel properties through in situ formation of ultrahard ceramic surface
Pahlevani, Farshid; Kumar, Rahul; Gorjizadeh, Narjes; Hossain, Rumana; Cholake, Sagar T; Privat, Karen; Sahajwalla, Veena
2016-01-01
Abrasion and corrosion resistant steel has attracted considerable interest for industrial application as a means of minimising the costs associated with product/component failures and/or short replacement cycles. These classes of steels contain alloying elements that increase their resistance to abrasion and corrosion. Their benefits, however, currently come at a potentially prohibitive cost; such high performance steel products are both more technically challenging and more expensive to produce. Although these methods have proven effective in improving the performance of more expensive, high-grade steel components, they are not economically viable for relatively low cost steel products. New options are needed. In this study, a complex industrial waste stream has been transformed in situ via precisely controlled high temperature reactions to produce an ultrahard ceramic surface on steel. This innovative ultrahard ceramic surface increases both the hardness and compressive strength of the steel. Furthermore, by modifying the composition of the waste input and the processing parameters, the ceramic surface can be effectively customised to match the intended application of the steel. This economical new approach marries industry demands for more cost-effective, durable steel products with global imperatives to address resource depletion and environmental degradation through the recovery of resources from waste. PMID:27929096
Enhancing steel properties through in situ formation of ultrahard ceramic surface.
Pahlevani, Farshid; Kumar, Rahul; Gorjizadeh, Narjes; Hossain, Rumana; Cholake, Sagar T; Privat, Karen; Sahajwalla, Veena
2016-12-08
Abrasion and corrosion resistant steel has attracted considerable interest for industrial application as a means of minimising the costs associated with product/component failures and/or short replacement cycles. These classes of steels contain alloying elements that increase their resistance to abrasion and corrosion. Their benefits, however, currently come at a potentially prohibitive cost; such high performance steel products are both more technically challenging and more expensive to produce. Although these methods have proven effective in improving the performance of more expensive, high-grade steel components, they are not economically viable for relatively low cost steel products. New options are needed. In this study, a complex industrial waste stream has been transformed in situ via precisely controlled high temperature reactions to produce an ultrahard ceramic surface on steel. This innovative ultrahard ceramic surface increases both the hardness and compressive strength of the steel. Furthermore, by modifying the composition of the waste input and the processing parameters, the ceramic surface can be effectively customised to match the intended application of the steel. This economical new approach marries industry demands for more cost-effective, durable steel products with global imperatives to address resource depletion and environmental degradation through the recovery of resources from waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Meng, Yifei; Zhang, Xie
Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less
Guo, Wei; Meng, Yifei; Zhang, Xie; ...
2018-04-11
Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less
Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin
2014-10-24
In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.
Particle bounce in a personal cascade impactor: a field evaluation.
Hinds, W C; Liu, W C; Froines, J R
1985-09-01
The collection characteristics of five types of substrates (collection surfaces) used in personal cascade impactors were evaluated for particle bounce in the laboratory with lead dioxide dust, and in the field with brass pouring fume and brass grinding dust. The substrates tested were uncoated stainless steel, silicon grease-coated stainless steel, oil-saturated Millipore membrane filter, oil-saturated Teflon membrane filter and oil-saturated sintered stainless steel. The use of coated and uncoated stainless steel plates to collect lead dioxide dust produced no difference in measured mass median diameter (MMD); however, with brass grinding dust, there was a 50% decrease in measured MMD when uncoated stainless steel substrates were used, as compared with coated stainless steel substrates. Oil-saturated Millipore membrane surfaces gave consistently lower MMDs than coated stainless steel surfaces. Coated and uncoated stainless steel gave similar MMDs when used to sample brass pouring fume. Oil-saturated Teflon membrane and oil-saturated sintered metal, surfaces for which the collection efficiency is presumed to be independent of the particle loading, gave MMDs similar to those measured for grease-coated stainless steel. The implications of these comparisons are discussed. It is concluded that bounce characteristics are strongly dependent on aerosol material and the suitability of collection surfaces needs to be determined by field evaluation.
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Owusu Twumasi, Jones; Hu, Jie; Wang, Xingwei; Yu, Tzuyang
2018-03-01
Structural steel members have become integral components in the construction of civil engineering infrastructures such as bridges, stadiums, and shopping centers due to versatility of steel. Owing to the uniqueness in the design and construction of steel structures, rigorous non-destructive evaluation techniques are needed during construction and operation processes to prevent the loss of human lives and properties. This research aims at investigating the application of photoacoustic fiber optic transducers (FOT) for detecting surface rust of a steel rod. Surface ultrasonic waves propagation in intact and corroded steel rods was simulated using finite element method (FEM). Radial displacements were collected and short-time Fourier transform (STFT) was applied to obtain the spectrogram. It was found that the presence of surface rust between the FOT and the receiver can be detected in both time and frequency domain. In addition, spectrogram can be used to locate and quantify surface rust. Furthermore, a surface rust detection algorithm utilizing the FOT has been proposed for detection, location and quantification of the surface rust.
Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman
2018-06-01
The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.
Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples
NASA Astrophysics Data System (ADS)
Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander
2016-08-01
This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.
Vapor-delivered lubrication of steel-steel and steel-ceramic systems
NASA Astrophysics Data System (ADS)
Li, H.; Klaus, E. E.; Duda, J. L.
1993-04-01
Heavy-duty natural gas engines run hot and relatively dry. This provides lubricant and lubrication problems in the piston ring-cylinder and valve areas. A potential materials solution to this problem is the use of ceramic bearing surfaces. The objective of the project was the investigation of the wear characteristics and surface interactions of lubricants on ceramic bearing surfaces and to compare these results with the behavior of the same lubricants on steel surfaces. The temperature range of interest in these comparisons is 200 to 370 C using a four-ball wear tester.
NASA Astrophysics Data System (ADS)
Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.
2014-02-01
Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.
Research and development of metals for medical devices based on clinical needs
Hanawa, Takao
2012-01-01
The current research and development of metallic materials used for medicine and dentistry is reviewed. First, the general properties required of metals used in medical devices are summarized, followed by the needs for the development of α + β type Ti alloys with large elongation and β type Ti alloys with a low Young's modulus. In addition, nickel-free Ni–Ti alloys and austenitic stainless steels are described. As new topics, we review metals that are bioabsorbable and compatible with magnetic resonance imaging. Surface treatment and modification techniques to improve biofunctions and biocompatibility are categorized, and the related problems are presented at the end of this review. The metal surface may be biofunctionalized by various techniques, such as dry and wet processes. These techniques make it possible to apply metals to scaffolds in tissue engineering. PMID:27877526
NASA Astrophysics Data System (ADS)
Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.
2017-05-01
The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.
NASA Astrophysics Data System (ADS)
Hwang, Byeong Jun; Lee, Sung Ho
2017-12-01
Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.
Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process
NASA Astrophysics Data System (ADS)
Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai
2016-02-01
Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.
The role of nanocrystalline binder metallic coating into WC after additive manufacturing
NASA Astrophysics Data System (ADS)
Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.
2018-01-01
Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
2014-07-23
CAPE CANAVERAL, Fla. – Steel structures surround High Bay 3 inside the Vehicle Assembly Building, or VAB, at NASA’s Kennedy Space Center in Florida. In view, high above, is the 175-ton crane. Banners note the heights of the Saturn V, Space Launch System, or SLS, and shuttle on the steel structure. Modifications are underway in the VAB to prepare High Bay 3 for a new platform system. The modifications are part of a centerwide refurbishment initiative under the Ground Systems Development and Operations Program. High bay 3 is being refurbished to accommodate NASA’s Space Launch System and a variety of other spacecraft. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html. Photo credit: NASA/Dimitri Gerondidakis
A comparative study for radiological decontamination of laboratory fume hood materials.
Thomas, Elizabeth; Sweet, Lucas; MacFarlan, Paul; McNamara, Bruce; Kerschner, Harrison
2012-08-01
The efficacy for radiological decontamination of the laboratory standard fume hood as constructed of stainless steel, compared to that of powder-coated carbon steel is described. While the chemical inertness of powder-coated surfaces is good, faced with everyday abrasion, aggressive inorganic solutions and vapors, and penetrating organics commonly employed in government laboratory fume hoods, radiological decontamination of powder-coated steel surfaces was found to be similar to those made of stainless steel for easily solubilized or digestible radionuclides. Plutonium was difficult to remove from stainless steel and powder-coated surfaces, especially after prolonged contact times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim
2015-09-25
The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.
NASA Astrophysics Data System (ADS)
Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim
2015-09-01
The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.
Transuranic contamination of stainless steel in nitric acid
NASA Astrophysics Data System (ADS)
Kerry, Timothy; Banford, Anthony W.; Thompson, Olivia R.; Carey, Thomas; Schild, Dieter; Geist, Andreas; Sharrad, Clint A.
2017-09-01
Stainless steels coupons have been exposed to transuranic species in conditions representative of those found in a spent nuclear fuel reprocessing plant. Stainless steel was prepared to different surface finishes and exposed to nitric acid of varying concentrations containing 237Np, 239Pu or 243Am for one month at 50 °C. Contamination by these transuranics has been observed on all surfaces exposed to the solution through the use of autoradiography. This technique showed that samples held in 4 M HNO3 bind 2-3 times as much radionuclide as those held in 10.5 M HNO3. It was also found that the polished steel surfaces generally took up more transuranic contamination than the etched and "as received" steel finishes. The extent of corrosion on the steel surfaces was found, by scanning electron microscopy, to be greater in solutions containing Np and Pu in comparison to that observed from contact with Am containing solutions, indicating that redox activity of transuranics can influence the mechanism of stainless steel corrosion.
Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T
2013-04-01
Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with new physiochemical properties. The D-K122-4-modified surface substantially decreases biofilm formation compared to the RI-K122-4 and D+RI surfaces. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Welle, A.; Liao, J. D.; Kaiser, K.; Grunze, M.; Mäder, U.; Blank, N.
1997-10-01
Formulations based on dilute aqueous solutions of N,N'-dimethylethanolamine (DMEA) are used to protect reinforcement steel bars ('rebar') in concrete from corrosion. In a previous paper we discussed the usefulness of X-ray photoelectron spectroscopy (XPS) to detect DMEA adsorbed from solution and the application of secondary neutral mass spectrometry (SNMS) to study migration of DMEA through a cement matrix. In this report we present XPS data of DMEA adsorbed on steel surfaces from alkaline and chlorine containing solutions of variable concentration range and discuss models for the interaction of DMEA with the oxidized steel surface and the mechanism of corrosion inhibition of DMEA. DMEA is strongly bonded to the steel surface and displaces ionic species from the substrate/solution interface hence protecting the ironoxide surface from ionic attack.
Thermal tests of large recirculation cooling installations for nuclear power plants
NASA Astrophysics Data System (ADS)
Balunov, B. F.; Lychakov, V. D.; Il'in, V. A.; Shcheglov, A. A.; Maslov, O. P.; Rasskazova, N. A.; Rakhimov, R. Z.; Boyarov, R. A.
2017-11-01
The article presents the results from thermal tests of some recirculation installations for cooling air in nuclear power plant premises, including the volume under the containment. The cooling effect in such installations is produced by pumping water through their heat-transfer tubes. Air from the cooled room is blown by a fan through a bundle of transversely finned tubes and is removed to the same room after having been cooled. The finning of tubes used in the tested installations was made of Grade 08Kh18N10T and Grade 08Kh18N10 stainless steels or Grade AD1 aluminum. Steel fins were attached to the tube over their entire length by means of high-frequency welding. Aluminum fins were extruded on a lathe from the external tube sheath into which a steel tube had preliminarily been placed. Although the fin extrusion operation was accompanied by pressing the sheath inner part to the steel tube, tight contact between them over the entire surface was not fully achieved. In view of this, the air gap's thermal resistance coefficient was introduced in calculating the heat transfer between the heat-transferring media. The air gap average thickness was determined from the test results taking into account the gap variation with temperature due to different linear expansion coefficients of steel and aluminum. These tests, which are part of the acceptance tests of the considered installations, were carried out at the NPO TsKTI test facility and were mainly aimed at checking if the obtained thermal characteristics were consistent with the values calculated according to the standard recommendations with introduction, if necessary, of modifications to those recommendations.
Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces
NASA Astrophysics Data System (ADS)
Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung
2013-01-01
The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).
Method for reducing formation of electrically resistive layer on ferritic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, James M.
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surfacemore » region that has been depleted of silicon relative to a remainder of the steel.« less
Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.
de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf
2010-01-01
An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.
2015-02-15
Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less
Investigation of using steel slag in hot mix asphalt for the surface course of flexible pavements
NASA Astrophysics Data System (ADS)
Nguyen, Hien Q.; Lu, Dai X.; Le, Son D.
2018-04-01
The rapid development of heavy industry in Vietnam leads to the establishments of steel industry. Steel slag, a by-product of steelwork industry, under Vietnamese’s law, was considered as a deleterious solid waste which needed to be processed and landfilled. However, this has changed recently, and steel slag is now seen as a normal or non-deleterious solid waste, and has been studied for reuse in the construction industry. In this study, steel slag was used, as a replacement for mineral aggregate, in hot mix asphalt. Two hot mix asphalt mixtures with an equivalent nominal aggregate size of 12.5 (C12.5) and 19 mm (C19) were produced using steel slag. In addition, one conventional hot mix asphalt mixture of C19 was produced using mineral aggregate for comparison purpose. Investigation in laboratory condition and trial sections was carried out on Marshall tests, surface roughness, skid resistance, and modulus of the pavement before and after applying a new surface course of hot mix asphalt. The study showed that all steel slag asphalt mixtures passed the Marshall stability and flow test requirements. The skid resistance of steel slag hot mix asphalt mixtures for the surface course satisfied the Vietnamese specification for asphalt. Moreover, the pavement sections with the surface course of steel slag hot mix asphalt showed a considerable higher modulus than that of the conventional one. Only the roughness of the surface course paved with C19 did not pass the requirement of the specification.
Structural Evaluation of Radially Expandable Cardiovascular Stents Encased in a Polyurethane Film
NASA Technical Reports Server (NTRS)
Trigwell, Steve; De, Samiran; Sharma, Rajesh; Mazumder, Malay K.; Mehta, Jawahar L.
2004-01-01
A method of encasing cardiovascular stents with an expandable polyurethane coating has been developed to provide a smooth homogeneous inner wall allowing for a confluent growth of endothelial cells. In this design, the metal wire stent structure is completely covered by the polyurethane film minimizing biocorrosion of the metal (stainless steel or nitinol), and providing a homogeneous surface for surface treatment and incorporation of various eluting drugs to prevent platelet aggregation while supporting endothelialization. The polyurethane surface was treated with a helium plasma for sterilization and promotes growth of cells. The paper details the performance of the coated film to expand with the metal stent up to 225 % during deployment. We present stress/strain behavior of polyurethane films, and subsequent plasma treatment of the surface and the adhesion of the coating to the stent structure upon expansion. A film of less than 25 tm was found to be sufficient for corrosion resistance and flexibility without producing any excess stress on the stent structure. Straining the film to 225 % and plasma modification did not affect the mechanical and surface properties while allowing for improved biocompatibility as determined by the critical surface tension, surface chemistry, and roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A new steel jacket design by Aker Engineering A.S. suitable for use in construction of platforms in 50m of water results in a 47% saving of steel as compared to conventional designs. Modifications of the design extends its usefulness to 150m of water with steel savings of 20 to 30%. A node design is used, and all nodes except the top and bottom ones are identical. The basic shape is a tetrahedron and all steel members are cylindrical with the same outside diameter but with different wall thickness where more or less strength is needed. Other advantages of this designmore » are ease and speed of fabrication. The tetratower is compared with the more conventional 8-legged jacket. (BLM)« less
Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria.
Chen, Shiqiang; Li, Yuan; Cheng, Y Frank
2017-07-13
Surface nanopatterning of metals has been an effective technique for improved performance and functionalization. However, it is of great challenge to fabricate nanostructure on carbon steels despite their extensive use and urgent needs to maintain the performance reliability and durability. Here, we report a one-step anodization technique to nanopattern a carbon steel in 50 wt.% NaOH solution for highly effective anti-adhesion by sulphate reducing bacteria (SRB), i.e., Desulfovibrio desulfuricans subsp. desulfuricans (Beijerinck) Kluyver and van Niel. We characterize the morphology, structure, composition, and surface roughness of the nanostructured film formed on the steel as a function of anodizing potential. We quantify the surface hydrophobicity by contact angle measurements, and the SRB adhesion by fluorescent analysis. The optimal anodization potential of 2.0 V is determined for the best performance of anti-adhesion of SRB to the steel, resulting in a 23.5 times of reduction of SRB adhesion compared to bare steel. We discuss the mechanisms for the film formation on the steel during anodization, and the high-performance anti-adhesion of bacteria to nanopatterned steels. Our technique is simple, cost-effective and environment-friendly, providing a promising alternative for industry-scale surface nanopatterning of carbon steels for effective controlling of bacterial adhesion.
Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan
2017-12-15
Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature
Sharpe, M. D.; Fagan, C.; Shmayda, W. T.; ...
2018-03-28
The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.
NASA Astrophysics Data System (ADS)
Peng, Rong; Fu, Licai; Zhou, Lingping
2016-12-01
A surface nanocrystalline 1090 steel has been fabricated by using sandblasting technique. The surface average grain size was about 78 nm. The high strain rate and strain in sandblasting were main reasons for surface nanocrystallization. The wear resistance of 1090 steel was considerably enhanced as grain size decreased. The microstructure and hardness of contact zones before and after wear tests have been examined by XRD, SEM and TEM. Except the higher hardness, the results demonstrated that parts of ferrite transferred to cementite and martensite. It was additional beneficial for improving the wear resistance of 1090 steel as the grain size decreased.
NASA Astrophysics Data System (ADS)
Zesers, A.; Krūmiņš, J.
2014-09-01
Concrete as a material is brittle, but adding short steel fibers to the matrix can significantly improve its mechanical properties. The chemical adhesion between concrete and steel is weak, and the fiber pullout properties are based on fiber geometry and frictional forces. Single-fiber pullout tests of steel fibers with toothed and smooth surfaces were performed in order to characterize the effects of fiber surface facture. The influence of fiber form, surface facture, and fiber orientation (relative to the pullout direction) on the fiber withdrawal resistance and the maximum pullout force were studied.
Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, M. D.; Fagan, C.; Shmayda, W. T.
The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.
Effect of temperature on the passivation behavior of steel rebar
NASA Astrophysics Data System (ADS)
Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke
2014-05-01
Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.
Use of a CCD camera for the thermographic study of a transient liquid phase bonding process in steel
NASA Astrophysics Data System (ADS)
Castro, Eduardo H.; Epelbaum, Carlos; Carnero, Angel; Arcondo, Bibiana
2001-03-01
The bonding of steel pieces and the development of novel soldering methods, appropriate to the extended variety of applications of steels nowadays, bring the sensing of temperature an outstanding role in any metallurgical process. Transient liquid phase bonding (TLPB) processes have been successfully employed to join metals, among them steels. A thin layer of metal A, with a liquids temperature TLA, is located between two pieces of metal B, with a liquids temperature TLB higher than TLA. The joining zone is heated up to a temperature T(TLA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...
Kumar, D Dinesh; Kaliaraj, Gobi Saravanan
2018-01-01
Protecting from wear and corrosion of many medical devices in the biomedical field is an existing scientific challenge. Surface modification with multilayer ZrN/Cu coating was deposited on medical grade stainless steel (SS) and titanium substrates to enhance their surface properties. Structural results revealed that the ZrN/Cu coatings are highly crystalline and uniform microstructure on both the substrates. Dry and wet tribological measurements of the coated titanium substrate exhibit enhanced wear resistance and low friction coefficient due to the improved microstructure. Similarly, the corrosion resistance was exceptionally improved on titanium substrates, resulting from the high inertness of coating to the SBF electrolyte solution. Antibacterial activity and epifluorescence results signify the effective killing of pathogens by means of ion release killing as well as contact killing mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diffusion and phase change characterization by mass spectrometry
NASA Technical Reports Server (NTRS)
Koslin, M. E.; White, F. A.
1979-01-01
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.
NASA Astrophysics Data System (ADS)
Gupta, Rajeev Nayan; Harsha, A. P.
2018-02-01
The present work deals with the study of tribo-pair interaction in lubricated sliding contacts. By considering the environmental issues, the sunflower oil was extracted from the sunflower seeds and used as a base lubricant. The two types of the nanoadditives, i.e., CuO and CeO2, varying concentrations from 0.10 to 0.50% w/v were used to formulate the nanolubricants. The compatibility/synergism of the nanoadditives was examined from antifriction and antiwear behavior study with four-ball tester. Also, sunflower oil was modified by the chemical method to improve its fatty acid structure. A comparative tribological and compatibility study was also done in modified oil at similar concentration levels with both types of nanoparticles. The tribological test result exhibits 0.10% w/v concentration of the nanoadditive as optimum due to lowest wear scar and coefficient of friction. Higher concentration of the nanoparticles impaired the base oil performance. Different analytical tools were used to characterize the oil modification and worn surfaces. Moreover, the role of subsurface of the contacting material with the tribological performance has been reported.
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Ambashta, R. D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P. K.
2017-04-01
Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and (31P and 23Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, 31P NMR does not detect any major modifications in the network structure. However, the 23Na NMR spectra indicate migration of Na+ ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.
NDE of Space Shuttle Solid Rocket Motor field joint
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.
1987-01-01
One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Laser surface texturing for high control of interference fit joint load bearing
NASA Astrophysics Data System (ADS)
Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.
2017-10-01
Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
NASA Astrophysics Data System (ADS)
Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.
2017-09-01
The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.
DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation
NASA Astrophysics Data System (ADS)
Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.
2018-06-01
The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.
Surface modification of ceramic and metallic alloy substrates by laser raster-scanning
NASA Astrophysics Data System (ADS)
Ramos Grez, Jorge Andres
This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400 microns. Above that height, dendrites appear to shift towards the [100] growth direction driven by the thermal gradient and solidification front velocity. This research demonstrated that surface modification by high speed raster-scanning a high power laser beam under controlled atmospheric conditions is a feasible and versatile technique that can accomplish diverse purposes involving metallic as well as ceramic surfaces.
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
Measurement of intergranular attack in stainless steel using ultrasonic energy
Mott, Gerry; Attaar, Mustan; Rishel, Rick D.
1989-08-08
Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori
2013-01-01
Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less
Mössbauer study on the deformed surface of high-manganese steel
NASA Astrophysics Data System (ADS)
Nasu, S.; Tanimoto, H.; Fujita, F. E.
1990-07-01
Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.
Magnetic Particle Recovery of Serial Numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Utrata; M.J. Johnson
One method used by crime labs to recover obliterated serial numbers in steel firearms (ferrous samples) is the magnetic particle technique. The use of this method is predicated on the detection of metal deformation present under stamped serial numbers after the visible stamp has been removed. Equipment specialized for this detection is not used in these attempts; a portable magnetic yoke used typically for flaw detection on large weldments or structures, along with dry visible magnetic powders, have been the tools of criminologists working in this area. Crime labs have reported low success rates using these tools [1, 2]. Thismore » is not surprising when one considers that little formal development has apparently evolved for use in such investigations since the publication of seminal work in this area some time ago [3]. The aim of this project is to investigate specific aspects of magnetic particle inspection for serial number recovery. This includes attempts to understand the magnetic characteristics of different steels that affect their performance in the test, such as varying results for carbon steels and alloy steels after different thermal and forming treatments. Also investigated are the effects of the nature of the sample magnetization (AC, rectified DC, and true DC) and the use of various detection media, such as visible powders and fluorescent sprays, on test outcome. Additionally, some aspects of surface preparation of firearm samples prior to number recovery were included in this work. The scope of this report includes a brief overview of the magnetic particle inspection method in general and its applications to forensic serial number recovery. This is followed by a description of how such investigations were simulated on lab samples, including a look at how the microstructure of a given steel will affect its performance in the test. Investigations into the serial number recovery in a series of ferromagnetic firearms (both steel and certain stainless steels) will then be presented. Recommendations for modifications to current approaches used in crime labs for serial number recovery, as well as suggestions for future work, conclude this document.« less
Kloss, S; Müller, U; Oelschläger, H
2005-09-01
Facilities for the manufacturing of pharmaceutical drug substances on the pilot-plant and the industrial scale as well as chemical reactors and vessels used for chemical work-up mainly consist of alloyed stainless steel. The influence of the alloy composition and the surface condition, i.e. of the roughness of the stainless-steel materials, on the adsorption of structurally diverse steroidal substances and, hence, on the quality of the products was studied. In general, stainless-steel alloys with smooth, not so rough surfaces are to be favored as reactor material. However, it was demonstrated in this study that, on account of the weak interaction between active substances and steel materials, mechanically polished materials of a medium roughness up to approx. 0.4 microm can be employed instead of the considerably more cost-intensive electrochemically polished stainless-steel surfaces. The type of surface finishing up to a defined roughness, then, has no influence on the quality of these pharmaceutical products. Substances that, because of their molecular structure, can function as "anions" in the presence of polar solvents, are adsorbed on very smooth surfaces prepared by electrochemical methods, forming an amorphous surface film. For substances with this structural characteristics, the lower-cost mechanically polished reactor materials of a medium roughness up to approx. 0.5 microm should be used exclusively.
Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.
2016-04-01
The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
NASA Astrophysics Data System (ADS)
Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.
2017-02-01
Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.
NASA Astrophysics Data System (ADS)
Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub
2017-10-01
The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.
Factors affecting microbial adhesion to stainless steel and other materials used in medical devices.
Verran, J; Whitehead, K
2005-11-01
The role of biofilm in medical device associated infections is well documented. Biofilms are more resistant to antibiotics than planktonic cells, these are extremely difficult to treat. Prevention strategies include efforts to insert implants under stringent aseptic conditions, and also encompass the development of novel materials which interfere with the initial attachment of microorganisms to the surface of the device. Microbial cells also attach onto hygienic surfaces in the hospital setting, and thereby pose a cross-infection problem. In this case, vigorous cleaning and sanitizing regimes may be employed in addition to any surface modifications. Many factors affect the initial attachment of organisms to inert substrata, and their subsequent retention or removal/detachment, including the physical and chemical nature and location of the substratum, the type of organic material and microorganisms potentially fouling the surface, and the nature of the interface (solid-liquid in the body; solid-air on environmental surfaces). Focusing on one factor, surface topography, it is apparent that many further variables need to be defined in order to fully understand the interactions occurring between the cell and surface. It is therefore important when modifying one substratum surface property in order to reduce adhesion, to also consider other potentially confounding factors.
Oxidation of stainless steel 316 and Nitronic 50 in supercritical and ultrasupercritical water
NASA Astrophysics Data System (ADS)
Rodriguez, David; Chidambaram, Dev
2015-08-01
Corrosion of stainless steel 316 and Nitronic 50 exposed to supercritical and ultrasupercritical water was studied as a function of temperature and exposure time. Post-exposure surface analysis was performed using Raman and X-ray photoelectron spectroscopies to determine the chemistry of the oxides formed as a result of the exposure. When exposed to supercritical water, Nitronic 50 and stainless steel 316 were observed to have similar weight gains; however, stainless steel 316 was found to gain less weight than Nitronic 50 in exposure tests performed in ultrasupercritical water. Stainless steel 316 developed surface films primarily composed of iron oxides, while the surface of Nitronic 50 contained a mixture of iron, chromium and manganese oxides. Based on these analyses, the differences in weight gain and oxidation characteristics of the two materials are attributed to the higher concentration of Cr and Mn in Nitronic 50 compared to stainless steel 316.
Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.
2015-06-06
Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less
Yin, Siaw Hui; Kuppuswamy, R
2009-01-10
Chemical etching, which is the most sensitive method to recover obliterated serial numbers on metal surfaces, has been practised quite successfully in forensic science laboratories all over the world. A large number of etchants suitable for particular metal surfaces based on empirical studies is available in the literature. This article reviews the sensitivity and efficacy of some popular etchants for recovering obliterated marks on medium carbon steel (0.31% C with ferrite-pearlite microstructure) used in automobile parts. The experiments involved engraving these carbon steel plates with some alphanumeric characters using a computer controlled machine "Gravograph" and erasing them to several depths below the bottom of their engraving depth. Seven metallographic reagents of which most of them were copper containing compounds were chosen for etching. The erased plates were etched with every one of these etchants using swabbing method. The results have revealed that Fry's reagent comprising cupric chloride 90 g, hydrochloric acid 120 mL and water 100mL provided the necessary contrast and was concluded to be the most sensitive. The same reagent was recommended by earlier workers for revealing strain lines in steel surfaces. Earlier, another reagent containing 5 g copper sulphate, 60 mL water, 30 mL (conc.) ammonium hydroxide, and 60 mL (conc.) hydrochloric acid was proved to be more sensitive to restore erased marks on low carbon steel (0.1% C with ferrite-pearlite structure) [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32]. Thus the sensitivity of the etching reagent on steel surfaces appeared to be dependent on the content of carbon in the steel.
NASA Astrophysics Data System (ADS)
Saurín, N.; Minami, I.; Sanes, J.; Bermúdez, M. D.
2016-03-01
The present work evaluates different materials and surface finish in the presence of newly designed, hydrophobic halogen-free room temperature ionic liquids (RTILs) as lubricants. A reciprocating tribo-tester was employed with steel-ceramic and steel-thermosetting epoxy resin contacts under boundary lubrication conditions. Four different tetraalkylphosphonium organosilanesulfonate RTILs provided excellent lubricating performance, with friction coefficients as low as 0.057, and non-measurable wear for the higher roughness machine-finish stainless steel flat against sapphire balls, in the case of the lubricants containing the 2-trimethylsilylethanesulfonate anion. Higher friction coefficients of the order of 0.1 and wear volumes of the order of 10-4 mm3 were observed for the lower roughness fine-finished flat stainless steel surface. All RTILs prevent wear of epoxy resin against stainless steel balls, with friction coefficients in the range of 0.03-0.06. EDX analysis shows the presence of RTILs on the stainless steel surfaces after the tribological tests. Under the experimental conditions, no corrosive processes were observed.
NASA Astrophysics Data System (ADS)
Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan
2018-05-01
Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.
NASA Astrophysics Data System (ADS)
Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.
2014-08-01
The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
Collins, P J; Nayak, M K; Kopittke, R
2000-08-01
Four organophosphate insecticides, azamethiphos, fenitrothion, chlorpyrifos-methyl, and pirimiphos-methyl, were tested as surface treatments on concrete (porous surface) and galvanized steel (nonporous surface) panels (0.3 by 0.3 m) against adults of three Liposcelid psocid spp.--Liposcelis bostrychophila Badonnel, Liposcelis entomophila (Enderlein), and Liposcelis paeta Pearman. Residual efficacy of these chemicals was assessed at 30 +/- 1 degrees C, 70 +/- 2% RH, and a photoperiod of 12:12 (L:D) h from 1 d after treatment (0 wk) and thereafter at weeks 1, 2, 4, 6, and 8, and then every 4 wk up to week 40. Mortality was recorded at exposure periods of 6 h and then every 24 h until end-point was achieved. L. bostrychophila was the most susceptible species to the organophosphates tested, followed by L. paeta and L. entomophila. We conclude that for long-term protection, azamethiphos is the preferred organophosphate against L. bostrychophila (up to 36 wk on steel and 24 wk on concrete storage surfaces) and L. paeta infestations only on steel surface (up to 28 wk). None of the four organophosphates tested, however, would provide long-term protection against L. paeta on concrete surface and against L. entomophila infestations on either concrete or steel storage surfaces.
Reduction of CaO and MgO Slag Components by Al in Liquid Fe
NASA Astrophysics Data System (ADS)
Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.
2018-05-01
This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.
Tribological and microstructural characteristics of ion-nitrided steels
NASA Technical Reports Server (NTRS)
Spalvins, T.
1983-01-01
Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 304 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided.
Surface Fatigue Tests Of M50NiL Gears And Bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1994-01-01
Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.
Bacteria adhere to food products and processing surfaces that can cross-contaminate other products and work surfaces (Arnold, 1998). Using materials for food processing surfaces that are resistant to bacterial contamination could enhance food safety. Stainless steel, although sus...
Surface enhancement of cold work tool steels by friction stir processing with a pinless tool
NASA Astrophysics Data System (ADS)
Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.
2014-03-01
The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.
Process for dezincing galvanized steel
Morgan, W.A.; Dudek, F.J.; Daniels, E.J.
1998-07-14
A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.
Process for dezincing galvanized steel
Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.
1998-01-01
A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.
Curtis, Colin K; Marek, Antonin; Smirnov, Alex I
2017-01-01
This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852
NASA Astrophysics Data System (ADS)
Garcia-Giron, A.; Romano, J. M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S. S.
2018-05-01
The paper reports a laser patterning method for producing surfaces with dual scale topographies on ferritic stainless steel plates that are hardened by low temperature plasma surface alloying. Nitrogen and carbon based gasses were used in the alloying process to obtain surface layers with an increased hardness from 172 HV to 1001 HV and 305 HV, respectively. Then, a nanosecond infrared laser was used to pattern the plasma treated surfaces and thus to obtain super-hydrophobicity, by creating cell- or channel-like surface structures. The combined surface hardening and laser patterning approach allowed super-hydrophobic surfaces to be produced on both nitrided and carburised stainless steel plates with effective contact angles higher than 150°. The hardened layers on nitrided samples had cracks and was delaminated after the laser patterning while on plasma carburised samples remained intact. The results showed that by applying the proposed combined approach it is possible to retain the higher hardness of the nitrided stainless steel plates and at the same time to functionalise them to obtain super-hydrophobic properties.
Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers
NASA Astrophysics Data System (ADS)
Torrisi, L.; Visco, A. M.; Campo, N.
2004-10-01
Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.
Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...
2016-04-06
Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Chernenko, N. L.
2016-03-01
The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.
NASA Astrophysics Data System (ADS)
Solehudin, Agus; Nurdin, Isdiriayani
2014-03-01
Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.
Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.
Wan, Hongxia; Song, Dongdong; Zhang, Dawei; Du, Cuiwei; Xu, Dake; Liu, Zhiyong; Ding, De; Li, Xiaogang
2018-06-01
The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH 4 + existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel. Copyright © 2018 Elsevier B.V. All rights reserved.
PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION
Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...
NASA Astrophysics Data System (ADS)
Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.
2018-04-01
Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.
Aggregation of a Monoclonal Antibody Induced by Adsorption to Stainless Steel
Bee, Jared S.; Davis, Michele; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.
2014-01-01
Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in some pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause of aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second-order in steel surface area and zero-order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was five-fold increase in carbonyl groups due to protein oxidation. PMID:19725039
Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Selvaduray, Guna
2005-01-01
The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.
Tribological and microstructural characteristics of ion-nitrided steels
NASA Technical Reports Server (NTRS)
Spalvins, T.
1983-01-01
Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635
Application of RNAMlet to surface defect identification of steels
NASA Astrophysics Data System (ADS)
Xu, Ke; Xu, Yang; Zhou, Peng; Wang, Lei
2018-06-01
As three main production lines of steels, continuous casting slabs, hot rolled steel plates and cold rolled steel strips have different surface appearances and are produced at different speeds of their production lines. Therefore, the algorithms for the surface defect identifications of the three steel products have different requirements for real-time and anti-interference. The existing algorithms cannot be adaptively applied to surface defect identification of the three steel products. A new method of adaptive multi-scale geometric analysis named RNAMlet was proposed. The idea of RNAMlet came from the non-symmetry anti-packing pattern representation model (NAM). The image is decomposed into a set of rectangular blocks asymmetrically according to gray value changes of image pixels. Then two-dimensional Haar wavelet transform is applied to all blocks. If the image background is complex, the number of blocks is large, and more details of the image are utilized. If the image background is simple, the number of blocks is small, and less computation time is needed. RNAMlet was tested with image samples of the three steel products, and compared with three classical methods of multi-scale geometric analysis, including Contourlet, Shearlet and Tetrolet. For the image samples with complicated backgrounds, such as continuous casting slabs and hot rolled steel plates, the defect identification rate obtained by RNAMlet was 1% higher than other three methods. For the image samples with simple backgrounds, such as cold rolled steel strips, the computation time of RNAMlet was one-tenth of the other three MGA methods, while the defect identification rates obtained by RNAMlet were higher than the other three methods.
Bae, Young-Min; Baek, Seung-Youb; Lee, Sun-Young
2012-02-15
Various bacteria including food spoilage bacteria and pathogens can form biofilms on different food processing surfaces, leading to potential food contamination or spoilage. Therefore, the survival of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Cronobacter sakazakii) in different forms (adhered cells, biofilm producing in TSB, biofilm producing at RH 100%) on the surface of stainless steel and stored at various relative humidities (RH 23%, 43%, 68%, 85%, and 100%) at room temperature for 5 days was investigated in this study. Additionally, the efficacy of chemical sanitizers (chlorine-based and alcohol-based commercial sanitizers) on inhibiting various types of biofilms of E. coli O157:H7 and S. aureus on the surface of stainless steel was investigated. The number of pathogens on the surface of stainless steel in TSB stored at 25°C for 7 days or RH 100% at 25°C for 7 days was significantly increased and resulted in the increase of 3 log(10) CFU/coupon after 1 day, and these levels were maintained for 7 days. When stainless steel coupons were stored at 25°C for 5 days, the number of pathogens on the surface of stainless steel was significantly reduced after storage at RH 23%, 43%, 68%, and 85%, but not at 100%. When the bacteria formed biofilms on the surface of stainless steel in TSB after 6 days, the results were similar to those of the attached form. However, levels of S. aureus and C. sakazakii biofilms were more slowly reduced after storage at RH 23%, 43%, 68%, and 85% for 5 days than were those of the other pathogens. Formation of biofilms stored at RH 100% for 5 days displayed the highest levels of resistance to inactivation. Treatment with the alcohol sanitizer was very effective at inactivating attached pathogens or biofilms on the surface of stainless steel. Reduction levels of alcohol sanitizer treatment ranged from 1.91 to 4.77 log and from 4.35 to 5.35 log CFU/coupon in E. coli O157:H7 and S. aureus, respectively. From these results, the survival of pathogens contaminating the surfaces of food processing substrates such as stainless steel varied depending on RH and attachment form. Also, alcohol-based sanitizers can be used as a potential method to remove microbial contamination on the surfaces of utensils, cooking equipment, and other related substrates regardless of the microbial attached form. Copyright © 2012 Elsevier B.V. All rights reserved.
Deformation relief induced by scratch testing on the surface of Hadfield steel
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
The paper is devoted to deformation relief formed on the surface of Hadfield steel while scratching under a linearly increasing load. The deformation relief is analyzed to detect regions with microfracture of the surface layer of Hadfield steel. Crack generation regions coincide with regions of the most intense acoustic emission (AE) signal. Single and multiple slip bands are observed in various grains of the material. As the load increases, slip bands thicken and grains with multiple slip are more frequent.
Numerical-experimental investigation of load paths in DP800 dual phase steel during Nakajima test
NASA Astrophysics Data System (ADS)
Bergs, Thomas; Nick, Matthias; Feuerhack, Andreas; Trauth, Daniel; Klocke, Fritz
2018-05-01
Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material. This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes. Investigation is done via a finite element model using experimentally validated material data for a DP800 dual phase steel. Numerical simulation allows for the investigation of load paths with respect to stress states, strain rates and temperature evolution, which cannot be easily observed in physical experiments. Stress triaxiality and the Lode parameter are used to describe the stress states. Their evolution during the Nakajima tests serves as an indicator for damage evolution. The large variety of sheet metal forming specific load paths in Nakajima tests allows a comprehensive evaluation of damage for deep drawing. The results of the numerical simulation conducted in this project and further physical experiments will later be used to calibrate a damage model for simulation of deep drawing processes.
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna
2015-01-01
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining. PMID:26482559
NASA Astrophysics Data System (ADS)
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna
2015-10-01
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.
Asegbeloyin, Jonnie N.; Ejikeme, Paul M.; Olasunkanmi, Lukman O.; Adekunle, Abolanle S.; Ebenso, Eno E.
2015-01-01
The corrosion inhibition activity of a newly synthesized Schiff base (SB) from 3-acetyl-4-hydroxy-6-methyl-(2H)-pyran-2-one and 2,2'-(ethylenedioxy)diethylamine was investigated on the corrosion of mild steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. Ultraviolet-visible (UV-vis) and Raman spectroscopic techniques were used to study the chemical interactions between SB and mild steel surface. SB was found to be a relatively good inhibitor of mild steel corrosion in 1 M HCl. The inhibition efficiency increases with increase in concentration of SB. The inhibition activity of SB was ascribed to its adsorption onto mild steel surface, through physisorption and chemisorption, and described by the Langmuir adsorption model. Quantum chemical calculations indicated the presence of atomic sites with potential nucleophilic and electrophilic characteristics with which SB can establish electronic interactions with the charged mild steel surface.
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; ...
2015-10-20
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extrememore » temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. Furthermore, to illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.« less
NASA Astrophysics Data System (ADS)
Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.
2007-10-01
Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.
Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP
NASA Astrophysics Data System (ADS)
Kim, M. S.; Kwak, J. H.; Kim, J. S.; Liu, Y. H.; Gao, N.; Tang, N.-Y.
2009-08-01
In general, Si-bearing advanced high-strength steels (AHSS) possess excellent mechanical properties but poor galvanizability. The galvanizability of a transformation-induced plasticity (TRIP) steel 1180TRIP containing 2.2 pct Mn and 1.7 pct Si and a complex phase steel 1180CP containing 2.7 pct Mn and 0.2 pct Si was extensively studied using a galvanizing simulator. The steel coupons were annealed at fixed dew points in the simulator. The surface features of the as-annealed steel coupons, together with galvanized and galvannealed coatings, were carefully examined using a variety of advanced analysis techniques. It was found that various oxides formed on the surface of these steels, depending on the steel composition and on the dew point control. Coating quality was good at 0 °C dew point but deteriorated as the dew point decreased to -35 °C and -65 °C. Based on the findings, guidance was provided for improving galvanizability by adjusting the Mn:Si ratio in steel compositions according to the dew point.
Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.
Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar
2014-11-17
Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface Modification by Atmospheric Pressure Plasma for Improved Bonding
NASA Astrophysics Data System (ADS)
Williams, Thomas Scott
An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the silicon wafers in the presence of activated carbon or in a freezer at -22°C. The enhancement of adhesive bond strength and durability for carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal surface and an increase in the concentration of hydroxyl groups in the oxide film. Following plasma activation, the total hydroxyl species concentration on stainless steel increased from 31% to 57%, while aluminum exhibited an increase from 4% to 16% hydroxyl species. Plasma activation of the surface led to an increase in bond strength of the different surfaces by up to 150% when using Cytec FM300 and FM300-2 epoxy adhesives. Wedge crack extension tests following plasma activation revealed cohesive failure percentages of 97% for carbon-fiber/epoxy composite bonded to stainless steel, and 96% for aluminum bonded to itself. The bond strength and durability of the substrates correlated with changes in the specific surface chemistry, not the wetting angle or the morphological properties of the material. This suggests that enhanced chemical bonding at the interface was responsible for the improvement in mechanical properties following plasma activation. The surface preparation of polymers and composites using atmospheric pressure plasmas is a promising technique for replacing traditional methods of surface preparation by sanding, grit blasting or peel ply. After oxygen plasma activation and joining the materials together with epoxy, one observes 100% cohesive failure within the cured film adhesive. Depending on the material, the lap shear strength can be increased several fold over that achieved by either solvent wiping or abrasion. The trends in adhesion with plasma exposure time do not correlate well with surface wetting or roughness; instead they correlate with the fraction of the polymer surface sites that are converted into carboxylic acid groups.
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh
2017-01-01
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C1s peak and the appearance of organic peaks (N1s, P2p, O1s) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend. PMID:29301224
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend.
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh; Nam, Nguyen Dang
2017-12-31
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C 1s peak and the appearance of organic peaks (N 1s , P 2p , O 1s ) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend.
Anodized Steel Electrodes for Supercapacitors.
Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan
2016-03-09
Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.
Modified blank ammunition injuries.
Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan
2009-12-15
Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups, the longest penetration depth (lead projectile: 6.434 cm; steel projectile 8.608 cm) was recorded in the only skin simulant coated block. And the penetration depth of skin simulant and 100% cotton police shirt coated model was 5.870 cm for lead projectile; 8.440 cm for steel projectile. According to penetration results, national and international legislations and production standards should be re-evaluated in order to prevent the modification of blank weapons and ammunitions. There are three methods for preventing modification of blank weapons: completely closed barrel structure; intersected restrain pieces application; eccentric barrel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano
2009-01-01
The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.
77 FR 49708 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... done in accordance with Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51... 30, 2012. (ii) Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51-00-00...
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
Rapid production of hollow SS316 profiles by extrusion based additive manufacturing
NASA Astrophysics Data System (ADS)
Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo
2018-05-01
Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.
Tribological study on rapeseed oil with nano-additives in close contact sliding situation
NASA Astrophysics Data System (ADS)
Gupta, Rajeev Nayan; Harsha, A. P.; Singh, Sagar
2018-02-01
The present work deals with the tribological evaluation of three types of nano-additives, i.e., copper oxide (CuO; ≈ 151.2 nm), cerium oxide (CeO2; ≈ 80 nm) and polytetrafluoroethylene (PTFE; ≈ 90.4 nm) with rapeseed oil under steel-steel sliding contacts. The nano-additives concentrations in the base oil were 0.1, 0.25 and 0.5% w/v for the lubricant formulation. Further, the rapeseed oil was also epoxidized by a chemical method and the tribological behavior was compared with the base oil (unmodified oil) at similar nano-additives concentrations. The ASTM standards were followed for the study of wear preventive and extreme-pressure analysis of nanolubricants, and it was carried out using four-ball tester. In the antiwear test, CeO2 and PTFE nano-additives have shown the significant reduction in the wear scar diameter at the concentration of 0.1% w/v. In the extreme-pressure test, 0.5% w/v concentration was optimum for oxide nanoparticles; however, PTFE nanoparticles did not show positive effect with both the base oils. Different characterization techniques were employed to confirm the oil modification and for the study of the worn surfaces.
Efficient machining of ultra precise steel moulds with freeform surfaces
NASA Astrophysics Data System (ADS)
Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.
2013-09-01
Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.
NASA Astrophysics Data System (ADS)
Kalin, M.; Simič, R.
2013-04-01
Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.
Oriented microtexturing on the surface of high-speed steel cutting tool
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2016-11-01
Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, O.N.; Hawk, J.A.; Schrems, K.K.
2006-06-01
A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steelsmore » were comparable to that of AISI 440C steel, but the impact resistance was much improved.« less
NASA Astrophysics Data System (ADS)
Polekhina, N. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.; Astafurova, E. G.; Chernov, V. M.; Leontyeva-Smirnova, M. V.
2015-10-01
The effect of high-temperature thermomechanical treatment (TMT) with the deformation in the austenitic region on the features of microstructure, phase transformations and mechanical properties of low-activation 12% Cr ferritic-martensitic steel EK-181 is investigated. It is established, that directly after thermomechanical treatment (without tempering) the sizes and density of V(CN) particles are comparable with those after a traditional heat treatment (air quenching and tempering at 720°C, 3 h), where these particles are formed only during tempering. It causes the increasing of the yield strength of the steel up to ≈1450 MPa at room temperature and up to ≈430 MPa at the test temperature T = 650°C. The potential of microstructure modification by this treatment aimed at improving heat resistance of steel is discussed.
Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R
2011-07-01
Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.
A real-time surface inspection system for precision steel balls based on machine vision
NASA Astrophysics Data System (ADS)
Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen
2016-07-01
Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.
New-type steel plate with ultra high crack-arrestability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.
1995-12-31
A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less
NASA Astrophysics Data System (ADS)
Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun
2017-08-01
We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.
DOT National Transportation Integrated Search
2014-11-01
High-strength low-alloy steel (HSLA) weathering : steels are the conventional choice for fracture-critical members in bridge construction. HSLA : weathering steels offer superior corrosion : resistance, important in Floridas humid and : coastal en...
Design and construction of precast piles with stainless reinforcing steel.
DOT National Transportation Integrated Search
2014-02-01
The service life of prestressed concrete piles is, in part, dictated by the time required to corrode the steel once : chloride ions are at the surface of the steel. Stainless steel materials, although limited in availability in strand : form, have a ...
Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching
NASA Astrophysics Data System (ADS)
Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi
2016-08-01
Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.
Preliminary studies concerning Hadfield steel behavior during laser beam welding in pulsating regime
NASA Astrophysics Data System (ADS)
David, Ion; Şerban, Viorel-Aurel
2007-08-01
This work proposes to analyze the behavior of austenitic manganese - Hadfield steel during laser beam welding in continuous regime. In order to limit the number of experiments, a 2 4 type factorial experiment was used, with 16 assays, after a frequently used program matrix for these situations. Fusion lines at different service regimes, as well as head to head welds were performed. Microhardness measurements and microstructure modifications that appear as an effect of laser irradiation are also analyzed.
Immobilization of mesoporous silica particles on stainless steel plates
NASA Astrophysics Data System (ADS)
Pasqua, Luigi; Morra, Marco
2017-03-01
A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.
Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kusmic, D.; Van Thanh, D.
2017-02-01
This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.
Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel
NASA Astrophysics Data System (ADS)
Markwitz, A.; Kennedy, J.
2017-10-01
A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.
Grafting of ionic liquids on stainless steel surface for antibacterial application.
Pang, Li Qing; Zhong, Li Juan; Zhou, Hui Fang; Wu, Xue E; Chen, Xiao Dong
2015-02-01
Stainless steel (SS) is favored for many uses due to its excellent chemical resistance, thermal stability and mechanical properties. Biofilms can be formed on stainless steel and may lead to serious hygiene problems and economic losses in many areas, e.g. food processing, public infrastructure and healthcare. For the first time, our work endeavored to make SS having antibacterial properties, ionic liquids (ILs) were grafted on SS surface via silane treatment followed by thiol-ene click reaction. The chemical structure and composition of the ILs grafted stainless-steel coupon surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial activity has been investigated, and the results showed that the ILs grafted SS surface exhibited significant antibacterial effects against Gram-negative Escherichia coli. Additionally, the results obtained here indicated that the ILs used here having bromide anion showed much better antibacterial activity against E. coli than the corresponding ILs with tetrafluoroborate and hexafluorophosphate as anions. These results obtained here can help to design novel and more efficient stainless steel having antibacterial surface. Copyright © 2014 Elsevier B.V. All rights reserved.
Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M
2016-06-23
Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
77 FR 31762 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
..., Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy Current, of the Boeing 707, 720... Subject 51-00-00 Figure 24, Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy...
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The solar cell module process development activities in the areas of surface preparation are presented. The process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies that focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel glass structure that should exceed the 20 year life goal of the low cost silicon array program. High efficiency cell development was carried out in the development of the tandem junction cell and a modification of the TJC called the front surface field cell. Cell efficiencies in excess of 16 percent at AM1 have been attained with only modest fill factors. The transistor-like model was proposed that fits the cell performance and provides a guideline for future improvements in cell performance.
NASA Astrophysics Data System (ADS)
Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.
2018-01-01
The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.
NASA Astrophysics Data System (ADS)
Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.
2010-05-01
Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.
Formation of Me-O-Si covalent bonds at the interface between polysilazane and stainless steel
NASA Astrophysics Data System (ADS)
Amouzou, Dodji; Fourdrinier, Lionel; Maseri, Fabrizio; Sporken, Robert
2014-11-01
In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se2 (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me-O-Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr-O-Si and Fe-O-Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solehudin, Agus, E-mail: asolehudin@upi.edu; Nurdin, Isdiriayani
2014-03-24
Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAHmore » concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id
2014-03-24
The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less
Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation
Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo
2014-01-01
The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350–450 °C and 200–800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings. PMID:24957126
Laser modification of thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.
1987-08-01
Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.
High Altitude Supersonic Target (HAST), Phase 2
1974-08-01
consists of a padded cradle assembly and a tubular steel stand with lockable swivel casters on the front wheels . c Tne recovery module lifting handle is...eds no modification of the ordnance fired at it in order to function. With the HAST system a target will be provided to evaluate the most advanced...Components were tested under environmental extremes. With the completion of the preflight readiness tests and with modification incorporated during the
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Spalvins, T.
1977-01-01
Friction and wear experiments were conducted with ion plated films of germanium and silicon on the surface of 52100 bearing steel both dry and in the presence of mineral oil. Both silicon and germanium were found to reduce wear, with germanium being more effective than silicon. An optimum film thickness of germanium for minimum wear without surface crack formation was found to be approximately 400 nanometers (4000 A). The presence of silicon and germanium on the 52100 bearing steel surface improved resistance to oxidation.
NASA Astrophysics Data System (ADS)
Shulga, A. V.
2013-03-01
The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic-martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.
Improved fracture toughness corrosion-resistant bearing material
NASA Technical Reports Server (NTRS)
Bamberger, E. N.; Nahm, A. H.
1986-01-01
A development program was performed to establish whether a corrosion-resistant bearing material, such as a 14Cr steel, could be modified to allow carburization, thereby providing the excellent fracture toughness characteristics feasible with this process. The alloy selected for investigation was AMS 5749. Several modifications were made including the addition of a small amount of nickel for austenite stabilization. While some promising results were achieved, the primary objective of an acceptable combination of case hardness and microstructure was not attained. Because the high chromium content presents a serious problem in achieving a viable carburizing cycle, a number of experimental steels having lower chromium contents (8 to 12%) were produced in laboratory quantities and evaluated. The results were basically the same as those initially obtained with the modified AMS 5749. Corrosion tests were performed on AMS 5749, AISI M50, and 52100 bearing steels as well as some of the lower chromium steels. These tests showed that a reduced chromium level (10 to 12%) provided essentially the same corrosion protection as the 14Cr steels.
Spreading of lithium on a stainless steel surface at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Spreading of lithium on a stainless steel surface at room temperature
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...
2015-11-10
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Restoration of obliterated engraved marks on steel surfaces by chemical etching reagent.
Song, Qingfang
2015-05-01
Chemical etching technique is widely used for restoration of obliterated engraved marks on steel surface in the field of public security. The consumed thickness of steel surface during restoration process is considered as a major criterion for evaluating the efficiency of the chemical etching reagent. The thinner the consumed thickness, the higher the restoration efficiency. According to chemical principles, maintaining the continuous oxidative capabilities of etching reagents and increasing the kinetic rate difference of the reaction between the engraved and non-engraved area with the chemical etching reagent can effectively reduce the consumed steel thickness. The study employed steel surface from the engine case of motorcycle and the car frame of automobile. The chemical etching reagents are composed of nitric acid as the oxidizer, hydrofluoric acid as the coordination agent and mixed with glacial acetic acid or acetone as the solvents. Based on the performance evaluation of three different etching reagents, the one composed of HNO3, HF and acetone gave the best result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Spreading of lithium on a stainless steel surface at room temperature
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.
2016-01-01
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.
The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.
2018-06-01
Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.
A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.
Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk
2010-10-01
In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.
Surface analysis of 316 stainless steel treated with cold atmospheric plasma
NASA Astrophysics Data System (ADS)
Williams, David F.; Kellar, Ewen J. C.; Jesson, David A.; Watts, John F.
2017-05-01
The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m-1 to >72 mJ m-1 after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.
NASA Astrophysics Data System (ADS)
Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.
2013-09-01
The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.
Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN
NASA Astrophysics Data System (ADS)
Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar
2013-05-01
Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
A New Green Ionic Liquid-Based Corrosion Inhibitor for Steel in Acidic Environments.
Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdel Rahman O
2015-06-17
This work examines the use of new hydrophobic ionic liquid derivatives, namely octadecylammonium tosylate (ODA-TS) and oleylammonium tosylate (OA-TS) for corrosion protection of steel in 1 M hydrochloric acid solution. Their chemical structures were determined from NMR analyses. The surface activity characteristics of the prepared ODA-TS and OA-TS were evaluated from conductance, surface tension and contact angle measurements. The data indicate the presence of a double bond in the chemical structure of OA-TS modified its surface activity parameters. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements, scanning electron microscope (SEM), Energy dispersive X-rays (EDX) analysis and contact angle measurements were utilized to investigate the corrosion protection performance of ODA-TS and OA-TS on steel in acidic solution. The OA-TS and ODA-TS compounds showed good protection performance in acidic chloride solution due to formation of an inhibitive film on the steel surface.
Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel
NASA Astrophysics Data System (ADS)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.
2018-04-01
In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.
Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel
NASA Astrophysics Data System (ADS)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.
2018-06-01
In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.
Cavitation erosion resistance of diamond-like carbon coating on stainless steel
NASA Astrophysics Data System (ADS)
Cheng, Feng; Jiang, Shuyun
2014-02-01
Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.
Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2017-10-01
In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.
Influence of femtosecond laser produced nanostructures on biofilm growth on steel
NASA Astrophysics Data System (ADS)
Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg
2017-10-01
Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.
Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions.
Dhowlaghar, Nitin; De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Schilling, Mark W; Chang, Sam; Cheng, Wen-Hsing; Sharma, Chander S
2018-04-01
The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22 °C and 10 °C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing Salmonella biofilms cells on a stainless steel surface containing catfish mucus extract. Growth and biofilm formation of all Salmonella strains increased with higher concentrations of catfish mucus extract at both 10 °C and 22 °C. In 15 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on stainless steel surface reached to 3.5 log CFU/cm 2 at 10 °C or 5.5 log CFU/cm 2 at 22 °C in 7 days. In 375 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on the stainless steel surface reached 4.5 log CFU/cm 2 at 10 °C and 6.5 log CFU/cm 2 at 22 °C in 7 days. No differences were observed between Salmonella strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by Salmonella Blockley (7175) in catfish mucus extract was less (P < 0.05) on buna-N rubber when compared to stainless steel, polyethylene and polyurethane surfaces. Salmonella biofilm cells were not detectable on the stainless steel surface after treatment with a mixture of disinfectants but were still present when single compound disinfectants were used. Copyright © 2017 Elsevier Ltd. All rights reserved.
Surface characteristics of Bacillus cereus and its adhesion to stainless steel.
Peng, J S; Tsai, W C; Chou, C C
2001-04-11
The ability of a Bacillus cereus strain, isolated from spoiled milk, to adhere to the surface of stainless steel chips was evaluated during its growth in diluted tryptic soy broth (DTSB). The number of cells that adhered to the surface increased markedly as the culture reached the end of the log phase and entered stationary phase, and continued to increase with further incubation. The surface properties of cells from the log, stationary, and late stationary phases were measured by hydrophobic interaction chromatography (HIC) and electrostatic interaction chromatography (ESIC). It was found that surface hydrophobicity of B. cereus vegetative cells from the late stationary phase was the highest followed by those from the stationary phase and the log phase cultures. While the vegetative cells prepared from stationary phase and log phase cultures, respectively, had the highest and the lowest surface charges. Adhesion of B. cereus vegetative cells to stainless steel was positively correlated with the cell surface hydrophobicity (R = 0.979). Surface hydrophobicity and surface positive charge noted on the spores harvested from diluted tryptic soy agar (DTSA) and Mn2+-tryptone glucose extract agar were higher than those harvested from the sucrose or lactose-added DTSA. A wide variation in the surface charge values was noted on the surface of various spores prepared from cultures grown on the four different media tested, while their ability to adhere to stainless steel chips in phosphate buffered saline (PBS) showed no significant difference (p > 0.05). Similarly, the number of spores or vegetative cells adhering to stainless steel suspended in PBS, milk or diluted milk (1000 x) did not differ significantly (p > 0.05).
Development of a surface topography instrument for automotive textured steel plate
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang
2010-08-01
The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.
Oliveira, Adauê S; Kaizer, Marina R; Azevedo, Marina S; Ogliari, Fabrício A; Cenci, Maximiliano S; Moraes, Rafael R
2015-11-03
This study was designed to apply (super)hydrophobic crosslinked coatings by means of a sol-gel process on the surface of orthodontic devices and investigate the potential effect of these coatings in reducing the early retention of oral biofilm. Two organosilane-based hydrophobic solutions (HSs) were prepared containing hexadecyltrimethoxysilane diluted in ethanol (HS1) or 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane diluted in dimethyl sulfoxide (HS2). Stainless steel plates and ceramic discs were coated with HS1 or HS2 and heated at 150 °C for 2 h for condensation of a crosslinked SiO x network. Organosilane coatings were applied after previous, or no, surface sandblasting. Commercial stainless steel and ceramic brackets were used to evaluate oral biofilm retention after 12 h or 24 h of biofilm growth, using a microcosm model with human saliva as the inoculum. Surface roughness analysis (Ra, μm) indicated that sandblasting associated with organosilane coatings increased roughness for stainless steel brackets only. Analysis of the water contact angle showed that the stainless steel surface treated with HS1 was hydrophobic (~123°), while the ceramic surface treated with HS2 was superhydrophobic (~155°). Biofilm retention after 24 h was significantly lower in groups treated with hydrophobic coatings. An exponential reduction in biofilm accumulation was associated with increased water contact angle for both stainless steel and ceramic at 24 h. Application of (super)hydrophobic coatings on the surface of stainless steel and ceramic orthodontic devices might reduce the retention of oral biofilm.
49 CFR 173.334 - Organic phosphates mixed with compressed gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) onto a non-yielding surface, such as concrete or steel, impacting at the packaging's weakest point. (e...-yielding surface, such as concrete or steel, impacting at the weakest point. [67 FR 51651, Aug. 8, 2002, as...
78 FR 14122 - Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto the existing shell. Steel mills...
76 FR 78698 - Proposed Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...
NASA Astrophysics Data System (ADS)
Blanco, J.; Salas, Y.; Jiménez, C.; Pineda, Y.; Bustamante, A.
2017-12-01
In some Engineering fields, we need that conductive materials have a mechanic performance and specific electrical for that they maintain conditions or corrosive attack if they are in the environment or if they are closed structure. The stainless steels have an inert film on their surface and it has the function to act in contrast to external agents who generates the corrosion, especially for stings, spoiling the film until to fail. We found a solution taking into account the electrical performance and the anticorrosive; into the process we put recovering of specific oxides on, stainless steel using the method of sputtering with Unbalanced Magnetron, (UBM) varying the oxygen in the reactive environment. The coating obtained had a thickness one micron approximately and we saw on serious structural uniformity [1]. The corrosion resistance was evaluated through the potentiodynamics polarization and electrochemical spectroscopy impedance in NACL according to the standard. The cathode protection is the most important method employed for the corrosion prevention of metallic structures in the soil or immersed on the water. The electrical resistivity was evaluated with the four points methods and it showed a behaviour of diode type in some substrates with a threshold potential in several volts. We noticed a simple resistance solution when it was analysed in the Nyquist graphics whit the Electrochemical Impedance Spectroscopy technique. With on equivalent circuit, for this reason we determinate a variation in the corrosion speed in almost two orders of magnitude when we analysed the potentiodynamics curve by Tafel approximation. The data obtained and analysed show that this type of surface modification maintains the conductivity condition at the interface, improving the resistance in relation whit the corrosion of these elements where the recovering allowed the ionic flow wished for overcoming threshold voltage, acting as an insulator in different cases.
NASA Astrophysics Data System (ADS)
Lu, Hao; Huang, Xiaochen; Hou, Runfang; Li, D. Y.
2018-07-01
Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young's modulus, hardness, corrosion potential, and tribological behavior.
NASA Astrophysics Data System (ADS)
Lu, Hao; Huang, Xiaochen; Hou, Runfang; Li, D. Y.
2018-04-01
Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young's modulus, hardness, corrosion potential, and tribological behavior.
DEVELOPMENT OF FERRITIC STEELS FOR HIGH TEMPERATURE SODIUM SERVICE. PART II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.J.; Sheffield, G.S.; Birkle, A.J.
1963-11-30
The suitability of modified 2.25 Cr--1 Mo alloy steels for sodium service was investigated. Eleven modifications were examined to establish heat treatment behavior, mechanical properties, resistance to decarburization in liquid sodium, and weldability. Two of the alloys, 4S8 (2.25 Cr--1 Mo--0.6 V-- 0.1 Cb) and 4S4 (2.25 Cr--1 Mo-0.8 V), were found to have the best combination of properties. When heat treated by normalizing and tempering, their mechanical properties to 1200 deg F were found to be comparable to those of Type 304 stainless steel. A low chromium, nickel-base alloy was developed for welding the steels, to give either fullymore » heat treatable joints or to apply the butter-weld technique useful in field welding. It provides high joint efficiency without sacrifice in joint ductility. (auth)« less
NASA Astrophysics Data System (ADS)
Olasunkanmi, Lukman O.; Sebona, Mabina Frans; Ebenso, Eno E.
2017-12-01
Two pyridazine derivatives, namely, 6-phenyl-3(2H)-pyridazinone (P1) and 3-chloro-6-phenylpyrazine (P2) were investigated for their influence on mild steel corrosion in 0.5 M HCl, using Tafel polarization, electrochemical impedance spectroscopy (EIS), surface morphology, FTIR and UV-vis techniques. Quantum chemical calculations were also conducted to corroborate experimental findings. P1 was found to accelerate corrosion at low concentrations but exhibits inhibitive action at higher concentrations, attaining 61% inhibition efficiency at 1.25 mM. The inhibitive action of P2 increases with increasing concentration from 88% at 0.1 mM to 96% at 1.25 mM as deduced from EIS measurements. Both compounds are mixed type inhibitors. P2 seems to display chiefly anodic inhibitive effects. The adsorption of P2 on mild steel surface obeys the Langmuir adsorption isotherm and involved competitive physisorption and chemisorption mechanisms. Scanning electron microscopy analyses of steel surfaces in acid-inhibitor solutions showed that both compounds protect mild steel surface effectively at 1.25 mM. FTIR and UV-vis spectroscopic analyses revealed that Nsbnd H, Cdbnd O, and Csbnd N functional groups of the pyridazine derivatives are actively involved in adsorption of the molecules onto steel surface. Quantum chemical parameters showed that the higher inhibition efficiency of P2 compared to P1 might be related to better electron acceptance ability of P2.
NASA Astrophysics Data System (ADS)
Velayi, Elmira; Norouzbeigi, Reza
2018-05-01
Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.
2017-03-01
Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.
More About Cutting Tool For Shaving Weld Beads
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A.; Davis, William M.
1996-01-01
Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.
NASA Astrophysics Data System (ADS)
Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong
2017-12-01
In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.
McLucas, E; Moran, M T; Rochev, Y; Carroll, W M; Smith, T J
2006-01-01
The surface properties of vascular devices dictate the initial postimplantation reactions that occur and thus the efficacy of the implantation procedure. Over the last number of years, a number of different stent designs have emerged and stents are generally polished to a mirror finish during the manufacturing procedure. This study sought to investigate the effect of stainless steel surface roughness on endothelial cell gene expression using an appropriate cell culture in vitro assay system. Stainless steel discs were roughened by shot blasting or polished by mechanical polishing. The surface roughness of the treated and untreated discs was determined by atomic force microscopy (AFM). Cells were seeded on collagen type 1 gels and left to attach for 24 h. Stainless steel discs of varying roughness were then placed in contact with the cells and incubated for 24 h. RNA extractions and quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed to determine the expression levels of candidate genes in the treated cells compared to suitable control cells. E-selectin and vascular cellular adhesion molecule (VCAM-1) were found to be significantly up-regulated in cells incubated with polished and roughened samples, indicating endothelial cell activation and inflammation. This study indicates that the surface roughness of stainless steel is an important surface property in the development of vascular stents.
NASA Astrophysics Data System (ADS)
Meng, T. X.; Guo, Q.; Xi, W.; Ding, W. Q.; Liu, X. Z.; Lin, N. M.; Yu, S. W.; Liu, X. P.
2018-03-01
Double glow plasma surface alloying was applied to prepare chromizing layer in the surface of AISI440B stainless steel. Prior to chromizing, the stainless steel was etched by microwave plasma chemical vapor deposition to change the surface morphology and composition, and then heated for chromizing at 950 °C for 3 h. The cyclical oxidation of steel after chromizing was carried out at 900 °C for 100 h. Scanning electron microscopy, glow discharge optical emission spectrometer and X-ray diffractometer were used to characterize microstructure, composition and phase structure of alloyed and oxidized samples. The results show that the surface was composed of the Cr-rich top layer and Cr23C6, Cr7C3 and {Cr,Fe}7C3 below layer after chromizing. The bonding between the chromizing layer and the substrate after etching treatment was obviously strengthened. AISI440B steel shows a poor oxidation resistance and the weight gain oxidized for 100 h was up to 31.1 mg/cm2. Weight gains for chromizing and etching + chromizing treated samples were 0.67 mg/cm2 and 8 mg/cm2, respectively. Both oxidized surfaces of chromizing and etching + chromizing were composed of Cr2O3, but the oxide scale of etching + chromizing treated samples was more compact than that of samples without etching.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1974-01-01
The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.
The Effects of Propellant Burn on the Surface Composition of Gun Steel
1981-11-01
ion beam analysis method has been used to characterize the depths and compositions of the outer, sub-micron layers of gun steel surfaces that have...STEEL A. Niiler R. Birkmire S. E. Caldwell November 1981 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY...1L162618AH80 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research § Development Command Ballistic Research Laboratory ATTN: DRDAR-BL. APG
Surface Analytical Techniques for Microbiologically Influenced Corrosion. A Review
1994-01-01
chemical process, oil and gas. and power generation industries and the U.S. pitting of stainle steels is 1h military have acknowledged the occurrence...ony on metal surface. photosynthetic biofilm may influence ennoblement of the open circuit potential of type 316L stainless steel so that it approaches...at depths within an estuarine biofilm on type 304 stainless steel . fur-oxidizing. iron-red ing. sulfate- -producing, and hydr en-producing b
Brown, Donald W.; Wagh, Arun S.
2003-05-27
There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Utility Boilers, Cement Manufacturing Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing..., Asphalt Batch Plants, Iron and Steel Manufacturing Plants, and Driers were submitted on October 17, 1994...
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4, 1996, and... Adipic Acid Manufacturing Plants, Cement Manufacturing Plants, Asphalt Batch Plants, Iron and Steel...
High-speed measurements of steel-plate deformations during laser surface processing.
Jezersek, Matija; Gruden, Valter; Mozina, Janez
2004-10-04
In this paper we present a novel approach to monitoring the deformations of a steel plate's surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (+/-7 microm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.
On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature
NASA Astrophysics Data System (ADS)
Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.
2016-12-01
The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.
Thermomechanical modelling of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.
2018-03-01
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
Accelerated corrosion of stainless steel in thiocyanate-containing solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorius, P Chris; Li, Wen
2012-09-19
It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, whichmore » is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.« less
Effect of elastic excitations on the surface structure of hadfield steel under friction
NASA Astrophysics Data System (ADS)
Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.
2008-02-01
The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.
NASA Astrophysics Data System (ADS)
Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.
2018-03-01
The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.
Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles
NASA Astrophysics Data System (ADS)
Liu, Aiguo; Guo, Mianhuan; Hu, Hailong
2010-08-01
Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.
Steel Slag and Shredded Tires as Media for Blind Inlets to Improve Water Quality
NASA Astrophysics Data System (ADS)
Gonzalez, J. M.; Smith, D. R.; Livingston, S.
2015-12-01
Off-site transport of contaminants through surface runoff affects water quality. Blind inlets are proven conservation practices for reducing surface runoff, and consequently reducing nutrient loadings from small agricultural closed depressions to water bodies. Gravel is the most widely used blind inlet media to reduce flow, but not to sorb contaminants from the water. Readily available byproducts, such as steel slag and shredded tires, could be used as alternative media in blind inlets to sorb nutrients and pesticides from surface runoff. Sorption isotherms were performed to investigate the sorption capabilities of steel slag and shredded tires for phosphate and atrazine in electrolyte background solutions containing either 10 mM CaCl2 or KCl. Results of this research demonstrated that phosphate and atrazine were irreversibly sorbed by the steel slag and shredded tires. The steel slag increased the pH solution increased about 4 pH units after the sorption step; while the pH of the solution with shredded tires remained the same. Desorption of the phosphate and atrazine was low from the steel slag and shredded tires, respectively. Thus, the above results suggest that the steel slag and shredded tires can potentially be used as media to sorb phosphate and atrazine, respectively.
NASA Astrophysics Data System (ADS)
Loto, Roland Tolulope
2018-03-01
Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.
Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.
Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan
2018-03-29
Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.
NASA Astrophysics Data System (ADS)
Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.
2017-06-01
This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.
NASA Astrophysics Data System (ADS)
Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad
2011-01-01
This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.
NASA Astrophysics Data System (ADS)
Karmiol, Zachary; Chidambaram, Dev
2016-05-01
This work investigates two austenitic stainless steels, Nitronic-50 and stainless steel 316, for use in both subcritical and supercritical water (SCW) conditions. The mechanical characteristics of the materials were investigated using slow strain rate testing in a SCW test loop under the following conditions: nitrogen at ambient temperature and pressure, liquid water at 473 K (200 °C) and 8 MPa, liquid water at 573 K (300 °C) and 15 MPa, and SCW at 698 K (425 °C) and 27 MPa. The surfaces of the failed samples were characterized using Raman spectroscopy, and X-ray photoelectron spectroscopy. Nitronic-50 was found to have superior mechanical strength characteristics at all conditions compared to stainless steel 316. At all elevated temperature conditions, stainless steel 316 was found to have a surface film consisting of iron oxides, while the surface film of Nitronic-50 predominantly consisted of nickel-iron spinel.
The Effect of Bi on the Selective Oxide Formation on CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Oh, Jonghan; Cho, Lawrence; Kim, Myungsoo; Kang, Kichul; De Cooman, Bruno C.
2016-11-01
The effect of Bi addition on the selective oxidation and the galvanizability of CMnSi transformation-induced plasticity (TRIP) steels was studied by hot dip galvanizing laboratory simulations. Bi-added TRIP steels were intercritically annealed at 1093 K (820 °C) and galvanized in a 0.22 wt pct Al-containing Zn bath. The oxide morphology was investigated by scanning electron microscopy, transmission electron microscopy, and 3D atom probe tomography. Bi formed a Bi-enriched surface layer during the intercritical annealing. A decrease of the oxygen permeability was observed with increasing Bi addition. The internal oxidation was suppressed in Bi-added CMnSi TRIP steel. The surface oxide morphology was changed from a continuous layer morphology to a more lens-shaped morphology. The galvanizability of the Bi-added TRIP steel was improved by the combination of the change of the oxide morphology and the dissolution of the Bi-enriched surface layer during immersion of the strip in the Zn bath.
NASA Astrophysics Data System (ADS)
Kim, Seon-Hong; Park, Sun-Ah; Kim, Jung-Gu; Shin, Kee-Sam; He, Yinsheng
2015-03-01
The alloying effect of Cu for a flue gas desulfurization materials was investigated using the electrochemical methods in the modified green death solution and the surface analyses. The test results demonstrated that the densely formed rust layer with high metallic Cu content improves the corrosion resistance of Cu-containing steel in the flue gas desulfurization (FGD) environment. The rust layer on the surface of the 0.02 wt% Cu steel, which has an insufficient Cu content, was less protective than others. The 0.05 wt% Cu steel represented the highest corrosion resistance due to the formation of the densely formed rust layer with optimum Cu content. Because the free standing Cu2S precipitates had the insoluble characteristic in highly acidic solution, it produced the relatively porous Cu-enriched layer on the 0.08 wt% Cu steel surface. From these phenomena, the corrosion resistance of specimen decreased as the Cu content of specimen increased from 0.05 wt% to 0.08 wt%.
Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 1
2010-07-01
dropped below 9.5. Corrosion of the Reinforcing Steel: Steel reinforcement is normally placed within a 2 inches of a concrete surface. Under most...alkalinity of the concrete . The steel is also protected by the relatively high electrical resistance of the concrete . Still, corrosion of the...pressures to force the concrete /reinforcement steel bond to break. Corrosion of the steel will cause spalling, section loss of the steel, and eventually
Standards for the Mobility Common Operational Picture (M-COP): Elements of Ground Vehicle Maneuver
2007-07-01
saturated 0009 waterlogged 0010 wet Surface_Slippery Indication that a surface is slippery . Examples: wet grass, and wet clay soil. 1 boolean...Enumeration Values or Units† 0022 cypress 0023 deciduous_unspecified 0024 dry_crops 0025 elm 0026 eucalyptus 0027 evergreen_unspecified 0028 filao...internal structural material. 1 integer 0024 concrete_steel 0137 steel 0155 wood Surface_Slippery Indication that a surface is slippery
Dittmer, Marc Philipp; Hellemann, Carolina Fuchslocher; Grade, Sebastian; Heuer, Wieland; Stiesch, Meike; Schwestka-Polly, Rainer; Demling, Anton Phillip
2015-04-10
The purpose of the present study was to investigate and compare early biofilm formation on biomaterials, which are being used in contemporary fixed orthodontic treatment. This study comprised 10 healthy volunteers (5 females and 5 males) with a mean age of 27.3 +-3.7 years. Three slabs of different orthodontic materials (stainless steel, gold and ceramic) were placed in randomized order on a splint in the mandibular molar region. Splints were inserted intraorally for 48 h. Then the slabs were removed from the splints and the biofilms were stained with a two color fluorescence assay for bacterial viability (LIVE/DEAD BacLight-Bacterial Viability Kit 7012, Invitrogen, Mount Waverley, Australia). The quantitative biofilm formation was analyzed by using confocal laser scanning microscopy (CLSM). The biofilm coverage was 32.7 ± 37.7% on stainless steel surfaces, 59.5 ± 40.0% on gold surfaces and 56.8 ± 43.6% on ceramic surfaces. Statistical analysis showed significant differences in biofilm coverage between the tested materials (p=0.033). The Wilcoxon test demonstrated significantly lower biofilm coverage on steel compared to gold (p=0.011). Biofilm height on stainless steel surfaces was 4.0 ± 7.3 μm, on gold surfaces 6.0 ± 6.6 μm and on ceramic 6.5 ± 6.0 μm. The Friedman test revealed no significant differences between the tested materials (p=0.150). Pairwise comparison demonstrated significant differences between stainless steel and gold (p=0.047). Our results indicate that initial biofilm formation seemed to be less on stainless steel surfaces compared with other traditional materials in a short-term observation. Future studies should examine whether there is a difference in long-term biofilm accumulation between stainless steel, gold and ceramic brackets.
Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.
Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip
2016-04-06
The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.
30 CFR 57.7050 - Tool and drill steel racks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...
30 CFR 57.7050 - Tool and drill steel racks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...
30 CFR 57.7050 - Tool and drill steel racks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...
30 CFR 57.7050 - Tool and drill steel racks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...
30 CFR 57.7050 - Tool and drill steel racks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...
Nakamura, Keisuke; Takada, Yukyo; Yoda, Masanobu; Kimura, Kohei; Okuno, Osamu
2008-03-01
This study was an examination of the galvanic corrosion of ferritic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, in contact with a Fe-Pt magnet. The surface area ratio of each stainless steel to the Fe-Pt magnet was set at 1/1 or 1/10. Galvanic corrosion between the stainless steels and the magnet was evaluated by the amount of released ions and the electrochemical properties in 0.9% NaCl solution. Although each stainless steel showed sufficient corrosion resistance for clinical use, the amount of ions released from each tended to increase when the stainless steel was in contact with the magnet. When the surface area ratio was reduced to 1/10, the amount of Fe ions released from the stainless steels increased significantly more than when there was no contact. Since contact with the magnet which possessed an extremely noble potential created a very corrosive environment for the stainless steels, 447J1 was thus the recommended choice against a corrosion exposure as such.
DOT National Transportation Integrated Search
2013-09-01
The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck... Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4... Steel Manufacturing Plants, and Driers were submitted on October 17, 1994 and adopted on September 14...
ERIC Educational Resources Information Center
Schmidtke, N. W.; Averill, D. W.
1978-01-01
Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
NASA Astrophysics Data System (ADS)
Messali, M.; Lgaz, H.; Dassanayake, R.; Salghi, R.; Jodeh, S.; Abidi, N.; Hamed, O.
2017-10-01
Guar gum is a water-soluble, nonionic, nontoxic, biodegradable and biocompatible hetero polysaccharide with unlimited number of industrial applications. In this study, guar gum was evaluated as a natural inhibitor of carbon steel (CS) corrosion in 2 M H3PO4 solution. The characteristic effect of guar gum on the steel corrosion was studied at concentration ranges from 0.1 to 1.0 g/L at 298-328 K by weight loss and electrochemical methods. Obtained results showed that, the inhibition efficiency (η%) of guar gum decreased slightly when the temperature increased and increased by increasing the inhibitor concentration reaching the maximum value at 1.0 g/L. The adsorption of guar gum on steel surface was studied by the Temkin adsorption model. EIS measurements indicate that the values of the polarization resistance (Rp) of CS in presence of guar gum are significantly higher than that of the untreated surface. Steel surface coated with guar gum was analyzed by SEM, FTIR and XRD. The quantum calculations using DFT method and Molecular Dynamic (MD) simulations were performed to define the relationship between inhibition performance of investigated compound and their molecular structure.
The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding
NASA Astrophysics Data System (ADS)
Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.
The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.
Flexible shielding system for radiation protection
NASA Technical Reports Server (NTRS)
Babin, A.
1972-01-01
Modular construction of low cost flexible radiation shielding panels consists of water filled steels cans, zinc bromide windows, turntable unit, master-slave manipulators, and interlocking lead bricks. Easy modifications of shielding wall thicknesses are obtained by rearranging overall geometry of portable components.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
2008-05-30
Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel . Tribo. Lett., 19(2):119-125, 2005. D-2 ...with a stainless steel parallel plate configuration as shown in figure 1. Due to the radial variation of the local shear stress T in the parallel...using a force transducer that is mounted below the surface. B-1 Exploded View Stainless Steel Plate Lower Fixture Microscale View Figure 1:
NASA Astrophysics Data System (ADS)
Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer
2018-03-01
The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.
Carburizing treatment of low alloy steels: Effect of technological parameters
NASA Astrophysics Data System (ADS)
Benarioua, Younes
2018-05-01
The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.
Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces.
Phan, Hanh T M; Bartz, Jason C; Ayers, Jacob; Giasson, Benoit I; Schubert, Mathias; Rodenhausen, Keith B; Kananizadeh, Negin; Li, Yusong; Bartelt-Hunt, Shannon L
2018-06-01
The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent. Copyright © 2018 Elsevier B.V. All rights reserved.
Characterization of Surface Modification of Polyethersulfone Membrane
USDA-ARS?s Scientific Manuscript database
Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...
High temperature gas nitriding and tempering in 17Cr-1Ni-0.5C-0.4V steel
NASA Astrophysics Data System (ADS)
Kong, J. H.; Lee, D. J.; On, H. Y.; Park, S. J.; Kim, S. K.; Kang, C. Y.; Sung, J. H.; Lee, H. W.
2010-12-01
High temperature gas nitriding (HTGN) at 1050 °C and tempering of a 17Cr-1Ni-0.5C-0.4V (CNV) steel were experimentally investigated. The phases appearing in the surface layer of the HTGN-treated steel were martensite and austenite with mostly Cr2N precipitates that were formed by permeated nitrogen, and a small amount of Cr23C6 and VN precipitates. The reverse migration of carbon hindered the diffusion of nitrogen when nitrogen permeated from the surface to the interior, which resulted in the accumulation of nitrogen on the outermost surface. The strong affinity between nitrogen and chromium atoms induced the diffusion of chromium from the interior to the surface, leading to the substitution of Cr23C6 for Cr2N. After tempering the HTGN-treated steel at 500 °C, the dense precipitates of Cr2N and the increased martensite phase in the surface layer led to secondary hardening, which increased the hardness value up to 901 Hv.
Leidy, R B; Wright, C G; Dupree, H E
1987-07-01
Known amounts of acephate, chlorpyrifos, and diazinon were applied to Formica, unfinished plywood, stainless steel, and vinyl tile. Cotton-ball and dental wick materials were dipped in 2-propanol and "swiped" over the treated surface area two time. More acephate was found on the second swipe compared to the first from vinyl tile, similar amounts on both swipes from plywood, and less on the second swipe from formica and stainless steel. The ratio of chlorpyrifos on Swipe 1 compared to Swipe 2 found with cotton-ball on both formica and stainless steel surfaces was equivalent (6:1), but a considerable difference was seen when two dental wick swipes were used. Residues of diazinon removed from formica and stainless steel were equivalent, regardless of the swiping material used. Residues of chlorpyrifos were detected by taking swipes of surfaces in two restaurants and a supermarket up to 6 mo after a prescribed application by a commercial pest control firm. The data show that measurable amounts of chloropyrifos can be detected on surfaces not treated with the insecticide for at least 6 mo.
Bacterial Phosphating of Mild (Unalloyed) Steel
Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.
2000-01-01
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888
Articles comprising ferritic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, James M.
An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the articlemore » of manufacture is a fuel cell interconnect for a solid oxide fuel cell.« less
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.
2011-07-01
Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction, there are formed nanocrystalline austenitic structures possessing high effective strength and wear resistance on the wear surface of these steels.
Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.
Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L
2016-07-01
In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. Copyright © 2016. Published by Elsevier B.V.
Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water
NASA Astrophysics Data System (ADS)
Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu
2017-04-01
The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Enos, David
The majority of existing dry storage systems used for spent nuclear fuel (SNF) consist of a welded 304 stainless steel container placed within a passively-ventilated concrete or steel overpack. More recently fielded systems are constructed with dual certified 304/304L and in some cases, 316 or 316L. In service, atmospheric salts, a portion of which will be chloride bearing, will be deposited on the surface of these containers. Initially, the stainless steel canister surface temperatures will be high (exceeding the boiling point of water in many cases) due to decay heat from the SNF. As the SNF cools over time, themore » container surface will also cool, and deposited salts will deliquesce to form potentially corrosive chloride-rich brines. Because austenitic stainless steels are prone to chloride-induced stress corrosion cracking (CISCC), the concern has been raised that SCC may significantly impact long-term canister performance. While the susceptibility of austenitic stainless steels to CISCC in the general sense is well known, the behavior of SCC cracks (i.e., initiation and propagation behavior) under the aforementioned atmospheric conditions is poorly understood.« less
Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings
NASA Astrophysics Data System (ADS)
Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee
2013-12-01
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.
NASA Astrophysics Data System (ADS)
Ji, Woo-Soo; Jang, Young-Wook; Kim, Jung-Gu
2011-06-01
Flue gas desulfurization systems (FGDs) are operated in severely corrosive environments that cause sulfuric acid dew-point corrosion. The corrosion behavior of low-alloy steels was tested using electrochemical techniques (electrochemical impedance spectroscopy, potentiodynamic tests, potentiostatic tests), and the corrosion products were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical results showed that alloying W with small amounts of Sb, Cu, and Co improves the corrosion resistance of steels. The results of surface analyses showed that the surface of the steels alloyed with W consisted of W oxides and higher amounts of Sb and Cu oxides. This suggests that the addition of W promotes the formation of a protective WO3 film, in addition to Sb2O5 and CuO films on the surface.
Changes Found on Run-In and Scuffed Surfaces of Steel Chrome Plate, and Cast Iron
NASA Technical Reports Server (NTRS)
Good, J. N.; Godfrey, Douglas
1947-01-01
A study was made of run-in and scuffed steel, chrome-plate, and cast-iron surfaces. X-ray and electron diffraction techniques, micro-hardness determinations, and microscopy were used. Surface changes varied and were found to include three classes: chemical reaction, hardening, and crystallite-size alteration. The principal chemical reactions were oxidation and carburization.
NASA Astrophysics Data System (ADS)
Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun
2018-03-01
Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.
The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie
2010-11-01
A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.
Interface Reaction of Nickel-Oxide on Steel.
In vacuum or an argon atmosphere, nickel oxide reacts with steel at 600 to 750C to form a surface layer of gamma- NiFe which affords corrosion protection to the steel in air and warm humid conditions. (Author)
NASA Astrophysics Data System (ADS)
Pinto, M.; Calderón, X.; Mejía Ospino, E.; Cabanzo, R.; Poveda, Juan C.
2016-02-01
In the present study, optical microscopy in stereoscopic mode coupled to laser- induced p-breakdown spectroscopy (μ-LIBS) was applied for analysing HP-40 steel samples. microLIBS (μ-LIBS) is a new growing area that employs low energy laser pulses for the generation of plasma emission, which allow the realization of localized microanalysis [1]. This new LIBS instrument was used for the surface characterization of the steel samples in the spectral range from 356 to 401nm. Elements such as Cr, Ni, Fe, Nb, Pb, Mo, C, Mn and Si in the steel samples were investigated. The results allowed the construction of elemental distribution profiles of the samples. Complementary the HP-40 steel samples were superficially characterized by Scanning Electron Microscope (SEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Hogan, Benjamin T.; Pendleton, Mark
2014-09-01
The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces onlymore » the H{sub 2} ESD yield by a factor 2.« less
Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong
2018-01-01
In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied. PMID:29462937
Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong
2018-02-16
In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.
Slickenside formation by surface melting during the mechanical excavation of rock
NASA Astrophysics Data System (ADS)
Spray, John G.
This work discusses the nature and origin of slickensides generated by the impingement of high-carbon steel teeth on sandstone during the mechanical excavation of boulders by back shovel and front loader. The slickensides show a number of morphological features that can be related to the direction and sense of tooth displacement, including striations, carrot-shaped grooves, curved fractures and steps. Scanning and transmission electron microscopy reveal that the slickensides comprise a layer of Fe-enriched, glass-bonded gouge (≤150 μm thick). The estimated shear stresses and velocities realized at the tooth-rock interface (175 MPa at 1 m s -1 for the back shovel and 100 MPa at 2 m s -1 for the front loader) indicate that a heat production of 150-200 MW m -2 and mean surface temperature of 1400-1700°C were achieved. XRF and microprobe analyses confirm that localized bulk melting and Fe-enrichment of the surface occurred during slip. The excavator-generated slickensides provide an analogue for the effects of a single co-seismic event in the evolution of a shallow, relatively dry fault surface. From a simple consideration of energetics under these conditions, it is apparent that localized surface melting should be commonplace. Such an analogue may be useful as a guide for recognizing melt features in natural slickensides, features that would otherwise tend to be obscured during lengthier periods of interseismic surface modification.
Laser Surface Melting of Stainless Steel Anodes for Reduced Hydrogen Outgassing (Postprint)
2016-12-29
including baking [8– 12], vacuum baking [8,11,13,14], polishing [8,14], and surface treatments to create oxide or other protective surface films. Elec...quantity [15] and may necessitate an additional bake to thoroughly degas the surface [8]. The purpose of the work described here was to determine the...9] M. Bernardini, Air bake -out to reduce hydrogen outgassing from stainless steel, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 16 (1998) 188–193.4
Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA
NASA Technical Reports Server (NTRS)
Boothe, R. E.
2003-01-01
This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.
Surface electrical properties of stainless steel fibres: An AFM-based study
NASA Astrophysics Data System (ADS)
Yin, Jun; D'Haese, Cécile; Nysten, Bernard
2015-03-01
Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
Noncyanide Stripper Placement Program. Phase 1
1989-05-01
bronze (brazing material ) from low-alloy steels , heat and corrosion resistant...STRIPPERS AND BASIS MATERIALS FROM WHICH THE COATINGS ARE REMOVED (FROM T.O.42C2-1-7) Surface Coating Basis Material Brass Low-Alloy Steels Bronze Low...braze materials , low alloy steels , and heat and corrosion resistant steels . Additional tests were performed on three masking materials routinely
High Power Particle Beams and Pulsed Power for Industrial Applications
NASA Astrophysics Data System (ADS)
Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz
2002-12-01
Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.
A study on practical use of underwater abrasive water jet cutting
NASA Astrophysics Data System (ADS)
Yamaguchi, Hitoshi; Demura, Kenji
1993-09-01
The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.
NASA Astrophysics Data System (ADS)
Eskin, Sergei
1998-12-01
Laser treatment of the 303 and 416 stainless steels with Ti precoating was studied. CW CO2 and UV ArF excimer lasers were used. The TiN films were formed at a treatment velocity of 0.5 to 3 - 5 cm/sec and a power density of CO2 laser at (3 - 5) 104 W/cm2. X-ray diffractometry, x-ray mapping and Auger electron spectroscopy techniques indicated a TiN phase on the surface with oxygen content 12 - 25 at%. The thickness of the TiN film was 0.3 - 0.4 micrometers after treatment of the 5 micrometers Ti coating and about 900 angstroms for the 0.3 micrometers coating. Some characteristics of TiN films were examined and features of the nitriding process are discussed.
NASA Astrophysics Data System (ADS)
Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.
2016-07-01
Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.
Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue
2016-11-01
The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.
Chemically Accelerated Vibratory Surface Finishing (CAVSF)
2009-02-01
media) • End-roughness and micro structure of different C- steels • Material removal and roughness changes versus the amount of treatment solution in...surface finishing (CAVSF) Visual appearance of strip steel test pieces during the CAVSF process. 0-120 minutes = acid treatment 120-135 minutes = water... steel during the super-finishing process 0 50 100 150 200 250 300 350 0 50 100 150 200 250 Time minutes R e m o v e d m a t e r i a l m i c r
78 FR 30391 - Notice of Applications for Modification of Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... diameter of 1-\\1/ 2\\ inches maximum for 4131 seamless steel tubing cylinder. 10704-M Air Liquide America 49... with CGA Pamphlet C-23. 12122-M ARC Automotive, Inc., 49 CFR 173.301(h), To modify the and special...
76 FR 37835 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... small quantity of steel turnings, or other small magnetic particles, will be embedded in the top of the..., Cementation USA, to apply the 500 feet per minute requirement to the man-riding conveyance as well as the...
Surface catalytic degradation study of two linear perfluoropolyalkylethers at 345 C
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1987-01-01
Thin-liquid-film degradation studies of two commercially available perfluoropolyalkylether fluids (PFAE) were performed at 345 C, in nitrogen and air atmospheres, on iron and 440 C stainless steel surfaces. It was found that one fluid degraded on both iron and 440 C stainless steel surfaces in an air atmosphere, whereas the other fluid did not degrade. Chemical analysis revealed that the test fluid degraded to lower molecular weight products and that the degradation was accompanied by the formation of a brownish deposit on both the iron and 440 C stainless steel surfaces. Surface analysis of the deposit revealed a susbstantial amount of iron oxide (Fe2O3). It was hypothesized that the fluid which degraded did so because of its acetal structure. The other fluid, lacking the acetal structure, did not degrade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandriyana,, E-mail: bandri@batan.go.id; Ismoyo, Agus Hadi; Dimyati, A.
Surface treatment by implantation with nitrogen-ion was performed on the commercial feritic high strength steel AISI 410 which is termed for high temperature applications. The aim of this research was focused on the surface modification to improve its high temperature oxidation property in the early stages. Ion implantation was carried out at acceleration energy of 100 KeV and ion current 10 mA for 30, 60 and 90 minutes. The samples were subjected to the high temperature oxidation test by means of thermogravimetry in a magnetic suspension balance (MSB) at 500 °C for 5 hours. The scanning electron microscopy (SEM), X-ray diffractionmore » spectrometry (XRD) and Vickers Hardness measurement were used for sample characterization. The formation of ferro-nitride phase after implantation did not occur, however a thin layer considered to contain nitrogen interstitials was detected. The oxidation of both samples before and after implantation followed parabolic kinetics indicating inward growth of oxide scale characteristically due to diffusion of oxygen anions towards matrix surface. After oxidation test relativelly stable oxide scales were observed. Oxidation rates decreased proportionally with the increasing of implantation time due to the formation of oxide layer which is considered to be effectiv inhibitor for the oxygen diffusion.« less
Chen, Qiang; Jing, Jiajia; Qi, Hongfei; Ahmed, Ifty; Yang, Haiou; Liu, Xianhu; Lu, T L; Boccaccini, Aldo R
2018-04-11
Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.
Fracture Characteristics of Structural Steels: Reference Manual
1979-04-01
materials were fractured undcr tensile, fatigue, and impact loading con- ditions. The effects of hydrogen embrittlement on the steels ’ behavior when...years after paint failure. The composition and the heat treatment of 4160 steel results in a steel extremely susceptible to stress corrosion cracking and...A35 Fracture Surface of Tensile Specimen No. 3 322 22 IL TABLES Number Page 1 Chemical Composition of Steels and Weld Metal 32 2 Welding Parameters 33
Corrosion behavior of 2205 duplex stainless steel.
Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K
1997-07-01
The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.
High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines
NASA Astrophysics Data System (ADS)
Mann, B. S.
2014-06-01
The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.
In vitro investigation of friction at the interface between bone and a surgical instrument.
Parekh, Jugal; Shepherd, Duncan E T; Hukins, David W L; Hingley, Carl; Maffulli, Nicola
2013-06-01
This study investigated the friction between surgical instruments and bone to aid improvements to instrument design. The bases of orthopaedic surgical instruments are usually made of metal, especially stainless steel. Silicone elastomer was chosen as an alternate biocompatible material, which would be compliant on the bone surface when used as the base of an instrument. The coefficient of static friction was calculated at the bone/material interface in the presence of a synthetic solution that had a comparable viscosity to that of blood, to assess the friction provided by each base material. Three types of silicone elastomers with different hardnesses (Shore A hardness 23, 50 and 77) and three distinct stainless steel surfaces (obtained by spark erosion, sand blasting and surface grinding) were used to assess the friction provided by the materials on slippery bone. The bone specimens were taken from the flattest region of the femoral shaft of a bovine femur; the outer surfaces of the specimens were kept intact. In general, the stainless steel surfaces exhibited higher values of coefficient of static friction, compared to the silicone elastomer samples. The stainless steel surface finished by spark erosion (surface roughness Ra = 8.9 ± 1.6 µm) had the highest coefficient value of 0.74 ± 0.04. The coefficient values for the silicone elastomer sample with the highest hardness (Dow Corning Silastic Q7-4780, Shore A hardness 77) was not significantly different to values provided by the stainless steel surface finished by sand blasting (surface roughness Ra = 2.2 ± 0.1 µm) or surface grinding (surface roughness Ra = 0.1 ± 0.0 µm). Based on the results of this study, it is concluded that silicone could be a potentially useful material for the design of bases of orthopaedic instruments that interface with bone.
Akchata, Suman; Lavanya, K; Shivanand, Bhushan
2017-01-01
Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area.
Fabrication and characterization of DLC coated microdimples on hip prosthesis heads.
Choudhury, Dipankar; Ay Ching, Hee; Mamat, Azuddin Bin; Cizek, Jan; Abu Osman, Noor Azuan; Vrbka, Martin; Hartl, Martin; Krupka, Ivan
2015-07-01
Diamond like carbon (DLC) is applied as a thin film onto substrates to obtain desired surface properties such as increased hardness and corrosion resistance, and decreased friction and wear rate. Microdimple is an advanced surface modification technique enhancing the tribological performance. In this study, DLC coated microdimples were fabricated on hip prosthesis heads and their mechanical, material and surface properties were characterized. An Electro discharge machining (EDM) oriented microdrilling was utilized to fabricate a defined microdimple array (diameter of 300 µm, depth of 70 µm, and pitch of 900 µm) on stainless steel (SS) hip prosthesis heads. The dimpled surfaces were then coated by hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) layers by using a magnetron sputtering technology. A preliminary tribology test was conducted on these fabricated surfaces against a ceramic ball in simulated hip joint conditions. It was found that the fabricated dimples were perpendicular to the spherical surfaces and no cutting-tools wear debris was detected inside the individual dimples. The a-C:H and Ta-C coatings increased the hardness at both the dimple edges and the nondimpled region. The tribology test showed a significant reduction in friction coefficient for coated surfaces regardless of microdimple arrays: the lowest friction coefficient was found for the a-C:H samples (µ = 0.084), followed by Ta-C (µ = 0.119), as compared to the SS surface (µ = 0.248). © 2014 Wiley Periodicals, Inc.
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
NASA Astrophysics Data System (ADS)
Masoumeh, Goudarzi; Shahrooz, Saviz; Mahmood, Ghoranneviss; Ahmad, Salar Elahi
2018-03-01
The outbreak of the disease and infection in the hospital environment and medical equipment is one of the concerns of modern life. One of the effective ways for preventing and reducing the complications of infections is modification of the surface. Here, the handmade atmospheric plasma spray system is used for accumulating copper as an antibacterial agent on the 316L stainless steel substrate, which applies to hospital environment and medical equipment. As a durable coating with proper adhesion is needed on the substrate, the effect of stand-off distance (SOD) which is an important parameter of the spray on the microstructure, the hardness and adhesion of the copper coating on the 316L stainless steel were investigated. The structure and phase composition of copper depositions were investigated using scanning electron microscopy and X-ray diffraction. The adhesion and hardness of depositions are evidenced using the cross cut tester and Vickers hardness tester, respectively. The findings confirm that the voids in the coatings increase with increasing SOD, which leads to decreasing the hardness of coatings and also the adhesion strength between depositions and substrate. In addition, by increasing the SOD, the oxygen content and the size of grains in the lamellae (fine structure) of coatings also increase.
NASA Astrophysics Data System (ADS)
Elramady, Alyaa Gamal
The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher susceptibility to SCC when they were cold-rolled and cold-expanded. The research found that surface compressive stresses have an effect on the SCC behavior of casing and tubing steels. The CO2 corrosion behavior and atomic processes at the corroding interface were investigated at laboratory temperature using electrochemical techniques. Cold-work was found to have an influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. These behaviors were found to be material and process dependent. Surface evaluation techniques such as field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analysis did not detect formation of a protective scale. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) analysis both detected the appearance of a scale that was traced back to magnetite.